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Abstract. In this paper, we provide a convergence rate for particle approximations of a4
class of second-order PDEs on Wasserstein space. We show that, up to some error term, the5
infinite-dimensional inf(sup)-convolution of the finite-dimensional value function yields a super (sub)-6
viscosity solution to the PDEs on Wasserstein space. Hence, we obtain a convergence rate using a7
comparison principle of such PDEs on Wasserstein space. Our argument is purely analytic and relies8
on the regularity of value functions established in [20].9
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1. Introduction. In this paper, we consider particle approximations of the mean12

field PDE on the d-dimensional Torus Td13

(1.1)


−∂tv(t, µ) =

∫
Td H(x,Dµv(t, µ, x), µ)µ(dx) +

∫
Td tr(D

2
xµv)(t, µ, x)µ(dx)

+a tr(Hv)(t, µ),

v(T, µ) = G(µ),

14

where a is a nonnegative constant, Hv(t, µ) is the partial Hessian defined as in [4, 20]15

Hv(t, µ) :=

∫
Td

D2
xµv(t, µ, x)µ(dx) +

∫
Td

∫
Td

D2
µµv(t, µ, x, y)µ(dx)µ(dy),16

and H,G are respectively the Hamiltonian and the terminal condition17

H = H(x, p, µ) : Td × Rd × P(Td) → R, G = G(µ) : P(Td) → R.18

Denote x = (x1, . . . , xN ) ∈ TdN and its empirical measure by µx := 1
N

∑N
i=1 δxi .19

The particle approximation of (1.1) is provided by20

(1.2)


−∂tv

N (t,x) = 1
N

∑N
i=1 H(xi, NDxivN (t,x), µx) +

∑N
i=1 ∆xivN (t,x)

+a
∑N

i,j=1 tr(D
2
xixjvN )(t,x),

vN (T,x) = G(µx)

21

see [20, 25] and the references therein. We provide a convergence rate of vN → v22

based on the comparison principle and the regularity results obtained in [20].23

It has been observed in [4, 20] that the partial Hessian term is equal to the second24

order derivative of v in the barycenter of measures. More precisely, taking25

V (t, z, µ) := v(t, (Id + z)#µ), (t, z, µ) ∈ [0, T ]× Td × P(Td),26
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2 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

we have that ∇2
zV (t, z, µ) = Hv(t, (Id + z)#µ). We say v is a viscosity solution to27

(1.1) if V is a viscosity solution to28

(1.3)


−∂tV (t, z, µ) =

∫
Td H

e(x, z,DµV (t, z, µ, x), µ)µ(dx)

+
∫
Td tr(D

2
xµV )(t, z, µ, x)µ(dx) + a∆zV (t, z, µ),

V (T, z, µ) = Ge(z, µ),

29

where30

He(x, z, p, µ) := H(x+ z, p, (Id + z)#µ), Ge(z, µ) := G((Id + z)#µ).31

Similarly, define V N (t, z,x) := vN (t, z + x) where z + x := (z + x1, . . . , z + xN ).32

Denoting the Fourrier-Wasserstein distance in [4, 20, 32] by ρ∗, we show that the33

inf-convolution of V N with respect to ρ∗ given by34

V
N,ϵ

(t, z, µ) := inf
(s,w,x)∈[0,T ]×Td+dN

(
V N (s, w,x) +

1

2ϵ
|t− s|2 + 1

2ϵ
|z − w|2 + 1

2ϵ
ρ2∗(µ

x, µ)

)
.35

is a viscosity supersolution to (1.3) up to some error term E(ϵ,N), and therefore by36

comparison for all (t, z,x) ∈ [0, T ]× Td+dN we have37

V N (t, z,x) + E(ϵ,N) ≥ V
N,ϵ

(t, z, µx) + E(ϵ,N) ≥ V (t, z, µx).38

By the same token, we obtain the other direction39

V N (t, z,x)− E(ϵ,N) ≤ V (t, z, µx), (t, z,x) ∈ [0, T ]× Td+dN ,40

and hence41

|V N (t, z,x)− V (t, z, µx)| ≤ E(ϵ,N).42

Then choosing ϵ properly as a function of N , one obtains that E(ϵ,N) ≈ Cα1/3(N)43

where C is a positive constant independent of N and44

α(N) =


N−1/2, if d = 1,

N−1/2 log(N), if d = 2,

N−1/d, if d > 2.

45

Let us denote by BR ⊂ Rd the closed ball at the origin with radius R and46

k∗ = ⌊d/2⌋ + 3. Using the definitions of functional spaces in [20], we make the47

following assumptions on the coefficients H,G.48

Assumption 1.1. (i) G is k∗-times continuously differentiable and Lipschitz49

with respect to C−k∗ ;50

(ii) H is k∗-times continuously differentiable in all variables, and satisfies the51

regularity condition, with CH > 052

|H(x, p, µ)−H(x′, p′, µ′)| ≤ CH(1 + |p|+ |p′|)(|x− x′|+ |p− p′|+W1(µ, µ
′))53

for any x, x′ ∈ Td, p, p′ ∈ Rd, µ, µ′ ∈ P(Td). For each R > 0, there is a54

constant CR such that for each (x, p) ∈ Td ×BR55

|H(x, p, µ)−H(x, p, µ′)| ≤ CR∥µ− µ′∥C−k∗ ,56

and for each µ ∈ P(Td),

sup
µ∈P(Td)

∥H(·, ·, µ)∥Ck∗ (Td×BR) ≤ CR.
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CONVERGENCE RATE OF PARTICLE SYSTEM 3

Theorem 1.1. Under Assumption 1.1, vN converges to v with the rate α1/3(N)57

sup
(t,x)∈[0,T ]×TdN

∣∣vN (t,x)− v(t, µx)
∣∣ ≤ Cα1/3(N),58

where C is a constant independent of N .59

Our result provides the first convergence rate for particle approximations of par-60

tially second-order PDEs on the Wasserstein space. Such equations arise in mean-field61

control problems when the control of common noise is state-independent, as well as in62

stochastic control with partial observation; see, e.g., [4]. In the former case, the parti-63

cle approximation justifies the mean-field formulation of controlling a large population64

of agents; see, e.g., [12, 14] and references therein.65

Without the common noise, i.e. setting a = 0 in (1.1), [19] obtains the convergence
rate of 1/

√
N under some convexity assumptions. The argument relies on the fact

that super-convolution of semi-concave functions provides desired regularity. While
[19] shows better convergence rate, our argument is purely analytic and doesn’t rely
on the semi-concavity/convexity of H. We would like to mention that the argument
of our result makes use of the regularity of vN established in [20] where only the
convergence

sup
(t,x)∈[0,T ]×TdN

∣∣vN (t,x)− v(t, µx)
∣∣ → 0

is provided but not its convergence rate. Moreover, using the same method of the in-66

finite dimensional inf/sup-convolution and the comparison result from [4], one should67

also be able to show the convergence rate for the same type of equations on Rd. But68

to illustrate the main idea of the argument, we choose to work on Td to avoid the69

technical issue of non-compactness.70

The remainder of the paper is organized as follows. We will discuss some related71

literature in Section 1.1, and introduce notations in Section 1.2. In Section 2, we will72

present the definition of viscosity of solution and some preliminary results. The main73

result will be proved in Section 3.74

1.1. Related Literature. PDEs on Wasserstein space appear in mean field75

games and McKean-Vlasov control problems [10, 14, 13, 24, 3, 16], and also in fil-76

tering problems [28, 26, 1, 4, 5]. Various notions of differentiability for functions on77

Wasserstein space have been defined, and in this paper we adopt the one introduced78

by Lions in [10]. It is stronger than the geometric definition of differentiability, and79

allows a version of Itô’s formula which is crucial for control problems.80

The comparison principle of PDEs on Wasserstein space has attracted lots of81

attention. Viscosity solutions of first-order PDEs on the Wasserstein space have been82

studied in [35, 32, 31, 8, 2, 16, 6, 21]. It is worth noting that the Fourier-Wasserstein83

metric ρ∗ was first used in the study of viscosity solution by [31]. The comparison84

principle of partially second-order equations, in which the second-order derivative in85

measure appears in the form of partial Hessian, have been studied in [4, 20, 23, 6]. Let86

us mention that [23, 6] adopted different notions of differentiability on Wasserstein87

space. Fully second-order PDEs on the Wasserstein space are related to measure-88

valued martingale optimization problems. [17] proves a uniqueness result for equations89

that are exact limit of finite dimensional approximations. PDEs on the Wasserstein90

space also appear in mean-field optimal stopping problems [35, 34, 29].91

Convergence of particle system in mean field control problems were studied in92

[36, 33, 2, 15] based on viscosity theory, while [27] provided a probabilistic argument.93

The convergence rate for first-order PDEs on Wasserstein space was obtained in [11,94
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4 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

19, 9]. Assuming the existence of smooth solution to mean-field PDEs, [25] got the95

optimal convergence rate by a verification argument.96

1.2. Notations. Define Td = Rd/(2πZ)d, and take Fourier basis97

el(x) := (2π)−d/2eil·x, x ∈ Td, k ∈ Zd.98

For any complex number z ∈ C, we denote its complex conjugate by z∗. For any99

f ∈ L2(Td), we define Fl(f) :=
∫
Td f(x)e

∗
l (x) dx. For any k ∈ N, we define,100

∥f∥2k :=
∑
l∈Zd

(1 + |l|2)k|Fl(f)|2101

and the Sobolev space102

Hk(Td) =
{
f ∈ L2(Td) : ∥f∥k < ∞

}
.103

The space of k-th continuously differentiable function is denoted by Ck(Td) with the
norm defined as

∥f∥Ck =
∑

j∈Nd:|j|≤k

∥Djf∥L∞ .

For any signed Borel measure η on Td, we define104

∥η∥−k = sup
∥f∥k≤1

∫
Td

f(x) η(dx),105

106

Fl(η) =

∫
Td

el(x) dη, l ∈ Zd,107

and also108

∥η∥C−k = sup
∥f∥

Ck≤1

∫
Td

f(x) η(dx).109

Then for any µ, ν ∈ P(Td), we define ρ−k(µ, ν) = ∥µ− ν∥−k. Throughout the paper,110

we take k∗ = ⌊d/2⌋+ 3 and denote ρ∗ = ρ−k∗ .111

Throughout the paper, we adopt Lions differentiability for functions defined on112

P(Td); see e.g. [14, Chapter 5].113

2. Definition and preliminaries.114

2.1. Definition of viscosity solution. First we introduce the notion of viscos-115

ity solution from [20]. Suppose v : [0, T ] × P(Td) → R is a smooth solution to (1.1).116

Define V (t, z, µ) : [0, T ]× Td × P(Td) → R via117

V (t, z, µ) := v(t, (Id + z)#µ).(2.1)118

It can be easily verified that119

DµV (t, z, µ)(x) = Dµv(t, (Id + z)#µ)(x+ z),120

D2
xµV (t, z, µ)(x) = D2

xµv(t, (Id + z)#µ)(x+ z),121

∆zV (t, z, µ) = tr(Hv)(t, (Id + z)#µ),122

and V satisfies (1.3).123

We say v is a viscosity solution of (1.1) if V is a viscosity solution of (1.3). More124

precisely, we have the set of test functions.125
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CONVERGENCE RATE OF PARTICLE SYSTEM 5

Definition 2.1. Denote by C1,2,2
p ([0, T ]×Td×P(Td)) the set of continuous func-126

tions Φ(t, z, µ) : [0, T ]× Td × P(Td) → R such that the derivatives127

(∂tΦ, DzΦ, D
2
zzΦ)(t, z, µ) : [0, T ]× Td × P(Td) → R× Rd × Rd×d

128

as well as129

(DµΦ, D
2
xµΦ)(t, z, µ, x) : [0, T ]× Td × P(Td)× Td → Rd × Rd×d

130

exist and are continuous.131

Definition 2.2. An upper semi-continuous function v : [0, T ] × P(Td) → R is132

called a viscosity subsolution to (1.1) if its extension V via (2.1) is a viscosity subso-133

lution to (1.3), i.e., V (T, z, µ) ≥ Ge(z, µ), and for any Φ ∈ C1,2,2
p ([0, T ]×Td×P(Td))134

such that V − Φ obtains a local maximum at (t0, z0, µ0) ∈ [0, T ) × Td × P(Td), we135

have136

−∂tΦ(t0, z0, µ0) ≤
∫
Td

He(x, z0, DµΦ(t0, z0, µ0, x), µ)µ0(dx)137

+

∫
Td

tr(D2
xµΦ)(t0, z0, µ0, x)µ0(dx) + a∆zΦ(t0, z0, µ0),138

Similarly, we define viscosity supersolution. A continuous function

v : [0, T ]× P(Td) → R

is called a viscosity solution if its extension V via (2.1) is a viscosity subsolution and139

supersolution to (1.3) at the same time.140

2.2. Preliminary results. As the HJB equation (1.2) of particle system is uni-141

formly elliptic, one can show the regularity of solution. The following result is from142

[20, Lemma 3.1, Theorem 3.2].143

Lemma 2.3. Under Assumption 1.1, there exists a unique classical solution vN144

to (1.2) and positive constants C independent of N such that for any N ∈ N, i ∈145

{1, 2, . . . , N}, k ≤ k∗,146 ∣∣Dk
xivN (t,x)

∣∣ ≤ C

N
, ∀ (t,x) ∈ [0, T ]× TdN .147

In addition, for all 0 ≤ s < t ≤ T and x,y ∈ TdN , we have148 ∣∣vN (t,x)− vN (s,y)
∣∣ ≤ C

(√
t− s+W1(µ

x, µy)
)
.149

Let us provide an approximation of vN that has been used in [20, 16]. Given any150

µ ∈ P(Td), denote by µ⊗N the N fold product of probability measure µ. Let us define151

v̂N : [0, T ]× P(Td) via152

v̂N (t, µ) =

∫
TdN

vN (t,y)µ⊗N (dy).153

Lemma 2.4. Under Assumption 1.1, the following inequality holds for any x,y ∈154

TdN with a positive constant C independent of N ,155 ∣∣v̂N (t, µ)− v̂N (t, ν)
∣∣ ≤ Cρ∗(µ, ν).156
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6 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

Proof. It can be verified that v̂N is linearly differentiable, and thanks to the157

symmetry its derivative is given by158

δv̂N

δµ
(t, µ, x) =

N∑
i=1

∫
Td(N−1)

vN (t, y1, . . . , yi−1, x, yi, . . . , yN−1)µ⊗(N−1)(dy1, . . . , dyN−1)159

In light of Lemma 2.3, we get an estimate of the Hk∗ norm160

sup
(t,µ)∈[0,T ]×Td

∥δv̂
N

δµ
(t, µ, ·)∥k∗ ≤

∑
k=1,... ,k∗

N∑
i=1

∥Dk
xivN∥∞ ≤ C.161

Therefore, by the definition of linear derivative, one immediately concludes that162 ∣∣v̂N (t, µ)− v̂N (t, ν)
∣∣ ≤ C∥µ− ν∥−k∗ = Cρ∗(µ, ν).163

The next proposition shows that v̂N is indeed close to vN and thus almost Lip-164

schitz.165

Proposition 2.5. For any x,y ∈ TdN , the following estimates of the value func-166

tion holds167

|vN (t,x)− v̂N (t, µx)| ≤ Cα(N)168

where C is a positive constant independent of N . Together with Lemma 2.4, immedi-
ately we obtain that

|vN (t,x)− vN (t,y)| ≤ C (ρ∗(µ
x, µy) + α(N)) .

Proof. Let us prove
∣∣vN (t,x)− v̂N (t, µx)

∣∣ ≤ Cα(N). Indeed, according to the169

definition of v̂N and Lemma 2.3170 ∣∣vN (t,x)− v̂N (t, µx)
∣∣ ≤ ∫

Rd×N

|v(t,x)− v(t,y)| (µx)⊗N (dy)171

≤ C

∫
Rd×N

W1(µ
x, µy) (µx)⊗N (dy) = CE [W1(µ

x, µ̂x)] ,172

where µ̂x denotes the empirical measure of µx with N samples. According to [22], it173

is bounded from above by α(N).174

By Arzelà–Ascoli theorem, Lemma 2.4 implies there exists a subsequence of v̂N175

uniformly converging to a function v, which is also ρ∗-Lipschitz. Moreover according176

to Proposition 2.5, v is also a limiting point of vN , and hence is a viscosity solution to177

(1.1) by a standard argument. Finally, the uniqueness of viscosity solution has been178

proved in [20] adapting the techniques in [4].179

Proposition 2.6. Under Assumption 1.1 for (1.1), any upper semi-continuous180

subsolution to is smaller than lower semi-continuous supersolution. Then there is a181

unique viscosity solution v to (1.1) on P(Td).182

At the end of section, we provide a simple lemma quantifying the denseness of183

empirical measures in P(Td).184

Lemma 2.7. For any µ ∈ P(Td), we have

inf
x∈TdN

ρ∗(µ
x, µ) ≤ Cα(N).
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CONVERGENCE RATE OF PARTICLE SYSTEM 7

Proof. Thanks to Sobolev embedding theorem [7, Corollary 9.13], as k∗ = ⌊d/2⌋+185

2 any f ∈ Hk∗(Td) is Lipschitz with coefficient proportional to ∥f∥k∗ . Therefore, it186

can be easily seen that187

ρ∗(µ, ν) ≤ CW1(µ, ν),188

with a universal constant C. Let us consider an i.i.d. sequenceXn with distribution µ,189

and define µ̂N = 1
N δXn

to be the empirical measure of µ. With the sample complexity190

of W1, see e.g. [22], we deduce that191

E[ρ∗(µ̂N , µ)] ≤ Cα(N),192

and hence193

inf
x∈TdN

ρ∗(µ
x, µ) ≤ Cα(N).194

3. Proof of Theorem 1.1. We only prove the inequality195

V N (t, z,x) ≥ V (t, z, µx)− Cα1/3(N),(3.1)196

and the proof for the other direction197

V N (t, z,x) ≤ V (t, z, µx) + Cα1/3(N)198

is similar. The argument is based on the fact that the inf convolution preserves the199

property of being a supersolution, and will be divided into several steps.200

For any z ∈ Td,x ∈ TdN , denote z + x := (z + x1, . . . , z + xN ). Recall that vN201

denotes the classical solution to (1.2). Introducing202

V N (t, z,x) := vN (t, z + x),203

let us consider the inf-convolution of V N204

V
N,ϵ

(t, z, µ) := inf
(s,w,x)∈[0,T ]×Td+dN

(
V N (s, w,x) +

1

2ϵ
|t− s|2 + 1

2ϵ
|z − w|2 + 1

2ϵ
ρ2∗(µ

x, µ)

)
.205

It is clear that V N (t, z,x) ≥ V
N,ϵ

(t, z, µx) for every x ∈ TdN . We prove that V
N,ϵ

is206

a viscosity supersolution to (1.1) up to some error.207

Suppose Φ : [0, T ]× Td × P(Td) → R is a regular test function in C1,2,2
p ([0, T ]×208

Td ×P(Td)) and we have a local strict minimum (t0, z0, µ0) at V
N,ϵ −Φ with t0 < T ,209

and we aim to show that210

−∂tΦ(t0, z0, µ0) + E(N, ϵ) ≥
∫
Td

He(x, z0, DµΦ(t0, z0, µ0, x), µ0)µ0(dx)211

+

∫
Td

tr(D2
xµΦ)(t0, z0, µ0, x)µ0(dx) + a∆zΦ(t0, z0, µ0),(3.2)212

where E(N, ϵ) is an error term to be determined later.213

By compactness, take (s0, w0,x0) such that214

V
N,ϵ

(t0, z0, µ0) = V N (s0, w0,x0) +
1

2ϵ
|s0 − t0|2 +

1

2ϵ
|w0 − z0|2 +

1

2ϵ
ρ2∗(µ

x0 , µ0).215
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8 E. BAYRAKTAR, I. EKREN, AND X. ZHANG

Then we have the following crucial inequality, for every (s, w,x) and (t, z, µ),216

V N (s, w,x) +
1

2ϵ

(
|s− t|2 + |w − z|2 + ρ2∗(µ

x, µ)
)
− Φ(t, z, µ)(3.3)217

≥ V
N,ϵ

(t, z, µ)− Φ(t, z, µ)218

≥ V
N,ϵ

(t0, z0, µ0)− Φ(t0, z0, µ0)219

= V N (s0, w0,x0) +
1

2ϵ

(
|s0 − t0|2 + |w0 − z0|2 + ρ2∗(µ

x0 , µ0)
)
− Φ(t0, z0, µ0).220

To make use of the viscosity property of V N , let us define a finite dimensional221

test function Φϵ by super-convolution,222

Φϵ(s, w,x) : = sup
z∈Td

{
Φ(t0, z, µ0)−

1

2ϵ
|w − z|2

}
− 1

2ϵ
|s− t0|2 −

1

2ϵ
ρ2∗(µ

x, µ0).(3.4)223

Then inequality (3.3) implies that224

V N (s, w,x)− Φϵ(s, w,x) ≥ V
N,ϵ

(t0, z0, µ0)− Φ(t0, z0, µ0)225

≥ V N (t0, w0,x0)− Φϵ(s0, w0,x0).(3.5)226

Therefore, V N − Φϵ obtains a local minimum at (t0, w0,x0), and we are going to227

invoke the viscosity property of V N . The next lemma provides derivatives of Φϵ.228

Lemma 3.1. We have the following equalities, for every w ∈ Td and every x ∈229

TdN230

∂sΦ
ϵ(s0, w,x) =

1

ϵ
(t0 − s0),231

NDxiΦϵ(s0, w,x) =
1

2ϵ
Dνρ

2
∗(µ

x, µ0)(x
i), i = 1, . . . , N,232

ND2
xiΦϵ(s0, w,x) =

1

2ϵ
D2

xνρ
2
∗(µ

x, µ0)(x
i) +

1

2ϵN
D2

νρ
2
∗(µ

x0 , µ0)(x
i, xi), i = 1, . . . , N,233

and at (t0, z0, µ0)234

∂tΦ(t0, z0, µ0) =
1

ϵ
(t0 − s0),235

DµΦ(t0, z0, µ0)(x
i) =

1

2ϵ
Dνρ

2
∗(µ

x0 , µ0)(x
i), i = 1, . . . , N,236

D2
xµΦ(t0, z0, µ0)(x

i) =
1

2ϵ
D2

xνρ
2
∗(µ

x0 , µ0)(x
i), i = 1, . . . , N.237

Moreover, w 7→ Φϵ(s0, w,x0) is second order differentiable a.e. At every w ∈ Td238

where it is second order differentiable, we have239

∆wΦ
ϵ(s0, w,x0) ≥ ∆zΦ(t0, z(w), µ0),240

where241

z(w) ∈ argmax
z∈Td

{
Φ(t0, z, µ0)−

1

2ϵ
|w − z|2

}
.242

Proof. Taking derivative with respect to s in (3.4),243

∂sΦ
ϵ(s0, w,x) =

1

ϵ
(t0 − s0).244

This manuscript is for review purposes only.



CONVERGENCE RATE OF PARTICLE SYSTEM 9

Inequality (3.3) implies that t0 is a maximizer of245

µ 7→ Φ(t, z0, µ)−
1

2ϵ
|s0 − t|2,246

and thus247

∂tΦ(t0, z0, µ0) =
1

ϵ
(t0 − s0) = ∂sΦ

ϵ(s0, w,x0).248

Taking derivative with respect to x in (3.4),249

DxiΦϵ(s0, w,x) = − 1

2ϵN
Dµρ

2
∗(µ

x, µ0)(x
i)250

=
1

2ϵN
Dνρ

2
∗(µ

x, µ0)(x
i),251

where Dνρ
2
∗ denotes Lions’ derivative of η 7→ ρ2∗(µ, η). Taking derivative once more,252

D2
xiΦϵ(s0, w,x) =

1

2ϵN
D2

xνρ
2
∗(µ

x, µ0)(x
i) +

1

2ϵN2
D2

νρ
2
∗(µ

x0 , µ0)(x
i, xi).253

Again due to (3.3), µ0 is a maximizer of254

µ 7→ Φ(t0, z0, µ)−
1

2ϵ
ρ2∗(µ

x0 , µ),255

and first order condition yields256

DµΦ(t0, z0, µ0)(x
i) =

1

2ϵ
Dνρ

2
∗(µ

x0 , µ)(xi), xi ∈ Td,257

and hence258

D2
xµΦ(t0, z0, µ0)(x

i) =
1

2ϵ
D2

xνρ
2
∗(µ

x0 , µ)(xi), xi ∈ Td.259

The last claim is a property of super-convolution; see e.g. [18, Lemma A.5], and260

hence we finish proving the lemma.261

Without loss of generality, we assume that V N −Φϵ obtains a strict local minimal262

at (s0, w0,x0). Denoting θ0 = (t0, z0, µ0), a direct application of Jensen’s lemma ([18,263

Lemma A.3]) and Lemma 3.1 shows that264 (
∂tΦ(θ0), DµΦ(θ0)(x

i
0), D

2
xµΦ(θ0)(x

i
0) +

1

2ϵN
D2

νρ
2
∗(µ

x0 , µ0)(x
i
0, x

i
0),∆zΦ(θ0)

)
.265

approximate derivatives of Φϵ at (s0, w0,x0). We summarize this key result in the266

following proposition.267

Proposition 3.2. There exists a sequence of Td ∋ wn → w0 and Rd ∋ pn → 0268

such that269

V N (t0, w,x0)− Φϵ(t0, w,x0) + ⟨pn, w⟩ obtains a local minimum at wn,270

and w 7→ V N (t0, w,x0)−Φϵ(t0, w,x0) is second-order differentiable at wn. Moreover,271

for all i = 1, . . . , N , the limit point of272 (
∂sΦ

ϵ, NDxiΦϵ, ND2
xiΦϵ,∆wΦ

ϵ
)
(s0, wn,x0),273

as n → ∞, is equal to274 (
∂tΦ(θ0), DµΦ(θ0)(x

i
0), D

2
xµΦ(θ0)(x

i
0) +

1

2ϵN
D2

νρ
2
∗(µ

x0 , µ0)(x
i
0, x

i
0),∆zΦ(θ0)

)
.275
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As vN is a classical solution to (1.2), it can be easily seen that V N is a classical276

solution to the following equation277 
−∂tV

N (t, w,x) =
∑N

i=1
He(xi,w,NDxiV

N (t,w,x),µx)

N +
∑N

i=1 ∆xiV N (t, w,x)

+a∆wV
N (t, w,x),

V N (T,w,x) = Ge(w, µx),

278

and thus also a viscosity solution. Remember that θ0 = (t0, z0, µ0) and V N − Φϵ279

obtains a local minimal at (s0, w0,x0) in (3.5). Setting ϵ = α(N) in Lemma 3.3 below,280

it can be seen that s0 < T for large enough N . Therefore due to Proposition 3.2 and281

the definition of viscosity solution282

−∂tΦ(θ0) ≥
1

N

N∑
i=1

He(xi
0, w0, DµΦ(θ0)(x

i
0), µ

x0)283

+
N∑
i=1

(
1

N
trD2

xµΦ(θ0, x
i
0) +

1

2ϵN2
D2

νρ
2
∗(µ

x0 , µ0)(x
i
0, x

i
0)

)
+ a∆zΦ(θ0).284

Comparing the inequality above with (3.2), we define the error term E(N, ϵ)285

E(N, ϵ) :=
1

N

N∑
i=1

He(xi
0, z0, DµΦ(θ0)(x

i
0), µ

x0)−He(xi
0, w0, DµΦ(θ0)(x

i
0), µ

x0)286

+

∫
He(x, z0, DµΦ(θ0)(x), µ

x0)µ0(dx)−
N∑
i=1

He(xi
0, z0, DµΦ(θ0)(x

i
0), µ

x0)

N
287

+

∫
(He(x, z0, DµΦ(θ0)(x), µ0)−He(x, z0, DµΦ(θ0)(x), µ

x0))µ0(dx)288

+

∫
tr(D2

xµΦ)(θ0, x) (µ0 − µx0)(dx)−
N∑
i=1

1

2ϵN2
D2

νρ
2
∗(µ

x0 , µ0)(x
i
0, x

i
0).(3.6)289

It can be easily checked that (3.2) is satisfied with such E(N, ϵ). We will provide290

an upper bound of (3.6). To this end, let us first estimate |s0 − t0|, |z0 − w0| and291

ρ∗(µ
x0 , µ0).292

Lemma 3.3. We have the following estimates,293

|t0 − s0| ≤ Cϵ2/3, |z0 − w0| ≤ Cϵ, ρ∗(µ0, µ
x0) ≤ C

(
ϵ+ α(N) +

√
ϵα(N)

)
,294

where C is a constant independent of ϵ,N .295

Proof. According to Lemma 2.3, we have296 ∣∣V N (t, z,x)− V N (s, w,x)
∣∣ ≤ C(

√
|t− s|+ |w − z|).297

Recall that298

V
N,ϵ

(t0, z0, µ0) =V N (s0, w0,x0) +
1

2ϵ
|s0 − t0|2 +

1

2ϵ
|w0 − z0|2 +

1

2ϵ
ρ2∗(µ

x0 , µ0)299

≤V N (t0, w0,x0) +
1

2ϵ
|w0 − z0|2 +

1

2ϵ
ρ2∗(µ

x0 , µ0).300
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Therefore we get inequalities301

1

2ϵ
|s0 − t0|2 ≤ V N (t0, w0,x0)− V N (s0, w0,x0) ≤ C

√
|s0 − t0|,302

and hence |s0 − t0| ≤ Cϵ2/3. By a similar argument, we obtain that |w0 − z0| ≤ Cϵ.303

Thanks to Lemma 2.7, take x′ ∈ TdN such that ρ∗(µ
x′
, µ0) ≤ Cα(N). By the304

definition of V
N,ϵ

,305

V N (s0, w0,x0) +
1

2ϵ
|s0 − t0|2 +

1

2ϵ
|w0 − z0|2 +

1

2ϵ
ρ2∗(µ

x0 , µ0)306

≤ V N (s0, w0,x
′) +

1

2ϵ
|s0 − t0|2 +

1

2ϵ
|w0 − z0|2 +

1

2ϵ
ρ2∗(µ

x′
, µ0).307

and therefore in conjunction with Proposition 2.5 we have308

1

2ϵ
ρ2∗(µ

x0 , µ0)−
1

2ϵ
ρ2∗(µ

x′
, µ0) ≤ V N (s0, w0,x

′)− V N (s0, w0,x0)309

≤ C(ρ∗(µ
x0 , µx′

) + α(N)) ≤ C(ρ∗(µ
x0 , µ0) + 2α(N)).310

Hence we obtain the inequality311

1

2ϵ
ρ2∗(µ

x0 , µ0)− Cρ∗(µ
x0 , µ0) ≤

1

2ϵ
C2α(N)2 + 2Cα(N),312

and thus313

ρ∗(µ
x0 , µ0) ≤ C

(
ϵ+ α(N) +

√
ϵα(N)

)
,314

where C is a constant independent of ϵ,N .315

According to [31, Lemma 5.1,5.4], we have316

ρ2∗(µ, ν) =
∑
l∈Zd

(1 + |l|2)−k∗ |Fl(µ− ν)|2,317

Dνρ
2
∗(µ, ν)(x) =− 2i

∑
l∈Zd

l(1 + |l|2)−k∗Fl(ν − µ)e∗l (x),(3.7)318

D2
νρ

2
∗(µ, ν)(x, y) =− 2

∑
l∈Zd

l2(1 + |l|2)−k∗Fl(ν − µ)e∗l (x)el(y).319

Therefore by Cauchy Schwarz inequality,320

1

2
|Dνρ

2
∗(µ, ν)(x)| ≤ ρ∗(µ, ν)

√∑
l∈Zd

|l|2(1 + |l|2)−k∗ ,321

1

2
|D2

νρ
2
∗(µ, ν)(x, y)| ≤ ρ∗(µ, ν)

√∑
l∈Zd

|l|4(1 + |l|2)−k∗ .(3.8)322

where the constants
√∑

l∈Zd |l|2(1 + |l|2)−k∗ and
√∑

l∈Zd |l|4(1 + |l|2)−k∗ are finite323

due to our choice of k∗. Then according to Lemma 3.1 and Lemma 3.3,324

|DµΦ(t0, z0, µ0)(x)| ≤

√∑
l∈Zd |l|2(1 + |l|2)−k∗

(
ϵ+ α(N) +

√
ϵα(N)

)
ϵ

=: R(ϵ,N).325

Here is an upper bound of E(ϵ,N) depending on R(ϵ,N).326
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Lemma 3.4. We have that327

E(ϵ,N) ≤CR(ϵ,N)ϵ+ CR(ϵ,N)(1 + 1/(ϵN))ρ∗(µ
x0 , µ0) +

1

2ϵ
ρ2∗(µ

x0 , µ0)328

+
ϵC2

R(ϵ,N)

4

(
ρ∗(µ

x0 , µ0)

ϵ
+

ρk∗−1
∗ (µx0 , µ0)

ϵk∗−1

)2

,329

where CR(ϵ,N) is a constant that only depends on R(ϵ,N).330

Proof. Let us denote the terms on the right-hand side of (3.6) by (I), (II), (III),331

and (IV ) from the top to the bottom, and we have the following estimate.332

Estimate of (I): Recall that He(x, z, p, µ) := H(x+ z, p, (Id + z)#µ), and hence333

|He(x, z, p, µ)−He(x,w, p, µ)| ≤ CR(|w − z|+W1((Id + z)#µ, (Id + w)#µ))334

≤ 2CR(ϵ,N)|w − z|.335

Together with Lemma 3.3, we conclude that (I) ≤ CR(ϵ,N)ϵ.336

Estimate of (II): Let us denote f(x) := He(x, z0, ∂µΦ(θ0)(x), µ
x0). Then it is337

straightforward that (II) =
∫
f(x) (µ0 − µx0)(dx). Due to Lemma 3.1,338

DµΦ(θ0)(·) =
1

2ϵ
Dνρ

2
∗(µ

x0 , µ0)(·),339

According to [31, Lemma 5.4] the term on the right is in the Sobolev space Hk∗−1.340

Indeed, according to (3.7)341

∥Dνρ
2
∗(µ

x0 , µ0)(·)∥2k∗−1 = 4
∑
l∈Zd

(1 + |l|2)k∗−1|l|2(1 + |l|2)−2k∗ |Fl(ν − µ)|2342

≤ 4ρ2∗(µ
x0 , µ0),343

and hence344

∥DµΦ(θ0)∥k∗−1 ≤ 1

ϵ
ρ∗(µ

x0 , µ0).345

As ∥He(·, z0, ·, µx0)∥Ck∗ (Td×BR(ϵ,N))≤ CR(ϵ,N), f is actually a composition g ◦346

(Id, h) of two functions g and (Id, h) with g = He(·, z0, ·, µx0) ∈ Ck∗(Td × BR(ϵ,N))347

and h = DµΦ(θ0)(·) ∈ Hk∗−1(Td). Therefore according to the chain rule, [30, Remark348

2, Section 5.2],349

∥f∥k∗−1 = ∥g ◦ (Id, h)∥k∗−1 ≤ C(Rϵ,N )
(
∥DµΦ(θ0)∥k∗−1 + ∥DµΦ(θ0)∥k∗−1

k∗−1

)
350

≤ C(Rϵ,N )

(
ρ∗(µ

x0 , µ0)

ϵ
+

ρk∗−1
∗ (µx0 , µ0)

ϵk∗−1

)
351

where C(Rϵ,N ) is a constant that only depends on ∥He(·, z0, ·, µx0)∥Ck∗ (Td×BR(ϵ,N))≤352

CR(ϵ,N). Therefore we obtain the estimate353

(II) ≤ CR(ϵ,N)ρ1−k∗(µ
x0 , µ0)

(
ρ∗(µ

x0 , µ0)

ϵ
+

ρk∗−1
∗ (µx0 , µ0)

ϵk∗−1

)
354

This manuscript is for review purposes only.



CONVERGENCE RATE OF PARTICLE SYSTEM 13

≤ 1

ϵ
ρ21−k∗

(µx0 , µ0) +
ϵC2

R(ϵ,N)

4

(
ρ∗(µ

x0 , µ0)

ϵ
+

ρk∗−1
∗ (µx0 , µ0)

ϵk∗−1

)2

.355

Estimate of (III): It is straightforward from Assumption 1.1 that (III) is bounded356

from above by CR(ϵ,N)ρ∗(µ
x0 , µ0).357

Estimate of (IV ): According to Lemma 3.1, we compute358

(IV ) =− 1

ϵ

∑
l∈Zd

|l|2

(1 + |l|2)k∗
Fl(µ0 − µx0)

∫
e∗l (x) (µ0 − µx0)(dx)359

−
N∑
i=1

1

2ϵN2
D2

νρ
2
∗(µ

x0 , µ0)(x
i
0, x

i
0)360

=− 1

ϵ

∑
l∈Zd

|l|2

(1 + |l|2)k∗
|Fl(µ0 − µx0)|2 −

N∑
i=1

1

2ϵN2
D2

νρ
2
∗(µ

x0 , µ0)(x
i
0, x

i
0)361

=− 1

ϵ
ρ21−k∗

(µx0 , µ0) +
1

ϵ
ρ2∗(µ

x0 , µ0)−
N∑
i=1

1

2ϵN2
D2

νρ
2
∗(µ

x0 , µ0)(x
i
0, x

i
0)362

≤− 1

ϵ
ρ21−k∗

(µx0 , µ0) +
1

ϵ
ρ2∗(µ

x0 , µ0) +
C

ϵN
ρ∗(µ

x0 , µ0),363

where we apply the estimate (3.8) to get the last inequality. Summing up the estimates364

for (I), (II), (III), (IV ), we conclude the result.365

To finish the proof, we show that V
ϵ,N

(T, z, µ) ≥ Ge(z, µ) up to some error.366

Suppose that367

V
N,ϵ

(T, z, µ) = V N (sT , wT ,xT ) +
1

2ϵ
|T − sT |2 +

1

2ϵ
|z − wT |2 +

1

2ϵ
ρ2∗(µ

xT , µ).368

By the same argument as in Lemma 3.3, it can be shown that369

|T − sT | ≤ Cϵ2/3, |z − wT | ≤ Cϵ, ρ∗(µ0, µ
xT ) ≤ C

(
ϵ+ α(N) +

√
ϵα(N)

)
,370

where C is a constant independent of ϵ,N . Then thanks to the regularity of V N from371

Lemma 2.3 and Proposition 2.5, we get that372

V
N,ϵ

(T, z, µ) ≥ V N (T, z, µ)− C(ϵ1/3 + ϵ)− Cα(N)− C
(
ϵ+ α(N) +

√
ϵα(N)

)
373

≥ Ge(z, µ)− C(ϵ1/3 + ϵ+ α(N) +
√

ϵα(N)).374

Together with (3.2), V
N,ϵ

(t, z, µ)+(T − t)E(ϵ,N)+C(ϵ1/3+ϵ+α(N)+
√

ϵα(N))375

is a viscosity supersolution to (1.1). Then due to the comparison principle in Propo-376

sition 2.6, we have that377

V
N,ϵ

(t, z, µ) + (T − t)E(ϵ,N) + C(ϵ1/3 + ϵ+ α(N) +
√

ϵα(N)) ≥ V (t, z, µ).378

Recalling that by the definition of inf-convolution, V N (t, z,x) ≥ V
N,ϵ

(t, z, µx), and379

hence380

V N (t, z,x) ≥ V (t, z, µx)− TE(ϵ,N)− C(ϵ1/3 + ϵ+ α(N) +
√
ϵα(N)).381
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Choosing ϵ = α(N), it can be easily checked that R(ϵ,N) is bounded independent of382

N , and therefore383

TE(ϵ,N) + C(ϵ1/3 + ϵ+ α(N) +
√

ϵα(N)) ≤ Cα1/3(N).384

So that we finish the proof of (3.1).385

Acknowledgments. We would like to thank Joe Jackson for his comments on386

the first version of the paper.387
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