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DIFFEOMORPHISM GROUPS OF PRIME 3-MANIFOLDS

RICHARD H. BAMLER AND BRUCE KLEINER

ABSTRACT. Let X be a compact orientable non-Haken 3-manifold modeled on the
Thurston geometry Nil. We show that the diffeomorphism group Diff (X') deforma-
tion retracts to the isometry group Isom(X). Combining this with earlier work by
many authors, this completes the determination the homotopy type of Diff (X) for
any compact, orientable, prime 3-manifold X.
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1. INTRODUCTION

For a compact, connected, smooth 3-manifold X, we denote by Diff(X) the group
of smooth diffeomorphisms of X equipped with the C*°-topology.

Our goal in this paper is to prove the following:

Theorem 1.1. Let X be a compact, connected, geometrizable 3-manifold modeled
on the Thurston geometry Nil, and gy be a Nil-metric on X. Then the inclusion
Isom(X, go) — Diff(X) is a homotopy equivalence.

Combined with results from our previous two papers and work of
many other mathematicians [Hat70, Iva76, Iva82 Iva84l [Gab01, HKMRI12, IMS13],
Theorem [[.T] completes the project of understanding the topology of Diff(X), when
X is a closed, orientable, prime 3-manifold; see [BK17, HKMRI2] for references and
history.
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We remark that in the setting of Theorem [[1] the Lie group Isom(X, gp) is an
extension of a finite group F by a circle S*; it can be characterized using the Seifert
structure on X.

The proof of Theorem [[T]is based on Ricci flow and follows [BK17] closely, except
for some input specific to Nil geometry. We refer the reader to the introduction of
[BK17] for an outline of the proof.

Together with previous work, we have shown that singular Ricci flow offers a uni-
form approach to studying diffeomorphism groups of a large class of prime manifolds:
spherical space forms, hyperbolic manifolds, S? x S! and non-Haken manifolds mod-
eled on Nil. We expect that the methods from this paper cEp\Ee readily adapted

to also cover the non-Haken case modeled on H? x R and SL(2,R) and the Haken
case modeled on Solv, which were covered by McCullough-Soma [MS13] and Hatcher
[Hat76], respectively. We believe that our methods can be even carried further to
cover all geometrizable cases; this would be more technical, however, due to the fact
that the asymptotic behavior of the Ricci flow is not fully understood in this case

(see [Baml18e, Question 1.7]).

2. PRELIMINARIES

In this section we cover some of the background material needed for the proof
Theorem [[T} since the proof follows [BK17] closely, the reader may wish to consult
the preliminaries section of [BK17] as well.

2.1. Nil geometry and Nil-structures. We collect some facts about Nil geometry
and Nil structures [Sco83].

Thurston’s Nil-geometry is the Heisenberg group

1 1 I3
(2.1) Nil := 0 1 x D X, T, x3 ER 3,
0 0 1

equipped with the left invariant Riemannian metric gy for which the basis X; := Ej o,
Xy = Es3, X3 := Ej3 of elementary matrices is orthonormal; here we use the
standard identification of the Lie algebra L(Nil) with the space of strictly upper
triangular matrices. We have [X;, X5] = X3, [X3, X3 = [X2, X3] = 0. In what
follows we will use Nil to denote the Lie group or the Riemannian manifold (Nil, gni),
depending on the context.
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The automorphism group of L(Nil) is generated by elements whose matrix with
respect to the basis X7, X5, X3 has one of the two forms:

(22) ( 0 dors )

1 0 0
(2.3) 0 1 0
by by 1

for some A € GL(2,R), by,bo € R. Automorphisms as in (2.2) with A = \id are
(Carnot) dilations. The affine group of Nil is the group Aff(Nil) generated by the left
translations and the automorphisms; this is the semidirect product of the translations
with the automorphism group Aut(Nil). Every ® € Aff(Nil) carries left invariant
vector fields to left invariant vector fields, and we denote by D® € Aut(L(Nil)) the
associated Lie algebra automorphism. The isometry group Isom(Nil) is the set of
® € Aff(Nil) such that D® is as in ([2.2]) for some A € O(2). Carnot dilations
normalize Isom(Nil). Any left-invariant metric g on Nil is homothetic to gnj; more
specifically, there exists an automorphism ¢ € Aut(Nil) and some A > 0 such that
g = N¢*gni.

We identify the abelianization Nil / exp(RX3) with R?. Any automorphism of Nil
preserves the center exp(RXj3), and hence any ® € Aff(Nil) induces an affine map
R? — R?. This yields an Aff(Nil)-equivariant fibration Nil — R?; this is also an
Isom(Nil)-equivariant fibration, when we restrict to Isom(Nil) C Aff(Nil).

A Nil-structure on a manifold X is a Riemannian metric g locally isometric to
Nil; we say that X is modeled on Nil if it admits a Nil-structure. When X is
compact and connected, then the universal cover (X, g) is isometric to Nil, and up
to isometry we have X = Nil /I" for some lattice I' C Isom(Nil) acting freely on Nil.
Since Aff(Nil) ~ Nil is orientation preserving, Nil /T" is orientable.

Any lattice I' C Isom(Nil) has a finite index translation subgroup [Aus60), Rag72].
Any isomorphism I'; — T's between two lattices I'y, 'y C Isom(Nil) is induced by
(conjugation by) some ® € Aff(Nil) [Aus60].

If I' C Isom(Nil) is a lattice acting freely on Nil, then as above we obtain an
isometric action I' ~ R? and a quotient Euclidean orbifold R?/T", where T is the
image of I' in Isom(R?). The abelianization fibration Nil — R? is '-equivariant,
and descends to a Seifert fibration Nil /T" — R?/T over a flat orbifold whose singular
points are only of cone type (i.e., there are no reflectors or corner reflectors). By
conjugating I" by a Carnot dilation we may arrange that Nil /T" has unit volume.

An orientable 3-manifold X is called Haken if it is prime and contains an em-
bedded, 2-sided, incompressible surface (i.e., a surface Y C X of nonpositive Euler
characteristic such that m1(Y) — m(X) is injective).

Lemma 2.4. Suppose X is a compact connected geometrizable non-Haken 3-manifold
modeled on Nil. Then it has a unique unit volume Nil-structure, up to isometry.



4 RICHARD H. BAMLER AND BRUCE KLEINER

Proof. Let T := 7,(X), and consider two isometric covering group actions I' 7 Nil

with quotients diffeomorphic to X and of unit volume; we denote by I’ 7 R? the
Dp, Dy’ . Dp, Dp' . .
induced isometric actions on R2, and '~/ L(Nil), T 7" R? the associated linear

actions obtained by taking “linear parts”.

Claim. The orthogonal actions Dp, Dp' are irreducible.

Proof. Since X is non-Haken, the quotient orbifold R?/p(T") contains no 2-sided, em-
bedded, closed geodesics. By the classificaton of flat orbifolds, R?/5(T") must be a
2-sphere with 3 cone points, which implies irreducibility of Dp.

Alternatively, we can argue as follows: Suppose Dp is reducible, so each element
of I" acts as a reflection, a rotation by 7 or trivially. If there is an element g € I" that
acts by a reflection, then p(g) must be a glide reflection; let v C R? be its axis. If
there is no such element, then let v C R? be a line that projects to a circle under
the quotient map R? — R?/p(T"). In both cases, a generic line 7/ C R? parallel to
projects to a 2-sided, embedded, geodesic in R?/p(T"), which is a contradiction.

The proof for Dy’ is the same. O
It follows from the Claim that the actions I' 74" L(Nil) restricted to the 2-
dimensional subspace X3, are irreducible. By [Aus60] — the statement and proof of

which are variations on the classical Bieberbach theorem on crystallographic groups
— there is an affine mapping ® : Nil — Nil conjugating p to p'. Since D® : L(Nil) —
L(Nil) is equivariant with respect to the linear actions Dp, Dy/, it preserves Xj, and
induces a conformal mapping X3 — X3°; hence D® has a matrix as in ([2.2)) where
A = AB for some A > 0 and B € O(2), and so det D® = A\*. Now vol(Nil /p(T)) =
vol(Nil /p/(T")) implies that |det D®| =1, s0o A =1 and ® is an isometry. O

2.2. Spaces of maps and metrics. If X is a smooth manifold, we let Met(X)
denote the set of smooth Riemannian metrics on X equipped with the C'*°-topology.
Now assume that X is compact, connected and modeled on Nil. Let Mety; (X) denote
the subspace of Met(X) consisting of unit volume Riemannian metrics isometrically
covered by Nil (this is nonempty as mentioned above). We will need the following
result:

Lemma 2.5. Suppose X is non-Haken, and pick gx € Metny(X). Then:

e There is a fibration Diff (X)) — Metn; (X)) with fiber homeomorphic to Isom (X,

9x)-

e Diff(X) and Metny(X) are homotopy equivalent to CW complezes.

o Metnu(X) is contractible if and only if the inclusion Isom(X, gx) — Diff(X)
s a homotopy equivalence.

This follows from Lemma 2.4] as in the proof of [BK17, Lemma 2.2].
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2.3. Singular Ricci flows. We will use the terminology associated to the concept
of singular Ricci flow, as defined in [BK17]; see also [KL17, BK]. For convenience, we
call a Ricci flow spacetime (M, ¢, d;, g), which we often abbreviate by M, a singular
Ricci flow if it is an (€can, 7)-singular Ricci flow according to [BK17, Definition 2.13],
for €can > 0 as in [BK17, Theorem 2.14] and for some function r : [0,00) — (0, 00).
Recall that for every closed, 3-dimensional Riemannian manifold (M, g) there is a
singular Ricci flow M whose initial time-slice (Mo, go) is isometric to (M, g) and this
flow is unique up to isometry (existence was established in [KLI7] and uniqueness
in [BK]). In contrast to Perelman’s Ricci flow with surgery [Per03], surgeries in M
are not performed at discrete time-steps; instead, change of topology occurs at an
infinitesimal scale.

In the following, we collect the necessary topological and geometric properties of
singular Ricci flows that will be needed in this paper.

If M is a manifold, then a punctured copy of M is a manifold diffeomorphic to
M\ S, where S C M is a finite (possibly empty) subset. Note that if M;, M, are
compact 3-manifolds, then punctured copies of M; and M, can be diffeomorphic only
if M is diffeomorphic to M,. This follows from the fact that if D, D" are 3-disks
where D' C Int D, then D\ D’ is diffeomorphic to S? x [0,1]. Hence the notion of
“filling in” punctures is well-defined.

A compact Riemannian manifold (M, g) is called e-almost-flat if

sup |[Rm|( diam(M, g))2 <e.
M

Theorem 2.6 (Structure of singular Ricci flows). Let (X, go) be a compact Riemann-
tan 3-manifold, and let M be a singular Ricci flow with initial time slice Mg =
(X,90). Then:

(1) For every t € [0,00), each component C C M, is a punctured copy of some
compact 3-manifold.

(2) Let M be the (possibly empty) 3-manifold obtained from M, by filling in
the punctures and throwing away the copies of S*. Then MM is a compact
3-manifold, i.e., all but finitely many components of M, are punctured copies
of S3. Furthermore, for every t; < ty the prime decomposition of M is part
of the prime decomposition of ./\/12“ Hence there are only finitely many times
at which the prime decomposition of MM changes.

(3) MM is irreducible and aspherical for large t, depending only on the following
bounds on the geometry of My: upper bounds on the curvature and volume,
and a lower bound on the injectivity radius.

(4) If X is modeled on Nil, then for every e > 0 there is a time T'(go, €) < 0o such
that M restricted to [T,00) is non-singular and (M, g;) is e-almost-flat for
allt > T. Here T(go,€) may be chosen to depend continuously on the initial
metric gy in the C*-topology.

Proof. Assertions (1)—(3) are a restatement of [BK17, Theorem 2.16].
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To see Assertion (4), note first that the corresponding statement (excluding the
last sentence) holds for Ricci flow with surgery due to [Baml8¢, Theorem 1.4] and
Lemma 2.7 below, assuming that surgeries are performed sufficiently precisely. We
will argue that the proof of [Bam18e, Theorem 1.4] also works for singular Ricci flows.
This is true in general, but we focus on the case in which (My, go) is a non-Haken
Nil-manifold, because some of the discussion simplifies in this case.

Note first that for large times we still obtain a thick-thin decomposition M, =
Mihick g AMthin - as described in [Per03, 7.4] or [KLOS, Proposition 90.1], [Bam18a,
Proposition 3.16], where M!P is diffeomorphic to a hyperbolic manifold whose cus-
pidal tori are incompressible within M,. This can be seen either directly by reproving
the necessary estimates in the setting of singular Ricci flows or by approximating M
with Ricci flows with surgery whose surgery parameter goes to zero. For the latter
approach see the end of the proof of [BK17, Theorem 2.16]. Since, by assumption,
My, and thus also M does not have any hyperbolic pieces in its geometric decom-
position, we must have Mk = ) for large .

Next, we can decompose M; = M for large ¢, as explained in [Bam18d|, Proposi-
tion 2.1]. Note that this result is purely Riemannian, hence it can be directly applied
in the setting of singular Ricci flows at non-singular times, which are dense in [0, 00)
[KL20]. The subsequent study of the local collapse and the topological discussion in
[Bam18dl Section 2] also applies to non-singular time-slices of M.

Let us now follow the lines of the proof of [Baml8¢, Theorem 1.1] in [Baml8d,
line 1054], Case 2 (which is significantly simpler than Case 1). Apart from what we
have already discussed, this proof relies on the following additional ingredients:

e The curvature bound from [Bam18al Proposition 4.4]. The proof of this bound
can be translated easily to the setting of singular Ricci flows. Alternatively,
it can again be obtained by approximating M with Ricci flows with surgery
and passing to the limit.

e The existence of a family of piecewise smooth maps fr; : V — M; of con-
trolled area, where the simplicial complex V' and the homotopy class of fj; are
constructed in [Bam18c, Section 3.7]. Note that [Bam18d] is purely topological
and makes no reference to Ricci flows at all and [Bam18b] only concerns classi-
cal Ricci flows, except for [Bam18b, Proposition 5.5], which easily generalizes
to singular Ricci flows.

The remainder of the arguments in Case 2 of the proof of [Bam18¢, Theorem 1.1] also
hold for non-singular time-slices of M, showing that there is some time 7" < oo such
that Mz o) can be described by a conventional Ricci flow without singularities and
that we have a curvature bound of the form |[Rm| < Ct™!.

After time-shifting My o), we can finally apply [Baml8¢, Theorem 1.4] and
Lemma 27 below to conclude the proof of the first part of Assertion (4).

It remains to establish the last statement concerning continuity of 7. To see this,
we use the stability theorem for singular Ricci flows, [BKl Theorem 1.5] to conclude
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that if e; > 0 there is a 0(go, €1) > 0, which depends continuously on the initial metric
go in the C2-topology, such that (M., g5) is €;-almost-flat for any singular flow M’
with initial time-slice isometric to (X, g() if ||g6 — gollc2 < 6. By Theorem 2.8 below,
for e; = €1(€) > 0, we obtain that (M}, g;) is e-almost-flat for all £ > 7. This implies
that we may choose T to depend continuously on the initial metric, for example, using
a partition of unity. O

Lemma 2.7. Suppose that X is a compact, non-Haken manifold modeled on Nil and
m: X — X is a finite covering. Then for any K < oo there is an e(m, K) > 0 such
that there is no Riemannian metric g on X with the following properties:

(1) Rmg| < K

(2) diam(X,§:=77g) > ¢!

(3) There is a Riemannian metric ¢ on X such that (1 —€)g < § < (1 + €)§
and such that the following holds: We can represent X as the total space of a
T?2-fibration over S* such that in a fibered neighborhood of each T?-fiber there
is a free, §'-isometric T?-action whose orbits are the T?-fibers of this fibration
and those orbits have diameter < e.

Proof. Let a > 0 be a small constant whose value we will determine in the course
of the proof. Applying [CFG92| to g yields a (p(«, K), k(«))-round metric g” on X
with (1 —a)g < ¢"” < (1 + a)g together with a nilpotent Killing structure 9%, whose
orbits have diameter < «. The lift g’ := 7n*¢” is (p, Ck)-round, it is compatible
with the pullback N := 7N and has orbits of diameter < Ca, where C' may depend
on 7 : X — X. Note that we still have (1 — a)g < §" < (1 + a)g and thus
(1—-2a)g <7" < (14 2a)g for small enough €. So if € is chosen small enough, then

~ A~

the orbits O, of 91 cannot be 3-dimensional, by Assumption (2), or 0 or 1-dimensional,
by Assumption (3). So all orbits must by 2-dimensional and therefore isometric to
a flat 2-torus or a Klein bottle. Moreover, these orbits must lie close enough and
be homotopic to the orbits of the local isometric T?-action of g for sufficiently small
a,€e. We can now exclude orbits @p diffeomorphic to the Klein bottle, since any
such orbit has a neighborhood that is diffeomorphic to a Zy-quotient of T2 x [—1, 1],
equivariant with respect to the corresponding 72-action. So the orbits @p are all
2-tori and form a fibration of X over a circle. On the other hand, by construction,
we have W(@p) = Ox) for any p € X. So the orbits O, of (X,¢") must again
be 2-dimensional and, therefore, generic orbits O, must be 2-tori that are finitely
covered by incompressible 2-torus orbits @p of ()? ,g"). This, however, contradicts
our assumption that X is non-Haken. O

The following theorem is a uniform version of the main result in [Guz0§|; this
slightly improved statement can be easily extracted from the proof in [Guz08]. We
have also included a proof for the reader’s convenience.



8 RICHARD H. BAMLER AND BRUCE KLEINER

Theorem 2.8 ([Guz08]). For every € > 0 there exists 6 = 6(e,n) > 0 such that Ricci
flow starting from any d-almost-flat n-manifold is immortal and e-almost-flat for all
t>0.

Theorem 2§ follows immediately by taking § := C~!min(eg, €) where ¢ and C
are as in Lemma below, and applying that lemma iteratively on time intervals
[T5-1,T;] where T; = Tj;_; + AK;J_:; note that intervals [1j_y,T;] grow at least
geometrically by Assertion (4) of the lemma.

Lemma 2.9. There exist eg(n) > 0, A(n),C(n) < oo with the following property.
Suppose that (M, (g¢)ieo,1)) @5 a Ricci flow on a compact, n-manifold with e-almost-
flat initial condition (M, go) for some € < €y; here T < 0o is chosen maximal. Then
for K, := sup,, |[Rm,,| we have, assuming that K, > 0:

(1) T > AK;* .

(2) (M, g;) is Ce-almost-flat for all t € [0, AK].
(3) (M, g;) is §-almost-flat for t = AKy ™.

(4) Ky < 1Ko fort = AKj .

Proof. We need the following statement.

Claim. There exist A'(n),C'(n) < oo with the following property. Suppose that
(M*, (97 )ieo,r+)) is a mazimal Ricci flow through left-invariant metrics on a simply
connected, nilpotent Lie group with [Rmg:| = 1. Then T* = oo and the following is

true:
(1) |Rmg:| < C" and [Rmg:|g; < C'gg for all t > 0.
(2) |[Rmg: | < & and [Rmg|g; < 5595 for all t > A'.

Proof. This is essentially the content of [Guz08, Theorem 2.7], which is based on work
of Heber and Lauret [Heb98|, [Lau01]. If n = 3, the case of interest for this paper, then
the argument is much simpler. Up to isomorphism, there are only two 3-dimensional
simply connected Lie groups: R? and Nil. The case M’ = R? is trivially true and the
case M’ = Nil follows from a simple computation, see for example [[J92]. O

Fix A’, C" according to the Claim and suppose that the lemma was false for A :=
16C"A' + 1 and C := 16C". Choose counterexamples (M;, (g;)iepi,1;)) for a sequence
¢; — 0. By parabolic rescaling, we may assume that sup,, |[Rm,,,| = 1. By applying
the maximum principle to |Rm|, we obtain a 7 € (0, 1] such that

(2.10) |Rmy, ,| <2, diam(M,g;;) < 2diam(M, g;) for all t e 0, 7].

Choose T* < oo maximal with the property that for any 7" < T* there is a subse-
quence such that we have 7" < T; and supy, e[, [Rmy, | < C(1") for some uniform
C(T") < co. By asimple distance-distortion estimate, we have sup¢( 7 diam(M, g; 1)
— 0. So, after passing to a diagonal subsequence, the universal covers of the
flows (M;, (git)teo,r+)), pointed at arbitrary points, converge to a maximal Ricci




DIFFEOMORPHISM GROUPS OF PRIME 3-MANIFOLDS 9

flow of the form (M™, (g/)ico,r+)), which is invariant under a transitive action of
a nilpotent group; see [Guz08|] for details. By the Claim we have T* = oco. Set
K?2° := supy. |[Rmg: | < 2.

Case 1: K =0  In this case (M*, (9} )iejr.r+)) is flat and we obtain a contradic-
tion for large i.

Case 2: K> < (16C")~'  Consider the time-shifted flow (M*, (g;_,)i>0). Rescal-
ing this flow parabolically by the factor K2° yields a Ricci flow that satisfies the
assumptions of the Claim. Assertion (1) of the Claim provides geometric bounds,
which imply that the original flow (M*, (g;)¢>0) satisfies

(2.11) [Rmg; | < C"K7, [Rmg |g; < C'KXg]

for all ¢ > 7. Let us now argue that Assertions (1)—(4) of the lemma hold for large
i, which will give us the desired contradiction. Assertion (1) holds since 7" = oo.
Assertion (2) holds for ¢ € [0, 7] due to (2.10), which implies that (M, ¢, ) is 8c-almost-
flat. To see Assertion (2) for t > 7, we use the second bound in (ZI7]) to deduce that
for large 7 the almost-flatness increases by at most a factor of 2C” between the times
7 and t. Next, note that by (ZI0) we get that (M, g; ) is even 4K >e-almost-flat for
large i, so by the same argument as before, we obtain that (MM, g;;) is even 8C'KXe-
almost flat. Since 8C'K2 < 1, this implies Assertion (3) for large i. Assertion (4)
follows from the first bound in 2.II) for large i since C'K>® < .

Case 3: K= > (16C")7! The argument is similar to that in Case 2. Asser-
tions (1) and (2) of the lemma follow via the previous argument, since they did not
depend on the bound for K2°. To see the remaining assertions, we apply the Claim
as in Case 2, but use Assertion (2), to obtain that

9 < 5 K%g;

(2.12) [Rmg: | < K> <3, |Rmglg; < 55

for t > 7+ A'(K>)~!. Note that by the choice of A, these bounds hold for t = A. As
in the previous case, we find that (M, g; ;) is 8e-almost flat and the second bound in
(212) implies that for large i the almost-flatness decreases by a factor of at most 1=

between the times 7 and A. This implies Assertion (3). Assertion (4) follows directly
from the first bound in ([2.12]) for large 1. O

2.4. Improving almost Nil-metrics. In the following, let X be a closed 3-manifold
modeled on Nil. We will show that the metrics obtained in Theorem [2.6(4) can be
canonically improved to Nil-structures. The following lemma may be compared with
[BK17, Remarks 3.4, 6.2].

Lemma 2.13. There is an ¢y(X) > 0 with the following property. Consider the
subset U, C Met(X) of eg-almost-flat metrics. There is a continuous map V : U, —
Metni(X) such that if g is a deformation of a metric g* € Metny(X) by the Ricci
flow, then ¥(g) = g*.

Proof. Fix some g € U,,. We provide a construction for the metric ¥(g) € Metnn(X),
which depends continuously on g. By replacing ¢ with supy |[Rm,| g, we may assume
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that supy |[Rmy| = 1. Next, we may evolve g via the Ricci flow for some uniform
time, using Theorem 28], to obtain a metric ¢’ € U,, with
(2.14) V™ Rmy| < Cp,

for some uniform constants C,, < oo. It is clear that ¢’ depends continuously on g.
For notational simplicity we replace g with ¢'.

Let 7 : ()A( ,g) — (X, g) be the finite normal covering corresponding to the transla-
tion subgroup of m(X) C Isom(Nil) and denote by G ~ X the action by the finite

deck-transformation group. Identify H'(X;R) = R? with the space H' of harmonic
1-forms via de Rham cohomology. Consider the inner product (-,-) on H! defined by

oy, Q) = ———— a1, Qa) dg, oy, 00 € HL
( 1 2) VOI(X,@\) )?< 1 2) g 1, Qg

Let (Y2, gy) be the flat torus obtained by the quotient
(HY)'/H\(X:Z) = Hy(X;R)/H\(X; 2),

equipped with the affine metric induced by (+,-). We now construct a map ¢ : XY
as follows. Fix some p € X. For any q € X consider a 1-chain v C X with oy =q—p,
which is unique up to a representative of Hl()? :Z). Consider the element h € (H!)*
with the property that h(a) = a(y) for any o € H! and define ¢(q) to be the class of

hin (HY)*/Hy(X;Z).
Claim. (1) ¢ : X — Y is smooth and its differential is given by
dpg : T,X —» TsY = (HY), v— (@ — a(v))

(2) ¢ induces an isomorphism Hy(X;7Z) — Hy(Y;Z).

(8) There is an isometric action G ~Y for which ¢ is equivariant.

(4) If e < € (X), then ¢ is a submersion whose fibers are circles.

(5) If (X, A72G) = Nil /T for some A > 0, then ¢ lifts to the abelianization fibra-

tion.

Proof. Assertions (1), (2) are clear by construction. For Assertion (3) note that a
different choice of basepoint p leads to a map of the form ¢’ = 1) o ¢ for some isometry
V(Y. 9v) = (Y.gv).

To see the first part of Assertion (4) we argue by contradiction. So assume that
for a sequence €,; — 0 there are metrics g; such that none of the induced maps
o; - ()A(,@) — (Y}, gv;) are submersions. By (2.14) we have diam()?,@-) — 0. By
Assertion (1) there must be non-zero harmonic 1-forms a; on (X, ;) that vanish at
some point ¢; € X. Without loss of generality, we may assume that supg |a;| = 1.
Now consider the pullbacks «a;, g; of g; and «; via the exponential map based at g;.
Due to standard gradient estimates and the curvature bounds, we obtain a uniform
bound of the form |Va;| < C in a fixed ball around the origin. So |Vay| < C on X
for large 4. This, however, contradicts the fact that sup¢ |a;| =1 and |()4,| = 0 for
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large 7. Thus we may assume that ¢ is a submersion; the fact that the fibers of ¢
are connected follows from Assertion (2), for example, via the long exact homotopy
sequence.

For Assertion (5) note that any constant 1-form on R? lifts to a harmonic 1-form
on (Nil, M2gy;) via the abelianization map Nil — R2. Any such lift descends to a

harmonic form on (X, g). Combining this with Assertion (1) implies Assertion (5). O

Consider now the S'-fibers of ¢. For any ¢ € X let ¢(q) be the length of the
Sl-fiber through g. These fibers represent a generator of the center in Wl()? ). Fixing
such a generator determines a unique orientation on the fibers. Let now V' be the
uniquely defined vector field that is tangent to these fibers, satisfies |V| = ¢ and is
positively oriented. Then the flow of V induces a principal S!'-bundle structure on
X. We obtain a principal connection @ on this bundle by averaging g(¢~'V, ) via the
S'-action. Denote its curvature 2-form by w € Q?(Y'). Let w’ € Q*(Y) be the parallel
2-form cohomologous to w, and let @ = 6 4+ ¢*0, where 0 is the unique element of
QYY) that is L?-orthogonal to ker(d : QY(Y) — Q3(Y)) and satisfies df = o' — w.
Let U;,U, be a parallel orthonormal frame on Y, and for a > 0 we let g, be the
Riemannian metric on X such that Uy, Uy, Uy, Us] are orthonormal, where Uy, Us are
horizontal lifts with respect to the connection &' of aU;, aUs,, respectively. Let @ > 0
be the unique choice of a such that the volume of g; equals the order of the normal
covering X — X. Note that gz is invariant under the action of the deck group of the
covering X5 X , and therefore it descends to a metric on X, which we declare to be
U(g).

By construction and the Claim, ¥(g) depends continuously on g. To see the last
statement, observe that (X g*) is isometric to a quotient of Nil by a lattice I c
Isom(Nil); in the following we identify (X,§*) = Nil /T. The Ricci flow (gNﬂt)t>0
starting from gn; preserves the symmetries of gnj and descends to a flow on Nil / I
Due to the preservation of symmetries, the left-invariant vector fields X7, X5, X3 on
Nil from Subsection 2.1l remain orthogonal and satisfy gni:(X1, X1) = gnine (X2, Xa).
So by the discussion in Subsection 2] we obtain that gxis = A7t} gni for some family
of Carnot dilations 1; and scalars \; > 0. Combining this with Assertion (5) of the
Claim, we obtain that the map ¢ : Nil / [ — R2 / f, constructed with respect to any
gnily, is the standard Seifert fibration, which lifts to the abelianization map Nil — R,
Following the construction succeeding the Claim shows that ¥(g) = g*. O

3. PROOF OF THEOREM [I.1]

The proof of Theorem [I.1]is the same as the proof of the corresponding theorems
for spherical space forms and hyperbolic manifolds given in [BK17], apart from some
minor changes, which we now explain.
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Section 3 of [BK17] shows that if X is a spherical space form, then we may assign
to every g € Met(X) a partially defined metric (I, §) with sectional curvature = 1,
in a continuous manner. In our case, the corresponding result is:

Lemma 3.1. Let X be a compact, non-Haken manifold modeled on Nil, and pick
gx € Metxy(X). Then for every g € Met(X) there is a partially defined metric
(Wy,g) on X (as defined in [BK17, Definition 2.3]) such that:

(1) (W, ) is isometric to (X \ Sy, gx) for some finite (possibly empty) subset
Sg C X, where the cardinality of Sy is bounded above by a continuous function
of g (in the C™ topology).

(2) If g € Metnn(X) then (W,,9) = (X, g).

(3) The assignment g — (W, §) is continuous.

Proof. Pick g € Met(X), and let M be a singular Ricci flow with M, = (X, g).

For every ty,ts € [0,00), let Cy, 4, C Cy be the set of points in Cy, that survive
until time ¢, i.e. the points for which the time (¢t — t;)-flow of the time vector field
O, is defined. Then C}, 4, is an open subset of Cy,, and the time (fy — t;)-flow of 0
defines a smooth map ®,, ¢, : C, 4, — My,, which is a diffeomorphism onto its image.

Now let T' = T'(g, €0(X)), where €y(X) is as in Lemma 213] and T'(g, €o(X)) is
as in Theorem 2.6(4). Then by Theorem 2.6(4) the time-T" slice My satisfies the
hypotheses of Lemma 213} we let g € Metny (M) be the Nil metric supplied by that
lemma. We then define (Wy, §) = (®10(Cryo), (Pr0)+9)-

Properties ([I)-(B)) now follow as in the spherical case. O

Sections 4 and 5 of [BK17] now carry over after replacing Met x=; (X') by Metnu(X),
and the Thurston geometry S* by Nil. Instead of [BK17, Lemma 4.3] we use:

Lemma 3.2 (Extending Nil metrics over a ball). In the following, we let S* and D?
denote the unit sphere and unit disk in R3, respectively, and we let N,(S?) denote the
metric r-neighborhood of S? C R3.

Suppose m >0, p >0 and:

(i) hms1 © D™ — Metni(N,(S?) N D?) is a continuous map such that for all
p € D™ the Riemannian manifold (N,(S*) N D?, hyyi(p)) isometrically
embeds in Nil. Here Metni(N,(S?) N D?) is equipped with the CR2 -topology.
(i1) T = S™ = Metniy(D?) is a continuous map such that for every p € S™ we
have B (p) = Buni1(p) on N,(S%) N D3, and (D3, hy(p)) isometrically embeds
in Nil.
Then, after shrinking p if necessary, there is a continuous map ﬁmﬂ : DMl
Metni(D3?) such that:

() Puni1 (D) = hmyr (p) on N,(S2) N D? for all p € D™,
(b) himi1(p) = hi(p) for all p € S™.
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(c) If for some p € D™ there is a metric g’ € Metyxy(D?) and some p' > 0 such
that (N, (S*)N D3, ¢') is isometric to (N, (S?) VD3, hyny1(p)), then (D3, g') is
isometric to (D3, hyi1(p)) and thus the volumes of both metrics are the same.

Proof. The proof is the same as that of [BKI7, Lemma 4.3], except for the first
step. Pick x € S? 2/ € Nil and consider the orthonormal basis €} := (X1)./, e, :=
(X2)ar, €5 := (X3)s € Tp Nil, where X, Xy, X3 denote the left-invariant vector fields
from Subsection 211 Similarly, for any p € D™ let fi(p) € T,R? such that there is
a local hy,.1(p)-isometric Nil-action near z and left-invariant, positively oriented or-
thonormal frame F,, Ey, E5 with E3 = [E, Ey| such that f3(p) = (Ej5),. This property
characterizes f3(p) uniquely and thus f3 : D™ — T,R3 is continuous. Since D™*!
is contractible, we can now find fi, fo : D™ — T,R? such that fi(p), f2(p), f3(p)
form a positively oriented h,,1(p)-orthonormal basis for each p € D™, Tt follows
that there are unique isometric embeddings ¥, +1(p) : (N,(S?) N D?, byt (p)) — Nil,
Gm(p) : (D h(p)) — Nil sending f1(p), f(p), f3(p) to €, eh, ¢4. The remainder of
the argument is the same as in [BK17, Lemma 4.3].

Assertion (c), which is new, follows easily from the uniqueness of isometric embed-
dings. U

ACKNOWLEDGMENTS

We thank the anonymous referee for valuable comments.

REFERENCES

[Aus60] L. Auslander, Bieberbach’s theorems on space groups and discrete uniform subgroups of
Lie groups, Ann. of Math. (2) 71 (1960), 579-590. MR 121423

[Bam18a] R. H. Bamler, Long-time behavior of 3-dimensional Ricci flow: A: Generalizations of
Perelman’s long-time estimates, Geom. Topol. 22 (2018), no. 2, 775-844. MR 3748680

[Bam18b] Richard H. Bamler, Long-time behavior of 3-dimensional Ricci flow: B: Evolution of the
minimal area of simplicial complexes under Ricci flow, Geom. Topol. 22 (2018), no. 2,
845-892. MR 3748681

[Bam18c] , Long-time behavior of 3-dimensional Ricci flow: C: 3-manifold topology and
combinatorics of simplicial complexes in 3-manifolds, Geom. Topol. 22 (2018), no. 2,
893-948. MR 3748682

[Bam18d] , Long-time behavior of 3-dimensional Ricci flow: D: Proof of the main results,
Geom. Topol. 22 (2018), no. 2, 949-1068. MR, 3748683

[Bam18e] , Long-time behavior of 3-dimensional Ricci flow: introduction, Geom. Topol. 22

(2018), no. 2, 757-774. MR 3748679

[BK] R. Bamler and B. Kleiner, Uniqueness and stability of Ricci flow through singularities,
http://lanl.arxiv.org/abs/1709.04122.

[BK17] , Ricci flow and diffeomorphism groups of 3-manifolds.

[BK19] , Ricci flow and contractibility of spaces of metrics.

[CFG92]  J. Cheeger, K. Fukaya, and M. Gromov, Nilpotent structures and invariant metrics on
collapsed manifolds, J. Amer. Math. Soc. 5 (1992), no. 2, 327-372. MR 1126118

[Gab01]  D. Gabai, The Smale conjecture for hyperbolic 3-manifolds: Isom(M?3) ~ Diff(M?3), J.
Differential Geom. 58 (2001), no. 1, 113-149.




14
[Guz08]
[Hat76]
[Heb98]
[HKMR12]
[1J92]

[Iva76)

[Ivag2]

[Tva84]
[KLOS]
[KL17]
[KL.20]
[Lau01]
[MS13]
[Per03]
[Rag72]

[Sco83]

RICHARD H. BAMLER AND BRUCE KLEINER

G. Guzhvina, Ricci flow on almost flat manifolds, Differential geometry and its applica-
tions, World Sci. Publ., Hackensack, NJ, 2008, pp. 133-146. MR 2462788

A. Hatcher, Homeomorphisms of sufficiently large P?-irreducible 3-manifolds, Topology
15 (1976), no. 4, 343-347.

J. Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2,
279-352. MR 1632782

S. Hong, J. Kalliongis, D. McCullough, and J. H. Rubinstein, Diffeomorphisms of elliptic
3-manifolds, Lecture Notes in Mathematics, vol. 2055, Springer, Heidelberg, 2012.

J. Isenberg and M. Jackson, Ricci flow of locally homogeneous geometries on closed
manifolds, J. Differential Geom. 35 (1992), no. 3, 723-741. MR 1163457

N. V. Ivanov, Groups of diffeomorphisms of Waldhausen manifolds, Zap. Nautn. Sem.
Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976), 172-176, 209, Studies in topol-

ogy, II.

, Homotopy of spaces of diffeomorphisms of some three-dimensional manifolds,
Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 122 (1982), 72-103,
164-165, Studies in topology, IV.

, Homotopy of spaces of diffeomorphisms of some three-dimensional manifolds,
J. Soviet Math. 26 (1984), 1646-1664.

B. Kleiner and J. Lott, Notes on Perelman’s papers, Geometry & Topology 12 (2008),
no. 5, 2587-2855.

Bruce Kleiner and John Lott, Singular Ricci flows I, Acta Math. 219 (2017), no. 1,
65—134. MR 3765659

B. Kleiner and J. Lott, Singular Ricci flows II, Geometric analysis, Progr. Math., vol.
333, Birkhduser/Springer, Cham, [2020] (©)2020, pp. 137-155. MR 4181000

J. Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001), no. 4, 715—
733. MR 1825405

D. McCullough and T. Soma, The Smale conjecture for Seifert fibered spaces with hy-
perbolic base orbifold, J. Differential Geom. 93 (2013), no. 2, 327-353. MR 3024309

G. Perelman, Ricci Sflow with surgery on three-manifolds,
http://arxiv.org/abs/math/0303109v1 (2003).

M. S. Raghunathan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und
ihrer Grenzgebiete, Band 68, Springer-Verlag, New York-Heidelberg, 1972. MR 0507234
P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), no. 5,
401-487. MR 705527

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, BERKELEY, CA

94720

Email address: rbamler@berkeley.edu

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, 251 MERCER
ST., NEW YORK, NY 10012

Email address: bkleiner@cims.nyu.edu



	1. Introduction
	2. Preliminaries
	2.1. Nil geometry and Nil-structures
	2.2. Spaces of maps and metrics
	2.3. Singular Ricci flows
	2.4. Improving almost Nil-metrics

	3. Proof of Theorem 1.1
	Acknowledgments
	References

