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CONVERGENCE RATE OF PARTICLE SYSTEM FOR
SECOND-ORDER PDES ON WASSERSTEIN SPACE *

ERHAN BAYRAKTAR', IBRAHIM EKREN}, AND XIN ZHANG §

Abstract. In this paper, we provide a convergence rate for particle approximations of a
class of second-order PDEs on Wasserstein space. We show that, up to some error term, the
infinite-dimensional inf(sup)-convolution of the finite-dimensional value function yields a super (sub)-
viscosity solution to the PDEs on Wasserstein space. Hence, we obtain a convergence rate using a
comparison principle of such PDEs on Wasserstein space. Our argument is purely analytic and relies
on the regularity of value functions established in [20].

Key words. Wasserstein space, second-order PDEs, viscosity solutions, comparison principle

MSC codes. 49L25, 60H30, 93E20

1. Introduction. In this paper, we consider particle approximations of the mean
field PDE on the d-dimensional Torus T¢

—O(t, 1) = [pa H(x, Dyo(t, p, x), p) p(d) + [rq tr(D2,0)(t, p, x) p(dz)
(1.1) +atr(Ho)(t, p),
o(T', p) = G(p),

where a is a nonnegative constant, Hv(t, i) is the partial Hessian defined as in [4, 20]

Ho(t, p) == /Jl‘d D?Euv(t, w, ) p(de) + /Td » Diuv(uu,x,y) p(dx)p(dy),

and H, G are respectively the Hamiltonian and the terminal condition
H=H(z,p,p): T*xREx P(TY) = R, G=G(u):P(T4 = R.
N

Denote = = (z%,... ,2") € T4 and its empirical measure by u® := % D ieq Ogin
The particle approximation of (1.1) is provided by

—oN(t, @) = L SN H(z!, NDyo (@), 1®) + SN | Ao (¢, @)
(1.2) +a Yoy (D2 oN)(t, ),
oN(T, ) = G(u™®)

N v

see [20, 25] and the references therein. We provide a convergence rate of v
based on the comparison principle and the regularity results obtained in [20].
It has been observed in [4, 20] that the partial Hessian term is equal to the second

order derivative of v in the barycenter of measures. More precisely, taking
V(t, 2, u) i=v(t, (Ig + 2)gp), (t,z,p) € [0,T] x T¢ x P(T?),
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2 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

we have that V2V (¢, z,u) = Ho(t, (I + z)zp). We say v is a viscosity solution to
(1.1) if V' is a viscosity solution to

=0,V (t,z, 1) = [pa H (2,2, D,V (t, 2, p, ), ) p(dex)
(13) § fo (D2 V)t 2 ) () + ALV (L 2 p0),
V(T z,p) = G*(2, ),

where
He(mv Z, P, #) = H(x + z,p, (Id + Z)#/J‘)7 Ge(zvﬂ) = G((Id + Z)#/”L)

Similarly, define VY (¢, z, x) := vV (¢, z + @) where z + = := (z +2!,... , 2z +27V).
Denoting the Fourrier-Wasserstein distance in [4, 20, 32] by p., we show that the
inf-convolution of V¥ with respect to p, given by

—N,e . . N EPRAT S ST S S P
P i it (Ve g o gl ul ).

(s,w,x)€[0,T]xTd+dN

is a viscosity supersolution to (1.3) up to some error term E(e, N), and therefore by
comparison for all (¢,z,x) € [0,T] x T4V we have

VNt 2 2) + Ble, N) > V't 2, 1) + E(e, N) > V(t, z, u®).
By the same token, we obtain the other direction
V(L 2@) — B(e, N) < V(L,2,4%),  (L,21) € [0,T] x TH,

and hence
VN(t, 2,@) = V(t, 2, 4™)| < E(e, N).

Then choosing ¢ properly as a function of N, one obtains that E(e, N) =~ Ca'/3(N)
where C' is a positive constant independent of N and

N2 ifd=1,
a(N) =< N=1/21og(N), ifd=2,
NV, ifd> 2.

Let us denote by Bp C R? the closed ball at the origin with radius R and
k. = |d/2] + 3. Using the definitions of functional spaces in [20], we make the
following assumptions on the coefficients H, G.

AssSuMPTION 1.1. (i) G is k.-times continuously differentiable and Lipschitz
with respect to C~F=;

(ii) H is k.-times continuously differentiable in all variables, and satisfies the
reqularity condition, with Cg > 0

|H (2,p, ) — H(2',p', 1) < C (14 Ip| + ') (|2 — 2" + |p — p'| + Wi (p, 1))

for any z,2' € T¢, p,p’ € RY, p, ' € P(T9). For each R > 0, there is a
constant Cgr such that for each (z,p) € T? x Bg

‘H(xupv /1') - H({E7p7 :u/)| < CR”/J‘ - M/HC*’“*?
and for each p € P(T?),

sup ||H(7 '7M)||Ck*(Td><BR) < Ck.
REP(T?)
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CONVERGENCE RATE OF PARTICLE SYSTEM 3

THEOREM 1.1. Under Assumption 1.1, vN converges to v with the rate a*/3(N)

sup |vN(t,:1:) —o(t, u®)| < Cal’3(N),
(t,x)€[0,T]x TN

where C' is a constant independent of N.

Our result provides the first convergence rate for particle approximations of par-
tially second-order PDEs on the Wasserstein space. Such equations arise in mean-field
control problems when the control of common noise is state-independent, as well as in
stochastic control with partial observation; see, e.g., [4]. In the former case, the parti-
cle approximation justifies the mean-field formulation of controlling a large population
of agents; see, e.g., [12, 14] and references therein.

Without the common noise, i.e. setting a = 0in (1.1), [19] obtains the convergence
rate of 1/ V/N under some convexity assumptions. The argument relies on the fact
that super-convolution of semi-concave functions provides desired regularity. While
[19] shows better convergence rate, our argument is purely analytic and doesn’t rely
on the semi-concavity/convexity of H. We would like to mention that the argument
of our result makes use of the regularity of vV established in [20] where only the
convergence

sup ’vN(t, x) —v(t, u®)| =0
(t,)€[0,T] x TN
is provided but not its convergence rate. Moreover, using the same method of the in-
finite dimensional inf/sup-convolution and the comparison result from [4], one should
also be able to show the convergence rate for the same type of equations on R%. But
to illustrate the main idea of the argument, we choose to work on T¢ to avoid the
technical issue of non-compactness.

The remainder of the paper is organized as follows. We will discuss some related
literature in Section 1.1, and introduce notations in Section 1.2. In Section 2, we will
present the definition of viscosity of solution and some preliminary results. The main
result will be proved in Section 3.

1.1. Related Literature. PDEs on Wasserstein space appear in mean field
games and McKean-Vlasov control problems [10, 14, 13, 24, 3, 16], and also in fil-
tering problems [28, 26, 1, 4, 5]. Various notions of differentiability for functions on
Wasserstein space have been defined, and in this paper we adopt the one introduced
by Lions in [10]. It is stronger than the geometric definition of differentiability, and
allows a version of It6’s formula which is crucial for control problems.

The comparison principle of PDEs on Wasserstein space has attracted lots of
attention. Viscosity solutions of first-order PDEs on the Wasserstein space have been
studied in [35, 32, 31, 8, 2, 16, 6, 21]. It is worth noting that the Fourier-Wasserstein
metric p, was first used in the study of viscosity solution by [31]. The comparison
principle of partially second-order equations, in which the second-order derivative in
measure appears in the form of partial Hessian, have been studied in [4, 20, 23, 6]. Let
us mention that [23, 6] adopted different notions of differentiability on Wasserstein
space. Fully second-order PDEs on the Wasserstein space are related to measure-
valued martingale optimization problems. [17] proves a uniqueness result for equations
that are exact limit of finite dimensional approximations. PDEs on the Wasserstein
space also appear in mean-field optimal stopping problems [35, 34, 29].

Convergence of particle system in mean field control problems were studied in
[36, 33, 2, 15] based on viscosity theory, while [27] provided a probabilistic argument.
The convergence rate for first-order PDEs on Wasserstein space was obtained in [11,
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4 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

19, 9]. Assuming the existence of smooth solution to mean-field PDEs, [25] got the
optimal convergence rate by a verification argument.

1.2. Notations. Define T¢ = R?/(27Z)?, and take Fourier basis
er(x) == (2n)" Y2 1 eT? kezl
For any complex number z € C, we denote its complex conjugate by z*. For any
f € L*(T?), we define Fi(f) := [;4 f(x)e} () dx. For any k € N, we define,
I = D @+ D R)P
lezd
and the Sobolev space
H*(T%) = {f € L*(T) : [|fllx < oo} .
The space of k-th continuously differentiable function is denoted by C*(T%) with the

norm defined as ‘
Ifller = Y 1D flloe.
JENL:|j|<k

For any signed Borel measure 7 on T¢, we define

[l = sup f(@)n(dz),
[[fllx<1JTd

B = [ ato)dy, tez,
Td
and also

o= sw_ [ rwyntaa).

I Fllor <1

Then for any u,v € P(T9), we define p_,(u,v) = || — v||_x. Throughout the paper,
we take k. = |d/2]| + 3 and denote p. = p_y, .

Throughout the paper, we adopt Lions differentiability for functions defined on
P(T); see e.g. [14, Chapter 5].

2. Definition and preliminaries.

2.1. Definition of viscosity solution. First we introduce the notion of viscos-
ity solution from [20]. Suppose v : [0,T] x P(T?) — R is a smooth solution to (1.1).
Define V (t,z,p) : [0,T] x T¢ x P(T¢) — R via
(2.1) V(t,z, 1) :=v(t, g+ z)up).
It can be easily verified that

Duv(t7 Zy :u) ($) = Duv(tv (Id + Z)#M)(J? + Z)’
Diuv(tv Z, :u) (:L‘) = D?c,uv(tv (Id + Z)#/J’)(x + Z)?
ALV(t, 2, 1) = tr(Ho)(t, (Ia + 2) ),
and V satisfies (1.3).

We say v is a viscosity solution of (1.1) if V' is a viscosity solution of (1.3). More
precisely, we have the set of test functions.



126
127

129

130

132
133
134
135

136

137

138

139
140
141
142
143
144
145
146

CONVERGENCE RATE OF PARTICLE SYSTEM 5

DEFINITION 2.1. Denote by 03’2’2([0, T] x T4 x P(T?)) the set of continuous func-
tions ®(t, 2z, p) : [0, 7] x T¢ x P(T?) — R such that the derivatives

(0:®, D, ®, D> ®)(t, 2z, 1) : [0,T] x T? x P(T9) — R x R? x R?*4
as well as
, t,z, 1, ) 0,1 X X X — X
D,®,D2,® 0,7] x T x P(T%) x T¢ - R? x R™*¢

exist and are continuous.

DEFINITION 2.2. An upper semi-continuous function v : [0,T] x P(T?) — R is
called a viscosity subsolution to (1.1) if its extension V' wia (2.1) is a viscosity subso-
lution to (1.3), i.e., V(T,z,u) > G°(z, 1), and for any ® € C’;’Q’Q([O,T] x T4 x P(T4))
such that V — ® obtains a local mazimum at (to, 20, o) € [0,T) x T¢ x P(T?), we
have

_6t¢)(t07 20, MO) < , He(xv 20, Dué(t(ﬁ 20, 10, x)v“) /’['O(d‘r)
T

+ /d tr(Diu(I))(t(% 205 Mo, .73) Mo(dl‘) + aAz‘I’(tm 20, ,U'0)7
T

Similarly, we define viscosity supersolution. A continuous function
v:[0,T] x P(T% - R

is called a viscosity solution if its extension V wia (2.1) is a viscosity subsolution and
supersolution to (1.3) at the same time.

2.2. Preliminary results. As the HJB equation (1.2) of particle system is uni-
formly elliptic, one can show the regularity of solution. The following result is from
[20, Lemma 3.1, Theorem 3.2].

LEMMA 2.3. Under Assumption 1.1, there exists a unique classical solution v
to (1.2) and positive constants C independent of N such that for any N € N, i €
{(1,2,... N}, k <k,

N

DhoN ()] < S Vi) € 0.7 x TV,
In addition, for all0 < s <t <T and x,y € T, we have
‘UN(t71:> - UN(S7 y)‘ < C ( Vi—s+ Wl(vaﬂy)) .
Let us provide an approximation of vV that has been used in [20, 16]. Given any

w € P(T9), denote by u®" the N fold product of probability measure u. Let us define
N 1 [0,T] x P(T?) via

’lA)N _ ’UN QRN )
(t, 1) /WN (t,y) =7 (dy)

LEMMA 2.4. Under Assumption 1.1, the following inequality holds for any x,y €
TN with a positive constant C independent of N,

|{)N(t7 ,u) - ﬁN(ta V)} < CP* (/h V)'
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6 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

Proof. It can be verified that 9" is linearly differentiable, and thanks to the
symmetry its derivative is given by

5AN ; B B -
(& 2 Z/dw - Nyt oy eyt N T p Yyt dyN T
T

In light of Lemma 2.3, we get an estimate of the H*+ norm
~N

0 N
sup ||t s ) || k. S | Dk o < C.
(tp)elo,T]xTd O Z " 121

Therefore, by the definition of linear derivative, one immediately concludes that

AN(taM)_{)N(tay)’ SCH/“L_V”—/C* :Cp*(/’('al/) a

The next proposition shows that 9V is indeed close to v and thus almost Lip-
schitz.

PROPOSITION 2.5. For any x,y € T, the following estimates of the value func-
tion holds
W™ (t,@) — 0 (1, 4®)| < Ca(N)

where C is a positive constant independent of N. Together with Lemma 2.4, immedi-
ately we obtain that

[0 (t, @) — oV (t,y)| < C(pu(p®, 1¥) + a(N)) -

Proof. Let us prove |[vN(t, @) — oV (t,u®)| < Ca(N). Indeed, according to the
definition of "V and Lemma 2.3

o™ (1, ) — 0¥ (1, 4®)| < / lo(t, ) — ot, )] (1) (dy)
]RdXN

<C Wi (u®, 1) (1) (dy) = CE[W (4%, 4],

RAXN

where i® denotes the empirical measure of p® with N samples. According to [22], it
is bounded from above by a(N). |

By Arzela-Ascoli theorem, Lemma 2.4 implies there exists a subsequence of 9V
uniformly converging to a function v, which is also p,-Lipschitz. Moreover according
to Proposition 2.5, v is also a limiting point of v"V, and hence is a viscosity solution to
(1.1) by a standard argument. Finally, the uniqueness of viscosity solution has been
proved in [20] adapting the techniques in [4].

PROPOSITION 2.6. Under Assumption 1.1 for (1.1), any upper semi-continuous
subsolution to is smaller than lower semi-continuous supersolution. Then there is a
unique viscosity solution v to (1.1) on P(T?).

At the end of section, we provide a simple lemma quantifying the denseness of
empirical measures in P(T%).

LEMMA 2.7. For any pu € P(T?), we have

inf p.(u*,p) < Ca(N).

xeTdN
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CONVERGENCE RATE OF PARTICLE SYSTEM 7

Proof. Thanks to Sobolev embedding theorem [7, Corollary 9.13], as k., = |d/2] +
2 any f € H*+(T?) is Lipschitz with coefficient proportional to ||f||x,. Therefore, it
can be easily seen that

ﬂk(/h”) < CWI(,U7V)7

with a universal constant C'. Let us consider an i.i.d. sequence X,, with distribution u,
and define oV = %5 x,, to be the empirical measure of . With the sample complexity
of W1, see e.g. [22], we deduce that

Elp (@~ u)] < Ca(N),

and hence

inf p.(1”, p) < Ca(N). O

xeTdN

3. Proof of Theorem 1.1. We only prove the inequality
(3.1) VN, z,x) > V(t, 2, u®) — Cal/?(N),
and the proof for the other direction

VN(t, z,x) <V (t, 2z, u®) + Cozl/g(N)

is similar. The argument is based on the fact that the inf convolution preserves the
property of being a supersolution, and will be divided into several steps.

For any z € T% x € TV, denote z + x := (2 + x',... , 2z + zV). Recall that vV
denotes the classical solution to (1.2). Introducing

VN(t, z,x) == 0N (t, 2 + ),
let us consider the inf-convolution of VN

—N,e . . N EPRAT S ST S S PR
V= (Vs b gl o -l ).

(s,w,x)€[0,T]xTd+dN

It is clear that VN (¢, z,x) > VN’E(t, 2, u®) for every x € T. We prove that vV s
a viscosity supersolution to (1.1) up to some error.
Suppose @ : [0, 7] x T4 x P(T%) — R is a regular test function in Cp'>*([0,T] x

T? x P(T?)) and we have a local strict minimum (t, 2o, f10) at 7V~ @ with to < T,
and we aim to show that

_6t(1)(t07‘207/1’0) =+ E(N7 6) > . He(xa ZO7DM(I)(t07 ZO7/~‘L075L‘)’N0) lu’O(d'r)
T

(32) +/d tI‘(DiH(I))(to,ZO7’[LO7l‘) ‘llo(dx) +G‘Azq)(t05207.u’0)7
T

where E(N,e€) is an error term to be determined later.
By compactness, take (so,wp, o) such that

—N, 1 1 1
V" (to, 20, o) = VN (s0, w0, o) + ;|50 —to]® + £|w0 — 2 + ipi(u"””,uo).
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8 E. BAYRAKTAR, I. EKREN, AND X. ZHANG
Then we have the following crucial inequality, for every (s,w,x) and (¢, z, u),

1
(3.3) VV(s,w, @) + o= (Is =t + [w — 2" + pZ(u™, 1)) = (¢, 2, 1)
> VN’E(t, z,p) — Bt z, 1)
—N,e
>V (to, 20, po) — @ (to, 20, fto)

1
= V¥ (s0, w0, o) + % (Iso — tol* + [wo — z0|* 4 pZ (1™, 10)) — ®(to, 20, 0)-

To make use of the viscosity property of V¥, let us define a finite dimensional
test function ®€ by super-convolution,

1 1 1
34) @(svww): = sup {0, 0) = 5o = f = gels 1o = 520" o)

Then inequality (3.3) implies that

VN(S7 w, w) - (I)E(Sa w, w) Z VN’E(t07 20, /140) - (I)(t07 20, /1'0)
(3.5) > VN {(to, wo, To) — (50, wo, To).
Therefore, VY — ®¢ obtains a local minimum at (ty,wo, o), and we are going to
invoke the viscosity property of V. The next lemma provides derivatives of ®€.

LEMMA 3.1. We have the following equalities, for every w € T¢ and every x €
TdN

1
0P (sg, w, ) = E(to —S0),
1 . .
ND,i® (s, w,x) = iD,,pz(,uz,uo)(xz), i=1,...,N,
1 1 R
NDii(be(Svaaw) = 7Diypz(:u/m’/~l/0)(xl) + 7D12/pi(/’(‘m07/’[’0)(x17x1)7 L= 17 s aNa
2¢ 2¢eN
and at (to, 2o, o)
1
0y ®(to, 20, pto) = g(to — 50),
. 1 _ ‘
D,i®(to, 20, ) (1) = 5 Dup (4, o) ), i=1... N,
2 i Lo 2/ 2 i .
sz(p(t(bzohu‘o)(‘r ) = ?eDzup*(,u’ 7,“0)(1' )7 i=1,... 7N

Moreover, w + ®¢(sqg,w,xy) is second order differentiable a.e. At every w € T¢
where it is second order differentiable, we have

A’LU(I)E(SOv w, .’1}0) > Azq)(toa Z(UJ), HO)a

where

1
z(w) € arg max {<I>(t07z,,u0) - —|w-— z2} .
z€Td 2¢

Proof. Taking derivative with respect to s in (3.4),

1
0s®(s0, w, x) = g(to — 50).
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CONVERGENCE RATE OF PARTICLE SYSTEM

Inequality (3.3) implies that tg is a maximizer of

1
B (I)(t720hu) - 27‘50 - t|27
€

and thus

1
0y ®(to, 20, o) = E(to — 80) = 059(s0, w, o).

Taking derivative with respect to « in (3.4),

D, ®¢(so,w,x) = —

2¢e N

1

2¢e N
1

D,up? (1™, po) (")

Dl/pi (/’Lm? MO)(I‘ZL

where D, p? denotes Lions’ derivative of 1 — p2(u,n). Taking derivative once more,

D2,0%(s, w, @) = 2N

Again due to (3.3), po is a maximizer of

D2, p2 (1™, po) (=) +

2¢N?2 D2p2(u™, po) (", ).

1 xr
p = ®(to, 20, 1) — —p2 (™, 1),

and first order condition yields
1

D,U(I)(t()a ZOMUJO)(IZ-) =D

2€
and hence

; 1
Di‘uq)(to, 20, [Lo)(l'l) =—D

2€

2€

2

Vpi(ﬂmoaﬂ)(zi)7 @' e Td?

The last claim is a property of super-convolution; see e.g. [18, Lemma A.5], and

hence we finish proving the lemma.

|

Without loss of generality, we assume that V'~ — ®€ obtains a strict local minimal
at (sp, wop, xo). Denoting 6y = (tg, 20, fto), & direct application of Jensen’s lemma ([18,

Lemma A.3]) and Lemma 3.1 shows that

(210 (60) D, 2(60) 1), D2,2(60) ) + 5 D™ o) ). 5. 2(00) )

approximate derivatives of ®¢ at (sg,wo,®o). We summarize this key result in the

following proposition.

PROPOSITION 3.2. There exists a sequence of T? 3 w, — wy and R* 3 p, — 0

such that

VN(tOu w7m0) - (I)e(t07w7w0) + <pn7w>

obtains a local minimum at w,,

and w — VN (tg, w, o) — ®¢(to, w, xo) is second-order differentiable at w,,. Moreover,

foralli=1,... N, the limit point of

(05®°, ND,:®°, ND2,®°, A, ®°) (s0, wy,, To),

as n — 00, is equal to

(a@wo),Du¢<90><x6>,Diﬂ¢<9o><xé>

Ll
2eN

Dspiwo,uo)(xa,xé),Az@wo)) .
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10 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

As v¥ is a classical solution to (1.2), it can be easily seen that V¥ is a classical
solution to the following equation

e(, i VN (tw x
—O VN (tw, ) = YN | HELeND - e @) i®) o SN A YNt w, @)
+aAwVN(t7w7:B)7

VN(T7w7 x) = Ge(w7uw)7

and thus also a viscosity solution. Remember that 6y = (to, 20, 1o) and VN — @€
obtains a local minimal at (sg, wo, o) in (3.5). Setting e = «(N) in Lemma 3.3 below,
it can be seen that sy < T for large enough N. Therefore due to Proposition 3.2 and
the definition of viscosity solution

N
1 e i 7 x
—0;®(0o) ENZH (z, wo, D@ (0o) (), ™)

1 o
+ Z < tr D2, ®(6, ) + A D,%pz(umo,uo)(xg,xg)> + aA, (b))

Comparing the inequality above with (3.2), we define the error term E(N,¢€)

N

1 . . _ _
7 ZHe('rz)vZO’DM‘I)(HO)(x?))7Mm0) - He(x67w0aDM(I)(GO)(]"E))HUEO)
Ni:l
N
He(zh, z0, D, ®(00) (x
+ [ 20, D, 00) ) ) o) — Y F 0 DN 0): #*")

=1

+ / (H (2, 20, Du®(00) (). pi0) — HE (&, 20, Dyu®(8o) (1), 1)) pio(dr)

VIO* nuo)(xlmxlO)

36)  + [ (D0 60.) (10 i)

It can be easily checked that (3.2) is satisfied with such E(N,e). We will provide
an upper bound of (3.6). To this end, let us first estimate |sg — to|, |20 — wo| and

P (10, o).
LEMMA 3.3. We have the following estimates,

lto — so| < Ce¥/3, |20 —wo| < Ce,  pulpio, u™) < C (e +a(N) + s/ea(N)) :

where C' is a constant independent of €, N.

Proof. According to Lemma 2.3, we have
|VN(t,z,a:) — VN(s,w,m)| < CH/It—s|+ |w—z|).

Recall that

—N, 1 1 1
V" (to, 20, 1) =V (50, w0, o) + %|80 —to]? + £|w0 — 2> + ipi(/f”",uo)

1
+ —p2 (W™, po)-

1
<VN( —|wo — 2o?
<V (to, wo, o) + 26\1110 2| %
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Therefore we get inequalities

1
2?'80 —to)? < VN(to, wo, o) — VN (s0, w0, x0) < C/|s0 — tol,

and hence |sg — to| < Ce?/3. By a similar argument, we obtain that |wy — 2| < Ce.
Thanks to Lemma 2.7, take @’ € T such that p.(u®, o) < Ca(N). By the

definition of VN’E,

1 1 1
V¥ (s0,wo, o) + —|so — tol® + =|wo — 20> + o p2 (1™, po)
2¢ 2¢ 2¢

1 ]_ ]_ ’
<yN N4 lsn — tal? 4 —lwa — 2al? 4 — 02(4T )
< V% (s0,wo, ") + 26|50 ol + 26|w0 ol + 26P*(H s o)
and therefore in conjunction with Proposition 2.5 we have

1 1 ,
26/)*(#‘”07%) — %pf(u” o) < VN (s, w0, ") — VN (s0, w0, o)

< Clpa (™, 1™ ) + a(N)) < Clpa(u™, o) + 20(N)).

Hence we obtain the inequality

P25 10) — Cp (4, o) < - C*a(N)? + 2Ca(N),
and thus
pe(i™, 1) < C e+ a(N) + Vea(N) ), O
where C' is a constant independent of €, V.

According to [31, Lemma 5.1,5.4], we have

P v) =Y (L4 1P |Fi(p = v)P,

ez
(3.7) Dyp?(, v)() = — 20 S U1+ 1) Fi(v — e (x),
lezd
Dp2(uv)(w,y) = =2 Y PA+[IP) 5 Fv — plef (z)e(y).
lezd

Therefore by Cauchy Schwarz inequality,

1
51D V) (@)] < pa (v ) D P+ ]12)
lezd
(3.8) 210220, 0) )| < (v \/Z 4L+ [12)
lezd

where the constants \/EleZd [[|2(1 + |1]2)~*- and \/ZleZd [I|*(1 + ]I|2)—*- are finite
due to our choice of k.. Then according to Lemma 3.1 and Lemma 3.3,

@W P+ [12)F (e +a(V) + Vea(N) )

€

| D, ®(to, 20, ft0)(x

=: R(¢, N).

Here is an upper bound of E(e, N) depending on R(e, N).
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LEMMA 3.4. We have that

1
E(e,N) <CR(e,ny€ + Cr(e,n) (1 + 1/(eN))ps (1™, p1o) + Zpi(u”’% 1o)

2 » 1w 2
6C’Fi’,(e,N) (p*(ﬂ' OaMO) + p]:* 1(/’(‘ 07/”'0))
4 )

€ eh—1

+

where Cre Ny is a constant that only depends on R(e, N).

Proof. Let us denote the terms on the right-hand side of (3.6) by (I), (IT), (III),
and (IV) from the top to the bottom, and we have the following estimate.

Estimate of (I): Recall that H¢(x, z,p, p) := H(z + 2,p, (Ig + z)xu), and hence

|H€({E,Z,p, /1') - He(x,w,p, N)| < CR(|U) - Z| + Wl((Id + Z)#/J, (Id + w)#,u))
< 2CR(e,ny|w — 2].

Together with Lemma 3.3, we conclude that (I) < Cg(, ny€.

Estimate of (II): Let us denote f(zx) := H(z,20,0,P(00)(x), ™). Then it is
straightforward that (I1) = [ f(z) (po — p®°)(dz). Due to Lemma 3.1,

D@ (680)() = 5-Dugl (147, 110) (),

According to [31, Lemma 5.4] the term on the right is in the Sobolev space HF 1.
Indeed, according to (3.7)

1D P2 (10, p0) (V7. -1 =4 D (L PP+ 22) 7> [ B — )

1ez4
< 4p2 (™, po),

and hence
1
1D, @00l —1 < zp*(u s 140)-

As [[H®(, 20, *°)|| ok (Tax Bree.ny) S CR(eNys f 18 actually a composition g o
(I4,h) of two functions g and (I, h) with g = H®(-, 29, -, p®) € C*(T% x Bp(c,n))
and h = D, ®(0)(-) € H*~1(T%). Therefore according to the chain rule, [30, Remark
2, Section 5.2],

If

ko1 = llg o (1, h)

b1 < C(Rew) (11D, 2(60) o)

X0 k.—1(, 20
< C(Rux) (p*(ue LHo)  Px Elgii_l,uo)>

ko—1 + [ Dp®(6o)

where C(R.,n) is a constant that only depends on [[H®(+, 20, *, k™) || e (Tax B, py) S
CR(e,n)- Therefore we obtain the estimate

P (™, o) | PE (1™, o)
€ ghx—1

(IT) < CRrie,nyp1—k, (K™, p0) ( +



361

362

363

364

365

366
367

379
380

381

CONVERGENCE RATE OF PARTICLE SYSTEM 13

1
< =Pl (™0, o) +

2 x — T 2
ECVR(C,N) Px (/,[, 07//'0) + ﬂf* 1(/-// 07/”’0)
4 € ekx—1

Estimate of (IIT): Tt is straightforward from Assumption 1.1 that (I17) is bounded
from above by Cr(e,n)p« (11, po).

Estimate of (IV): According to Lemma 3.1, we compute

2
(V) == 15 i il = ) [ (@) (uo = ) )

lezd

- Z 26N2 up* aﬂo)(xévxé)

N

|l| 2 1 2 2 P i
—_ — _ F o _ D xo 1 )
Z§Zd 1+ |l| k | l( —H )l §_ 2¢N2 L/p*(:u’ ,uo)($0,$0)

1 1 a
=- Ep%—k* (1™, o) + EP* 0, po) Z

up* 7”0)(x67x6)

1

1 C
< = Pl (0705 o) + (™0 o) + —5 e (1™ o),

where we apply the estimate (3.8) to get the last inequality. Summing up the estimates
for (I),(II),(I1I),(IV), we conclude the result. a0

To finish the proof, we show that VE’N(T,Z,M) > G°(z,p) up to some error.
Suppose that

1
—p2 (™", ).

—N,e 1 1
VAT, 2, 0) = VN (sp,wr,2r) + —|T — st|* + —|z —wr|* +
2€ 2¢ 2€

By the same argument as in Lemma 3.3, it can be shown that
T = s <O, |z wrl < Ce pulpo, ") < C (e+a(N) + Vea(N))

where C is a constant independent of e, N. Then thanks to the regularity of V from
Lemma 2.3 and Proposition 2.5, we get that

VYT, 2,0) 2 V(T 2,0) = O 4+ €) = Ca(N) = C (e + a(N) + Vea(N))
> Gz, 1) — C(e/3 + € + a(N) + /ea(N)).
Together with (3.2), VN’C(t7 2, 1)+ (T —t)E(e, N) + C(e'/? + e+ a(N) + \/ea(N))

is a viscosity supersolution to (1.1). Then due to the comparison principle in Propo-
sition 2.6, we have that

VYVt 2,0) + (T = )B(e, N) + C(? + e + a(N) + Vea(N) = V(t, 2, p).

Recalling that by the definition of inf-convolution, V¥ (¢, z,x) > e

hence

(t,z, ™), and

VN(t,2,@) > V(t, 2, 1") — TE(e,N) — C(¢/* + e + a(N) + y/ea(NV).
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Choosing € = a(N), it can be easily checked that R(e, N) is bounded independent of
N, and therefore

TE(e,N) 4+ C('/® + e+ a(N) + /ea(N)) < Ca'/3(N).

So that we finish the proof of (3.1).

Acknowledgments. We would like to thank Joe Jackson for his comments on
the first version of the paper.
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