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Abstract
This is the second installment in a series of papers applying descriptive set theoretic techniques to both analyze and
enrich classical functors from homological algebra and algebraic topology. In it, we show that the Čech cohomology
functors Ȟ𝑛 on the category of locally compact separable metric spaces each factor into (i) what we term their
definable version, a functor Ȟ𝑛

def taking values in the category GPC of groups with a Polish cover (a category first
introduced in this work’s predecessor), followed by (ii) a forgetful functor from GPC to the category of groups.
These definable cohomology functors powerfully refine their classical counterparts: we show that they are complete
invariants, for example, of the homotopy types of mapping telescopes of d-spheres or d-tori for any 𝑑 ≥ 1, and, in
contrast, that there exist uncountable families of pairwise homotopy inequivalent mapping telescopes of either sort
on which the classical cohomology functors are constant. We then apply the functors Ȟ𝑛

def to show that a seminal
problem in the development of algebraic topology – namely, Borsuk and Eilenberg’s 1936 problem of classifying,
up to homotopy, the maps from a solenoid complement 𝑆3\Σ to the 2-sphere – is essentially hyperfinite but not
smooth.

Fundamental to our analysis is the fact that the Čech cohomology functors 𝑋 ↦→ Ȟ𝑛 (𝑋;𝐺) admit two main
formulations: a more combinatorial one and a more homotopical formulation as the group [𝑋, 𝑃] of homotopy
classes of maps from X to a polyhedral 𝐾 (𝐺, 𝑛) space P. We describe the Borel-definable content of each of these
formulations and prove a definable version of Huber’s theorem reconciling the two. In the course of this work, we
record definable versions of Urysohn’s Lemma and the simplicial approximation and homotopy extension theorems,
along with a definable Milnor-type short exact sequence decomposition of the space Map(𝑋, 𝑃) in terms of its
subset of phantom maps; relatedly, we provide a topological characterization of this set for any locally compact
Polish space X and polyhedron P. In aggregate, this work may be more broadly construed as laying foundations for
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the descriptive set theoretic study of the homotopy relation on such spaces Map(𝑋, 𝑃), a relation which, together
with the more combinatorial incarnation of Ȟ𝑛, embodies a substantial variety of classification problems arising
throughout mathematics. We show, in particular, that if P is a polyhedral H-group, then this relation is both Borel
and idealistic. In consequence, [𝑋, 𝑃] falls in the category of definable groups, an extension of the category GPC
introduced herein for its regularity properties, which facilitate several of the aforementioned computations.
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1. Introduction

This work is the second in a series of papers enacting a simple but far-reaching recognition, which is
the following: many of the classical functors 𝐹 : C → D of homological algebra and algebraic topology
factor through what we might loosely term a definable version of the category D, as in the diagram
below:

C definable D

D

definable 𝐹

𝐹 𝐸 , a forgetful functor (1)

Two fundamental examples are the functors Ext and lim1, each of which maps to the category D = Grp
of groups. As this work’s predecessor [9] showed, the restrictions of these functors to pairs and towers of
countable abelian groups, respectively, each admit a canonical lift to the category GPC of groups with a
Polish cover, a category first identified in [9] as playing, in these contexts, exactly this role of a definable
D. The objects of GPC are pairs (𝐺, 𝑁) consisting of a Polish group G together with a Polishable normal
subgroup 𝑁 ≤ 𝐺; its morphisms (𝐺, 𝑁) → (𝐻, 𝑀) are those group homomorphisms 𝐺/𝑁 → 𝐻/𝑀
which lift to a Borel function 𝐺 → 𝐻. More conceptually, its morphisms are those homomorphisms
𝐺/𝑁 → 𝐻/𝑀 which are definable from the Polish topologies on G and H via a computational or
expressive power consisting in ‘logic gates’ of countably infinite length. As shown in [9], GPC is a
significantly finer or more rigid category than Grp; in particular, HomGPC((𝐺, 𝑁), (𝐻, 𝑀)) is often a
proper – and sometimes quite sparse – subset of HomGrp ((𝐺/𝑁), (𝐻/𝑀)), and from this, it follows that
the aforementioned definable lifts of the functors Ext and lim1 provide strictly stronger invariants of
pairs and towers of countable abelian groups than their classical counterparts.

The present work extends this analysis to the Čech cohomology functors from the category C = LC
of locally compact Polish spaces to the category D of groups. This entails a coordinated study of
the Borel content of both the combinatorial and homotopical presentations of these groups. For our
work on the latter, and on the homotopy bracket [−,−] more generally, we introduce several further
definable categories, DSet and DGrp, each of which extends the subcategory GPC while retaining many
of its regularity properties. By way of this analysis, we show that, like Ext and lim1, the functors
Ȟ𝑛 : LC → Grp each factor into a definable cohomology functor to GPC followed by a forgetful functor
from GPC to Grp. In consequence, much as before, definable cohomology is a significantly stronger
invariant of topological spaces than its classical counterpart. This we concretely show via a comparison
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of the classical and definable cohomology groups of mapping telescopes of spheres and tori, objects of
central importance to the field of algebraic topology (to the study of localizations, or the construction
of Eilenberg-MacLane spaces, for example) [12, 13, 59, 63, 85].

We precede a more detailed discussion of this paper’s contents with a few further words of context.
We would stress from the outset, for example, that none of the definable functors under discussion
provide particularly esoteric, unmanageable or hard-to-compute invariants for topological spaces or
groups; on the contrary, these invariants amount to little more than a retention of the topologies arising
naturally in classical computations. As such, they realize a historically persistent impulse within the
fields of homological algebra and algebraic topology; to take just one example, Moore’s 1976 work [65]
records the following striking premonition of the category GPC:

There is one complication in this theory which, as we shall see, simply cannot be avoided and
this comes about as follows: We have polonais [i.e., Polish] groups A and B (say abelian) together
with a continuous homomorphism from A into B. The quotient group 𝐵/ 𝑗 (𝐴) will be of interest
and significance even though in many cases 𝑗 (𝐴) is not closed in B. This quotient group would be
polonais if 𝑗 (𝐴) were closed but in general it is some non-Hausdorff topological group, arising in
some sense as the ‘quotient’ of two polonais groups. It will be somewhat useful to talk about such
objects which with some trepidation one might call pseudo-polonais groups. We would define such
objects as triples𝐶 = (𝐴, 𝐵, 𝑗) where A and B are polonais and j is a continuous homomorphism of
A into B, subject to an appropriate equivalence relation which we shall not pursue at this moment.

See also Brown’s 1975 remarks on almost polonais groups in [18] and his references therein and in
his 1977 article [17] to projected (but never subsequently published) works on this theme. It seems
likely that what these recognitions’ further development awaited was some framework for the efficient
manipulation of Moore’s triples (𝐴, 𝐵, 𝑗) (which are evidently equivalent in content to the objects
(𝐺, 𝑁) of GPC), and it is in the derivation of just such a framework from the apparatus of invariant
descriptive set theory that our work’s main contribution and novelty arguably consist.

Along these lines, affinities of the present work with another major contemporary research orientation
should be noted. This is the program of ‘doing algebra with topology’ motivating, for example, the
condensed mathematics and pyknotic mathematics frameworks of Clausen and Scholze, and Barwick
and Haine, respectively ([4, 77]; see also [35]). Though our methods are rather different, much of the
underlying impetus is the same: it is the issue of ‘bad quotients’ like those which Moore describes above.
More formally, it is the failure of settings like the collection of Polish abelian groups to form an abelian
category. In contrast, rather remarkably, as this work’s second author has recently shown, the category
APC of groups with an abelian Polish cover is an abelian category, one which may moreover be regarded
as the canonical abelian extension of the category of Polish abelian groups, in the precise sense that
it forms that category’s left heart [52]. This helps to explain why such large portions of homological
algebra and algebraic topology lift to APC and related settings; establishing the main theorems of [9]
and the present work, for example, entailed the development of definable versions of such a range of
core results like the homotopy extension theorem, the simplicial approximation theorem, Milnor exact
sequences, Urysohn’s Lemma, the Snake Lemma and so on, that it grows natural to speak of an emergent
field of definable homological algebra. And it is in part in these terms also that our project should be
understood.

At the same time, the present work extends the framework of diagram 1 to homotopical and non-
abelian settings, through our study of the representation of Ȟ𝑛 (𝑋;𝐺) as the group [𝑋, 𝐾 (𝐺, 𝑛)] of
homotopy classes of maps from X to an Eilenberg-MacLane space 𝐾 (𝐺, 𝑛). As noted, and as we will
describe in greater detail just below, this analysis necessitated the introduction of a larger category of
definable groups DGrp, one which features GPC as a full subcategory. This is the natural category for
the definable analysis of the homotopy bracket [−, 𝑃] of maps to a polyhedron P, and hence (by Brown
Representability) of generalized homology and cohomology theories more broadly, as we discuss in our
conclusion. The development of definable homotopy groups is a naturally ensuing prospect as well (see
Remark 4.7).
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This brings us to one last preliminary point. It should be clear from our account so far that much of
what we herein term definable connotes what might be more precisely rendered Borel definable, but it
can also, as in the case of definable sets and groups, mean a little more (see Section 1.2 below). Put
differently, our uses of the term herein have been guided by considerations both of concision and of the
interrelations between our operative categories, but should be everywhere read to signal a concern for
structures and functions embodying only countable amounts of data, in senses such as we noted above.

We turn now to a more detailed description of our results.

1.1. Definable Čech cohomology

As noted, this work builds on its predecessor [9], which introduced definable variants of the functors
Ext, Pext and lim1, each taking values in the category GPC of groups with a Polish cover. What warrants
a view of Ext(𝐵, 𝐹), Pext(𝐵, 𝐹) and lim1(𝑨) as groups with a Polish cover is the observation in [9]
that each is naturally construed as a cohomology group H𝑛 (𝐶•) = ker(𝛿𝑛)/im(𝛿𝑛−1) of an appropriate
Polish cochain complex 𝐶•. The latter is simply a cochain complex

𝐶• := ( · · · −→ 𝐶𝑛+1 𝛿𝑛−1

−→ 𝐶𝑛 𝛿𝑛

−→ 𝐶𝑛+1−→ · · · )

in which each 𝛿𝑛 : 𝐶𝑛 → 𝐶𝑛−1 is a continuous homomorphism between Polish abelian groups; see
Section 2.

The present work takes as its focus the definable enrichment of the Čech cohomology groups
Ȟ𝑛 (𝑋;𝐺) of locally compact separable metric spaces X with coefficients in a countable abelian group
G. As abstract groups, these Čech cohomology groups admit several formulations. The combinatorial
(and classical) approach to Čech cohomology associates to each open cover U ∈ Cov(𝑋) of X the
simplicial cohomology group H𝑛 (Nv(U );𝐺) of its nerve, then defines Ȟ𝑛 (𝑋;𝐺) as the colimit, over
the refinement-ordering of Cov(𝑋), of these groups. In its homotopical incarnation, on the other hand,
Ȟ𝑛 (𝑋;𝐺) is the set [𝑋, 𝐾 (𝐺, 𝑛)] of homotopy classes of maps from X to an Eilenberg-MacLane space
𝐾 (𝐺, 𝑛); since 𝐾 (𝐺, 𝑛) is an abelian H-group – that is, a space equipped with multiplication and inverse
operations which satisfy the abelian group axioms up to homotopy – [𝑋, 𝐾 (𝐺, 𝑛)] has the structure of
an abelian group. Mediating between these two approaches, and between homological and homotopical
perspectives more generally, is Huber’s 1961 theorem [40] which states that the groups [𝑋, 𝐾 (𝐺, 𝑛)]
and Ȟ𝑛 (𝑋;𝐺) are naturally isomorphic.

In order to definably enrich these Čech cohomology groups, we isolate and endow the combina-
torially defined Ȟ𝑛 (𝑋;𝐺) and [𝑋, 𝐾 (𝐺, 𝑛)], each with a natural Borel structure. At a first pass, the
associated definable cohomology groups Ȟ𝑛

def (𝑋;𝐺) and [𝑋, 𝐾 (𝐺, 𝑛)]def differ in several interesting
and complementary ways. For example, much like the aforementioned definable invariants introduced in
[9], Ȟ𝑛

def (𝑋;𝐺) admits realization as a group with a Polish cover Ȟ𝑛
def (𝑋;𝐺) := Z𝑛 (U ;𝐺)/B𝑛 (U ;𝐺),

where Z𝑛 (U ;𝐺) and B𝑛 (U ;𝐺) are n-dimensional cocycle and coboundary groups deriving from a Pol-
ish cochain complex associated to X and G. A drawback of this realization is its reliance on choices of
covering systemsU for each X, rendering the more global coordination or, more precisely, functoriality of
the associated assignments 𝑋 ↦→ Ȟ𝑛

def (𝑋;𝐺) somewhat obscure. In contrast, the group [𝑋, 𝐾 (𝐺, 𝑛)]def
does not, in general, manifest as a group with a Polish cover; some care, in fact, is required in handling
its Borel structure. Within the category of definable groups, however – a category which, as noted,
shares many regularity properties with the category of groups with a Polish cover – the functoriality of
the assignment 𝑋 ↦→ [𝑋, 𝐾 (𝐺, 𝑛)]def is clear.

The following definable version of Huber’s theorem says that, up to a natural definable isomorphism,
these two approaches are equivalent. In particular, the assignment 𝑋 ↦→ Ȟ𝑛

def (𝑋;𝐺) is functorial and,
independent of our choices of covering systems U . Furthermore, the definable group [𝑋, 𝐾 (𝐺, 𝑛)]def is
essentially a group with a Polish cover.
Theorem 1.1. The functors determined by the assignments 𝑋 ↦→ Ȟ𝑛

def (𝑋;𝐺) and 𝑋 ↦→ [𝑋, 𝐾 (𝐺, 𝑛)]def
are naturally isomorphic in the category of definable groups.
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semidefinable groups

definable groups

groups with a Polish cover

Figure 1. Definable groups: an extension of GPC sharing many of its regularity properties.

The proof of Theorem 1.1, which occupies much of Section 5, involves several subsidiary results
of independent interest. For example, to show that Huber’s abstract isomorphism [𝑋, 𝐾 (𝐺, 𝑛)] →
Ȟ𝑛 (𝑋;𝐺) admits a Borel lift, we prove a definable version of the simplicial approximation theorem.
The fact that the inverse map Ȟ𝑛 (𝑋;𝐺) → [𝑋, 𝐾 (𝐺, 𝑛)] also admits a Borel lift, and hence that it
induces an isomorphism between Ȟ𝑛

def (𝑋;𝐺) and [𝑋, 𝐾 (𝐺, 𝑛)]def in the category of definable groups,
follows from the general theory of definable groups that we develop in Section 3.

1.2. Definable groups

At first glance, [𝑋, 𝐾 (𝐺, 𝑛)]def is just the quotient Map(𝑋, 𝐾 (𝐺, 𝑛))/� of a Polish space by an analytic
equivalence relation with the property that the operations of multiplication and inversion on the quotient
level lift to Borel maps at the level of Map(𝑋, 𝐾 (𝐺, 𝑛)). While Borel-definable homomorphisms between
such ‘quotient groups’ – which we term semidefinable groups below – determine a category which
strictly extends GPC, the category of semidefinable groups lacks the regularity properties which make
GPC robust and convenient to work with. For example, a salient feature of the category of groups with
a Polish cover, and one instrumental in arguing results like Theorem 1.1, is the fact that an isomorphism
on the level of quotient groups admits a Borel lift if and only if its inverse does. Unfortunately, such
symmetries do not extend to the generality of the category of semidefinable sets. One may recover them,
however, by moving to the intermediate category of definable groups, whose objects, loosely speaking,
are Borel and idealistic equivalence relations E on Polish spaces Y whose quotients by E carry natural
group structures.

The fact that [𝑋, 𝐾 (𝐺, 𝑛)]def is a definable group – a fact which, among others, plays a role in the
proof of Theorem 1.1 – is a consequence of the following more general theorem.

Theorem 1.2. Let X be a locally compact separable metric space, and let P be a polyhedral H-group.
The relation of being homotopic defines a Borel and idealistic equivalence relation on the Polish space
Map(𝑋, 𝑃) of all continuous functions from X to P.

We note that Theorem 1.2 is very far from being true if we reverse the roles of X and P. Indeed, every
analytic equivalence relation is Borel bireducible to the path connectedness relation between points
of an appropriately chosen compact metrizable space X; see [5, Theorem 4.1]. Hence, in general, the
relation of being homotopic is neither Borel nor idealistic on Map(𝑃, 𝑋), even when 𝑃 = {∗} consists
of a single point.

As this observation might suggest, Theorem 1.2 is a rather subtle result; the idealistic portion of
the theorem (holding in fact for any P which is the geometric realization of a locally finite, countable
simplicial complex) forms the main labor of Section 4. The Borel portion of the theorem derives from
close analysis of the class of phantom maps – that is, those maps whose restriction to any compact
subset of X is nullhomotopic – from X to P.

1.3. Phantom maps and the descriptive set theory of homotopy relations

The analysis of the phantom maps (𝑋, 𝐴) → (𝑃, ∗) from a locally compact Polish pair to a pointed
polyhedron forms the focus of Section 7 and is of some interest in its own right, for the following reasons:
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• We provide, for any locally compact Polish pair (𝑋, 𝐴) and polyhedral H-group (𝑃, ∗), a definable
short exact sequence decomposition of the definable group [(𝑋, 𝐴), (𝑃, ∗)] whose kernel is the group
of homotopy classes of phantom maps from (𝑋, 𝐴) to (𝑃, ∗); see Theorem 7.13. This kernel also takes
the form of a definable lim1 term within a definable Milnor-type short exact sequence (Proposition
7.14), a connection with the analyses of [9] which we exploit in Section 8.

• More generally, we provide a topological characterization of the set of phantom maps from (𝑋, 𝐴)
to a pointed polyhedron (𝑃, ∗): it is the closure in Map((𝑋, 𝐴), (𝑃, ∗)) of the set of nullhomotopic
maps; see Proposition 7.9, and also Proposition 7.15. This is a representative benefit of approaches
which, as we put it above, amount essentially to ‘a retention of the topologies arising naturally in
classical computations.’

• Most broadly, the analyses of Sections 4 through 8 should be understood as foundational work in the
descriptive set theoretic study of the homotopy relation on maps from a locally compact Polish space
X to a polyhedral P, a framework encompassing a substantial variety of classification problems in
mathematics; in addition to Theorem 1.1 and the aforementioned phantom decompositions, Lemma
4.4 (characterizing the homotopy relation when X is compact), Lemma 6.3 (a definable version of
Urysohn’s Lemma), Theorem 6.4 (a definable version of Borsuk’s homotopy extension theorem), and
Theorem 6.5 (definably mediating between based and unbased homotopy classes of maps) may all
be viewed in these terms as well.

This last point brings us to the two main sorts of consequences of our work. The first concerns the
study of the Borel complexity of classification problems.

1.4. Classification by (co)homological invariants

One of the most central programs in descriptive set theory measures the intrinsic complexity of various
classification problems in mathematics by locating them within the Borel reduction hierarchy. Two of
the most prominent benchmarks within this hierarchy are the smooth and the classifiable by countable
structures classes of classification problems, largely for the reason that each of these benchmarks captures
classification schemes which occur frequently in mathematical practice. The smooth classification
problems, for example, are precisely those which may be ‘definably classified’ by real number invariants,
such as the problem of classifying all Bernoulli shifts of a given amenable group up to isomorphism; by
the celebrated results of Ornstein [68] and Ornstein-Weiss [69], these dynamical systems are completely
classified by their entropy. Similarly, the classifiable by countable structures classification problems are
precisely those admitting ‘definable classification’ by the isomorphism types of countable structures. A
well-known example of dynamical systems which are classified up to isomorphism by such invariants
is the class of all ergodic measure-preserving transformations of discrete spectrum; by an equally
celebrated but much older result of Halmos and von Neumann, these are completely classified by the
isomorphism type of a countable structure coding their spectrum. See [88].

An upshot of our analysis here and in [9] is that classifiability by (co)homological invariants forms
an equally robust complexity class within the Borel reduction hierarchy, one containing a wide array
of classification problems from throughout mathematics. This class contains all classification problems
which can be ‘definably classified’ using as invariants the elements of a (co)homology group of some
Polish (co)chain complex. More formally, let E be an analytic equivalence relation on a Polish space X.
We say that (𝑋, 𝐸) is classifiable by (co)homological invariants if there exists a Polish abelian group G,
a Polishable subgroup N of G, and a Borel map 𝑓 : 𝑋 → 𝐺 so that for all 𝑥, 𝑦 ∈ 𝑋 , we have 𝑥 𝐸 𝑦 if and
only if 𝑓 (𝑥) + 𝑁 = 𝑓 (𝑦) + 𝑁 (i.e., if E is Borel reducible to the coset equivalence relation R(𝐺/𝑁)).

It follows from the recognition that many classical invariants from homological algebra and algebraic
topology arise as the (co)homology groups of Polish (co)chain complexes that the aforementioned
complexity class is a rich one. By [9], for example, it contains the problem of classifying the extensions
0 → 𝐹 → 𝐸 → 𝐵 → 0 of any fixed pair (𝐵, 𝐹) of countable abelian groups. Similarly, it will
follow from Section 2 below that any classification problem admitting formulation in terms of the Čech
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Classification by
(co)homological invariants

Classification by
countable structures

•
smooth

Figure 2. Classification by (co)homological invariants within the Borel reduction hierarchy.

cohomology of a locally compact Polish space falls in this class as well. In particular, by Theorem 1.1, for
any countable abelian group G, the problem of classifying maps 𝑋 → 𝑌 from a locally compact Polish
space X to a 𝐾 (𝐺, 𝑛) space Y up to homotopy falls within this class; such Y include, of course, infinite-
dimensional real and complex projective space, any knot complement or, more generally, aspherical
space, any finite wedge or product or mapping telescope of circles 𝑆1, and so on. These examples
may easily be multiplied, within areas of study as varied as that of tiling spaces, group cohomology,
or gerbes or fiber bundles, for example [16, 19, 75]; we close this subsection with two representative
instances. If B is a locally compact Polish space, a careful inspection of how the assignments 𝑝 ↦→ 𝑐(𝑝)
and A ↦→ 𝑐(A) are defined below shows that they are induced by Borel maps at the level of cocycles.
As a consequence, the problem of classifying Hermitian line bundles over B up to isomorphism and
of classifying continuous-trace separable 𝐶∗-algebras with spectrum B up to Morita equivalence are
classifiable by (co)homological invariants in the above formal sense.

(1) There is an assignment 𝑝 ↦→ 𝑐(𝑝), from Hermitian line bundles 𝑝 : 𝐸 → 𝐵 over B, to Ȟ2 (𝐵;Z), so
that p and 𝑝′ are isomorphic iff 𝑐(𝑝) = 𝑐(𝑝′); see [72, Proposition 4.53].

(2) There is an assignment A ↦→ 𝑐(A), from continuous-trace separable 𝐶∗-algebras A with spectrum
B, to Ȟ3(𝐵;Z), so that A and A′ are Morita equivalent iff 𝑐(A) = 𝑐(A′); see [72, Proposition 5.24,
Theorem 5.56] or [10], and also [8].

1.5. Definable cohomology as a strong invariant

A second consequence of our work is potentially of even wider significance than the first; this is the
existence of definable cohomological functors Ȟ𝑛

def : LC → GPC which strictly refine their classical
counterparts. In Section 8, we record three sample applications of this technology. We have mentioned
the first of these already; it is the following (see Sections 8.2 and 8.4 for precise definitions):

Theorem 1.3. The definable Čech cohomology groups completely classify homotopy colimits, or, equiv-
alently, mapping telescopes, of nontrivial inductive sequences of d-spheres up to homotopy equivalence,
for all 𝑑 ≥ 1. In contrast, there exist uncountable families of pairwise homotopy inequivalent mapping
telescopes of sequences of spheres whose classical Čech cohomology groups, viewed as graded abelian
groups, are all isomorphic.

We also prove the variant of this theorem resulting from replacing every instance of spheres therein
with tori. Each of these theorems draws on Ulam stability results first established in [9], and this, indeed,
is much of their interest: each applies fundamentally descriptive set theoretic rigidity results to algebraic
and topological settings. We retain hopes for deeper applications along these lines, a point we return to
in our conclusion.

Our second application of the functors Ȟ𝑛
def is to a generalization of a problem dating to Borsuk and

Eilenberg in 1936 [11]. Writing Σ𝑝 for the standard unknotted realization of the p-adic solenoid in 𝑆3,
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this is the problem of classifying the maps 𝑆3\Σ𝑝 → 𝑆2 up to homotopy. We review the problem’s
pivotal role in the development of algebraic topology in Section 8.6, where we also show the following,
together with its higher-dimensional generalizations; the theorem’s statement is an amalgamation of
Theorems 8.19 and 8.21.

Theorem 1.4. For any prime number p, [𝑆3\Σ𝑝 , 𝑆
2] is a definable set, and there is a basepoint-

preserving definable bijection between it and the definable group Ext(Z[1/𝑝],Z). In consequence, the
Borsuk-Eilenberg problem of classifying maps 𝑆3\Σ𝑝 → 𝑆2 up to homotopy is essentially hyperfinite
but not smooth.

The result connects to Ȟ𝑛
def via Hopf’s Theorem (see Section 7.7) and connects to homotopy colim-

its via the recognition that 𝑆3\Σ𝑝 is homotopy equivalent to a mapping telescope of 1-spheres. Note
that this is a stronger and subtler result than the recognition that [𝑆3\Σ𝑝 , 𝑆

2] is uncountable, in pre-
cisely that sense in which Borel cardinality exhibits a richer and subtler degree structure than classical
cardinality does; see [34] for a brief introduction to these matters. This brings us to the third sample
application of our technology, in which we consider equivariant versions of the aforementioned gener-
alized Borsuk-Eilenberg problems. It follows readily from results in both [9] and the present work that
these classification problems realize both an infinite antichain and an infinite chain of degrees within
the Borel reduction heirarchy; a description of these degrees appears as Corollary 8.24.

1.6. Concluding preliminaries

A few final words are in order about the organization of the paper. To begin with, it is, in conception,
largely self-contained: although we will repeatedly invoke results from its predecessor [9], we do not
presume any close familiarity with that work. Not unrelatedly, we have drafted it with readers with a
wide variety of backgrounds in mind. Its table of contents, together with our preceding remarks and
section introductions below, should convey its overall plan.

A standard setting for much of the topological material we will be considering below is the category
HCW of spaces homotopy equivalent to a (countable) CW complex. We should therefore say a bit about
our decision to mainly work with two other categories of spaces: that of locally compact separable
metric spaces (LC) and that of spaces homotopy equivalent to the geometric realization of a countable,
locally finite simplicial complex. As it happens, the latter category is identical to HCW [64]; a polyhedral
emphasis merely facilitates several of our arguments. As for the category LC, its virtues for our purposes
are multiple:

• for any two objects 𝑋,𝑌 in LC, the compact-open topology renders the set Map(𝑋,𝑌 ) a Polish space;
• Huber’s theorem applies in the generality of LC, and Čech and sheaf cohomology coincide therein as

well;
• any space in LC is compactly generated [82]; relatedly, the fundamental adjunctions of algebraic

topology all hold in LC [14, chs. 5–6];
• any object of LC is a countable increasing union of compact subspaces, or, more briefly, is 𝜎-compact.

We have focused exclusively on the group structure of Čech cohomology simply for reasons of space.
We count 0 among the natural numbers N. We turn, after the following acknowledgement, to the main
body of our paper.

2. Definable cohomology: the combinatorial approach

A Polish space X is a second countable topological space whose topology is induced by a complete
metric. A subset Z of X is analytic if it is the continuous image of a Polish space, and Borel if it belongs
to the 𝜎-algebra generated by the open subsets of X. A function 𝑓 : 𝑋 → 𝑌 between Polish spaces is
Borel if its graph is a Borel subset of 𝑋 × 𝑌 or, equivalently, if 𝑓 −1(𝑈) is Borel for every open 𝑈 ⊆ 𝑌 .
A subset Z of X is meager if it is a countable union of nowhere dense subsets of X, and comeager
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if its complement in X is meager. A Polish group is a topological group whose topology is Polish; a
Polishable topological group is one whose Borel structure is generated by a (possibly finer) Polish group
topology. Descriptive set theoretic results as well-known as the fact, for example, that a closed subgroup
of a Polish group is Polish will typically be invoked below without citation; readers are referred to [44]
or [31] for complete introductions to this material.

A Polish cochain complex 𝐶• is an Z-indexed sequence of continuous homomorphisms of Polish
abelian groups

𝐶• := ( · · · −→ 𝐶𝑛−1 𝛿𝑛−1

−→ 𝐶𝑛 𝛿𝑛

−→ 𝐶𝑛+1−→ · · · )

in which 𝛿𝑛𝛿𝑛−1 = 0 for all 𝑛 ∈ Z. Observe that every group Z𝑛 := ker(𝛿𝑛) of n-cocycles arising in
𝐶• is a closed and therefore Polish subgroup of 𝐶𝑛, and that the n-coboundary groups B𝑛 := im(𝛿𝑛−1)
arising in 𝐶•, being continuous homomorphic images of Polish groups, are all Polishable. We denote by
H𝑛 := Z𝑛/B𝑛 the (abstract) cohomology group of degree n associated to 𝐶•. The definable cohomology
group H𝑛

def of degree n associated to 𝐶• is Z𝑛/B𝑛 endowed with the structure of a group with a Polish
cover. As above, recall from [9] that groups with a Polish cover𝐺/𝑁 form a category GPC whose objects
are pairs (𝐺, 𝑁) in which N is a Polishable normal subgroup of a Polish group G, and whose morphisms,
also known as definable homomorphisms, are those group homomorphisms 𝑓 : 𝐺/𝑁 → 𝐺 ′/𝑁 ′ which
lift to a Borel function 𝑓 : 𝐺 → 𝐺 ′ satisfying 𝑓 (𝑔𝑁) = 𝑓 (𝑔)𝑁 ′. Within the definable setting of GPC,
the functor H𝑛

def conserves, in general, considerably more of the data of 𝐶• than its classical counterpart
H𝑛; this renders it a significantly stronger invariant than the latter.

As shown in [9], several of the most prominent invariants of homological algebra arise as the coho-
mology groups of cochain complexes carrying natural Polish topologies, including suitable restrictions
of the functors Ext and lim1. In this section, we show that the Čech cohomology groups Ȟ𝑛 (𝑋;𝐺) of a
locally compact metrizable space X with coefficients in any countable abelian group G may be similarly
construed as groups with a Polish cover, giving rise to the definable cohomology groups Ȟ𝑛

def (𝑋;𝐺) of X.
This work involves technical challenges which were mercifully absent in the cases of Ext or lim1.

To better describe them, recall that most standard definitions of Čech cohomology group Ȟ𝑛 (𝑋;𝐺) are
some variation on the following:

Ȟ𝑛 (𝑋;𝐺) := colimU ∈Cov(U) H𝑛 (Nv(U );𝐺), (2)

where U ranges over the collection Cov(𝑋) of all locally finite open covers of X, ordered by refinement,
and H𝑛 (Nv(U );𝐺) denotes the 𝑛th simplicial cohomology group of the nerve of U ; see Section 2.1
below. Implicit in this expression is the fact that the refinement relation U � V (i.e., V refines U ) induces
a canonical homomorphism H𝑛 (Nv(U );𝐺) → H𝑛 (Nv(V);𝐺). Two main issues complicate the impulse
to regard this object as a group with a Polish cover. The first difficulty is that, as defined above, Ȟ𝑛 (𝑋;𝐺)
is not the cohomology group of any single explicit cochain complex. The second issue is that Cov(𝑋)
does not, in general, contain a countable cofinal subset; in consequence, it is less than immediately clear
how to extract the information contained in Ȟ𝑛 (𝑋;𝐺) from any separable space of data.

We address these difficulties by introducing the notion of a covering system U for X; in Section 2.3,
we show that every locally compact metrizable space X admits such a system. Covering systems are
families of open covers which are cofinal in Cov(𝑋) and continuously parametrized by NN. In Section
2.4, we associate to each covering system U a Polish cochain complex 𝐶•(U ;𝐺), and we introduce the
definable cohomology groups of X as the groups with a Polish cover

Ȟ𝑛
def (𝑋;𝐺) := Z(U ;𝐺)/B(U ;𝐺)

associated to 𝐶•(U ;𝐺). As abstract groups, Ȟ𝑛
def (𝑋;𝐺) coincides with the classical Čech cohomology

groups. As the notation suggests, Ȟ𝑛
def (𝑋;𝐺) does not depend on the choice of U up to definable

isomorphism. Moreover, the assignment 𝑋 ↦→ Ȟ𝑛
def (𝑋;𝐺) is functorial and invariant under homotopy
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equivalences. However, we defer the proofs of these claims to Section 5, since they will apply the
definable theory of homotopy equivalence which we first develop in Sections 3 and 4. This brings us to
a few last points: first, in the following section, we recall only what we need of nerves and simplicial
complexes for the combinatorial development of definable cohomology; we extend our treatment of these
matters in Sections 4.2 and 4.3. Second, similarly, for simplicity’s sake, we undertake this development
primarily in the context of single spaces X, only recording the modifications needed for the cohomology
of pairs of spaces (𝑋, 𝐴) at its conclusion, in Section 2.5; there we also show that definable cohomology
satisfies the definable version of the Exactness Axiom. Lastly, readers seeking, as background to
this section, a more complete classical combinatorial treatment of Čech cohomology are referred to
[29, Chapter IX].

2.1. Definable cohomology for simplicial complexes

A simplicial complex K is a family of finite sets that is closed downwards (i.e., 𝜎 ⊆ 𝜏 ∈ 𝐾 =⇒ 𝜎 ∈ 𝐾).
A simplex or face of K is any element 𝜎 ∈ 𝐾 . A vertex of K is any element v of dom(𝐾) :=

⋃
𝐾 . Let 𝐾, 𝐿

be two simplicial complexes. A simplicial map 𝑓 : 𝐾 → 𝐿 is then any function 𝑓 : dom(𝐾) → dom(𝐿)
such that { 𝑓 (𝑣0), . . . , 𝑓 (𝑣𝑛)} ∈ 𝐿 for all {𝑣0, . . . , 𝑣𝑛} ∈ 𝐾 . The dimension dim(𝜎) of a face 𝜎 of K
is simply the number |𝜎 | − 1. For example, dim(∅) = (−1) and dim({𝑣}) = 0 for every 𝑣 ∈ dom(𝐾).
The dimension dim(𝐾) of 𝐾 is the supremum over {dim(𝜎) | 𝜎 ∈ 𝐾}. A simplicial complex is finite if
it has finitely many vertices, and countable if it has countably many vertices. It is locally finite if each
vertex belongs to finitely many faces. For each 𝑛 ∈ N, the singular n-faces1 of K comprise the set

𝐾 (𝑛) := {(𝑣0, . . . , 𝑣𝑛) ∈ dom(𝐾)𝑛+1 : {𝑣0, . . . , 𝑣𝑛} ∈ 𝐾}.

We fix an abelian Polish group G and consider, for every 𝑛 ∈ N, the collection

𝐶𝑛 (𝐾;𝐺) := 𝐶 (𝐾 (𝑛) , 𝐺)

of all maps from the countable set 𝐾 (𝑛) to G. Endowed with the group operation (𝜁, 𝜂) ↦→ (𝜁 + 𝜂) of
pointwise addition (𝜁 + 𝜂) (𝑣̄) = 𝜁 (𝑣̄) + 𝜂(𝑣̄), and the product topology of countably many copies of G,
the collection 𝐶𝑛 (𝐾;𝐺) forms the abelian Polish group of all G-valued cochains of K. For every 𝑛 ≥ 0,
we have the coboundary map

𝛿𝑛 : 𝐶𝑛 (𝐾;𝐺) → 𝐶𝑛+1 (𝐾;𝐺), with

(𝛿𝑛 (𝜁))
(
(𝑣0, . . . , 𝑣𝑛+1)

)
=

𝑛∑
𝑖=0
(−1)𝑖 𝜁 (𝑣0, . . . , 𝑣̂𝑖 , . . . , 𝑣𝑛+1),

(3)

where 𝑣̂𝑖 denotes the omission of 𝑣𝑖 from 𝑣̄. Notice that 𝛿𝑛 is a continuous homomorphism. This gives
rise to the Polish cochain complex 𝐶•(𝐾;𝐺) of G-valued cochains of K:

0 −→ 𝐶0(𝐾;𝐺) 𝛿0

−→ 𝐶1 (𝐾;𝐺) −→ · · · −→ 𝐶𝑛 (𝐾;𝐺) 𝛿𝑛+1

−→ 𝐶𝑛 (𝐾;𝐺) −→ · · ·

Definition 2.1. Let K be a countable simplicial complex, and let G be an abelian Polish group. For
every 𝑛 ∈ N, the n-dimensional definable cohomology group H𝑛

def (𝐾;𝐺) of K with coefficients in G is
the n-dimensional cohomology group H𝑛 (𝐾;𝐺) of the Polish cochain complex 𝐶•(𝐾;𝐺), viewed as
the group with a Polish cover

0 −→ B𝑛 (𝐾;𝐺) −→ Z𝑛 (𝐾;𝐺) −→ Z𝑛 (𝐾;𝐺)/B𝑛 (𝐾;𝐺) −→ 0

1See [21] for some justification of this terminology.
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where Z𝑛 (𝐾;𝐺) = ker(𝛿𝑛) is the Polish group of n-dimensional G-valued cocycles of K and B𝑛 (𝐾;𝐺) =
im(𝛿𝑛−1) is the Polishable group of n-dimensional G-valued coboundaries of K.

Of course, if we forget about the quotient Borel structure on H𝑛
def (𝐾;𝐺) and instead treat it as an

abstract group, then we recover the classical n-dimensional simplicial cohomology group of K with
coefficients in G.

Remark 2.2. Several alternative definitions of the simplicial cohomology groups H𝑛 (𝐾;𝐺) may be
found in the literature. Each involves variants of the cochain complex 𝐶•(𝐾;𝐺) described above.
For example, one may work with the chain complex 𝐶•alt (𝐾;𝐺) of alternating cochains instead. An
alternating n-cochain is any n-cochain 𝜁 ∈ 𝐶•(𝐾;𝐺) with the property that

𝜁 (𝑣0, . . . , 𝑣𝑛) = sgn(𝜋)𝜁 (𝑣𝜋 (0) , . . . , 𝑣𝜋 (𝑛) ),

for any permutation 𝜋 of the set {0, . . . , 𝑛}. The inclusion 𝐶•alt (𝐾;𝐺) ↩→ 𝐶•(𝐾;𝐺) yields an isomor-
phism between H𝑛 (𝐾;𝐺) and H𝑛

alt(𝐾;𝐺), as is well known (see, for example, [78]). It is clear that
𝐶•alt (𝐾;𝐺) inherits a Polish structure from 𝐶•(𝐾;𝐺) and that 𝐶•alt (𝐾;𝐺) ↩→ 𝐶•(𝐾;𝐺) is continuous.
Hence, H𝑛 (𝐾;𝐺) and H𝑛

alt(𝐾;𝐺) are definably isomorphic as groups with a Polish cover. As this iso-
morphism commutes with direct limits, similar remarks will apply to the Čech cohomology groups of
locally compact Polish spaces which we define below.

2.2. An indexing poset

Below, we identify n with the set {0, . . . , 𝑛−1}. LetN𝑛 be the space of all functions from n toN, and set
N<N =

⋃
𝑛∈N N

𝑛. The Baire spaceN := NN is the space of all functions fromN toN, which we view as a
Polish space equipped with the product topology on discrete copies ofN. For every 𝛼 ∈ N and all 𝑛 ∈ N,
we let 𝛼 |𝑛 ∈ N𝑛 be the finite sequence (𝛼(0), . . . , 𝛼(𝑛− 1)). For every 𝑠 = (𝑠(0), . . . , 𝑠(𝑛− 1)) ∈ N<N,
we denote by N𝑠 the clopen subset {𝛼 ∈ N : 𝛼 |𝑛 = 𝑠} of N . The collection {N𝑠 : 𝑠 ∈ N<N} of all such
sets forms a basis for the topology on N . Let (𝑋𝑠 : 𝑠 ∈ N<N) be a family of sets parametrized by N<N.
To each such family we may apply Suslin’s A-operation, producing the set

A(𝑋𝑠) :=
⋃
𝛼∈N

⋂
𝑛∈N

𝑋𝛼 |𝑛.

Notice that while the family (𝑋𝑠) is countable, the operation A involves an uncountable union. His-
torically, this operation was used to explicitly define subsets of the real line which are analytic but not
Borel. Indeed, every Borel subset of a Polish space X is the result of the A-operation applied to some
system (𝑋𝑠) of closed subsets of X – but not all sets derived from the A-operation applied to a system
of closed subsets is Borel; see [44, Theorem 25.7].

Here, we will be interested in the closed subset N ∗ of N consisting of all non-decreasing such
functions (i.e., all 𝛼 = (𝛼(0), 𝛼(1), . . .) ∈ N such that 𝛼(𝑛) ≤ 𝛼(𝑛 + 1) for all 𝑛 ∈ N). It is easy to
see that N ∗ and N are homeomorphic. Similarly, we denote by (N𝑛)∗ and (N<N)∗ the sets of all non-
decreasing functions inN𝑛 andN<N, respectively. We set N ∗

𝑠 := N𝑠 ∩N ∗ for all 𝑠 ∈ (N<N)∗. We endow
N ∗ with the pointwise partial ordering ≤ and the associated meet operation (𝛼, 𝛽) ↦→ 𝛼 ∧ 𝛽 and join
operation (𝛼, 𝛽) ↦→ 𝛼 ∨ 𝛽, where

𝛼 ≤ 𝛽 ⇐⇒ ∀𝑛 ∈ N (𝛼(𝑛) ≤ 𝛽(𝑛)),

(𝛼 ∧ 𝛽) (𝑛) := min{𝛼(𝑛), 𝛽(𝑛)} and (𝛼 ∨ 𝛽) (𝑛) := max{𝛼(𝑛), 𝛽(𝑛)}.

Occasionally, we will also employ the lexicographic linear ordering ≤lex of N ∗ with

𝛼 ≤lex 𝛽 ⇐⇒
(
𝛼 = 𝛽 or ∃𝑛 ∈ N (𝛼 |𝑛 = 𝛽 |𝑛 and 𝛼(𝑛) < 𝛽(𝑛)

)
.
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Lastly, observe that to every family of sets
(
𝑋𝑠 : 𝑠 ∈ (N<N)∗

)
, parametrized by elements of (N<N)∗, we

may still apply Suslin’s A-operation by first setting 𝑋𝑠 := ∅ for all 𝑠 ∈ N<N \ (N<N)∗.

2.3. Covering systems

Let X be a locally compact Polish space. A cofiltration or exhaustion of X is an increasing sequence
𝑋0 ⊆ 𝑋1 ⊆ · · · of compact subsets of X, with 𝑋0 = ∅ and

⋃
𝑛∈N 𝑋𝑛 = 𝑋 . An open cover of X is any

family U of open sets so that
⋃U = 𝑋 . An open cover U is locally finite if for every 𝑥 ∈ 𝑋 , there is

an open neighborhood 𝑂 ⊆ 𝑋 of x which intersects only finitely many elements of U . If 𝐾 ⊆ 𝑋 , then
we let U � 𝐾 := {𝑈 ∈ U : 𝑈 ∩ 𝐾 ≠ ∅}. Notice that if U is locally finite and K is compact, then U � 𝐾
is finite. Let U ,V be open covers of X. We write U � V if V refines U (i.e., if there exists a function
𝑟 : V → U so that 𝑉 ⊆ 𝑟 (𝑉) for all 𝑉 ∈ V). We term such an r a refinement map.

Definition 2.3. A covering system for X is a triple U =
(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
such that

• (𝑋𝑛 : 𝑛 ∈ N) is an exhaustion of X,
• (U𝛼 : 𝛼 ∈ N ∗) is a family of locally finite open covers of X, and
• 𝑟

𝛽
𝛼 : U𝛽 → U𝛼 are refinement maps indexed by the pairs 𝛼 ≤ 𝛽 in N ∗ and satisfying 𝑟𝛼𝛼 = id and
𝑟
𝛾
𝛼 = 𝑟

𝛽
𝛼 ◦ 𝑟

𝛾
𝛽 for all 𝛼 ≤ 𝛽 ≤ 𝛾,

which moreover satisfy the following locality and extensionality axioms for all 𝑛 ∈ N:

(L1) if 𝛼 |𝑛 = 𝛽 |𝑛, then U𝛼 � 𝑋𝑛 = U𝛽 � 𝑋𝑛;
(L2) if 𝛼 ≤ 𝛽 and 𝛾 ≤ 𝛿, with 𝛼 |𝑛 = 𝛾 |𝑛 and 𝛽 |𝑛 = 𝛿 |𝑛, then 𝑟

𝛽
𝛼 � (U𝛽 � 𝑋𝑛) = 𝑟 𝛿𝛾 � (U𝛿 � 𝑋𝑛);

(L3) if 𝛼 ≤ 𝛽, then 𝑟
𝛽
𝛼 � (U𝛽 � 𝑋𝑛) is surjective on U𝛼 � 𝑋𝑛;

(E1) for every open cover U of X and every 𝑚 ∈ N with 𝑛 < 𝑚, if U � 𝑋𝑛 � U𝛼 � 𝑋𝑛, then there exists
𝛽 ∈ N ∗

𝛼 |𝑛
so that U � 𝑋𝑚 � U𝛽 � 𝑋𝑚.

Notice that if U is a covering system for X, then for every open cover U of X and every 𝑚 ∈ N, there
exists 𝛽 ∈ N ∗ so that

U � 𝑋𝑚 � U𝛽 � 𝑋𝑚.

This follows simply from (E1), since {𝑋} = U � 𝑋0 � U𝛼 � 𝑋0 for all 𝛼 ∈ N ∗.
While the definition of a covering system U =

(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
for X involves an uncountable

family of open covers and an uncountable family of refinement maps, U can still be fully recovered
from a certain countable family of ‘finitary approximations’, via a procedure which resembles Suslin’s
operation A. The next definition and the remark following it make this precise. Notice that by (L1) and
(L2), the definition of U𝑠 and 𝑟 𝑡𝑠 below does not depend on the choice of 𝛼 and 𝛽.

Definition 2.4. Let U =
(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
be a covering system for X. For every 𝑛 ∈ N and every

𝑠, 𝑡 ∈ (N 𝑛)∗, with 𝑠 ≤ 𝑡, we choose some 𝛼 ∈ N ∗
𝑠 , 𝛽 ∈ N ∗

𝑡 , and we define

• U𝑠 := U𝛼 � 𝑋𝑛;
• 𝑟 𝑡𝑠 := 𝑟

𝛽
𝛼 � (U𝛽 � 𝑋𝑛).

We collect this data into a pair Ufin =
(
(U𝑠), (𝑟 𝑡𝑠)

)
, where 𝑠, 𝑡 range over (N<N)∗ with |𝑠 | = |𝑡 | and 𝑠 ≤ 𝑡.

We say that Ufin is an approximation of U , and we write U = A(Ufin).

Remark 2.5. Notice that we can fully recover the covering system U from its approximation Ufin.
Indeed, for each 𝑛 ∈ N and any sequence (𝑠𝑘 ) in (N𝑛)∗ with 𝑠0(𝑖) < 𝑠1(𝑖) < · · · for all 𝑖 < 𝑛, we have
that

𝑋𝑛 =
⋂
𝑘∈N

⋃
𝑈 ∈U𝑠𝑘

cl(𝑈).
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The above equality is easily established using (1) and (3) of Lemma 2.6 below. If for 𝑠 ∈ (N𝑛)∗ we
momentarily denote by Û𝑠 the set of all open covers U of X with U � 𝑋 |𝑠 | = U𝑠 , then

A
(
Û𝑠

)
=

⋃
𝛼∈N ∗

⋂
𝑛∈N

Û𝛼 |𝑛 = {U𝛼 : 𝛼 ∈ N ∗},

and similarly for the collection (𝑟𝛽𝛼)𝛼≤𝛽 . This motivates the notation U = A(Ufin) in Definition 2.4 for
indicating the relationship between a covering system U and its approximation Ufin.

Lemma 2.6. Let U =
(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
be a covering system for X. Then

(1) for every compact 𝐾 ⊆ 𝑋 and every 𝛼 ∈ N , U𝛼 � 𝐾 is a finite cover of K;
(2)

⋃
𝛼∈N ∗ U𝛼 is countable;

(3) for every open cover U of X, there exists an 𝛼 ∈ N so that U � U𝛼.
(4) there exists an 𝛼 ∈ N so that for every 𝛽 ≥ 𝛼, if 𝑈 ∈ U𝛽 , then cl(𝑈) is compact.

Proof. (1) follows from the local finiteness of U𝛼, and (4) is a direct consequence of (3), since X is
locally compact.

For (2), we may assume that ∅ ∉
⋃

𝛼∈N U𝛼. The rest follows from (1), since by (L1) we have⋃
𝛼∈N ∗

U𝛼 =
⋃
𝛼∈N ∗

⋃
𝑛∈N

(U𝛼 � 𝑋𝑛) =
⋃
𝑛∈N

⋃
𝑠∈N𝑛

U𝑠 .

For (3), we will find 𝛼 as the limit of a sequence (𝛼𝑛) in N . We inductively define 𝛼𝑛 as follows:
let 𝛼0 be any element of N ; assuming that 𝛼𝑛−1 has been defined, use (E1) to get 𝛼𝑛 ∈ N with
𝛼𝑛 | (𝑛 − 1) = 𝛼𝑛−1 | (𝑛 − 1), so that U � 𝑋𝑛 � U𝛼 |𝑛 � 𝑋𝑛. Notice that (𝛼𝑛) converges to the unique
𝛼 ∈ N with 𝛼 |𝑛 = 𝛼𝑛 |𝑛. By (L1), we have that U � 𝑋𝑛 � U𝛼 � 𝑋𝑛 for all 𝑛 ∈ N. Since

⋃
𝑛 𝑋𝑛 = 𝑋 , it

follows that U � U𝛼. �

Proposition 2.7. Every locally compact Polish space X admits a covering system U .

Proof. Let d be a metric on X that is compatible with the topology, and let (𝑋𝑛) be any exhaustion of
X with 𝑋𝑛 ⊆ int(𝑋𝑛+1). We will attain the desired covering system U =

(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
in the form

of A(Ufin) where Ufin = ((U𝑠), (𝑟 𝑡𝑠)) will be defined by a double induction.
Induction on the length of 𝑠, 𝑡.

Set 𝑈∅ = ∅, and assume that for some 𝑛 ∈ N, we have defined for all 𝑠, 𝑡, 𝑞 ∈ (N𝑛)∗ with 𝑠 ≤ 𝑡 ≤ 𝑞

(1) a finite family U𝑠 of open subsets of X covering 𝑋𝑛, so that U𝑠 � 𝑋𝑚 = U𝑠 |𝑚 if 𝑚 < 𝑛, and

diam(𝑈) <
1

min{𝑠(𝑖) : 𝑖 < 𝑛} + 1
, for all 𝑈 ∈ U𝑠 .

(2) a surjective refinement map 𝑟 𝑡𝑠 : U𝑡 → U𝑠 with 𝑟 𝑡𝑡 = id and 𝑟 𝑡𝑠 ◦ 𝑟
𝑞
𝑡 = 𝑟𝑞𝑠 .

We will extend this system to a system indexed by (N𝑛+1)∗, which satisfies properties (1), (2) above
with 𝑛 + 1 in place of n. For that, set ℓ̄ := (ℓ, . . . , ℓ) ∈ N𝑛 and 𝑂ℓ :=

⋃Uℓ̄ for every ℓ ∈ N. Notice that
by our inductive assumption, we have a decreasing sequence of open sets

𝑂0 ⊇ 𝑂1 ⊇ · · · ⊇ 𝑂ℓ ⊇ · · · ⊇ 𝑋𝑛.

Induction on ℓ ∈ N.
By induction on ℓ ∈ N, we choose a sequence V0,V1, . . . ,Vℓ , . . . of finite families of open subsets

of X so that Vℓ covers 𝑋𝑛+1 \ 𝑂ℓ with sets of diameter less than 1/(ℓ + 1), which do not intersect 𝑋𝑛.
We can also make sure that Vℓ ∪ Uℓ̄ � Vℓ+1. We may now set

U𝑠⌢ℓ := U𝑠 ∪ Vℓ ,
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for every 𝑠⌢ℓ ∈ (N𝑛+1)∗ and observe that the analogue of point (1) above is satisfied by the new
system. For example, notice that if 𝑠⌢ℓ ∈ (N𝑛+1)∗, then 𝑠 ≤ ℓ̄, and hence, U𝑠 � Uℓ̄. As a consequence,
𝑂ℓ ⊆

⋃U𝑠 , and therefore, U𝑠⌢ℓ covers 𝑋𝑛+1.
We now turn to the definition of the refining maps. Fix ℓ ∈ N, and assume inductively that for every

pair 𝑠⌢𝑘, 𝑡⌢𝑚 ∈ (N𝑛+1)∗ with 𝑠⌢𝑘 ≤ 𝑡⌢𝑚 and 𝑚 ≤ ℓ, we have defined a surjective refinement map

𝑟 𝑡
⌢𝑚
𝑠⌢𝑘 : U𝑡⌢𝑚 → U𝑠⌢𝑘 ,

which extends 𝑟 𝑡𝑠 , and assume that these maps altogether cohere with respect to composition as in point
(2) above. Fix now any refinement map

𝑝ℓ+1
ℓ̄
⌢
ℓ

: Vℓ+1 → Uℓ̄
⌢
ℓ .

Notice that in the definition of Vℓ , we could have arranged, by removing superfluous elements, that Vℓ
is ‘minimal’ (i.e., if we remove any V from Vℓ , then the resulting family is not going to be a cover of
𝑋𝑛+1 \𝑂ℓ). By imposing this minimality assumption on Vℓ , we have that 𝑝ℓ+1

ℓ̄
⌢
ℓ

is surjective on Vℓ . For
every 𝑠⌢𝑘 ∈ (N𝑛+1)∗ with 𝑘 ≤ ℓ + 1, we define a refinement map

𝑝ℓ+1
𝑠⌢𝑘 : Vℓ+1 → U𝑠⌢𝑘

by setting 𝑝ℓ+1
𝑠⌢𝑘 = id, if 𝑘 = ℓ + 1; if 𝑘 < ℓ + 1, then notice that 𝑠⌢𝑘 ≤ ℓ̄

⌢
ℓ, and we may define

𝑝ℓ+1
𝑠⌢𝑘 := 𝑟 ℓ̄

⌢
ℓ

𝑠⌢𝑘 ◦ 𝑝
ℓ+1
ℓ̄
⌢
ℓ
,

where the map 𝑟 ℓ̄
⌢
ℓ

𝑠⌢𝑘 is given by inductive assumption. Finally, for all 𝑠⌢𝑘 ≤ 𝑡⌢(ℓ + 1), we set

𝑟 𝑡
⌢ (ℓ+1)
𝑠⌢𝑘 :=

(
𝑟 𝑡𝑠 ∪ 𝑝ℓ+1

𝑠⌢𝑘

)
.

The fact that our new system of maps which is indexed by pairs 𝑠⌢𝑘, 𝑡⌢𝑚 ∈ (N𝑛+1)∗ with 𝑠⌢𝑘 ≤ 𝑡⌢𝑚
and 𝑚 ≤ ℓ + 1 coheres in the sense of point (2) above, follows from our inductive assumptions and the
fact that all new maps which are not equal to id on Vℓ+1 factor through Uℓ̄

⌢
ℓ .

This ends the induction on ℓ and consequently the induction on the length of 𝑠, 𝑡. Let now

U =
(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
:= A(Ufin),

where Ufin = ((U𝑠), (𝑟 𝑡𝑠)). Using points (1) and (2) above, it is easy to see that U is a covering system for
X. For example, (E1) follows from the shrinking diameters in point (1) above and Lebesgue’s covering
lemma; the fact that each U𝛼 is locally finite follows from the assumption 𝑋𝑛 ⊆ int(𝑋𝑛+1) and the fact
that each U𝑠 is finite. �

2.4. Definable cohomology with discrete coefficients

Let G be a countable discrete abelian group, and let X be a locally compact Polish space. We will
fix a covering system U =

(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
for X and use it to define a Polish cochain complex

𝐶•(U ;𝐺). The associated cohomology groups Ȟ𝑛
def (𝑋;𝐺), viewed as groups with Polish cover, form

the definable cohomology of X with coefficients in G. If we forget the definable content from Ȟ𝑛
def (𝑋;𝐺),

we recover the classical Čech cohomology groups for X. In Section 5, we will show that, up to definable
isomorphism, Ȟ𝑛

def (𝑋;𝐺) does not depend on the choice of U . One may extend these ideas to develop
definable cohomology groups with coefficients in an arbitrary Polish abelian group G. That project,
however, falls beyond the scope of this paper; see Remark 2.13.
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For every open cover U of X, the nerve of U is the simplicial complex Nv(U ) with 𝜎 ∈ Nv(U ) if and
only if 𝜎 is a finite subset of U with ∩𝑈 ∈𝜎𝑈 ≠ ∅. Notice that dom(Nv(U )) = U \ {∅}. Set

𝑁𝛼 := Nv(U𝛼)

for every 𝛼 ∈ N ∗, and notice that every refinement map 𝑟
𝛽
𝛼 induces a simplicial map

𝑟
𝛽
𝛼 : 𝑁𝛽 → 𝑁𝛼 .

In this way, U determines an inverse system ((𝑁𝛼), (𝑟
𝛽
𝛼)) of simplicial maps. We similarly define the

finite complexes 𝑁𝑠 := Nv(U𝑠) and consider the simplicial maps 𝑟 𝑡𝑠 : 𝑁𝑡 → 𝑁𝑠 , for every 𝑠 ≤ 𝑡 in
(N<N)∗.

For every 𝑛 ∈ N, we will define the Polish group 𝐶𝑛 (U ;𝐺) of n-dimensional cocycles of U as the
quotient of a Polish semigroup 𝐶𝑛

sem(U ;𝐺) by a certain closed semigroup congruence. Let

𝐶𝑛
sem (U ;𝐺) :=

⋃
𝛼∈N ∗

𝐶𝑛 (𝑁𝛼;𝐺) =
⋃
𝛼∈N ∗

𝐶 (𝑁 (𝑛)𝛼 ;𝐺)

be the collection of all functions from the set of singular n-faces of some 𝑁𝛼 to G. We endow𝐶𝑛
sem(U ;𝐺)

with a semigroup structure by setting for all 𝜁 : 𝑁 (𝑛)𝛼 → 𝐺 and 𝜂 : 𝑁 (𝑛)𝛽 → 𝐺

(𝜁 + 𝜂) : 𝑁 (𝑛)𝛼∨𝛽 → 𝐺, with (𝜁 + 𝜂) (𝑈̄) = 𝜁 (𝑟
𝛼∨𝛽
𝛼 (𝑈̄)) + 𝜂(𝑟

𝛼∨𝛽
𝛽 (𝑈̄)). (4)

We also endow 𝐶𝑛
sem (U ;𝐺) with the topology generated by basic open sets of the form 𝑉𝑠, 𝑝 , with

𝑠 ∈ N<N and 𝑝 : 𝑁 (𝑛)𝑠 → 𝐺, which is given by all 𝜁 : 𝑁 (𝑛)𝛼 → 𝐺 with 𝛼 ∈ N𝑠 and 𝜁 � 𝑁 (𝑛)𝑠 = 𝑝.

Proposition 2.8. 𝐶𝑛
sem (U ;𝐺) is an abelian Polish semigroup.

Proof. Since 𝛼 ∨ 𝛽 = 𝛽 ∨ 𝛼 and G is abelian, so is 𝐶𝑛
sem (U ;𝐺). It is also a topological semigroup

since by (L2), the operation (𝜁, 𝜂) ↦→ (𝜁 + 𝜂) is continuous. The topology is clearly second countable
since it has, by definition, a basis consisting of countably many open sets. Finally, it is easy to check
that 𝜌sem below is a complete metric on 𝐶 (𝑛)sem (U ;𝐺) that is compatible with the topology: for every
𝜁 ∈ 𝐶𝑛 (𝑁𝛼;𝐺) and 𝜂 ∈ 𝐶𝑛 (𝑁𝛽;𝐺), set 𝛿𝑘 := 0 if 𝜁 � 𝑁 (𝑛)

𝛼 |𝑘
= 𝜂 � 𝑁 (𝑛)

𝛽 |𝑘
, and set 𝛿𝑘 := 1 otherwise. Let

𝜌sem(𝜁, 𝜂) :=
∑
𝑘∈N

𝛿𝑘
2𝑘

. (5)
�

We define a congruence ∼ on 𝐶 (𝑛)sem (U ;𝐺) by setting for all 𝜁 : 𝑁 (𝑛)𝛼 → 𝐺 and 𝜂 : 𝑁 (𝑛)𝛽 → 𝐺

𝜁 ∼ 𝜂 ⇐⇒ 𝜁 ◦ 𝑟
𝛼∨𝛽
𝛼 = 𝜂 ◦ 𝑟

𝛼∨𝛽
𝛽 .

Lemma 2.9. The relation ∼ is a closed semigroup congruence on 𝐶𝑛
sem (U ;𝐺)

Proof. First, we prove that ∼ is an equivalence relation on 𝐶𝑛
sem(U ;𝐺). Symmetry follows from 𝛼∨ 𝛽 =

𝛽∨𝛼 and reflexivity from𝛼∨𝛼 = 𝛼. For transitivity, let 𝜁 : 𝑁 (𝑛)𝛼 → 𝐺, 𝜂 : 𝑁 (𝑛)𝛽 → 𝐺, and 𝜃 : 𝑁 (𝑛)𝛾 → 𝐺,
with 𝜁 ∼ 𝜂 and 𝜂 ∼ 𝛾. In particular, we have that

𝜁 ◦ 𝑟
𝛼∨𝛽
𝛼 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛼∨𝛽 = 𝜂 ◦ 𝑟

𝛼∨𝛽
𝛽 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛼∨𝛽 and 𝜂 ◦ 𝑟

𝛽∨𝛾
𝛽 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛽∨𝛾 = 𝜃 ◦ 𝑟

𝛽∨𝛾
𝛾 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛽∨𝛾 .

But since 𝜂 ◦ 𝑟
𝛼∨𝛽
𝛽 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛼∨𝛽 = 𝜂 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛽 = 𝜂 ◦ 𝑟

𝛽∨𝛾
𝛽 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛽∨𝛾 , we have that 𝜁 ◦ 𝑟𝛼∨𝛽∨𝛾𝛼 = 𝜃 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛾 ,

and therefore that 𝜁 ◦ 𝑟𝛼∨𝛾𝛼 ◦ 𝑟
𝛼∨𝛽∨𝛾
𝛼∨𝛾 = 𝜃 ◦ 𝑟

𝛼∨𝛾
𝛾 ◦ 𝑟

𝛼∨𝛽∨𝛾
𝛼∨𝛾 . Since 𝑟

𝛼∨𝛽∨𝛾
𝛼∨𝛾 is surjective, we have that

𝜁 ◦ 𝑟
𝛼∨𝛾
𝛼 = 𝜃 ◦ 𝑟

𝛼∨𝛾
𝛾 ; hence, 𝜁 ∼ 𝜃.
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The relation ∼ is closed as a subset of 𝐶𝑛
sem(U ;𝐺) ×𝐶𝑛

sem(U ;𝐺): indeed, if 𝜁 ◦ 𝑟𝛼∨𝛽𝛼 = 𝜂 ◦ 𝑟
𝛼∨𝛽
𝛽 fails,

then there is an 𝑠 = (𝛼 ∨ 𝛽) |𝑘 , for some 𝑘 ∈ N, so that the values of some 𝑈 ∈ 𝑁 (𝑛)𝑠 under 𝜁 ◦ 𝑟𝛼∨𝛽𝛼 and
𝜂 ◦ 𝑟

𝛼∨𝛽
𝛽 differ. This failure is witnessed by some open condition.

Finally, to see that∼ is a semigroup congruence, let 𝜁 : 𝑁 (𝑛)𝛼 → 𝐺 and 𝜂 : 𝑁 (𝑛)𝛽 → 𝐺 and 𝜁 ′ : 𝑁 (𝑛)𝛼′ →

𝐺 and 𝜂′ : 𝑁𝛽′ → 𝐺, with 𝜁 ∼ 𝜂 and 𝜁 ′ ∼ 𝜂′. We will show that 𝜁 + 𝜁 ′ ∼ 𝜂 + 𝜂′. Indeed, since
𝜁 ◦ 𝑟

𝛼∨𝛽
𝛼 = 𝜂 ◦ 𝑟

𝛼∨𝛽
𝛽 and 𝜁 ′ ◦ 𝑟

𝛼′∨𝛽′

𝛼′ = 𝜂′ ◦ 𝑟
𝛼′∨𝛽′

𝛽′ , we have

𝜁 ◦ 𝑟
𝛼∨𝛽
𝛼 ◦ 𝑟

𝛼∨𝛼′∨𝛽∨𝛽′

𝛼∨𝛽 + 𝜁 ′ ◦ 𝑟
𝛼′∨𝛽′

𝛼′ ◦ 𝑟
𝛼∨𝛼′∨𝛽∨𝛽′

𝛼′∨𝛽′ = 𝜂 ◦ 𝑟
𝛼∨𝛽
𝛽 ◦ 𝑟

𝛼∨𝛼′∨𝛽∨𝛽′

𝛼∨𝛽 + 𝜂′ ◦ 𝑟
𝛼′∨𝛽′

𝛽′ ◦ 𝑟
𝛼∨𝛼′∨𝛽∨𝛽′

𝛼′∨𝛽′

𝜁 ◦ 𝑟
𝛼∨𝛼′∨𝛽∨𝛽′

𝛼 + 𝜁 ′ ◦ 𝑟
𝛼∨𝛼′∨𝛽∨𝛽′

𝛼′ = 𝜂 ◦ 𝑟
𝛼∨𝛼′∨𝛽∨𝛽′

𝛽 + 𝜂′ ◦ 𝑟
𝛼∨𝛼′∨𝛽∨𝛽′

𝛽′

(𝜁 + 𝜁 ′) ◦ 𝑟
𝛼∨𝛼′∨𝛽∨𝛽′

𝛼∨𝛼′ = (𝜂 + 𝜂′) ◦ 𝑟𝛼∨𝛼
′∨𝛽∨𝛽′

𝛽∨𝛽′

(𝜁 + 𝜁 ′) ∼ (𝜂 + 𝜂′). �

We now define 𝐶𝑛 (U ;𝐺) := 𝐶𝑛
sem (U ;𝐺)/∼ to be the collection of all congruence classes [𝜁] of

elements 𝜁 of 𝐶𝑛
sem (U ;𝐺). A priori, 𝐶𝑛 (U ;𝐺) is merely an abelian semigroup which is additionally

endowed with the quotient topology: 𝑉 ⊆ 𝐶𝑛 (U ;𝐺) is open in 𝐶𝑛 (U ;𝐺) if and only if its union⋃
𝑉 = {𝜁 : [𝜁] ∈ 𝑉} is open in 𝐶𝑛

sem (U ;𝐺). It turns out that 𝐶𝑛 (U ;𝐺) is a much richer structure.

Proposition 2.10. 𝐶𝑛 (U ;𝐺) is a non-archimedean abelian Polish group.

Proof. First, notice that any two maps 0𝛼 : 𝑁 (𝑛)𝛼 → 𝐺 and 0𝛽 : 𝑁 (𝑛)𝛽 → 𝐺 which are constantly
equal to 0𝐺 are congruent to each other. Moreover, it is clear that the associated congruence class
0U := [0𝛼] = [0𝛽] is the identity element of 𝐶𝑛 (U ;𝐺) and that for every 𝜁 : 𝑁 (𝑛)𝛼 → 𝐺, we have that
[𝜁] + [−𝜁] = [0𝛼]. It follows that𝐶𝑛 (U ;𝐺) is an abelian group. Moreover, notice that if 𝜁 ′ ∼ 𝜁 for some
𝜁 : 𝑁 (𝑛)𝛼 → 𝐺 and 𝜁 ′ : 𝑁 (𝑛)𝛽 → 𝐺 with 𝜁 � 𝑁 (𝑛)

𝛼 |𝑘
= 0𝛼 � 𝑁 (𝑛)𝛼 |𝑘

, then 𝜂 � 𝑁 (𝑛)
𝛽 |𝑘

= 0𝛽 � 𝑁 (𝑛)𝛽 |𝑘
. Hence, the

identity 0U admits a neighborhood basis in 𝐶𝑛 (U ;𝐺) consisting of the following open subgroups:

𝑉𝑘 := {[𝜁] ∈ 𝐶𝑛 (U ;𝐺) : ∃𝛼 ∈ N ∗ so that 𝜁 : 𝑁 (𝑛) → 𝐺 with 𝜁 � 𝑁 (𝑛)
𝛼 |𝑘

= 0𝛼 � 𝑁 (𝑛)𝛼 |𝑘
}.

The topology of a quotient of a separable space is separable. We now define a complete metric on
𝐶𝑛 (U ;𝐺) that is compatible with its topology. Let 𝜌sem be the complete metric on 𝐶𝑛

sem(U ;𝐺) given
by (5) above. For every [𝜁], [𝜂] ∈ 𝐶𝑛 (U ;𝐺), we let

𝜌([𝜁], [𝜂]) := inf{𝜌sem(𝜁
′, 𝜂′) : 𝜁 ′ ∈ [𝜁], 𝜂′ ∈ [𝜂]}. (6)

It is easy to see that one can directly compute the value of 𝜌([𝜁], [𝜂]) by picking any representatives
𝜁 ′ : 𝑁 (𝑛)𝛼 → 𝐺 and 𝜂′ : 𝑁 (𝑛)𝛽 → 𝐺 of [𝜁] and [𝜂] and alternatively setting

𝜌([𝜁], [𝜂]) = 𝜌sem (𝜁
′ ◦ 𝑟

𝛼∨𝛽
𝛼 , 𝜂′ ◦ 𝑟

𝛼∨𝛽
𝛽 ). (7)

The fact that the latter quantity does not depend on the choice of 𝜂′ and 𝜁 ′ follows by the same argument
we used to prove transitivity of ∼, using local surjectivity (L3) in place of surjectivity. By (6), it is clear
that 𝜌 is a metric, given that by (7), we have 𝜌([𝜁], [𝜂]) > 0 if [𝜁] ≠ [𝜂]. To see that 𝜌 is compatible
with the topology of 𝐶𝑛 (U ;𝐺), notice that since the topology is first countable, it suffices to show that
a subset F of 𝐶𝑛 (U ;𝐺) is closed if and only if for every sequence ([𝜁𝑛])𝑛 in F with [𝜁𝑛] →𝜌 [𝜁], we
have that [𝜁] ∈ 𝐹.

If [𝜁𝑛] →𝜌 [𝜁] and F is closed, then using (7), we may choose the representatives 𝜁𝑛 and 𝜁 so that
𝜁𝑛 → 𝜁 in𝐶𝑛

sem (U ;𝐺). Since the quotient map 𝜋 : 𝐶𝑛
sem (U ;𝐺) → 𝐶𝑛 (U ;𝐺) is continuous, we have that

𝜋−1 (𝐹) is closed. Hence, 𝜁 ∈ 𝜋−1(𝐹) (i.e., [𝜁] ∈ 𝐹). Conversely, assume that whenever [𝜁𝑛] →𝜌 [𝜁],
we have [𝜁] ∈ 𝐹. We will show that 𝜋−1 (𝐹) is closed. Let (𝜁𝑛), 𝜁 be elements of 𝐶𝑛

sem(U ;𝐺) such that
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𝜁𝑛 → 𝜁 . Then by (7), we have that [𝜁𝑛] →𝜌 [𝜁]. Hence, [𝜁] ∈ 𝐹, and therefore, 𝜁 ∈ 𝜋−1(𝐹). Finally,
the fact that 𝜌 is complete follows from completeness of 𝜌sem and (7). �

Finally, notice that for every 𝜁 : 𝑁 (𝑛)𝛼 → 𝐺 and 𝜁 ′ : 𝑁 (𝑛)𝛼′ → 𝐺 with 𝜁 ∼ 𝜁 ′, we have 𝜂 ∼ 𝜂′, where

𝜂
(
𝑣0, . . . , 𝑣𝑛

)
=

𝑛∑
𝑖=0
(−1)𝑖 𝜁 (𝑣0, . . . , 𝑣̂𝑖 , . . . , 𝑣𝑛) and 𝜂′

(
𝑣0, . . . , 𝑣𝑛

)
=

𝑛∑
𝑖=0
(−1)𝑖 𝜁 ′(𝑣0, . . . , 𝑣̂𝑖 , . . . , 𝑣𝑛).

As a consequence, for every 𝑛 > 0, we have a continuous coboundary map

𝛿𝑛 : 𝐶𝑛−1 (U ;𝐺) → 𝐶𝑛 (U ;𝐺), where

𝛿𝑛 ([𝜁]) = [𝜂], with 𝜂(𝑣0, . . . , 𝑣𝑛) =
𝑛∑
𝑖=0
(−1)𝑖 𝜁 (𝑣0, . . . , 𝑣̂𝑖 , . . . , 𝑣𝑛).

(8)

This defines the Polish cochain complex 𝐶•(U ;𝐺) of G-valued cochains of U .

Definition 2.11. Let X be a locally compact Polish space, and let G be a countable abelian Polish group.
Fix a covering system U for X, and for every 𝑛 ∈ N, define the n-dimensional definable cohomology
group Ȟ𝑛

def (𝑋;𝐺) of X with coefficients in G to be the n-dimensional cohomology group of the Polish
cochain complex 𝐶•(U ;𝐺), viewed as the group with a Polish cover

0 −→ B𝑛 (U ;𝐺) −→ Z𝑛 (U ;𝐺) −→ Z𝑛 (U ;𝐺)/B𝑛 (U ;𝐺) −→ 0

where Z𝑛 (U ;𝐺) = ker(𝛿𝑛) is the Polish group of n-dimensional G-valued cocycles of U and
B𝑛 (U ;𝐺) = im(𝛿𝑛−1) is the Polishable group of n-dimensional G-valued coboundaries of U .

Notice that while the definition of H𝑛 (𝑋;𝐺) involves a choice of covering system U for X, the latter
is not explicit in the notation Ȟ𝑛

def (𝑋;𝐺). This is because, as we will show in Corollary 5.8, a different
choice of U will induce the exact same definable cohomology groups up to definable isomorphism.

Since the Polish groups in 𝐶•(U ;𝐺) are non-archimedean, the rigidity results of [9] provide a
powerful resource for analyzing the definable cohomology groups of any locally compact Polish space.
Note that as a sequence of abstract groups, H•(𝑋;𝐺) coincides with the classical Čech cohomology
groups of X with coefficients in G.

Theorem 2.12. As an abstract group, Ȟ𝑛
def (𝑋;𝐺) is isomorphic to the n-dimensional Čech cohomology

group Ȟ𝑛 (𝑋;𝐺) of X with coefficients in G.

Proof. Throughout this proof, every group is viewed as an abstract group. The proof of Theorem 2.12
follows by combining the two usual arguments which show (1) without loss of generality, the colimit
in the definition of Ȟ𝑛 (𝑋;𝐺) can be taken over any �–cofinal collection of open covers and (2) the
group Ȟ𝑛 (𝑋;𝐺) is isomorphic to the sheaf of germs of constant G-valued functions. We sketch the
argument here, as the explicit abstract group isomorphism 𝜓 : Ȟ𝑛 (𝑋;𝐺) → Ȟ𝑛

def (𝑋;𝐺) generated by
this argument will be needed in the proof of Theorem 5.7.

Recall that in order to define the n-dimensional Čech cohomology group Ȟ𝑛 (𝑋;𝐺) of X, one
first considers the poset Cov(𝑋) of all open covers U of X ordered by the relation of refine-
ment U � V and observes that any two refinement maps 𝑟VU , 𝑠

V
U : V → U induce contiguous (see

Section 4.2) simplicial maps 𝑟VU , 𝑠
V
U : Nv(V) → Nv(U ). Hence, while the associated chain maps

(𝑟VU )
•, (𝑠VU )

• : 𝐶•(Nv(U ), 𝐺) → 𝐶•(Nv(V), 𝐺) with (𝑟VU )
•(𝜁) := 𝜁 ◦ 𝑟VU and (𝑠VU )

•(𝜁) := 𝜁 ◦ 𝑠VU
may differ, they induce the same homomorphism (𝑟VU )

∗ = (𝑠VU )
∗ on the level of simplicial cohomology

H𝑛 (Nv(U ), 𝐺) → H𝑛 (Nv(V), 𝐺) for every 𝑛 ∈ N; see [29, Corollary IX.2.14], for example.
As a consequence, we have a well-defined direct system of group homomorphisms H𝑛 (Nv(U ), 𝐺) →

H𝑛 (Nv(V), 𝐺) indexed by the poset (Cov(𝑋), �). By definition, see [29, Definition IX.3.1], we have
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that

Ȟ𝑛 (𝑋;𝐺) := colim U ∈Cov(𝑋 )
(
H𝑛 (Nv(U );𝐺), (𝑟VU )∗

)
, (9)

where (𝑟VU : V → U )U�V is any fixed pre-chosen collection of refinement maps.
Let now (𝑈𝛼 : 𝛼 ∈ N ∗) and (𝑟𝛽𝛼 : 𝛼 ≤ 𝛽) be the open covers and refinement maps appearing in the

covering system U used in the definition of Ȟ𝑛
def (𝑋;𝐺), and set 𝑁𝛼 := Nv(U𝛼). Since the colimit in

(9) is isomorphic to the colimit taken over any cofinal collection of U ∈ Cov(𝑋), by Lemma 2.6(3), we
have that

Ȟ𝑛 (𝑋;𝐺) � colim 𝛼∈N ∗

(
H𝑛 (𝑁𝛼;𝐺), (𝑟𝛽𝛼)∗

)
= colim 𝛼∈N ∗

(
Z𝑛 (𝑁𝛼;𝐺)/B𝑛 (𝑁𝛼;𝐺), (𝑟𝛽𝛼)∗

)
. (10)

However, the system (𝑟
𝛽
𝛼 : 𝛼 ≤ 𝛽) coheres (i.e., for all 𝛼 ≤ 𝛽 ≤ 𝛾, we have 𝑟

𝛾
𝛼 = 𝑟

𝛽
𝛼 ◦ 𝑟

𝛾
𝛽 ); see

Definition 2.3. Moreover, if 𝛿•𝛼 and 𝛿•𝛽 are the coboundary maps of the cochain complexes C•(𝑁𝛼;𝐺)
and C•(𝑁𝛽;𝐺) with 𝛼 ≤ 𝛽, then for all 𝑛 ∈ N, we have that (𝑟𝛽𝛼)𝑛+1◦𝛿𝑛𝛼 = 𝛿𝑛𝛽 ◦ (𝑟

𝛽
𝛼)

𝑛. As a consequence,
we have a direct system of chain complexes

(
C•(𝑁𝛼;𝐺), (𝑟𝛽𝛼)•

)
𝛼∈N ∗ . But then, by the definition of

a colimit of a directed system of abelian groups (see, for example, [29, Definition IX.4.1]), for every
𝑛 ∈ N, we have that

colim 𝛼∈N ∗

(
C𝑛 (𝑁𝛼;𝐺), (𝑟𝛽𝛼)𝑛

)
:=

( ⊔
𝛼∈N ∗

𝐶𝑛 (𝑁𝛼;𝐺)
)/
∼ = 𝐶𝑛

sem (U ;𝐺)/∼ = 𝐶𝑛 (U ;𝐺),

(11)

where ∼ is the congruence we defined earlier in this section, and similarly have that 𝛿𝑛 = colim𝛼𝛿
𝑛
𝛼.

Consequently,

colim 𝛼∈N ∗

(
Z𝑛 (𝑁𝛼;𝐺), (𝑟𝛽𝛼)𝑛

)
= Z𝑛 (U ;𝐺) and colim 𝛼∈N ∗

(
B𝑛 (𝑁𝛼;𝐺), (𝑟𝛽𝛼)𝑛

)
= B𝑛 (U ;𝐺).

(12)

But for every direct system of pairs of abelian groups (𝐻𝑖 ≤ 𝐺𝑖 , 𝑖 ∈ 𝐼), colimits commute with quotients
(i.e., colim𝑖 (𝐺𝑖)/colim𝑖 (𝐻𝑖) � colim𝑖 (𝐺𝑖/𝐻𝑖)); see [29, Theorem IX.6.3]. Hence, by combining (10)
and (12), we have

Ȟ𝑛 (𝑋;𝐺) � colim 𝛼∈N ∗

(
Z𝑛 (𝑁𝛼;𝐺)/B𝑛 (𝑁𝛼;𝐺), (𝑟𝛽𝛼)∗

)
� Z𝑛 (U ;𝐺)/B𝑛 (U ;𝐺) = Ȟ𝑛

def (𝑋;𝐺).
(13)

An explicit formula for the composition of these isomorphisms, 𝜓 : Ȟ𝑛 (𝑋;𝐺) → Ȟ𝑛
def (𝑋;𝐺),

can be given as follows. First, let [𝜁 + B𝑛 (Nv(U );𝐺)]Ȟ be any element of Ȟ𝑛 (𝑋;𝐺), where
𝜁 ∈ Z𝑛 (Nv(U );𝐺) for some U ∈ Cov(𝑋), and [𝑎]Ȟ is the image of 𝑎 ∈ H𝑛 (Nv(U );𝐺) under the
inclusion H𝑛 (Nv(U );𝐺) ↩→ Ȟ𝑛 (𝑋;𝐺). Then,

𝜓
(
[𝜁 + B𝑛 (Nv(U );𝐺)]Ȟ

)
= [𝜁 ◦ 𝑟U𝛼

U ] + B𝑛 (U ;𝐺), (14)

where 𝛼 can be taken to be any element of N ∗ with U � U𝛼 . Such 𝛼 exists by Lemma 2.6(3). �

Remark 2.13. In this section, we developed definable cohomology groups with coefficients in a count-
able discrete abelian group G. Implicit in our definitions was the passage from classical definition of
Čech cohomology to the sheaf-theoretic one. As outlined in the proof of Theorem 2.12, this passage
was effected essentially by alternating the order between two processes – namely, taking the colimit of
abelian groups and computing the cohomology groups of a cochain complex. One can more generally
develop definable cohomology groups H𝑛

def (𝑋;𝐺 ′) for X with coefficients in an arbitrary Polish abelian
group 𝐺 ′ by endowing the sheaf of germs of all continuous 𝐺 ′-valued functions with an appropriate
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Polish structure. However, this would require significant amounts of bookkeeping. Perhaps one way of
simplifying the process of endowing the aforementioned sheaf with a Polish structure would be to first
pass to a ‘completion’ of the inverse system ((U𝛼), (𝑟

𝛽
𝛼)) by considering locally profinite topological

simplicial complexes similar to the profinite topological simplicial complexes used in projective Fraïssé
theory; see [70]. This, however, is beyond the scope of the present paper.

2.5. Definable cohomology of pairs of spaces

The process of enriching the Čech cohomology groups of locally compact spaces with definable content
readily extends to the Čech cohomology groups of locally compact pairs (i.e, pairs (𝑋, 𝐴) in which X
is a locally compact Polish space and A is closed in X); see Section 4.1. In this section, we sketch the
details. We begin by generalizing the theory from Section 2.1 to pairs (𝐾, 𝐿) of simplicial complexes.

Let K be a simplicial complex. A subcomplex L of K is any simplicial complex with dom(𝐿) ⊆
dom(𝐾) for which 𝜎 ∈ 𝐿 implies 𝜎 ∈ 𝐾 . By a simplicial pair we mean a pair (𝐾, 𝐿) of simplicial
complexes in which L is a subcomplex of K. A simplicial map (of pairs) 𝑓 : (𝐾, 𝐿) → (𝐾 ′, 𝐿 ′) is any
simplicial map 𝑓 : 𝐾 → 𝐾 ′ such that { 𝑓 (𝑣) : 𝑣 ∈ 𝜎} ∈ 𝐿 ′ for all 𝜎 ∈ 𝐿. For any abelian Polish group
G and 𝑛 ∈ N, let

𝐶𝑛 (𝐾, 𝐿;𝐺) := {𝜁 ∈ 𝐶𝑛 (𝐾;𝐺) : 𝜁 (𝑣̄) = 0𝐺 for all 𝑣̄ ∈ 𝐿 (𝑛) }.

𝐶𝑛 (𝐾, 𝐿;𝐺) is a closed subgroup of 𝐶𝑛 (𝐾;𝐺) with respect to the product topology of the 𝐾 (𝑛) -fold
product of copies of G; hence, it is a Polish group. The coboundary map 𝛿𝑛 : 𝐶𝑛 (𝐾;𝐺) → 𝐶𝑛+1 (𝐾;𝐺)
clearly restricts to a map 𝐶𝑛 (𝐾, 𝐿;𝐺) → 𝐶𝑛+1 (𝐾, 𝐿;𝐺) which we will also denote by 𝛿𝑛. This induces
a Polish cochain complex

𝐶• (𝐾, 𝐿;𝐺) := ( · · · −→ 𝐶𝑛−1 (𝐾, 𝐿;𝐺) 𝛿𝑛−1

−→ 𝐶𝑛 (𝐾, 𝐿;𝐺) 𝛿𝑛

−→ 𝐶𝑛+1 (𝐾, 𝐿;𝐺)−→ · · · ).

The definable cohomology groups of (𝐾, 𝐿) with coefficients in G are the groups with a Polish cover

H𝑛
def (𝐾, 𝐿;𝐺) := Z𝑛 (𝐾, 𝐿;𝐺)/B𝑛 (𝐾, 𝐿;𝐺) := ker(𝛿𝑛)/im(𝛿𝑛−1).

Note that the natural homomorphisms determining the short exact sequences

0 −→ 𝐶𝑛 (𝐾, 𝐿;𝐺) 𝑖𝑛

−→ 𝐶𝑛 (𝐾;𝐺) 𝑟𝑛

−→ 𝐶𝑛 (𝐿;𝐺) −→ 0 (15)

are continuous and aggregate into a short exact sequence of Polish cochain complexes

0 −→ 𝐶•(𝐾, 𝐿;𝐺) −→ 𝐶•(𝐾;𝐺) −→ 𝐶•(𝐿;𝐺) −→ 0. (16)

For the rest of this section, let G be a countable abelian group and (𝑋, 𝐴) be a locally compact pair.
Fix any covering systemU =

(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
for X, and notice that the tripleV =

(
(𝐴𝑛), (V𝛼), (𝑠

𝛽
𝛼)

)
,

where 𝐴𝑛 := 𝐴∩𝑋𝑛, V𝛼 := U𝛼 � 𝐴 ⊆ U𝛼 and 𝑠
𝛽
𝛼 denotes the restriction of 𝑟𝛽𝛼 toV𝛽 , is a covering system

for A. Moreover, the inclusion V𝛼 ⊆ U𝛼 induces a simplicial pair (𝑁𝛼, 𝑀𝛼) :=
(
Nv(U𝛼),Nv(V𝛼)

)
. For

every 𝑛 ∈ N, we set

𝐶𝑛 (U ,V ;𝐺) := {[𝜁] ∈ 𝐶𝑛 (U , ;𝐺) : ∀𝛼 ∈ N ∗ ∀𝑣̄ ∈ 𝑀 (𝑛)
𝛼 ∀𝜁 ′ ∈ [𝜁] ∩ 𝐶𝑛 (𝑁𝛼;𝐺), we have that 𝜁 ′(𝑣̄) = 0𝐺}.

Then 𝐶𝑛 (U ,V ;𝐺) is a Polish group, as it is a closed subgroup of 𝐶𝑛 (U ;𝐺). Moreover, the coboundary
map 𝛿𝑛 : 𝐶𝑛 (U ;𝐺) → 𝐶𝑛+1 (U ;𝐺) restricts to 𝛿𝑛 : 𝐶𝑛 (U ,V ;𝐺) → 𝐶𝑛+1(U ,V ;𝐺), inducing a Polish
cochain complex

𝐶• (U ,V ;𝐺) := ( · · · −→ 𝐶𝑛−1 (U ,V ;𝐺) 𝛿𝑛−1

−→ 𝐶𝑛 (U ,V ;𝐺) 𝛿𝑛

−→ 𝐶𝑛+1 (U ,V ;𝐺)−→ · · · ).
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The definable cohomology groups of (𝑋, 𝐴) with coefficients in G are the groups with a Polish cover

Ȟ𝑛
def (𝑋, 𝐴;𝐺) := Z𝑛 (U ,V ;𝐺)/B𝑛 (U ,V ;𝐺) := ker(𝛿𝑛)/im(𝛿𝑛−1).

Arguing exactly as for Theorem 2.12 shows that, as abstract groups, these are precisely the Čech
cohomology groups Ȟ𝑛 (𝑋, 𝐴;𝐺) of the pair (𝑋, 𝐴); see [29, Chapter IX] for a definition of the latter.
Moreover, these Ȟ𝑛

def groups array into a definable long exact sequence of the usual form; put differently,
by the following theorem, they satisfy the Exactness Axiom as maps to the category of groups with a
Polish cover.

Theorem 2.14. For any countable discrete group G and locally compact pair (𝑋, 𝐴), there exists a long
exact sequence of groups with a Polish cover and definable group homomorphisms

· · · −→ Ȟ𝑛−1
def (𝐴;𝐺) 𝜕

𝑛−1

−→ Ȟ𝑛
def (𝑋, 𝐴;𝐺) 𝜄𝑛

−→ Ȟ𝑛
def (𝑋;𝐺)

𝜌𝑛

−→ Ȟ𝑛
def (𝐴;𝐺) 𝜕𝑛

−→ Ȟ𝑛+1
def (𝑋, 𝐴;𝐺) −→ · · ·

Theorem 2.14 is an instance of Theorem 2.16 below which, in turn, is a direct consequence of the
following definable version of the Snake Lemma:

Lemma 2.15. Consider the following diagram of continuous homomorphisms of abelian Polish groups:

𝐴 𝐵 𝐶 0

0 𝐴′ 𝐵′ 𝐶 ′

𝑒

𝑎 𝑏

𝑓

𝑐

𝑔 ℎ

If the rows are exact, then there exists a Borel function 𝜀 : ker(𝑐) → 𝐴′ so that the map 𝑥 ↦→(
𝜀(𝑥) + im(𝐴)

)
links the middle terms in the following exact sequence of groups with a Polish cover and

definable group homomorphisms:

ker(𝑎) 𝑒
−→ ker(𝑏)

𝑓
−→ ker(𝑐) −→ coker(𝑎)

𝑔
−→ coker(𝑏) ℎ

−→ coker(𝑐).

Observe that we have notationally conflated all other maps with those which they induce on subgroups
and quotients.

Proof. By [44, Theorem 12.15], there exists a Borel selector 𝛾 for the ker( 𝑓 )-coset relation on B; put
differently, there exists a Borel function 𝛾 : 𝐶 → 𝐵 so that 𝑓 ◦ 𝛾 = id𝐶 . Being a continuous injection,
g is a Borel isomorphism between 𝐴′ and im(𝑔) and hence possesses a Borel inverse 𝜑 : im(𝑔) → 𝐴′.
Set 𝜀 = 𝜑 ◦ 𝑏 ◦ (𝛾 � ker(𝑐)). Since the rightmost square commutes, for every 𝑥 ∈ ker(𝑐), we have
that 𝑏 ◦ 𝛾(𝑥) ∈ ker(ℎ) = im(𝑔) so 𝜀 is well defined and Borel. The rest of the argument is essentially
algebraic and standard; see [48, Lemma 9.1]. �

Theorem 2.16. Let 0 −→ 𝐴•
𝑖•

−→ 𝐵•
𝑟•

−→ 𝐶• −→ 0 be a short exact sequence of Polish cochain
complexes where the group homomorphisms 𝑖𝑛, 𝑟𝑛 are continuous for all 𝑛 ∈ Z. Then there is a long
exact sequence of definable homomorphisms between the associated groups with a Polish cover

· · · −→ H𝑛−1 (𝐶•)
𝜕𝑛−1

−→ H𝑛 (𝐴•)
𝜄̂𝑛

−→ H𝑛 (𝐵•)
𝜌𝑛

−→ H𝑛 (𝐶•)
𝜕𝑛

−→ H𝑛+1 (𝐴•) −→ · · · (17)

Proof. On the level of abstract cochain complexes and abstract abelian groups, the long exact sequence
(17) can be formed by taking 𝜄̂𝑛 and 𝜌̂𝑛 to be the maps induced by the homomorphisms 𝜄𝑛 � Z𝑛 (𝐴•)
and 𝜌𝑛 � Z𝑛 (𝐵•), and setting 𝜕𝑛 to be the map induced by an application of the classical Snake Lemma
on the diagram

https://doi.org/10.1017/fmp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.7


Forum of Mathematics, Pi 21

𝐴𝑛 𝐵𝑛 𝐶𝑛 0

0 𝐴𝑛+1 𝐵𝑛+1 𝐶𝑛+1

𝜄𝑛

𝛿𝑛𝐴 𝛿𝑛𝐵

𝜌𝑛

𝛿𝑛𝐶

𝜄𝑛+1 𝜌𝑛+1

But then, 𝜄̂𝑛 and 𝜌̂𝑛 are both definable since they admit 𝜄𝑛 � Z𝑛 (𝐴•) and 𝜌𝑛 � Z𝑛 (𝐵•) as continuous
lifts. The homomorphism 𝜕𝑛 is also definable as a consequence of Lemma 2.15. �

Theorem 2.14 now follows by an application of Theorem 2.16 to the short exact sequence (16).

3. Definable sets and groups

At work in the main results of [9] is the fact that the category GPC of groups with a Polish cover is
well behaved in a number of ways. For example, if a group isomorphism 𝐺/𝐻 → 𝐺 ′/𝐻 ′ lifts to a
Borel function, then so too does its inverse; see [9, Remark 3.3]. Put differently, in GPC, every bijective
morphism is an isomorphism; this is just as we would hope, of course, and sharply contrasts with with
the behavior of categories of topological groups, for example. Deeper regularities of this construction
manifest as the second author’s more recent result that the category of groups with an abelian Polish
cover APC forms an abelian category [52].

Algebraic topology, however, abounds in spaces possessing a group structure only modulo a homotopy
relation; such H-groups, moreover, are fundamental to the homotopical representation of cohomology
theories, and of Čech cohomology, in particular. We were led in this way to consideration of a more
general category of what we term definable groups, one which contains GPC as a full subcategory, as
well as the homotopical examples we have in mind, and we were gratified to discover how many of
GPC’s regularity properties persist in this wider setting. In a nutshell, a definable group (𝑋/𝐸, ∗, 𝜇) is
the quotient 𝑋/𝐸 of a Polish space by an idealistic Borel equivalence relation E, together with a group
structure given by a multiplication 𝜇 : 𝑋/𝐸 × 𝑋/𝐸 → 𝑋/𝐸 so that both 𝜇 and the group-inverse map
𝑋/𝐸 → 𝑋/𝐸 lift to Borel maps at the level of X. Just as in the category of groups with a Polish cover,
maps in the category of definable groups are definable homomorphisms (i.e., group homomorphisms
𝑋/𝐸 → 𝑌/𝐹 which lift to a Borel map 𝑋 → 𝑌 ).

We will be working with a slightly more general notion of an idealistic equivalence relation than is
standard. This is introduced in Section 3.1, where we also record some technical preliminaries for our
later work. Definable groups are then introduced as group objects in the category DSet of definable
sets; see Sections 3.2 and 3.4. The prototypical example of a definable group is the group [𝑋, 𝐾 (𝐺, 𝑛)]
of homotopy classes of maps from a locally compact Polish space X to an Eilenberg–MacLane space
𝐾 (𝐺, 𝑛); see Section 4. In Section 5, we will establish that [𝑋, 𝐾 (𝐺, 𝑛)] is essentially a group with a
Polish cover (i.e., is definably isomorphic to a group with a Polish cover). It remains an open question
whether every definable group is essentially a group with a Polish cover, as we note in our conclusion.

3.1. Idealistic equivalence relations

We say that an equivalence relation E on a Polish space X is open, closed or Borel, respectively, if it is
an open, closed or Borel subset of 𝑋 × 𝑋 endowed with the product topology. We will denote by [𝑥]𝐸 ,
or simply by [𝑥] if E is understood, the E-equivalence class of x in X.

The following is a slight generalization of the classical notion of an idealistic equivalence relation;
it coincides with [31, Definition 5.4.9] if we require that the map 𝜁 : 𝑋 → 𝑋 in Definition 3.1 is the
identity map. And while our definition’s allowance for a potentially wider range of functions 𝜁 appears
indispensible to the proof of Lemma 3.6 below, for example, it remains unclear whether [31, Definition
5.4.9] is, in fact, equivalent to Definition 3.1. Recall that a 𝜎-filter of subsets of a set C is a nonempty
collection F of nonempty subsets of C which is closed under supersets and countable intersections.
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Definition 3.1. An equivalence relation E on a Polish space X is idealistic if there exist an assignment
[𝑥] ↦→ F[𝑥 ] mapping each E-class [𝑥] to a𝜎-filterF[𝑥 ] of subsets of [𝑥] and a Borel function 𝜁 : 𝑋 → 𝑋
satisfying
• 𝑥 𝐸 𝜁 (𝑥) for every 𝑥 ∈ 𝑋 , and
• for each Borel subset A of 𝑋 × 𝑋 , the set 𝐴F ⊆ 𝑋 defined by

𝑥 ∈ 𝐴F ⇔ {𝑥 ′ ∈ [𝑥] : (𝜁 (𝑥), 𝑥 ′) ∈ 𝐴} ∈ F[𝑥 ]

is Borel.
A common convention facilitates statements like the second bulleted point above: if F is a filter of

subsets of C and 𝑃(𝑥) is a property which elements of C may or may not have, write ‘F𝑥 𝑃(𝑥)’ for the
assertion ‘{𝑥 ∈ 𝐶 : 𝑃(𝑥) holds} ∈ F’. We may then rephrase the second item of Definition 3.1 as the
requirement that for every Borel 𝐴 ⊆ 𝑋 × 𝑋 , the set {𝑥 ∈ 𝑋 : F[𝑥 ]𝑥 ′ (𝜁 (𝑥), 𝑥 ′) ∈ 𝐴} is Borel.
Example 3.2. Let𝐺/𝑁 be a group with a Polish cover, and letR(𝐺/𝑁) be the coset equivalence relation
on G, so that 𝑥R(𝐺/𝑁) 𝑥′ ⇐⇒ 𝑥𝑁 = 𝑥 ′𝑁 . Then R(𝐺/𝑁) is idealistic, as witnessed by 𝜁 := id𝐺 , and
the assignment [𝑥] ↦→ F[𝑥 ] , with 𝐷 ∈ F[𝑥 ] ⇐⇒ “𝑥−1𝐷 is a comeager subset of the Polish group N”;
see [31, Proposition 5.4.10].

The collection of idealistic equivalence relations enjoys several desirable closure properties. It is
clear, for example, that if E is an idealistic equivalence relation on X and 𝑋0 ⊆ 𝑋 is an E-invariant Borel
subset, then 𝐸 |𝑋0 is idealistic.
Lemma 3.3. Suppose that 𝐸, 𝐹 are idealistic equivalence relations on Polish spaces 𝑋,𝑌 , respectively.
Define 𝐸 × 𝐹 to be the equivalence relation on 𝑋 × 𝑌 defined by (𝑥, 𝑦) (𝐸 × 𝐹) (𝑥′, 𝑦′) if and only if
𝑥 𝐸 𝑥 ′ and 𝑦 𝐹 𝑦′. Then 𝐸 × 𝐹 is idealistic.
Proof. Let the assignments [𝑥] ↦→ F𝑋

[𝑥 ]
and 𝜁𝑋 : 𝑋 → 𝑋 witness that E is idealistic, and let [𝑦] ↦→ F𝑌

[𝑦 ]

and 𝜁𝑌 : 𝑌 → 𝑌 witness that F is idealistic. Observe that an (𝐸×𝐹)-class [(𝑥, 𝑦)] is of the form [𝑥]× [𝑦]
where [𝑥] is an E-class and [𝑦] is an F-class. Define F[ (𝑥,𝑦) ] by setting 𝑆 ∈ F[ (𝑥,𝑦) ] if and only if
[F𝑋
[𝑥 ]

𝑥 ′ F𝑌
[𝑦 ]

𝑦′ (𝑥 ′, 𝑦′) ∈ 𝑆], and observe that F[ (𝑥,𝑦) ] is indeed a 𝜎-filter. Define also the function
𝜁 : 𝑋 × 𝑌 → 𝑋 × 𝑌 , (𝑥, 𝑦) ↦→ (𝜁𝑋 (𝑥), 𝜁𝑌 (𝑦)).

For any (𝑥, 𝑦) ∈ 𝑋 × 𝑌 and Borel 𝐴 ⊆ (𝑋 × 𝑌 ) × (𝑋 × 𝑌 ), we have that
[F[ (𝑥,𝑦) ] (𝑥 ′, 𝑦′) (𝜁 (𝑥, 𝑦), (𝑥 ′, 𝑦′)) ∈ 𝐴] if and only if [F𝑋

[𝑥 ]
𝑥 ′ F𝑌

[𝑦 ]
𝑦′ ((𝜁𝑋 (𝑥 ′), 𝜁𝑌 (𝑦′)), (𝑥 ′, 𝑦′)) ∈ 𝐴].

The set
𝐴F = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : F𝑋

[𝑥 ]𝑥
′ F𝑌

[𝑦 ] 𝑦
′ ((𝜁𝑋 (𝑥), 𝜁𝑌 (𝑦)), (𝑥 ′, 𝑦′)) ∈ 𝐴}

is Borel by the assumption that the assignments [𝑥] ↦→ F𝑋
[𝑥 ]

and 𝜁𝑋 and [𝑦] ↦→ F𝑌
[𝑦 ]

and 𝜁𝑌 ,
respectively, witness that E and 𝐹 are idealistic. Hence, [(𝑥, 𝑦)] ↦→ F[ (𝑥,𝑦) ] and 𝜁 : 𝑋 × 𝑌 → 𝑋 × 𝑌
witness that 𝐸 × 𝐹 is idealistic. �

Lemma 3.4. Suppose that F is an idealistic equivalence relation on a Polish space Y and Z is an F-
invariant Borel subset of Y. Define 𝐹𝑍 to be the equivalence relation on Y given by 𝑥 𝐹𝑍 𝑥 ′ if and only
if 𝑥 𝐹 𝑥 ′ or 𝑥, 𝑥 ′ ∈ 𝑍 . Then 𝐹𝑍 is idealistic.
Proof. Suppose that the assignments [𝑥] ↦→ F[𝑥 ] and 𝜁 : 𝑌 → 𝑌 witness that F is idealistic. Fix a
Polish topology 𝜏𝑍 on Z that is compatible with the Borel structure inherited from Y. Let C be an 𝐹𝑍 -
equivalence class. SetF ′𝐶 := F𝐶 if𝐶 = [𝑥] with 𝑥 ∉ 𝑍 , and letF ′𝑍 = {𝑆 ⊆ 𝑍 : 𝑆 contains a 𝜏𝑍 -comeager
Borel subset of 𝑍}. Notice that for a Borel subset A of𝑌 ×𝑌 and 𝑥 ∈ 𝑌 , we have [F ′

[𝑥 ]
𝑥 ′ (𝜁 (𝑥), 𝑥 ′) ∈ 𝐴]

if and only if either 𝑥 ∈ 𝑍 and 𝐴𝜁 (𝑥) = {𝑥 ′ ∈ 𝑌 : (𝜁 (𝑥), 𝑥 ′) ∈ 𝐴} is comeager in Z or 𝑥 ∉ 𝑍 and
[F[𝑥 ]𝑥 ′ (𝜁 (𝑥), 𝑥 ′) ∈ 𝐴]. It then follows from the reasoning, for example, of [44, Theorem 16.1] that

𝐴F ′ = {𝑥 ∈ 𝑌 : F ′[𝑥 ]𝑥
′ (𝜁 (𝑥), 𝑥 ′) ∈ 𝐴}

is Borel. Thus, the assignments 𝐶 ↦→ F ′𝐶 and 𝜁 witness that 𝐹𝑍 is idealistic. �
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We now recall several notions of reduction between equivalence relations; see [31, Definition 5.1.1]
and [66, Definitions 2.1 and 2.2]. Suppose that E and F are equivalence relations on Polish spaces X and
Y, respectively, and let 𝑋/𝐸 and𝑌/𝐹 be the set of E and F-equivalence classes on X and Y, respectively.
If 𝑓 : 𝑋/𝐸 → 𝑌/𝐹 is a function, then a lift of f is a function 𝑓 : 𝑋 → 𝑌 such that 𝑓 ([𝑥]𝐸 ) = [ 𝑓 (𝑥)]𝐹
for every 𝑥 ∈ 𝑋; if some such 𝑓 is, furthermore, Borel, then we say that f lifts to a Borel function𝑋 → 𝑌 .
Definition 3.5. Suppose that E and F are equivalence relations on Polish spaces X and Y.

A Borel homomorphism from E to F is a function 𝑋/𝐸 → 𝑌/𝐹 which lifts to a Borel function 𝑋 → 𝑌 .
A Borel reduction from E to F is an injective function 𝑋/𝐸 → 𝑌/𝐹 which lifts to a Borel function

𝑋 → 𝑌 .
A classwise Borel isomorphism from E to F is a bijective function 𝑋/𝐸 → 𝑌/𝐹 which lifts to a Borel

function 𝑋 → 𝑌 and whose inverse also lifts to a Borel function 𝑌 → 𝑋;
A classwise Borel embedding from E to F is a classwise Borel isomorphism from E to 𝐹 |𝑍 for some

F-invariant Borel subset Z of Y.
By the following lemma, Borel and idealistic equivalence relations are downwards closed with respect

to Borel reducibility and classwise Borel embedding relations, respectively.
Lemma 3.6. Suppose that E and F are equivalence relations on Polish spaces X and Y. If E classwise
Borel embeds into F and F is idealistic, then E is idealistic.
Proof. Suppose that F is idealistic and E classwise Borel embeds into F. Without loss of generality, we
may assume E and F to be classwise Borel isomorphic. Thus, there exists a bijection 𝑓 : 𝑋/𝐸 → 𝑌/𝐹
such that f lifts to a Borel function 𝑓 : 𝑋 → 𝑌 and 𝑓 −1 lifts to a Borel function 𝑓 ∗ : 𝑋 → 𝑌 .

Suppose that the assignment [𝑦] ↦→ F[𝑦 ] and the map 𝜏 : 𝑌 → 𝑌 witness that F is idealistic. We
define an assignment [𝑥] ↦→ E[𝑥 ] from E-classes to 𝜎-filters as follows: for each E-class [𝑥] and subset S
of [𝑥], let S be in E[𝑥 ] if and only if 𝑓 ∗−1(𝑆) ∈ F 𝑓 ( [𝑥 ]) (i.e., F[ 𝑓 (𝑥) ] 𝑓 ∗(𝑦) ∈ 𝑆). Notice that for a Borel
subset A of 𝑋×𝑋 and 𝑥 ∈ 𝑋 , we have that [E[𝑥 ]𝑥 ′ (𝑥, 𝑥 ′) ∈ 𝑋] if and only if [F 𝑓 ( [𝑥 ]) 𝑦

′ (𝑥, 𝑓 ∗(𝑦′)) ∈ 𝐴].
We also define the Borel map 𝜁 = 𝑓 ∗ ◦ 𝜏 ◦ 𝑓 : 𝑋 → 𝑋 . Notice that 𝜁 (𝑥) 𝐸 𝑥 for every 𝑥 ∈ 𝑋 .

Let A be a Borel subset of 𝑋 × 𝑋 . Consider the Borel subset B of 𝑌 × 𝑌 defined by (𝑦, 𝑦′) ∈ 𝐵 if
and only if ( 𝑓 ∗(𝑦), 𝑓 ∗(𝑦′)) ∈ 𝐴. Then, by assumption, we have that {𝑦 ∈ 𝑌 : F[𝑦 ] 𝑦′ (𝜏(𝑦), 𝑦′) ∈ 𝐵} is
Borel. Hence, 𝑓 −1({𝑦 ∈ 𝑌 : F[𝑦 ] 𝑦′ (𝜏(𝑦), 𝑦′) ∈ 𝐵}) ⊆ 𝑋 is Borel. We then have

𝑥 ∈ 𝑓 −1({𝑦 ∈ 𝑌 : F[𝑦 ] 𝑦′ (𝜏(𝑦), 𝑦′) ∈ 𝐵})

if and only if

F 𝑓 ( [𝑥 ]) 𝑦
′ ((𝜏 ◦ 𝑓 ) (𝑥), 𝑦′) ∈ 𝐵

if and only if

F 𝑓 ( [𝑥 ]) 𝑦
′ (( 𝑓 ∗ ◦ 𝜏 ◦ 𝑓 ) (𝑥), 𝑓 ∗(𝑦′)) ∈ 𝐴

if and only if

E[𝑥 ]𝑥 ′ (𝜁 (𝑥), 𝑥 ′) ∈ 𝐴.

Hence, E and 𝜁 witness that E is idealistic. �

We now recall some results from [31] and [45]. We will always assume E and F to be analytic
equivalence relations on Polish spaces 𝑋,𝑌 , respectively. The following result is essentially [45, Lemmas
3.7, 3.8], although a slightly more restrictive notion of idealistic equivalence relation is considered there;
its proof readily adapts to our more generous notion.
Proposition 3.7 (Kechris–Macdonald). Suppose that E is idealistic and F is Borel. Then a Borel
reduction from E to F is a classwise Borel embedding.
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Proof. Suppose that [𝑥] ↦→ F[𝑥 ] and 𝜁 : 𝑋 → 𝑋 witness that E is idealistic. Suppose that 𝑓 : 𝑋/𝐸 →
𝑌/𝐹 is a Borel reduction from E to F, and let 𝑓 : 𝑋 → 𝑌 be a Borel lift of f. We will show that the
F-saturation

[ 𝑓 (𝑋)]𝐹 = {𝑦 ∈ 𝑌 : ∃𝑥 ∈ 𝑋 𝑦 𝐹 𝑓 (𝑥)}

= {𝑦 ∈ 𝑌 : ∃𝑥 ∈ 𝑋 𝑦 𝐹 ( 𝑓 ◦ 𝜁) (𝑥)}

of 𝑓 (𝑋) is a Borel subset Z of Y and that there exists a Borel lift 𝑓 ∗ of 𝑓 −1 : 𝑍/𝐹 → 𝑋/𝐸 .
Define the subset P of 𝑌 × 𝑋 by setting (𝑦, 𝑥) ∈ 𝑃 if and only if 𝑦 𝐹 ( 𝑓 ◦ 𝜁) (𝑥). Then [ 𝑓 (𝑋)]𝐹 is

the projection of P onto the first coordinate. By the ‘large sections’ uniformization theorem figuring in
the proof of [45, Lemma 3.7], it will suffice to show that there is a map 𝑦 ↦→ G𝑦 that assigns to each
𝑦 ∈ [ 𝑓 (𝑋)]𝐹 a 𝜎-filter G𝑦 of subsets of 𝑓 −1([𝑦]) such that for each Borel subset R of 𝑌 × 𝑋 , there exist
a 𝚺1

1 set 𝑆 ⊆ 𝑌 and a 𝚷1
1 set 𝑇 ⊆ 𝑌 such that, setting

𝑅𝑦 := {𝑥 ∈ 𝑋 : (𝑦, 𝑥) ∈ 𝑅} ,

one has

𝑅𝑦 ∈ G𝑦 ⇔ 𝑦 ∈ 𝑆 ⇔ 𝑦 ∈ 𝑇

for every 𝑦 ∈ [ 𝑓 (𝑋)]𝐹 . The uniformization given by the aforementioned theorem will then be such an
𝑓 ∗ as we had desired.

To this end, define G𝑦 = F 𝑓 −1 ( [𝑦 ]) for 𝑦 ∈ [ 𝑓 (𝑋)]𝐹 . To see that the assignment 𝑦 ↦→ F 𝑓 −1 ( [𝑦 ])

satisfies the above requirement, suppose 𝑅 ⊆ 𝑌 × 𝑋 is Borel. Then for 𝑦 ∈ [ 𝑓 (𝑋)]𝐹 , we have that
𝑅𝑦 ∈ F 𝑓 −1 ( [𝑦 ]) if and only if [F 𝑓 −1 ( [𝑦 ])𝑥

′ (𝑦, 𝑥 ′) ∈ 𝑅], if and only if

∃𝑥 ∈ 𝑋
[
(( 𝑓 ◦ 𝜁) (𝑥) 𝐹 𝑦) ∧ (F 𝑓 −1 ( [𝑦 ])𝑥

′ (( 𝑓 ◦ 𝜁) (𝑥), 𝑥 ′) ∈ 𝑅)
]
,

if and only if

∀𝑥 ∈ 𝑋
[
(( 𝑓 ◦ 𝜁) (𝑥) 𝐹 𝑦 ⇒ F 𝑓 −1 ( [𝑦 ])𝑥

′ (( 𝑓 ◦ 𝜁) (𝑥), 𝑥 ′) ∈ 𝑅)
]
.

This concludes the proof. �

Corollary 3.8. Suppose that E is idealistic and F is Borel. Then a surjective Borel reduction from E to
F is a classwise Borel isomorphism.

The following related result is [66, Proposition 2.3].

Proposition 3.9 (Motto Ros). If there is a classwise Borel embedding from E to F and there is a
classwise Borel embedding from F to E, then there is a classwise Borel isomorphism from E to F.

Recall that a Borel selector for a Borel equivalence relation E on a Polish space X is a function
𝑠 : 𝑋 → 𝑋 such that 𝑠(𝑥) 𝐸 𝑥 and 𝑥 𝐸 𝑦 ⇔ 𝑠(𝑥) = 𝑠(𝑦) for every 𝑥, 𝑦 ∈ 𝑋 . The principal filters that
selectors determine on the classes of E witness that E is idealistic.

Lemma 3.10. Let E be a Borel equivalence relation on a Polish space X. If E admits a Borel selector,
then E is idealistic.

Proof. Let s be a Borel selector for E. Then s determines a function 𝑓 : 𝑋/𝐸 → 𝑋 , [𝑥] ↦→ 𝑠(𝑥). For
each E-class [𝑥], let F[𝑥 ] = {𝑆 ⊆ [𝑥] | 𝑓 ([𝑥]) ∈ 𝑆}. For every Borel subset A of 𝑋 × 𝑋 and 𝑥 ∈ 𝑋 ,
then, [F[𝑥 ]𝑥 ′ (𝑥, 𝑥 ′) ∈ 𝐴] if and only if (𝑥, 𝑠(𝑥)) ∈ 𝐴. Hence, 𝐴F =

{
𝑥 ∈ 𝑋 : F[𝑥 ]𝑥 ′ (𝑥, 𝑥 ′) ∈ 𝐴

}
is a

Borel subset of X, as desired. �
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3.2. Definable sets

A definable set is a pair (𝑋, 𝐸) such that X is a Polish space and E is a Borel and idealistic equivalence
relation on X. We will indulge below in the common abuse whereby the notation 𝑋/𝐸 may stand either
for this pair or for its associated quotient set, as context will indicate. A definable subset of a definable
set 𝑋/𝐸 is a definable set of the form 𝑌/𝐸 ⊆ 𝑋/𝐸 where Y is an E-invariant Borel subset of 𝑋 . We
regard a Polish space X, in particular, as a definable set 𝑋/𝐸 , where E is the relation of equality.

If 𝑋/𝐸 and𝑌/𝐹 are definable sets, then a definable function 𝑋/𝐸 → 𝑌/𝐹 is a Borel homomorphism
from E to F (i.e., a function 𝑋/𝐸 → 𝑌/𝐹 that lifts to a Borel function 𝑋 → 𝑌 ). We let DSet be the
category that has definable sets as objects and definable functions as morphisms. The identity morphism
on 𝑋/𝐸 is the identity function, and composition of morphisms is given by composition of functions.
We now observe that this category has similar properties to the paradigmatic category Set of sets.

In the framework of DSet, for example, Corollary 3.8 takes the following form:

Proposition 3.11 (Kechris–Macdonald). Suppose that 𝑋/𝐸 and𝑌/𝐹 are definable sets, and 𝑓 : 𝑋/𝐸 →
𝑌/𝐹 is a definable function. The following assertions are equivalent:

(1) f is a bijection;
(2) f is an isomorphism in DSet.

The following also is a consequence of Proposition 3.7.

Proposition 3.12 (Kechris–Macdonald). Suppose that 𝑋/𝐸 and𝑌/𝐹 are definable sets, and 𝑓 : 𝑋/𝐸 →
𝑌/𝐹 is an injective definable function. Then there is a definable subset 𝑍/𝐹 of𝑌/𝐹 such that 𝑓 : 𝑋/𝐸 →
𝑍/𝐹 is a definable bijection.

Proposition 3.9 above, similarly, may be rephrased as a Cantor–Bernstein theorem for definable sets.

Proposition 3.13 (Motto Ros). Suppose that 𝑋/𝐸 and 𝑌/𝐹 are definable sets. If there exist an injective
definable function 𝑋/𝐸 → 𝑌/𝐹 and an injective definable function 𝑌/𝐹 → 𝑋/𝐸 , then there exists a
bijective definable function 𝑋/𝐸 → 𝑌/𝐹.

The category DSet has a number of further pleasant and Set-like properties. Observe, for example,
that if the definable sets 𝑋/𝐸 and 𝑌/𝐹 are countable sets, then there is a definable bijection from 𝑋/𝐸
to 𝑌/𝐹 if and only if there is a bijection from 𝑋/𝐸 to 𝑌/𝐹.

Recall that a morphism 𝑓 : 𝑥 → 𝑦 in a category C is

• monic if for any two morphisms 𝑔0, 𝑔1 : 𝑧 → 𝑥, if 𝑓 𝑔0 = 𝑓 𝑔1, then 𝑔0 = 𝑔1, and
• epic if for any two morphisms 𝑔0, 𝑔1 : 𝑦 → 𝑧, if 𝑔0 𝑓 = 𝑔1 𝑓 , then 𝑔0 = 𝑔1.

It is easy to see that a definable function is monic in DSet if and only if it is injective, and epic in
DSet if and only if it is surjective. The initial object is DSet is the empty definable set, and a final object
in DSet is a definable set with only one element.

If 𝑋/𝐸 and 𝑌/𝐹 are definable sets, then the coproduct 𝑋/𝐸 � 𝑌/𝐹 is the definable set obtained as
the quotient of the disjoint union 𝑋 � 𝑌 of 𝑋 and Y by the equivalence relation on 𝑋 � 𝑌 that restricts
to E on X and to F on Y. Coproducts of sequences (𝑋𝑛/𝐸𝑛)𝑛∈𝜔 of definable sets are defined similarly.

The product of 𝑋/𝐸 and 𝑌/𝐹 is the definable set obtained as the quotient of the product 𝑋 × 𝑌 by
the equivalence relation 𝐸 × 𝐹 defined as in Lemma 3.3. In our conclusion, we record the question
of whether the category DSet possesses arbitrary countable products. Given two definable functions
𝑓 , 𝑔 : 𝑋/𝐸 → 𝑌/𝐹, the equalizer of f and g is the definable subset of 𝑋/𝐸 given by

{𝑥 ∈ 𝑋/𝐸 : 𝑓 (𝑥) = 𝑔(𝑥)} .

The existence of products and equalizers ensures the existence of pullbacks of definable functions
𝑓 : 𝑋/𝐸 → 𝑌/𝐹 and 𝑓 ′ : 𝑋 ′/𝐸 ′ → 𝑌/𝐹. These are the definable subsets of 𝑋/𝐸 × 𝑋 ′/𝐸 ′ consisting
of pairs (𝑥, 𝑦) such that 𝑓 (𝑥) = 𝑓 ′(𝑥 ′).

https://doi.org/10.1017/fmp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.7


26 J. Bergfalk, M. Lupini and A. Panagiotopoulos

3.3. Pointed definable sets

We will also consider pointed definable sets, which are just definable sets 𝑋/𝐸 with a distinguished point
(the basepoint). A basepoint-preserving definable function between pointed definable sets is simply a
function that maps the basepoint to the basepoint. This defines a category DSet∗, which may be seen
as the under category {∗} ↓ DSet of DSet-morphisms from {∗}, where {∗} is a definable set with just
one point. In DSet∗, the set {∗} is a null object (i.e., it is both initial and terminal). For any two pointed
definable sets, there exists a unique basepoint-preserving constant function or zero arrow. Thus, we may
define the cokernel of a basepoint-preserving injective definable function 𝑓 : 𝑋/𝐸 → 𝑌/𝐹. This is the
definable set obtained as follows. We have that 𝑓 (𝑋/𝐸) = 𝑍/𝐹 for some definable subset 𝑍/𝐹 of 𝑌/𝐹.
Define the equivalence relation 𝐹𝑍 on Y in terms of Z as in Lemma 3.4. The cokernel of f is then𝑌/𝐹𝑍 .
Intuitively, 𝑌/𝐹𝑍 is the definable set obtained from 𝑌/𝐹 by identifying the definable subset 𝑍/𝐹 to a
single basepoint.

3.4. Definable monoids and definable groups

One may interpret definable monoids and definable groups as monoids and groups in DSet, as a particular
instance of monoids and groups in a category in the sense of [53, Section III.6]. Explicitly, a definable
monoid is a pointed definable set 𝑋/𝐸 together with a definable function 𝜇 : 𝑋/𝐸 ×𝑋/𝐸 → 𝑋/𝐸 that is
an associative binary operation with the basepoint as identity element. A definable group is a definable
monoid (𝑋/𝐸, 𝜇) that is a also a group, and such that the function 𝑋/𝐸 → 𝑋/𝐸 mapping each element
to its inverse is a definable function. Evidently, definable monoids and groups form subcategories of
the category of pointed definable sets. A definable group homomorphism between definable groups is
a definable function that is also a group homomorphism. A definable subgroup of 𝑋/𝐸 is a simply a
definable subset𝑌/𝐸 that is also a subgroup. Notice that the kernel of a definable group homomorphism
is a definable subgroup. A definable exact sequence of definable groups is a sequence

𝑋 ′/𝐸 ′
𝑓
→ 𝑋/𝐸

𝑔
→ 𝑋 ′′/𝐸 ′′

of definable groups and definable group homomorphisms such that f is injective, g is surjective, and
the kernel of g is the image of f. Notice that the category of groups with a Polish cover 𝐺/𝑁 is a full
subcategory of the category of definable groups. We say that a definable group 𝑋/𝐸 is essentially a
group with a Polish cover if it definably isomorphic to a group with a Polish cover.

3.5. Semidefinable sets

In the following, we will also consider analytic equivalence relations on Polish spaces that we do not
know or have not yet shown to be Borel or idealistic. We will call a quotient 𝑋/𝐸 of a Polish space by an
analytic equivalence relation a semidefinable set. Such pairs form the objects of a category SemiDSet
of semidefinable sets in which morphisms are, as above, definable functions 𝑓 : 𝑋/𝐸 → 𝑌/𝐹 (i.e.,
functions f which lift to Borel functions 𝑋 → 𝑌 ). Notice that an isomorphism in this category is a
definable bijection whose inverse is also definable. By definition, the category of definable sets is a full
subcategory of the category of semidefinable sets. The notions of semidefinable subset, semidefinable
group and semidefinable subgroup may be defined just as in the definable case. The following is
immediate from Lemma 3.6.
Lemma 3.14. If a semidefinable set 𝑋/𝐸 is isomorphic in SemiDSet to a definable set 𝑌/𝐹, then 𝑋/𝐸
is a definable set.

As in Section 3.1, the existence of a Borel selector may entail that a semidefinable object is, in fact,
in DSet.
Lemma 3.15. Suppose that 𝑋/𝐸 is a semidefinable group and𝑌/𝐸 is a semidefinable subgroup. Define
the equivalence relation F on X by setting 𝑥 𝐹 𝑥 ′ if and only if [𝑥]𝐸 · [𝑥 ′]−1

𝐸 ∈ 𝑌/𝐸 . Suppose that F
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admits a Borel selector. Then

(1) if 𝐸 |𝑌 is Borel, then E is Borel.
(2) if 𝐸 |𝑌 is idealistic, then E is idealistic.

Proof. We let 𝑋 × 𝑋 → 𝑋 , (𝑥, 𝑦) ↦→ 𝑥 · 𝑦 be a Borel lift of the group operation on 𝑋/𝐸 . Let s be a
Borel selector for F. Notice that the relation E is finer than F; hence, the Borel selector s for F induces
a definable function 𝑠 : 𝑋/𝐸 → 𝑋 , [𝑥] ↦→ 𝑠(𝑥). Observe that if 𝑇 = {𝑠(𝑥) : 𝑥 ∈ 𝑋}, then 𝑇 ⊆ 𝑋 is a
Borel transversal for F (i.e., T meets each F-equivalence class in exactly one point). Notice that the map

𝑌/𝐸 × 𝑇 → 𝑋/𝐸

( [𝑦]𝐸 , 𝑡) ↦→ [𝑦 · 𝑡]𝐸

is a definable bijection with definable inverse

𝑋/𝐸 → 𝑌/𝐸 × 𝑇

[𝑥]𝐸 ↦→ ([𝑥]𝐸 · [𝑠(𝑥)]
−1
𝐸 , 𝑠(𝑥)).

This shows that the semidefinable set 𝑋/𝐸 is isomorphic in SemiDSet to 𝑌/𝐸 × 𝑇 . If 𝑌/𝐸 is Borel or
idealistic, respectively, then𝑌/𝐸 ×𝑇 is Borel or idealistic, respectively; see Lemma 3.3. The conclusion
thus follows from Lemma 3.6. �

4. Homotopy is idealistic

Let X and Y be locally compact metrizable spaces, and let [𝑋,𝑌 ] be the set of all homotopy classes of
maps from X to Y. Since the space Map(𝑋,𝑌 ) of all maps from X to Y is Polish when endowed with the
compact-open topology and the homotopy relation between elements of Map(𝑋,𝑌 ) is clearly analytic,
[𝑋,𝑌 ] is naturally viewed as an object in the category SemiDSet of semidefinable sets. By a theorem
of Becker’s, any analytic equivalence relation on the Cantor space may be realized as [∗, 𝑌 ] for some
compact 𝑌 ⊆ R3 (see [5, Theorem 4.1]); hence, [𝑋,𝑌 ] is not in general a definable set. In contrast, for
any locally compact Polish space X, if 𝑌 = 𝑃 is a polyhedral H-group, then [𝑋,𝑌 ] is a definable set;
this is the result appearing as Theorem 1.2 in our introduction. A main ingredient in this theorem is the
more general fact that for any locally compact Polish space X and countable polyhedron Y, the homotopy
relation on Map(𝑋,𝑌 ) is idealistic. This we show in Section 4.4 below. This and several subsequent
arguments make use of Borsuk’s Homotopy Extension Theorem; we record the classical version in the
present section, proving and applying its definable version in Section 6 below.

4.1. Homotopy

Let LC denote the category of locally compact Polish spaces and continuous functions; we will often
term the latter maps, simply. For any two locally compact spaces X and Y, we endow the hom-set
LC(𝑋,𝑌 ) with the compact-open topology. This is the topology with subbasis the collection of all sets
of the form { 𝑓 ∈ LC(𝑋,𝑌 ) : 𝑓 (𝐾) ⊆ 𝑈} for some compact subset 𝐾 ⊆ 𝑋 and open subset 𝑈 ⊆ 𝑌 .
With this topology, each such LC(𝑋,𝑌 ) is a Polish space, and what is more, the composition functions
LC(𝑌, 𝑍) × LC(𝑋,𝑌 ) → LC(𝑋, 𝑍) are all continuous. In this way, we regard LC as a Polish category,
by which we mean a category enriched over the category of Polish spaces [46]. We denote by C the full
subcategory of LC consisting of compact spaces.

Let C be a category with small (i.e., set-sized) hom-sets. A congruence ≡ on C [53, Section I.8]
is given by an assignment to each pair of objects 𝑥, 𝑦 of C of an equivalence relation ≡𝑥,𝑦 on C (𝑥, 𝑦)
such that for objects 𝑥, 𝑦, 𝑧 and morphisms 𝑓1, 𝑓2 : 𝑥 → 𝑦 and 𝑔1, 𝑔2 : 𝑦 → 𝑧 in C, if 𝑓1 ≡𝑥,𝑦 𝑓2 and
𝑔1 ≡𝑦,𝑧 𝑔2, then 𝑔1 𝑓1 ≡𝑥,𝑧 𝑔2 𝑓2. One may regard the pair (C,≡) as a (strict) 2-category by declaring
that for objects 𝑥, 𝑦 and morphisms 𝑓 , 𝑔 : 𝑥 → 𝑦 in C, there exists a unique 2-cell 𝑓 ⇒ 𝑔 if and only
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if 𝑓 ≡𝑥,𝑦 𝑔. The corresponding quotient category C/≡ is the category whose objects are those of C and
whose morphisms from x to y are the quotient set C (𝑥, 𝑦)/≡𝑥,𝑦 .

Let X and Y be topological spaces; henceforth, we will let I denote the closed unit interval [0, 1].
A homotopy ℎ : 𝑓 ⇒ 𝑔 : 𝑋 → 𝑌 from the map 𝑓 : 𝑋 → 𝑌 to the map 𝑔 : 𝑋 → 𝑌 is a function
ℎ : 𝑋 × 𝐼 → 𝑌 such that ℎ (−, 0) = 𝑓 and ℎ (−, 1) = 𝑔. The homotopy relation �LC on LC(𝑋,𝑌 ) is
defined by setting 𝑓 �LC 𝑔 if and only if there exists a homotopy ℎ : 𝑓 ⇒ 𝑔 : 𝑋 → 𝑌 ; evidently, �LC
defines a congruence on LC. We let Ho(LC) denote the corresponding quotient category, which may be
regarded as a category enriched over the category SemiDSet; [𝑋,𝑌 ] will denote the semidefinable set
of homotopy classes of maps 𝑋 → 𝑌 or, equivalently, of the path-components of LC(𝑋,𝑌 ). A homotopy
equivalence 𝑓 ∈ LC(𝑋,𝑌 ) is a map whose image in the quotient category Ho(LC) is an isomorphism.

More generally, we consider locally compact pairs; these are pairs of topological spaces (𝑋, 𝐴) in
which X is locally compact and Polish and A is a closed subspace of X. These form the objects of the
Polish category LCP of locally compact pairs. Its morphisms (𝑋, 𝐴) → (𝑌, 𝐵) are those maps 𝑓 : 𝑋 → 𝑌
such that 𝑓 (𝐴) ⊆ 𝐵. The hom-sets LCP((𝑋, 𝐴), (𝑌, 𝐵)) then form 𝐺 𝛿 subsets of LC(𝑋,𝑌 ), and their
subspace topologies are consequently Polish. Note also that the identification 𝑋 ↦→ (𝑋,∅) embeds LC
as a full subcategory of LCP. We write 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) to indicate that 𝑓 ∈ LCP((𝑋, 𝐴), (𝑌, 𝐵)).
We let CP denote the full subcategory of LCP consisting of compact pairs (i.e., of locally compact pairs
(𝑋, 𝐴) in which X is compact). Given maps 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) a homotopy – sometimes termed
pair homotopy – ℎ : 𝑓 ⇒ 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) from f to g is a homotopy ℎ : 𝑓 ⇒ 𝑔 : 𝑋 → 𝑌 such
that ℎ(−, 𝑡) : (𝑋, 𝐴) → (𝑌, 𝐵) for every 𝑡 ∈ 𝐼. This defines a congruence relation �LCP on LCP. We let
Ho(LCP) denote the corresponding quotient category; note that Ho(LC) and Ho(LCP) are the homotopy
categories associated to the Hurewicz model category structures on LC and LCP, respectively (see [24]).
We let [(𝑋, 𝐴), (𝑌, 𝐵)] be the semidefinable set of homotopy classes of maps (𝑋, 𝐴) → (𝑌, 𝐵). Just as
above, a homotopy equivalence 𝑓 ∈ LCP((𝑋, 𝐴), (𝑌, 𝐵)) is a map whose image in the quotient category
Ho(LCP) is an isomorphism.

A pointed locally compact Polish space is a locally compact pair (𝑋, 𝐴) in which A is a singleton
{∗}; we call ∗ the basepoint of this space. Such spaces comprise a full subcategory LC∗ of the category
LCP of locally compact pairs. The morphisms in LC∗ are maps which are basepoint-preserving (i.e.,
they are exactly those maps which send basepoints to basepoints). Similarly, one defines the notion
of basepoint-preserving homotopy, and the corresponding congruence relation �LC∗ on LC∗ (which is
simply the restriction of �LCP to the full subcategory LC∗).

A central concern in homotopy theory is the existence (or nonexistence) of extensions of maps or
homotopies from a topological space A to some larger space 𝑋 ⊇ 𝐴. In the locally compact setting, a
main theorem describing conditions of their existence is Borsuk’s Homotopy Extension Theorem (see
[56, Chapter I.3, Theorem 9]):

Theorem 4.1. Suppose that A is a closed subspace of a locally compact Polish space X and that P is
a polyhedron. Then for every map 𝑓 : 𝐴 × 𝐼 → 𝑃 and ℎ : 𝑋 × {0} → 𝑃 such that ℎ|𝐴×{0} = 𝑓 |𝐴×{0},
there exists a map ℎ̃ : 𝑋 × 𝐼 → 𝑃 which simultaneously extends both h and f.

Beginning in Section 4.4, we will make repeated use of this theorem; as noted, we will also prove its
definable version in Section 6.2 below.

4.2. Polyhedra

Henceforth, all simplicial complexes will be tacitly understood to be countable and locally finite; let K
be such a complex. We may assume without loss of generality that dom(𝐾) ⊆ N and then associate with
K a locally compact Polish space |𝐾 | ⊆ RN, called its topological realization, as follows. Let (𝑒𝑣 )𝑣 ∈N
denote the canonical basis of the R-vector space RN. For each simplex 𝜎 = {𝑖0, . . . , 𝑖𝑛} of K, define

|𝜎 | =
{
𝑡0𝑒𝑖0 + · · · + 𝑡𝑛𝑒𝑖𝑛 : 𝑡0, . . . , 𝑡𝑛 ∈ [0, 1] , 𝑡0 + · · · + 𝑡𝑛 = 1

}
. (18)
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The topological boundary | �𝜎 | of 𝜎 is the set of points 𝑡0𝑒𝑖0 + · · · + 𝑡𝑛𝑒𝑖𝑛 of |𝜎 | for which at least one of
the coordinates 𝑡0, . . . , 𝑡𝑛 is zero. The topological interior of |𝜎 | is 〈𝜎〉 := |𝜎 | \ | �𝜎 |. We then define |𝐾 |
to be the union of |𝜎 | where 𝜎 ranges among the simplices of K. Hence, every 𝑥 ∈ |𝐾 | can be uniquely
identified with some sum

𝑥 =
∑

𝑣 ∈dom(𝐾 )
𝑥𝑣𝑒𝑣 ,

where the coefficients (𝑥𝑣 )𝑣 ∈dom(𝐾 ) satisfy
∑

𝑣 ∈dom(𝐾 ) 𝑥𝑣 = 1. We call (𝑥𝑣 ) the barycentric coordinates
of x.

Observe that if 𝐿 is a subcomplex of K, then |𝐿 | forms a closed subspace of |𝐾 |. A topological space
is called a polyhedron if it is homeomorphic to the topological realization of a simplicial complex. We
let P be the full subcategory of the category LC of locally compact Polish spaces consisting of polyhedra
and let Ho(P) be its quotient by �LC. Note that a polyhedron is compact if and only if it is homeomorphic
to the realization of a finite simplicial complex.

Call two simplicial maps 𝑓 , 𝑔 : 𝐾 → 𝐿 contiguous if for every 𝜎 ∈ 𝐾 , 𝑓 (𝜎) and 𝑔(𝜎) are faces
of a single simplex in L, and let the relation of contiguous equivalence be the transitive closure of the
contiguity relation (see [29, Section VI.3] or [80, Section 3.5]). This defines a congruence relation �S
on S, and an associated quotient category Ho(S) := S/�S. A simplicial map 𝑓 : 𝐾 → 𝐿 between
simplicial complexes induces a continuous function | 𝑓 | : |𝐾 | → |𝐿 | defined by setting

| 𝑓 |
(
𝑡0𝑒𝑖0 + · · · + 𝑡𝑛𝑒𝑖𝑛

)
= 𝑡0𝑒 𝑓 (𝑖0) + · · · + 𝑡𝑛𝑒 𝑓 (𝑖𝑛)

for all {𝑖0, . . . , 𝑖𝑛} ∈ 𝐾 and 𝑡0, . . . , 𝑡𝑛 ∈ [0, 1] such that 𝑡0 + · · · + 𝑡𝑛 = 1. Moreover, if 𝑓 , 𝑔 : 𝐾 → 𝐿
are contiguously equivalent, then the corresponding maps | 𝑓 | , |𝑔 | : |𝐾 | → |𝐿 | are homotopic (a fact
invoked in the proof of Theorem 2.12); put differently, the functor 𝐾 ↦→ |𝐾 | from S to P induces a
functor from Ho(S) to Ho(P).

The barycentric subdivision 𝛽𝐾 of a simplicial complex K is the simplicial complex with dom(𝛽𝐾)
equal to the set of nonempty simplices of K. A simplex of 𝛽𝐾 is a set {𝜎0, . . . , 𝜎𝑛} of simplices of K
which is linearly ordered by inclusion. A selection map for K is a function 𝑠 : 𝐾 \ {∅} → dom(𝐾) such
that 𝑠(𝜎) ∈ 𝜎 for every 𝜎 ∈ 𝐾 \ {∅}; equivalently, s is a simplicial map 𝛽𝐾 → 𝐾 . Notice that any two
selection maps are contiguous and therefore represent the same morphism in Ho(S).

Precomposing the realization construction (18) above with a bijection 𝑏 : N<N → N determines a
topological realization of a subdivided complex 𝛽𝐾 , and if 𝑠 : 𝛽𝐾 → 𝐾 is a selection map, then the
corresponding map |𝑠 | : |𝛽𝐾 | → |𝐾 | is homotopic to the homeomorphism |𝛽𝐾 | → |𝐾 | defined by the
maps

𝑒𝑏 ( {𝑣0 ,...,𝑣𝑛 }) ↦→
1

𝑛 + 1
(
𝑒𝑣0 + · · · + 𝑒𝑣𝑛

)
for each nonempty simplex {𝑣0, . . . , 𝑣𝑛} of K, together with their linear extension.

For a vertex v of K, we let the open star St𝐾 (𝑣) ⊆ |𝐾 | of v be the union of the interiors of |𝜎 | where
𝜎 ranges among the simplices that contain v as a vertex. Equivalently,

St𝐾 (𝑣) =
⎧⎪⎪⎨⎪⎪⎩

∑
𝑤 ∈dom(𝐾 )

𝑎𝑤𝑒𝑤 : 𝑎𝑣 > 0
⎫⎪⎪⎬⎪⎪⎭ ∩ |𝐾 | .

We will sometimes omit the subscript K when it is contextually clear. In what follows, we will often make
use of the following important well-known property of the open cover {St𝐾 (𝑣) : 𝑣 ∈ dom(𝐾)} of |𝐾 |.

Lemma 4.2. Let K be a simplicial complex, and let 𝐷 ⊆ |𝐾 | × |𝐾 | be the union of all sets of the form
St𝐾 (𝑣) × St𝐾 (𝑣) where v ranges over dom(𝐾). Then there exists a continuous map 𝜆 : 𝐷 × [0, 1] → 𝑃
so that
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(1) for all (𝑥, 𝑦) ∈ 𝐷, we have that 𝜆(𝑥, 𝑦, 0) = 𝑥, 𝜆(𝑥, 𝑦, 1) = 𝑦;
(2) if 𝑥 ∈ |𝜎 | and 𝑦 ∈ |𝜏 | with 𝜎, 𝜏 ∈ 𝐾 , then for all 𝑡 ∈ [0, 1], we have that 𝜆(𝑥, 𝑦, 𝑡) ∈ |𝜎 | ∪ |𝜏 |.

Proof. Following the proof of Theorem 2 from [64], we first consider the map 𝜇 : 𝐷 → |𝐾 | which
is defined as follows: if (𝑥𝑣 ) and (𝑦𝑣 ) are the barycentric coordinates of 𝑥, 𝑦 where (𝑥, 𝑦) ∈ 𝐷, then
𝜇(𝑥, 𝑦) := (𝑧𝑣 : 𝑣 ∈ dom(𝐾)), where

𝑧𝑤 := min(𝑥𝑤 , 𝑦𝑤 )
/ ∑

𝑣 ∈dom(𝐾 )
min(𝑥𝑣 , 𝑦𝑣 ).

Notice that if 𝑥 ∈ |𝜎 | and 𝑦 ∈ |𝜏 | with 𝜎, 𝜏 ∈ 𝐾 , then 𝜇(𝑥, 𝑦) ∈ |𝜎 | ∩ |𝜏 |. Then the map 𝜆 is defined by
setting

𝜆(𝑥, 𝑦,
1
2
𝑡) := (1 − 𝑡)𝑥 + 𝑡𝜇(𝑥, 𝑦) and 𝜆(𝑥, 𝑦,

1
2
+

1
2
𝑡) := (1 − 𝑡)𝜇(𝑥, 𝑦) + 𝑡𝑦.

�

The generalization to topological realizations (|𝐾 |, |𝐿 |) of simplicial pairs (𝐾, 𝐿) is straightforward.
A polyhedral pair is a locally compact pair that arises in this fashion from a simplicial pair (𝐾, 𝐿).
The category of polyhedral pairs is a full subcategory of LCP; we denote it PP, writing P∗ for the full
subcategory of pointed polyhedra.

4.3. Maps from compact pairs to polyhedral pairs

It will be useful to henceforth adopt slightly strengthened notions of cover and refinement; portions of
the next few paragraphs therefore amount to an updating of definitions first appearing in Section 2.

Let X be a locally compact Polish space. An (open) cover of X is a countable family U =
(
𝑈 𝑗

)
𝑗∈𝐽 of

open subsets of X with compact closure such that X is the union of
{
𝑈 𝑗 : 𝑗 ∈ 𝐽

}
. The coverU is star-finite

if, for every 𝑗 ∈ 𝐽, the set
{
𝑖 ∈ 𝐽 : 𝑈𝑖 ∩𝑈 𝑗 ≠ ∅

}
is finite. The nerve of a star-finite cover U =

(
𝑈 𝑗

)
𝑗∈𝐽

of X is the (countable, locally finite) simplicial complex with dom(𝑁U ) =
{
𝑗 ∈ 𝐽 : 𝑈 𝑗 ≠ ∅

}
and

{ 𝑗0, . . . , 𝑗𝑛} a simplex of 𝑁U if and only if 𝑈 𝑗0 ∩ · · · ∩𝑈 𝑗𝑛 ≠ ∅. A canonical map for U is a function
𝑓 : 𝑋 → |𝑁U | such that 𝑓 −1 (

St𝑁U ( 𝑗)
)
⊆ 𝑈 𝑗 , where St𝑁U ( 𝑗) is the open star of the vertex j of 𝑁U .

A partition of unity subordinate to a star-finite cover U =
(
𝑈 𝑗

)
𝑗∈𝐽 is a family

(
𝑓 𝑗

)
𝑗∈𝐽 of continuous

functions 𝑓 𝑗 : 𝑋 → 𝐼 such that the closure of supp( 𝑓 𝑗 ) is contained in 𝑈 𝑗 for every 𝑗 ∈ 𝐽, and∑
𝑗∈𝐽 𝑓 𝑗 (𝑥) = 1 for every 𝑥 ∈ 𝑋 . A partition of unity ( 𝑓 𝑗 ) 𝑗∈𝐽 of U gives rise to a canonical map

𝑓 : 𝑋 → |𝑁U | for U defined by 𝑥 ↦→
∑

𝑗∈𝐽 𝑓 𝑗 (𝑥)𝑒 𝑗 .
A cover V of X refines a cover U of X if for every 𝑉 ∈ V , there exists 𝑈 ∈ U such that 𝑉 ⊆ 𝑈.

A refinement map from V to U is a simplicial map 𝑝 : 𝑁V → 𝑁U such that 𝑉 𝑗 ⊆ 𝑈𝑝 ( 𝑗) for every
𝑗 ∈ dom(𝑁U ). Note that any two refinement maps from V to U are contiguous.

Every cover of a locally compact Polish space admits a star-finite refinement [42], and every star-
finite cover of such a space admits a subordinate partition of unity. If (𝑋, 𝐴) is a locally compact pair,
then a cover of (𝑋, 𝐴) is a cover U = (𝑈 𝑗 ) 𝑗∈𝐽 of X such that if 𝑈 𝑗ℓ ∩ 𝐴 ≠ ∅ for ℓ ∈ {0, 1, . . . , 𝑛} and
𝑈 𝑗0 ∩ · · · ∩𝑈 𝑗𝑛 ≠ ∅, then 𝑈 𝑗0 ∩ · · · ∩𝑈 𝑗𝑛 ∩ 𝐴 ≠ ∅. This condition ensures that U ′ = (𝑈 𝑗 ∩ 𝐴) 𝑗∈𝐽 is a
cover of A such that the identity map 𝐽 → 𝐽 induces an inclusion 𝑁U ′ → 𝑁U as a full subcomplex.

If (𝑃,𝑄) is a polyhedral pair and (𝐾, 𝐿) is a simplicial pair and (𝑃,𝑄) = (|𝐾 |, |𝐿 |), then there exists
a canonical star-finite cover of (𝑃,𝑄) – namely, U𝑃

𝐾 := {St𝐾 (𝑣) | 𝑣 ∈ dom(𝐾)}, where as above, St𝐾 (𝑣)
is the open star of v in K. Notice that St𝐾 (𝑣) ∩ |𝐿 | ≠ ∅ if and only if 𝑣 ∈ 𝐿.

Recall that an equivalence relation E on a Polish space Y is open (or closed) if it is an open (or
closed) subset of 𝑌 × 𝑌 endowed with the product topology. Recall also that by a homotopy of maps in
LCP, we mean a pair homotopy.
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Lemma 4.3. For any (𝑍, 𝐶) and homotopy equivalence 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) in LCP,

(1) the map 𝑓 ∗ : LCP((𝑌, 𝐵), (𝑍, 𝐶)) → LCP((𝑋, 𝐴), (𝑍, 𝐶)) given by 𝑠 ↦→ 𝑠 ◦ 𝑓 is a homotopy
equivalence, and

(2) the homotopy relation on LCP((𝑌, 𝐵), (𝑍, 𝐶)) is open if and only if it is open on LCP((𝑋, 𝐴), (𝑍, 𝐶)).

Proof. Item (1) is not particularly difficult to see, and appears as Corollary 2.4.14 of [87]. Note, in
particular, that the map 𝑓 ∗ is continuous and that 𝑠 � 𝑡 if and only if 𝑓 ∗(𝑠) � 𝑓 ∗(𝑡). Hence, if the
homotopy relation on LCP((𝑋, 𝐴), (𝑍, 𝐶)) is open, then so too is its continuous preimage under the
map 𝑓 ∗, which is exactly the homotopy relation on LCP((𝑌, 𝐵), (𝑍, 𝐶)). Repeating this argument for a
homotopy equivalence 𝑔 : (𝑌, 𝐵) → (𝑋, 𝐴) in LCP completes the proof of item (2). �

Lemma 4.4. Suppose that a locally compact pair (𝑋, 𝐴) is homotopy equivalent to a compact pair and
that (𝑃,𝑄) is a polyhedral pair. Then the relation of homotopy among maps (𝑋, 𝐴) → (𝑃,𝑄) is open
(and, in consequence, closed as well).

Proof. By Lemma 4.3, we may without loss of generality assume that (𝑋, 𝐴) is a compact pair. Let (𝐾, 𝐿)
be a locally finite simplicial pair such that (𝑃,𝑄) = (|𝐾 |, |𝐿 |), and let U = {St𝐾 (𝑣) : 𝑣 ∈ dom(𝐾)}
denote the canonical star-finite cover of (𝑃,𝑄). Let V be any finite cover of (𝑋, 𝐴) which refines
{ 𝑓 −1(𝑈) : 𝑈 ∈ U }; there must then exist a function 𝑝 : V → dom(𝐾) such that 𝑓 (𝑉) ⊆ St𝐾 (𝑝(𝑉)) for
every 𝑉 ∈ V . Consider the open neighborhood

𝑁 ( 𝑓 ) = {𝑔 ∈ LC((𝑋, 𝐴), (𝑃,𝑄)) : ∀ 𝑉 ∈ V 𝑔(𝑉) ⊆ St(𝑝(𝑉))}

of f in LC((𝑋, 𝐴), (𝑃,𝑄)). We claim that every element g of 𝑁 ( 𝑓 ) is homotopic to f via a homotopy of
pairs.

Indeed, consider the open neighborhood 𝐷 :=
⋃
𝑈 ∈U 𝑈 × 𝑈 of the diagonal of 𝑃 × 𝑃, and let

𝜆 : 𝐷 × [0, 1] → 𝑃 be the map given by Lemma 4.2. Define 𝐹 : 𝑓 =⇒ 𝑔 by setting 𝐹 (𝑥, 𝑡) :=
𝜆( 𝑓 (𝑥), 𝑔(𝑥), 𝑡). By Lemma 4.2(1), F is indeed a homotopy from f to g. Since 𝑓 (𝐴) ⊆ 𝑄, this implies
that 𝑝(𝑉) ∈ dom(𝐿) for all 𝑉 ∈ V with 𝑉 ∩ 𝐴 ≠ ∅. From this observation and Lemma 4.2(2), we have
that F is a homotopy of pairs. �

Corollary 4.5. Suppose that (𝑋, 𝐴) is a compact pair and (𝑃,𝑄) is a polyhedral pair. Then
[(𝑋, 𝐴), (𝑃,𝑄)] is countable.

Letting A and Q denote basepoints of 𝑋 = 𝑆𝑛 and an arbitrary polyhedron P, respectively, we recover
the following well-known fact:

Corollary 4.6. For any 𝑛 ≥ 0 and countable, locally finite polyhedron P, the set 𝜋𝑛 (𝑃) is countable.

Remark 4.7. As indicated, the homotopy bracket [−,−] will play an increasingly prominent role in
the remainder of our paper, which might even be primarily regarded as a laying of foundations for
its descriptive theoretic study. In part, for reasons noted in this section’s introduction, within such a
program of study, some care is in order concerning the range of spaces permitted to appear in the target
position. Allowing, accordingly, spaces to vary most freely in the source position meshes well with our
present focus on cohomology, as will grow clearer below. That said, the reverse setup, the descriptive
set theoretic study of the homotopy classes of maps from a fixed polyhedron P to a suitable range of
spaces X, remains of considerable interest and would include the development of the definable homotopy
groups as a special case. Such groups do, of course, tacitly figure in the present work, and it is only
considerations of space and focus which have prevented us from saying more about them.

4.4. Homotopy is idealistic

In this section, we show that the relation of homotopy for maps from a locally compact pair (𝑋, 𝐴) to a
pointed polyhedron P is idealistic in the sense of Definition 3.1. We precede this result (Theorem 4.15)
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with a selection principle of general utility (Proposition 4.9); we then follow it with a more particular,
and closely related, selection principle (Corollary 4.19) which we will apply to argue Theorem 7.10.

Suppose that 𝑋,𝑌 are Polish spaces and 𝑅 ⊆ 𝑋 ×𝑌 is a closed relation such that for every 𝑥 ∈ 𝑋 , the
section 𝑅𝑥 = {𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝑅} is nonempty. Let V be a countable basis for the topology of Y. For
any Borel set 𝐵 ⊆ 𝑅, let

𝐵∗ = {𝑥 ∈ 𝑋 : 𝐵𝑥 is comeager in 𝑅𝑥}

and

𝐵Δ = {𝑥 ∈ 𝑋 : 𝐵𝑥 is nonmeager in 𝑅𝑥} .

Notice that

𝑥 ∈ 𝐵∗ ⇔ 𝐵𝑥 is comeager in 𝑅𝑥 ⇔ 𝑅𝑥 \ 𝐵𝑥 is meager in 𝑅𝑥 ⇔ 𝑥 ∉ (𝑅 \ 𝐵)Δ .

Hence, (𝑅 \ 𝐵)Δ = 𝑋 \ 𝐵∗. In particular, 𝐵∗ is Borel if and only if (𝑅 \ 𝐵)Δ is Borel, and 𝐵Δ is Borel if
and only if (𝑅 \𝐵)∗ is Borel. If {𝐵𝑛 : 𝑛 ∈ N} is a sequence of Borel subsets of R and 𝐵 =

⋂
𝑛∈N 𝐵𝑛, then

𝐵∗ =
⋂
𝑛∈N

(𝐵𝑛)∗.

Hence, 𝐵∗ is Borel if (𝐵𝑛)∗ is Borel for every 𝑛 ∈ N. Similarly, if 𝐶 =
⋃

𝑛∈N 𝐵𝑛, then

𝐶Δ =
⋃
𝑛∈N

(𝐵𝑛)Δ .

Hence, 𝐶Δ is Borel if (𝐵𝑛)Δ is Borel for every 𝑛 ∈ N.

Lemma 4.8. Adopt the notations above. Suppose that for every 𝑉 ∈ V ,

𝑅𝑉 := {𝑥 ∈ 𝑋 : 𝑉 ∩ 𝑅𝑥 ≠ ∅}

is Borel. Then 𝐵∗ and 𝐵Δ are Borel subsets of X for each Borel set 𝐵 ⊆ 𝑅.

Proof. Notice that if 𝐵 ⊆ 𝑅 is Borel and 𝑥 ∈ 𝑋 , then

𝑥 ∈ 𝐵∗ ⇔ ∀𝑉 ∈ V (𝑉 ∩ 𝑅𝑥 ≠ ∅ ⇒ 𝐵𝑥 ∩𝑉 = (𝐵 ∩ (𝑋 ×𝑉))𝑥 is nonmeager in 𝑅𝑥)

⇔ ∀𝑉 ∈ V
(
𝑥 ∈ 𝑅𝑉 ⇒ 𝑥 ∈ (𝐵 ∩ (𝑋 ×𝑉))Δ

)
. (19)

Since 𝑅𝑉 is Borel for all 𝑉 ∈ V , it follows that 𝐵∗ is Borel whenever (𝐵 ∩ (𝑋 ×𝑉))Δ is Borel for every
𝑉 ∈ V . Since (𝑅 \ 𝐵)Δ = 𝑋 \ 𝐵∗, this implies that (𝑅 \ 𝐵)Δ is Borel whenever (𝐵 ∩ (𝑋 ×𝑉))Δ is Borel
for every 𝑉 ∈ V . By these observations, the lemma will follow if we prove by induction on 𝛼 < 𝜔1 that
if 𝐵 ∈ 𝚺0

𝛼, then 𝐵Δ is a Borel subset of X.
For the base case, suppose that 𝐵 = 𝑈×𝑉 for some open set𝑈 ⊆ 𝑋 and𝑉 ⊆ 𝑌 such that𝑉 ∈ V . Then

𝐵Δ = {𝑥 ∈ 𝑈 : 𝑉 ∩ 𝑅𝑥 ≠ ∅} = 𝑅𝑉 ∩𝑈

is Borel by hypothesis. It follows that 𝐵Δ is Borel for every open 𝐵 ⊆ 𝑅.
For successor steps, suppose that our induction hypothesis holds for some𝛼 < 𝜔1. Then (𝐵∩(𝑋×𝑉))Δ

is Borel for every 𝑉 ∈ V and 𝐵 ∈ 𝚺0
𝛼. Hence, 𝐵Δ is Borel for every 𝐵 ∈ 𝚷0

𝛼. If 𝐶 ∈ 𝚺0
𝛼+1, then

𝐶 =
⋃

𝑛 𝐵𝑛 for 𝐵𝑛 ∈ 𝚺0
𝛼. Hence, 𝐶Δ is Borel.
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Lastly, if 𝐶 ∈ 𝚺0
𝛽 for some limit ordinal 𝛽 below which our inductive hypothesis holds, then since

𝐶 =
⋃

𝑛 𝐵𝑛 for some 𝐵𝑛 ∈ 𝚺0
𝛼𝑛

with 𝛼𝑛 < 𝛽 for all 𝑛 ∈ 𝜔, 𝐶Δ is Borel. This concludes the limit case of
our argument, and with it the proof. �

Proposition 4.9. There exists a Borel uniformization of any R as in Lemma 4.8; more precisely, there
exists a Borel function 𝑓 : 𝑋 → 𝑌 such that 𝑓 (𝑥) ∈ 𝑅𝑥 for every 𝑥 ∈ 𝑋 .

Proof. Consider the map 𝑥 ↦→ 𝐼𝑥 assigning to 𝑥 ∈ 𝑋 the 𝜎-ideal of meager subsets of X. By Lemma
4.8, if 𝐵 ⊆ 𝑅 is Borel, then {𝑥 ∈ 𝑋 : 𝐵 ∩ 𝑅𝑥 ∈ 𝐼𝑥} is Borel. Therefore, the conclusion follows from the
large section uniformization theorem [44, Theorem 18.6], in the form appearing as Theorem 18.6∗ in
[43, p. 2] and featuring in [45, p. 8] as well. �

We turn now more directly to the argument that the homotopy relation on LC((𝑋, 𝐴), (𝑃, ∗)) is
idealistic. We will argue this from a series of lemmas in which the closed relation R figuring in the
definitions above will be the following set:

𝑅 =
{
( 𝑓 , 𝛼) ∈ LCP ((𝑋, 𝐴) , (𝑃, ∗)) × LCP ((𝑋 × 𝐼, 𝐴 × 𝐼) , (𝑃, ∗)) : 𝛼 |𝑋×{0} = 𝑓

}
.

In particular, for the remainder of this subsection, for any Borel 𝐵 ⊆ LCP((𝑋, 𝐴), (𝑃, ∗)) × LCP((𝑋 ×
𝐼, 𝐴 × 𝐼), (𝑃, ∗)), it will be in reference to this R that the sets 𝐵∗ and 𝐵Δ are defined. We begin by
proving two lemmas concerning compact pairs (𝑋, 𝐴).

Lemma 4.10. Suppose that (𝑋, 𝐴) is a compact pair and (𝑃, ∗) is a pointed polyhedron. Fix a countable
open basis V for X, and let (𝐾, ∗) be a pointed simplicial complex such that (𝑃, ∗) = (|𝐾 |, ∗). Then
LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)) has a countable basis consisting of open sets of the form

𝑊 = {𝛼 ∈ LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)) : ∀𝑖, 𝑗 < ℓ 𝛼(𝑈𝑖 × 𝐿 𝑗 ) ⊆ St𝛽𝑠𝐾 (𝑝(𝑖, 𝑗)), } (20)

where

• 𝑠, ℓ ∈ N,
• 𝛽𝑠𝐾 is the 𝑠th barycentric subdivision of K,
• U = (𝑈𝑖)𝑖<ℓ is a finite open cover of X consisting of open sets from V ,
• L = (𝐿𝑖)𝑖<ℓ is a finite cover of [0, 1] consisting of closed intervals 𝐿 𝑗 = [𝑎 𝑗 , 𝑎 𝑗+1] with rational

endpoints such that 0 = 𝑎0 < 𝑎1 < · · · < 𝑎ℓ = 1, and
• p is a function ℓ × ℓ → dom (𝛽𝑠𝐾).

Proof. Fix a nonempty open subset V of LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)) and 𝛼0 ∈ 𝑉 . We prove that there
exists an open set W as above such that 𝛼0 ∈ 𝑊 ⊆ 𝑉 . Fix compatible metrics 𝑑𝑋 on X and 𝑑𝑃 on P and
endow 𝑋 × 𝐼 with the metric

𝑑 ((𝑥, 𝑡), (𝑥 ′, 𝑡 ′)) = max{𝑑𝑋 (𝑥, 𝑥 ′), |𝑡 − 𝑡 ′|}.

Since (𝑋, 𝐴) is a compact pair, there exists a 𝛿 > 0 such that V contains

𝑊 ′ = {𝛼 ∈ LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)) : ∀𝑧 ∈ 𝑋 × 𝐼 𝑑𝑃 (𝛼(𝑧), 𝛼0(𝑧)) < 𝛿},

and there exists a finite subcomplex 𝐿 ⊆ 𝐾 such that 𝛼0 (𝑋 × 𝐼) ⊆ |𝐿 |. And since L is a finite simplicial
complex, there exists an 𝑠 ∈ 𝜔 such that every St𝛽𝑠𝐿 (𝑣) has diameter less than 𝛿.

For every 𝑧 ∈ 𝑋 × 𝐼, there exists an open set 𝐸𝑧 ⊆ 𝑋 × 𝐼 such that 𝑧 ∈ 𝐸𝑧 and 𝛼0 (𝐸 𝑧) ⊆ St𝛽𝑠𝐿 (𝑣𝑧)
for some 𝑣𝑧 ∈ 𝛽𝑠 (𝐿). By compactness, there exists an ℓ ≥ 1 such that every subset of 𝑋 × 𝐼 of diameter
at most 1/ℓ is contained in 𝐸𝑧 for some 𝑧 ∈ 𝑋 × 𝐼. Therefore, let U = (𝑈𝑖)𝑖<ℓ be a finite open cover of X
consisting of open sets from V of diameter less than 1/ℓ, and set 𝑎𝑖 = 𝑖/ℓ for 0 ≤ 𝑖 ≤ ℓ. For each 𝑖, 𝑗 < ℓ,
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the set 𝑈𝑖 × [𝑎 𝑗 , 𝑎 𝑗+1] has diameter at most 1/ℓ and is contained in 𝐸𝑧 (𝑖, 𝑗) for some 𝑧(𝑖, 𝑗) ∈ 𝑋 × 𝐼.
Hence, if we let 𝑝(𝑖, 𝑗) = 𝑣𝑧 (𝑖, 𝑗) , then

𝛼0(𝑈𝑖 × [𝑎 𝑗 , 𝑎 𝑗+1]) ⊆ 𝛼0 (𝐸 𝑧 (𝑖, 𝑗) ) ⊆ St𝛽𝑠𝐿 (𝑣𝑧 (𝑖, 𝑗) ) ⊆ St𝛽𝑠𝐾 (𝑝(𝑖, 𝑗)).

These parameters define a W as in equation 20 with 𝛼0 ∈ 𝑊 ⊆ 𝑊 ′ ⊆ 𝑉 . �

Lemma 4.11. Suppose that (𝑋, 𝐴) is a compact pair and (𝑃, ∗) is a pointed polyhedron and that W is
an open subset of LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)). Then the set

𝑅𝑊 = {𝑔 ∈ LCP((𝑋, 𝐴), (𝑃, ∗)) : ∃𝛼 ∈ 𝑊 𝛼 |𝑋×{0} = 𝑔}

is Borel.

Proof. We retain the notation of Lemma 4.10. It will suffice to argue the lemma when W is as in equation
20. In this case, we claim that 𝑅𝑊 equals the open set

𝑆 = {𝑔 ∈ LCP((𝑋, 𝐴), (𝑃, ∗)) : ∀𝑖 < ℓ 𝑔(𝑈𝑖) ⊆ St𝑃𝛽𝑠𝐾 (𝑝(𝑖, 0)), }

where, of course, the sets 𝑈𝑖 and function p are those determining W. The relation 𝑅𝑊 ⊆ 𝑆 is clear,
since 𝑔(𝑈𝑖) ⊆ St𝛽𝑠𝐾 (𝑝(𝑖, 0)) for every 𝑔 ∈ 𝑅𝑊 and 𝑖 < ℓ, simply by the definition of W. For the reverse
containment, suppose that 𝑔0 ∈ LCP((𝑋, 𝐴), (𝑃, ∗)) satisfies 𝑔0(𝑈𝑖) ⊆ St𝛽𝑠𝐾 (𝑝(𝑖, 0)) for every 𝑖 < ℓ.
Fix a partition of unity (𝜌𝑖)𝑖∈𝜔 subordinate to U , and consider the function 𝑔1/2 : (𝑋, 𝐴) → (𝑃, ∗)
defined by

𝑥 ↦→
∑
𝑖<ℓ

𝜌𝑖 (𝑥)𝑒𝑝 (𝑖,0) .

Notice that 𝑔−1
1/2

(
St𝛽𝑠𝐾 (𝑝(𝑖, 0))

)
⊆ 𝑈𝑖 for every 𝑖 < ℓ; hence,

𝑔0

(
𝑔−1

1/2
(
St𝛽𝑠𝐾 (𝑝(𝑖, 0))

) )
⊆ 𝑔0 (𝑈𝑖) ⊆ St𝛽𝑠𝐾 (𝑝(𝑖, 0))

for every 𝑖 < ℓ, and we may define a homotopy ℎ0 : 𝑔0 ⇒ 𝑔1/2 : (𝑋, 𝐴) → (𝑃, ∗) by letting 𝜆 and D be
as in Lemma 4.2 and letting

ℎ0 (𝑥, 𝑡) = 𝜆(𝑔0(𝑥),
∑
𝑖<𝑑

𝜌𝑖 (𝑥)𝑒𝑝 (𝑖,0) , 𝑡).

We now claim that if {𝑖0, . . . , 𝑖𝑚} is a simplex in the nerve 𝑁U of the cover U of X, then⋃
0≤𝑘≤𝑚

{𝑝(𝑖𝑘 , 0), 𝑝(𝑖𝑘 , 1)} (21)

is a simplex in 𝛽𝑠𝐾 . To see this, fix an 𝛼0 ∈ 𝑊 and let 𝑔1 = 𝛼0 |𝑋×{𝑎1 }, suppose that {𝑖0, . . . , 𝑖𝑚} ∈ 𝑁U ,
and hence that there exists an 𝑥 ∈ 𝑈𝑖0 ∩ · · · ∩𝑈𝑖𝑚 . We then have

𝛼0 (𝑥, 𝑎1) ∈ 𝛼0 (𝑈𝑖𝑘 × 𝐿0) ∩ 𝛼0 (𝑈𝑖𝑘 × 𝐿1) ⊆ St𝛽𝑠𝐾 (𝑝(𝑖𝑘 , 0)) ∩ St𝛽𝑠𝐾 (𝑝(𝑖𝑘 , 1))

for 0 ≤ 𝑘 ≤ 𝑚; our claim follows immediately. In consequence, we may define a homotopy ℎ1 : 𝑔1/2 ⇒
𝑔1 : (𝑋, 𝐴) → (𝑃, ∗) by letting 𝜆 and D be as in Lemma 4.2 and letting

ℎ1 (𝑥, 𝑡) = 𝜆(
∑
𝑖<𝑑

𝜌𝑖 (𝑥)𝑒𝑝 (𝑖,0) ,
∑
𝑖<𝑑

𝑒𝑝 (𝑖,1) , 𝑡).
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To see that ℎ1 is well defined, observe as before that if 𝑥 ∈ 𝑋 and {𝑖0, . . . , 𝑖𝑚} = {𝑖 < ℓ : 𝜌𝑖 (𝑥) > 0},
then 𝑥 ∈ 𝑈𝑖0 ∩ · · · ∩𝑈𝑖𝑚 , and hence, the set described by expression 21 above is again a simplex in 𝛽𝑠𝐾 .

We now define an 𝛼 ∈ 𝑊 such that 𝛼 |𝑋×{0} = 𝑔0 by setting

𝛼 (𝑥, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
ℎ0 (𝑥,

2𝑡
𝑎1
) 0 ≤ 𝑡 ≤ 𝑎1

2 ;
ℎ1 (𝑥,

2𝑡
𝑎1
− 1)) 𝑎1

2 ≤ 𝑡 ≤ 𝑎1;
𝛼0 (𝑥, 𝑡) 𝑎1 ≤ 𝑡 ≤ 1.

This concludes the proof. �

We now extend this analysis to the locally compact setting.

Lemma 4.12. If (𝑋, 𝐴) is a locally compact pair and (𝑃, ∗) is a pointed polyhedron and W is an open
subset of LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)), then the set

𝑅𝑊 = {𝑔 ∈ LCP((𝑋, 𝐴), (𝑃, ∗)) : ∃𝛼 ∈ 𝑊 𝛼 |𝑋×{0} = 𝑔}

is Borel.

Proof. Note first that by replacing X with 𝑋/𝐴 (if A is nonempty) or with the space 𝑋+ obtained by
adding to X an additional basepoint (if A is empty), we may assume that A is a singleton {★}.

As above, it will suffice to prove the statement for basic open subsets W subset LCP((𝑋, 𝐴), (𝑃, ∗)).
Therefore, we may assume that there exist compact subsets 𝐾1, . . . , 𝐾𝑛 ⊆ 𝑋 × 𝐼 and open subsets
𝑈1, . . . ,𝑈𝑛 ⊆ 𝑃 such that

𝑊 = {𝛼 ∈ LCP((𝑋,★), (𝑃, ∗)) : ∀𝑖 < 𝑛 𝛼(𝐾𝑖) ⊆ 𝑈𝑖}.

Let

𝐾 = {★} ∪ proj𝑋 (𝐾0 ∪ · · · ∪ 𝐾𝑛−1) ⊆ 𝑋,

and let

𝑊 [𝐾] = {𝛼 ∈ LCP((𝐾 × 𝐼, {★} × 𝐼), (𝑃, ∗)) : ∀𝑖 < 𝑛 𝛼(𝐾𝑖) ⊆ 𝑈𝑖}.

By Lemma 4.11, the set

𝑅𝑊 [𝐾 ] = {𝑔 ∈ LCP((𝐾,★), (𝑃, ∗)) : ∃𝛼 ∈ 𝑊 [𝐾] 𝛼 |𝐾×{0} = 𝑔}

is Borel. By the Homotopy Extension Theorem applied to 𝐾 ⊆ 𝑋 and P,

𝑅𝑊 = {𝑔 ∈ LCP((𝑋,★), (𝑃, ∗)) : 𝑔 |𝐾 ∈ 𝑅𝑊 [𝐾 ] }

is a Borel subset of LCP((𝑋,★), (𝑃, ∗)). This concludes the proof. �

Lemma 4.13. If (𝑋, 𝐴) is a locally compact pair and (𝑃, ∗) is a pointed polyhedron and B is a Borel
subset of LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)), then the subsets 𝐵∗ and 𝐵Δ of LCP((𝑋, 𝐴), (𝑃, ∗)) are Borel as
well.

Proof. Apply Lemma 4.8 to Lemma 4.12. �

Lemma 4.14. Suppose that (𝑋, 𝐴) is a locally compact pair and P is a pointed polyhedron. If 𝑆 ⊆ 𝑋 and

𝑇 =
{
𝛼 ∈ LCP ((𝑋 × 𝐼, 𝐴 × 𝐼) , (𝑃, ∗)) : 𝛼 |𝑋×{1} ∈ 𝑆

}
,

then the set 𝑇∗ ⊆ LCP((𝑋, 𝐴), (𝑃, ∗)) is homotopy-invariant.
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Proof. Suppose that 𝑓 ∈ 𝑇∗ and f is homotopic to g. Let

𝐻 𝑓 = {𝛼 ∈ LCP ((𝑋 × 𝐼, 𝐴 × 𝐼) , (𝑃, ∗)) : 𝛼 (−, 0) = 𝑓 } ,

𝐻𝑔 = {𝛼 ∈ LCP ((𝑋 × 𝐼, 𝐴 × 𝐼) , (𝑃, ∗)) : 𝛼 (−, 0) = 𝑔} , and

𝐿 = {𝛼 ∈ LC ((𝑋 × 𝐼, 𝐴 × 𝐼) , (𝑃, ∗)) : 𝛼 (−, 0) = 𝑓 and 𝛼 (−, 1) = 𝑔} .

Notice that
{
𝛼 ∈ 𝐻 𝑓 : 𝛼 (−, 1) ∈ 𝑆

}
is comeager in 𝐻 𝑓 , since 𝑓 ∈ 𝑇∗.

For (𝛼, 𝛽) ∈ 𝐿 × 𝐻𝑔, define 𝛼 ∗ 𝛽 ∈ 𝐻 𝑓 by setting

(𝛼 ∗ 𝛽) (𝑡) =

{
𝛼 (2𝑡) 0 ≤ 𝑡 ≤ 1/2,
𝛽 (2𝑡 − 1) 1/2 ≤ 𝑡 ≤ 1.

This defines a continuous and open function 𝐿 × 𝐻𝑔 → 𝐻 𝑓 . Therefore,{
(𝛼, 𝛽) ∈ 𝐿 × 𝐻𝑔 : (𝛼 ∗ 𝛽) |𝑋×{1} ∈ 𝑆

}
=

{
(𝛼, 𝛽) ∈ 𝐿 × 𝐻𝑔 : 𝛽 |𝑋×{1} ∈ 𝑆

}
is comeager in 𝐿 × 𝐻𝑔. By the Kuratowski–Ulam theorem [44, Theorem 8.41], this implies that{

𝛽 ∈ 𝐻𝑔 : 𝛽 (−, 1) ∈ 𝑆
}

is comeager in 𝐻𝑔, and hence that 𝑔 ∈ 𝑇∗. �

We turn now to this section’s main result.

Theorem 4.15. If (𝑋, 𝐴) is a locally compact pair and (𝑃, ∗) is a pointed polyhedron, then the relation
of homotopy for maps (𝑋, 𝐴) → (𝑃, ∗) is idealistic.

Proof. For any map 𝑓 : (𝑋, 𝐴) → (𝑃, ∗), let [ 𝑓 ] ∈ [(𝑋, 𝐴), (𝑃, ∗)] denote its homotopy class. We
define a 𝜎-filter F[ 𝑓 ] of subsets of [ 𝑓 ] by letting 𝑆 ∈ F[ 𝑓 ] if and only if

{𝛼 ∈ LC((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)) : 𝛼 |𝑋×{1} ∈ 𝑆}

is comeager in

𝑅 𝑓 = {𝛼 ∈ LC(𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)) : 𝛼 |𝑋×{0} = 𝑓 }.

By Lemma 4.14, the definition ofF[ 𝑓 ] does not depend on the choice of representative f of the homotopy
class [ 𝑓 ].

Suppose now that 𝐸 ⊆ LC((𝑋, 𝐴), 𝑃, ∗)) × LC((𝑋, 𝐴), (𝑃, ∗)) is Borel. In the notation of Definition
3.1, our task is to show that, for 𝜁 = id and the filters F[ 𝑓 ] described above, the set 𝐸F is Borel. This
set unpacks as follows:

𝐸F = { 𝑓 ∈ LC(𝑋, 𝐴), (𝑃, ∗)) : F[ 𝑓 ]𝑔, ( 𝑓 , 𝑔) ∈ 𝐸}

= { 𝑓 ∈ LC(𝑋, 𝐴), (𝑃, ∗)) : {𝛼 ∈ 𝑅 𝑓 : ( 𝑓 , 𝛼 |𝑋×{1}) ∈ 𝐸} is comeager in 𝑅 𝑓 }

= 𝐵∗

where 𝐵 ⊆ 𝑅 is the Borel set

{( 𝑓 , 𝛼) ∈ 𝑅 : ( 𝑓 , 𝛼 |𝑋×{1}) ∈ 𝐸}.

By Lemma 4.13, 𝐸F is Borel, as desired, showing that the assignment [ 𝑓 ] ↦→ F[ 𝑓 ] indeed witnesses
that the relation of homotopy for maps (𝑋, 𝐴) → (𝑃, ∗) is idealistic. �
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We now deduce, from a sequence of minor variations on the lemmas just recorded, a selection
principle which we will want in Section 7.

For any compact pair (𝑋, 𝐴) and pointed polyhedron and (𝑃, ∗), let LCP0 ((𝑋, 𝐴), (𝑃, ∗)) de-
note the subspace of LCP((𝑋, 𝐴), (𝑃, ∗)) consisting of maps which are homotopic to the constant
map ∗ : (𝑋, 𝐴) → (𝑃, ∗). By Lemma 4.4, LCP0 ((𝑋, 𝐴), (𝑃, ∗)) is open in LCP((𝑋, 𝐴), (𝑃, ∗)). Let
Z ((𝑋, 𝐴), (𝑃, ∗)) denote the space of nullhomotopies; more precisely, let Z ((𝑋, 𝐴), (𝑃, ∗)) be the
closed subset of LCP((𝑋 × 𝐼, 𝐴 × 𝐼), (𝑃, ∗)) consisting of those 𝛼 for which 𝛼 |𝑋×{1} = ∗. As the proof
of the following lemma is essentially identical to that of Lemma 4.10, we omit it.

Lemma 4.16. Suppose that (𝑋, 𝐴) is a compact pair and (𝑃, ∗) is a pointed polyhedron. Fix a countable
open basis V for X, and let (𝐾, ∗) be a pointed simplicial complex such that (𝑃, ∗) = (|𝐾 |, ∗). Then
Z ((𝑋, 𝐴), (𝑃, ∗)) has a countable basis consisting of open sets of the form

𝑊 = {𝛼 ∈ Z ((𝑋, 𝐴), (𝑃, ∗)) : ∀𝑖, 𝑗 < ℓ 𝛼(𝑈𝑖 × 𝐿 𝑗 ) ⊆ St𝛽𝑠𝐾 (𝑝(𝑖, 𝑗))}, (22)

where

• 𝑠, ℓ ∈ N,
• 𝛽𝑠𝐾 is the 𝑠th barycentric subdivision of K,
• U = (𝑈𝑖)𝑖<ℓ is a finite open cover of X consisting of open sets from V ,
• L = (𝐿𝑖)𝑖<ℓ is a finite cover of [0, 1] consisting of closed intervals 𝐿 𝑗 = [𝑎 𝑗 , 𝑎 𝑗+1] with rational

endpoints such that 0 = 𝑎0 < 𝑎1 < · · · < 𝑎ℓ = 1, and
• p is a function ℓ × ℓ → dom (𝛽𝑠𝐾).

We also have the analogue of Lemma 4.11 (and its proof).

Lemma 4.17. Suppose that (𝑋, 𝐴) is a compact pair and (𝑃, ∗) is a pointed polyhedron and that W is
an open subset of Z ((𝑋, 𝐴), (𝑃, ∗)). Then the set

𝑅𝑊 = {𝑔 ∈ LCP0((𝑋, 𝐴), (𝑃, ∗)) : ∃𝛼 ∈ 𝑊 𝛼 |𝑋×{0} = 𝑔}

is Borel.

Proposition 4.18. If (𝑋, 𝐴) is a compact pair and (𝑃, ∗) is a pointed polyhedron, then there exists a
Borel function Φ : LCP0 ((𝑋, 𝐴), (𝑃, ∗)) → Z ((𝑋, 𝐴), (𝑃, ∗)), 𝑔 ↦→ Φ(𝑔) such that Φ(𝑔) is a homotopy
𝑔 ⇒ ∗ : (𝑋, 𝐴) → (𝑃, ∗).

Proof. This is an immediate consequence of Lemma 4.17 and Proposition 4.9. �

We apply the following corollary in the proof of Theorem 7.10.

Corollary 4.19. Let (𝑌, 𝐵) be a locally compact pair homotopy equivalent to the compact pair (𝑋, 𝐴),
and let (𝑃, ∗) be a pointed polyhedron. Then there exists a Borel function Φ𝑌 : LCP0((𝑌, 𝐵), (𝑃, ∗)) →
Z ((𝑌, 𝐵), (𝑃, ∗)), 𝑔 ↦→ Φ𝑌 (𝑔) such that Φ𝑌 (𝑔) is a homotopy 𝑔 ⇒ ∗ : (𝑌, 𝐵) → (𝑃, ∗).

Proof. By Proposition 4.18, there exists a Borel function Φ𝑋 : LCP0((𝑋, 𝐴), (𝑃, ∗)) →

Z ((𝑋, 𝐴), (𝑃, ∗)), 𝑔 ↦→ Φ𝑋 (𝑔) such that Φ𝑋 (𝑔) is a homotopy 𝑔 ⇒ ∗ : (𝑋, 𝐴) → (𝑃, ∗). Fix a
homotopy equivalence ℎ : (𝑋, 𝐴) → (𝑌, 𝐵), with homotopy inverse 𝑘 : (𝑌, 𝐵) → (𝑋, 𝐴). Let also
𝛼 : id(𝑌 ,𝐵) ⇒ ℎ ◦ 𝑘 : (𝑌, 𝐵) → (𝑌, 𝐵) be a homotopy.

For any 𝑔 ∈ LCP0((𝑌, 𝐵), (𝑃, ∗)), Φ𝑋 (𝑔 ◦ ℎ) is a homotopy 𝑔 ◦ ℎ ⇒ ∗ : (𝑋, 𝐴) → (𝑃, ∗); hence,
Φ𝑋 (𝑔 ◦ ℎ) ◦ (𝑘 × id𝐼 ) is a homotopy 𝑔 ◦ ℎ ◦ 𝑘 ⇒ ∗ : (𝑌, 𝐵) → (𝑃, ∗). Define then Φ𝑌 (𝑔) to be
the composition of the homotopy 𝑔 ◦ 𝛼 : 𝑔 ⇒ 𝑔 ◦ ℎ ◦ 𝑘 and the homotopy Φ𝑋 (𝑔 ◦ ℎ) ◦ (𝑘 × id𝐼 ) :
𝑔 ◦ ℎ ◦ 𝑘 ⇒ ∗. �
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5. Definable cohomology: the homotopical approach

We showed in the previous section that [𝑋, 𝑃] is idealistic whenever P is a polyhedron. If P carries,
in addition, an H-group structure, then [𝑋, 𝑃] is naturally regarded as a semidefinable group; if the
homotopy relation on LC(𝑋, 𝑃) is, moreover, Borel, then by our previous results, we will have succeeded
in showing that [𝑋, 𝑃] is a definable group. We show exactly this in Theorem 7.13 below.

We show in the present section that when P is an Eilenberg-MacLane space of type (𝐺, 𝑛), we can do
even better. We adopt the standard abuse of denoting such a P (which is only well defined up to homotopy
equivalence) by 𝐾 (𝐺, 𝑛). By a classical theorem of Huber’s, [𝑋, 𝐾 (𝐺, 𝑛)] is naturally isomorphic to
the Čech cohomology group Ȟ𝑛 (𝑋;𝐺), and in this section, we show that this isomorphism is, in
fact, definable. This carries several immediate and pleasant consequences – namely, (1) [𝑋, 𝐾 (𝐺, 𝑛)] is
essentially (i.e., is definably isomorphic to) a group with a Polish cover; (2) up to definable isomorphism,
Ȟ𝑛

def (𝑋;𝐺) is homotopy invariant and does not depend on the choice of covering system U ; (3) Ȟ𝑛
def is

a contravariant functor from LC (or more generally LCP) to GPC. The main ingredient of the proof of
the definable version of Huber’s theorem is a definable version of the simplicial approximation theorem;
see Lemma 5.5.

In the remainder of the paper, we will argue our results in whichever of the settings LC, LC∗ or LCP
seems most representative or most encompassing, depending on the context, often only sketching their
extension to any of the others. We note, looking ahead, that the hazards of such an approach are largely
allayed by our results in Section 6.3, which help to definably mediate between these settings.

5.1. Preliminaries: H-groups, H-cogroups and 𝑲(𝑮, 𝒏) spaces

Before proceeding, we recall some of the basic materials and operations of homotopy theory – in
particular, those which bear on the group and degree structures of [−,−] and cohomology functors,
respectively. The natural and standard context for these operations is the pointed setting (as in [2, 58, 80,
86]), any of which may be taken as a reference for this subsection); our initial framework, accordingly,
will be LC∗, although mild generalizations of these structures and operations will arise as we proceed.

The LC∗-analogue of the well-known suspension operation 𝑆𝑋 on unbased spaces is the reduced
suspension operation

Σ : LC∗ → LC∗ : (𝑋, ∗) ↦→
𝑋 × 𝐼

𝑋 × {0} ∪ 𝑋 × {1} ∪ {∗} × 𝐼
,

with the Σ-image of the basepoint as the basepoint of Σ(𝑋, ∗). The sum or wedge (𝑋 ∨ 𝑌, ∗) of (𝑋,★)
and (𝑌,�) in LC∗ simply identifies the basepoints in the spaces’ disjoint union. We will occasionally
elide notation of basepoints in LC∗; the smash product 𝑋 ∧𝑌 of two pointed spaces, for example, is the
quotient of 𝑋 × 𝑌 by the canonical copy of 𝑋 ∨ 𝑌 therein. Note that Σ𝑋 � 𝑋 ∧ 𝑆1, where 𝑆1 is the
basepointed sphere of dimension one.

An H-group (also called a grouplike space) is a group object in the category Ho(LC∗) (although it
will occasionally be convenient to make this definition in Ho(Top∗)). Thus, an H-group is a pointed
locally compact Polish space X endowed with a map 𝜇 : (𝑋 ∧ 𝑋, ∗) → (𝑋, ∗) (multiplication) such that

(1) the maps (𝑋, ∗) → (𝑋, ∗), 𝑥 ↦→ 𝜇(𝑥, ∗) and 𝑥 ↦→ (∗, 𝑥) are homotopic to the identity map 1𝑋 of X
(a homotopy identity);

(2) the maps 𝜇 ◦ (𝜇 ∧ 1𝑋 ) and 𝜇 ◦ (1𝑋 ∧ 𝜇), each taking (𝑋 ∧ 𝑋 ∧ 𝑋, ∗) to (𝑋, ∗), are homotopic
(homotopy associativity);

(3) there exists a map 𝑧 : (𝑋, ∗) → (𝑋, ∗) such that the maps (𝑋, ∗) → (𝑋, ∗), 𝑥 ↦→ 𝜇(𝑥, 𝑧(𝑥)) and
𝑥 ↦→ 𝜇(𝑧(𝑥), 𝑥) are nullhomotopic (a homotopy inverse).

Example 5.1. Any locally compact Polish group is an H-group, with its neutral element as basepoint.
Less trivial examples of H-group structures are given by the spaces Ω𝑋 := LC∗((𝑆1, ∗), (𝑋,★)) for X in
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LC∗ (note, however, that Ω𝑋 may itself fail to be locally compact); the multiplication operation is given
by concatenation of maps in a manner subsumed (since 𝑆1 = Σ𝑆0) by Example 5.2 below.

The H-group X is abelian (or homotopy commutative) if the maps 𝜇 and 𝜇 ◦ 𝜎, where 𝜎 :
(𝑋 ∧ 𝑋, ∗) → (𝑋, ∗), (𝑥, 𝑦) ↦→ (𝑦, 𝑥) is the ‘flip’, are homotopic. If (𝑋, ∗, 𝜇) is an H-group and (𝑌, 𝐵)
is locally compact pair, then [(𝑌, 𝐵), (𝑋, ∗)] is a semidefinable group with respect to the operation
defined by setting [ 𝑓 ] · [𝑔] = [𝜇 ◦ ( 𝑓 ∧ 𝑔)]; here, the identity element of [(𝑌, 𝐵), (𝑋, ∗)] is represented
by the constant map, which we also denote by ∗.

Dually, an H-cogroup is a cogroup in the category Ho(LC∗) [53, Section III.6]. Explicitly, an H-
cogroup is a pointed locally compact Polish space X endowed with a continuous map 𝜈 : 𝑋 → 𝑋 ∨ 𝑋
(comultiplication) such that

(1) the maps (𝑋, ∗) → (𝑋, ∗) given by (∗ ∨ 1𝑋 ) ◦ 𝜈 and (1𝑋 ∨ ∗) ◦ 𝜈 are homotopic to 1𝑋 ;
(2) the maps (𝑋, ∗) → (𝑋 ∨ 𝑋 ∨ 𝑋, ∗) defined by (1𝑋 ∨ 𝜈) ◦ 𝜈 and (𝜈 ∨ 1𝑋 ) ◦ 𝜈 are homotopic,
(3) there exists a map 𝜁 : (𝑋, ∗) → (𝑋, ∗) such that the maps (𝑋, ∗) → (𝑋, ∗) defined by (1𝑋 ∨ 𝜁) ◦ 𝜈

and (𝜁 ∨ 1𝑋 ) ◦ 𝜈 are homotopic to ∗.

Example 5.2. Main examples of H-cogroups are given by suspensions of spaces. Writing 〈𝑥, 𝑡〉 for the
image of (𝑥, 𝑡) ∈ 𝑋 × 𝐼 in Σ𝑋 , we have a comultiplication operation

𝜈(〈𝑥, 𝑡〉) =

{
(〈𝑥, 2𝑡〉, ∗) 0 ≤ 𝑡 ≤ 1/2
(∗, 〈𝑥, 2𝑡 − 1〉) 1/2 ≤ 𝑡 ≤ 1

(for ease of notation, we identify 𝑋 ∨ 𝑋 with its canonical copy in 𝑋 × 𝑋). The homotopy inverse
𝜁 : Σ𝑋 → Σ𝑋 is defined by 〈𝑥, 𝑡〉 ↦→ 〈𝑥, 1 − 𝑡〉.

The cogroup (𝑋, ∗, 𝜈) is homotopy commutative if the maps 𝑋 → 𝑋 ∨ 𝑋 defined by 𝜈 and 𝜎 ◦ 𝜈 are
homotopic. As above, for an H-cogroup (𝑋, 𝜈) and a pointed space Y, the operation [ 𝑓 ]·[𝑔] = [( 𝑓∨𝑔)◦𝜈]
defines a semidefinable group structure on [(𝑋, ∗), (𝑌,★)]; again, the identity element is represented
by the constant map.

A natural question when the first and second arguments of [(𝑋, ∗), (𝑌,★)] carry H-cogroup and
H-group structures, respectively, is how the induced group structures on [(𝑋, ∗), (𝑌,★)] relate. This
question has a pleasant answer even when (𝑌,★) is merely an H-space. Briefly put, an H -space is a
unital magma in the homotopy category of pointed spaces [2, Definition 2.2.1]. More explicitly, an
H-space is a pointed locally compact Polish space X endowed with a map 𝜇 : 𝑋 ∧ 𝑋 → 𝑋 such that the
maps (𝑋, ∗) → (𝑋, ∗), 𝑥 ↦→ 𝜇(𝑥, ∗) and 𝑥 ↦→ 𝜇(∗, 𝑥) are homotopic to 1𝑋 ; its ‘group operation’ 𝜇, in
other words, is free to violate items (2) and (3) of the definition of an H-group. The following lemma
appears as [2, Proposition 2.2.12].

Lemma 5.3. Let X be an H-cogroup, and let Y be an H-space. Then the group operation on
[(𝑋, ∗), (𝑌,★)] induced by the H-cogroup structure on X coincides with the operation on [(𝑋, ∗), (𝑌,★)]
induced by the H-space structure on Y and is, moreover, commutative.

We turn now to a central focus of this section: the Eilenberg-MacLane spaces first introduced in [28].
These are specified up to homotopy equivalence by the following definition:

Definition 5.4. For any abelian group G and 𝑛 ≥ 1, an Eilenberg-MacLane space of type (𝐺, 𝑛) is a
pointed topological space Y satisfying the following condition:

𝜋𝑖 (𝑌, ∗) =

{
𝐺 if 𝑖 = 𝑛

{0} if 𝑖 ≠ 𝑛.

See this subsection’s initial references for multiple approaches to such spaces’ construction. More
immediately relevant to our concerns are the following three main points:

https://doi.org/10.1017/fmp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.7


40 J. Bergfalk, M. Lupini and A. Panagiotopoulos

• For any 𝑛 ≥ 1 and countable abelian group G, there exists a (countable, locally finite) polyhedral
Eilenberg-MacLane space of type (𝐺, 𝑛), by any of the aforementioned constructions, together with
[64].

• For any Eilenberg-MacLane spaces 𝑌, 𝑍 of type (𝐺, 𝑛) and (𝐺, 𝑛 + 1), respectively, we have 𝑌 � Ω𝑍
(this follows from the uniqueness of Eilenberg-MacLane spaces up to homotopy equivalence, together
with the adjointness of the Σ and Ω operations). It is easy to see that homotopy equivalences
preserve H-group structures, and that the H-group operations on any Ω𝑍 referenced in Example 5.1
are continuous. Hence, any Eilenberg-MacLane space Y carries a natural H-group structure with
continuous H-group operations.

• It will be convenient for our purposes to take any discrete group G itself to be an Eilenberg-MacLane
space of type (𝐺, 0). Note that this extends the Ω equation cited just above; moreover, as noted in
[40], this convention extends the homotopical representation of the Čech cohomology groups to the
degree zero.

5.2. A definable simplicial approximation theorem

For simplicity, we will conduct the discussion of the next two subsections in the category LC, touching
on its generalization at their conclusion. Note that an H-group structure on P will continue in this context
to translate to one on [𝑋, 𝑃], definably so, as is clear either from inspection or Corollary 6.6. Therefore,
fix a locally compact Polish space X and a covering system U =

(
(𝑋𝑛), (U𝛼), (𝑟

𝛽
𝛼)

)
for X. Recall that by

𝑁𝛼, we denote the simplicial complex Nv(U𝛼). Fix also a countable locally finite simplicial complex
K, and assume that dom(𝐾) = N.

We begin by defining the Polish space SAU (𝑋, 𝐾) of all simplicial approximations of functions from
X to K. First, let 𝑆 :=

⋃
𝛼∈N ∗ U𝛼 be the collection of all open sets contained in any open cover of our

covering system. By Lemma 2.6, this set is countable, and without loss of generality, we may assume
that ∅ ∉ 𝑆. We endow the set dom(𝐾)𝑆 of all functions from S to dom(𝐾) with the product topology,
rendering it a Polish space. For every 𝑝 ∈ dom(𝐾)𝑆 and every 𝛼 ∈ N ∗, we denote by 𝑝 |𝛼 the restriction
of p to the set U𝛼. We define the set

SAU (𝑋, 𝐾) ⊆ N ∗ × dom(𝐾)𝑆

to consist of all pairs (𝛼, 𝑝) for which 𝑝 |𝛼 is a simplicial map from 𝑁𝛼 to K and 𝑝(𝑈) = 0 if 𝑈 ∉ U𝛼.
As a closed subset of the Polish space N ∗ × dom(𝐾)𝑆 , the space SAU (𝑋, 𝐾) is Polish. It is also clearly
in bijective correspondence with the set all simplicial maps of the form 𝑁𝛼 → 𝐾 from some complex
of the form 𝑁𝛼. With reference to the canonical open cover {St𝐾 (𝑘) : 𝑘 ∈ dom(𝐾)} of K, we now have
the following definable version of the simplicial approximation theorem.

Lemma 5.5. There is a Borel map 𝑓 ↦→ (𝛼 𝑓 , 𝑝 𝑓 ) from LC(𝑋, |𝐾 |) to SAU (𝑋, 𝐾) so that

𝑓 (𝑥) ∈ St𝐾 (𝑝 𝑓 (𝑈)) for all 𝑥 ∈ 𝑈 ∈ U𝛼 𝑓 .

Proof. For every 𝛼 ∈ N ∗, set U cl
𝛼 := {cl(𝑈) : 𝑈 ∈ U𝛼}. By Lemma 2.6(4), we may assume without loss

of generality that for all 𝛼 ∈ N ∗, every element of U cl
𝛼 is compact.

As before, for readability, we will omit the subscript of St𝐾 (𝑘). For every 𝑓 ∈ LC(𝑋, |𝐾 |) and
𝑘 ∈ dom(𝐾), set 𝑈 𝑓 ,𝑘 := 𝑓 −1(St(𝑘)); for each such f, collect these sets into an open cover U 𝑓 :=
(𝑈 𝑓 ,𝑘 : 𝑘 ∈ dom(𝐾)) of X. By Lemma 2.6(3), for each f, there exists some 𝛼 ∈ N ∗ so that U 𝑓 � U cl

𝛼 .
Let 𝛼 𝑓 be the ≤lex-least such; this specification is well defined by the fact that any ≤lex-decreasing
sequence in N ∗ has a limit, together with condition (L1) of Definition 2.3.

Claim 5.6. The assignment 𝑓 ↦→ 𝛼 𝑓 is Borel.

Proof of Claim. Fix 𝑡 ∈ (N<N)∗ with 𝑡 = 𝛼 𝑓 |𝑛 for some 𝑛 ∈ N. We will show that the set of all
𝑔 ∈ LC(𝑋, |𝐾 |) with 𝛼𝑔 ∈ N ∗

𝑡 is Borel.
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To that end, take g with𝛼𝑔 ∈ N ∗
𝑡 , and observe that there are only finitely many 𝑠 ∈ (N𝑛)∗ with 𝑠 <lex 𝑡.

If for some 𝑠 <lex 𝑡 we had U𝑔 � U cl
𝑠 , then by Definition 2.3 (E1), there would exist some 𝛽 ∈ N ∗

𝑠 with
U𝑔 � U cl

𝛽 . As 𝛽 <lex 𝛼𝑔, this is a contradiction. Hence, the condition 𝛼𝑔 ∈ N ∗
𝑡 is equivalent to

(1) for every 𝑈 ∈ U𝑡 , there is some 𝑘 ∈ dom(𝐾) with 𝑔(cl(𝑈)) ⊆ St(𝑘); and
(2) for every 𝑠 <lex 𝑡 in (N𝑛)∗, there is a 𝑈 ∈ U𝑠 such that 𝑔(cl(𝑈)) � St(𝑘) for all 𝑘 ∈ dom(𝐾).

Condition (1) is open and condition (2) is closed. �

Similarly, for every 𝑓 ∈ LC(𝑋, |𝐾 |), let 𝑝 𝑓 : 𝑆 → dom(𝐾) be the map which sends every 𝑈 ∈ U𝛼 𝑓

to the least 𝑘 ∈ dom(𝐾) = N with 𝑓 (cl(𝑈)) ⊆ St(𝑘) and with 𝑝 𝑓 (𝑈) = 0 for 𝑈 ∉ U𝛼 𝑓 . �

5.3. The definable version of Huber’s theorem

Let G be a countable abelian group. As noted above, 𝐾 (𝐺, 𝑛) will denote for us a polyhedral Eilenberg-
MacLane space of type (𝐺, 𝑛), despite the fact that such a space is only well defined up to homotopy
equivalence. It will also be notationally simplifying to conflate 𝐾 (𝐺, 𝑛) with its underlying simplicial
complex in a few places below. The following is the definable version of Huber’s theorem [40] (that
[𝑋, 𝐾 (𝐺, 𝑛)]def is a definable group follows from Theorem 4.15 and Theorem 7.13 below).

Theorem 5.7. Let X be a locally compact Polish space. For every 𝑛 ≥ 0, the definable group
[𝑋, 𝐾 (𝐺, 𝑛)]def is naturally definably isomorphic to the group with a Polish cover Ȟ𝑛

def (𝑋;𝐺).

Proof. Let Ȟ𝑛 (𝑋;𝐺) be the classical Čech cohomology group as defined in the proof of Theorem 2.12.
We start by recalling the definition of the Huber’s isomorphism 𝐽 : [𝑋, 𝐾 (𝐺, 𝑛)] → Ȟ𝑛 (𝑋;𝐺) between
abstract groups. For this, we follow the exposition from [3], which explicitly takes (9) as its working
definition for Čech cohomology.

To define J, one begins with a fundamental cohomology class 𝑢 ∈ Ȟ𝑛 (𝐾 (𝐺; 𝑛), 𝐺). While the explicit
description of u will have no bearing on our definability considerations below, such a u is essentially
provided by the Yoneda’s lemma. More concretely, note that, since G is abelian and 𝜋𝑘 (𝐾 (𝐺, 𝑛)) = 0
for 𝑘 < 𝑛, by Hurewicz’s Theorem (when 𝑛 = 0, one may more directly argue the point), we have that

Ȟ𝑛 (𝐾 (𝐺, 𝑛);Z) � 𝜋𝑛 (𝐾 (𝐺, 𝑛)) � 𝐺.

By the Universal Coefficient Theorem, we then have the following natural isomorphisms:

Ȟ𝑛 (𝐾 (𝐺, 𝑛);𝐺) � Hom(Ȟ𝑛 (𝐾 (𝐺, 𝑛);Z);𝐺) � Hom(𝐺,𝐺).

The element 𝑢 ∈ Ȟ𝑛 (𝐾 (𝐺, 𝑛);𝐺) is simply the pullback of the identity map 𝐺 → 𝐺 under these
isomorphisms.

Notice now that by the functoriality of Čech cohomology, every continuous map 𝑓 : 𝑋 → 𝐾 (𝐺, 𝑛)
induces an abstract group homomorphism

𝑓 ∗ : Ȟ𝑛 (𝐾 (𝐺, 𝑛);𝐺) → Ȟ𝑛 (𝑋;𝐺).

Huber’s isomorphism is defined by simply setting 𝐽 ([ 𝑓 ]�) := 𝑓 ∗(𝑢), for every [ 𝑓 ]� ∈ [𝑋, 𝐾 (𝐺, 𝑛)]; see
[3]. Our goal is to show that the abstract group isomorphism (𝜓 ◦ 𝐽) : [𝑋, 𝐾 (𝐺, 𝑛)]def → Ȟ𝑛

def (𝑋;𝐺),
where 𝜓 is defined by (14) in the proof of the Theorem 2.12, admits a Borel lift LC(𝑋, 𝐾 (𝐺, 𝑛)) →
Z𝑛 (𝑋;𝐺).

Let V be the ‘canonical’ open cover {St𝐾 (𝐺,𝑛) (𝑣) : 𝑣 ∈ dom(𝐾 (𝐺, 𝑛))} of 𝐾 (𝐺, 𝑛), consisting
of all open stars. We have a simplicial complex isomorphism 𝜂 : 𝐾 (𝐺, 𝑛) → Nv(V) induced by the
assignment 𝑣 ↦→ St𝐾 (𝐺,𝑛) (𝑣). Since V is a good cover (i.e., 𝑉0 ∩ · · · ∩𝑉𝑘 is either contractible or empty
for all choices of 𝑘 ∈ N and 𝑉𝑖 ∈ V), there exists 𝑢̂ ∈ Z𝑛 (Nv(V), 𝐺) so that 𝑢 = [𝑢̂ + B𝑛 (Nv(V);𝐺)]Ȟ
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where, as in the proof of Theorem 2.12, [𝑎]Ȟ is the image of 𝑎 ∈ H𝑛 (Nv(V);𝐺) under the inclusion
H𝑛 (Nv(V);𝐺) ↩→ Ȟ𝑛 (𝐾 (𝐺, 𝑛);𝐺); see, for example, [29, Section IX.9].

By the definition of the assignment 𝑓 ↦→ 𝑓 ∗ (see, for example, [29, Section IX.4]), for every
𝑓 ∈ LC(𝑋, 𝐾 (𝐺, 𝑛)), the associated element 𝑓 ∗(𝑢) ∈ Ȟ𝑛

(
𝑋;𝐺

)
is given by [(𝑢̂◦𝑠 𝑓 )+B𝑛 (Nv(U 𝑓 );𝐺)]Ȟ,

where U 𝑓 is any open cover of X which refines { 𝑓 −1(St𝐾 (𝐺,𝑛) (𝑣)) : 𝑣 ∈ dom(𝐾 (𝐺, 𝑛))} and
𝑠 𝑓 : Nv(U 𝑓 ) → 𝐾 (𝐺, 𝑛) is any ‘canonical’ map (i.e., any (necessarily simplicial) map with 𝑠 𝑓 (𝑈) =
𝑣 =⇒ 𝑈 ⊆ 𝑓 −1(St𝐾 (𝐺,𝑛) (𝑣))). In particular, if (𝛼 𝑓 , 𝑝 𝑓 ) ∈ SAU (𝑋, 𝐾 (𝐺, 𝑛)) is the pair that is
associated to 𝑓 ∈ LC(𝑋, 𝐾 (𝐺, 𝑛)) by Lemma 5.5, then we have

𝑓 ∗(𝑢) = [(𝑢̂ ◦ 𝜂 ◦ 𝑝 𝑓 ) + B𝑛 (Nv(U𝛼 𝑓 );𝐺)]Ȟ.

But then, by the definition of 𝜓 in the proof of the Theorem 2.12, and since 𝛼 𝑓 trivially satisfies
U𝛼 𝑓 � U𝛼 𝑓 and 𝑟

𝛼 𝑓
𝛼 𝑓

:= id, we have that

(𝜓 ◦ 𝐽) ( 𝑓 ) := (𝜓 ◦ 𝑓 )∗(𝑢) = [𝑢̂ ◦ 𝜂 ◦ 𝑝 𝑓 ] + B𝑛 (U ;𝐺).

But then the map LC(𝑋, 𝐾 (𝐺, 𝑛)) → Z𝑛 (𝑋;𝐺), given by 𝑓 ↦→ [𝑢̂ ◦ 𝜂 ◦ 𝑝 𝑓 ], is a lift of 𝜓 ◦ 𝐽. It is also
Borel by Lemma 5.5, since both 𝑢̂ and 𝜂 are fixed and independent of f. By Proposition 3.11, it follows
that 𝜓 ◦ 𝐽 is a definable isomorphism. �

The following corollaries are all immediate.

Corollary 5.8. Up to definable isomorphism, the group with a Polish cover Ȟ𝑛
def (𝑋;𝐺) does not depend

on the choice of covering system U for X.

Corollary 5.9. The definable group [𝑋, 𝐾 (𝐺, 𝑛)] is essentially – that is, is definably isomorphic to – a
group with a Polish cover.

Altogether, we have the following; homotopy invariance follows, for example, from Lemma 4.3.

Corollary 5.10. For any morphism 𝑔 : 𝑋 → 𝑌 in LC, write 𝑔∗ for the function

[𝑌, 𝐾 (𝐺, 𝑛)] → [𝑋, 𝐾 (𝐺, 𝑛)] : [ 𝑓 ] ↦→ [ 𝑓 ◦ 𝑔] .

The assignments 𝑋 ↦→ Ȟ𝑛
def (𝑋;𝐺) and 𝑔 ↦→ 𝑔∗ determine a contravariant functor LC → GPC which

factors through Ho(LC); in particular, they determine a functor which maps homotopy equivalent spaces
to definably isomorphic groups with Polish cover.

Turning now to the category LCP of locally compact pairs, observe that the same map witnessing
the isomorphism between [𝑋, 𝐾 (𝐺, 𝑛)] and Ȟ𝑛

def (𝑋;𝐺) – namely, ([ 𝑓 ] ↦→ 𝑓 ∗(𝑢)) – will witness
that [(𝑋, 𝐴), (𝐾 (𝐺, 𝑛), ∗)] and Ȟ𝑛

def (𝑋, 𝐴;𝐺) are isomorphic as well. Hence the essential content of
Theorem 5.7, which is that this map admits a Borel lift, holds in LCP by a verbatim argument.

5.4. Remarks on axioms and notation

We have arrived by two distinct means to definably isomorphic cohomology groups; this is the sort of
circumstance in which mathematicians begin to regard an object as canonical. One way to make this
impulse precise is via axioms, and these are, indeed, a third main way of characterizing the classical
Čech cohomology groups of locally compact Polish spaces. In [71, Theorem 8], for example, Petkova
showed that any cohomology theory coinciding with Čech cohomology on compact metric spaces
and satisfying a natural additivity axiom coincides with Čech cohomology on locally compact metric
spaces as well. We note that definable versions of the main ingredients of this argument – the Five
Lemma and Urysohn’s Lemma, for example – already appear in either the present work or (in nuce) in
its predecessor [9], so that the work of axiomatizing definable cohomology on locally compact Polish
spaces reduces essentially to verifications, over the category of metric compacta, of the more classical
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Eilenberg-Steenrod and cluster axioms in the definable setting, or more precisely, that these axioms
determine a cohomology theory up to definable isomorphism. Such verifications (along the lines of
Theorem 2.14) do not appear to us to be either difficult or particularly illuminating and would detain us
too long from the more interesting decompositions and applications of Sections 7 and 8, respectively;
for these reasons, we leave their proper treatment for another occasion.

One might along different but related lines axiomatize the reduced definable Čech cohomology
groups (see [58, Chapter 19]); this brings us to a more mundane consideration, which is the following.
Though it has so far seemed valuable to notationally distinguish between classical and definable Čech
cohomology, it will be convenient in what follows to reserve the subscript position for other purposes.
And since we will be so primarily concerned with definable Čech cohomology in what follows, there
is little danger of confusion in denoting its (definable) groups by H𝑛, simply – and similarly for the
brackets [−,−] – and this henceforth will be our practice.

6. A definable homotopy extension theorem

In this section, we formulate and prove definable versions of three fundamental topological results
– namely, Urysohn’s Lemma, Borsuk’s Homotopy Extension Theorem, and the presentation of the
unbased homotopy classes of maps from (𝑋,★) to (𝑃, ∗) in terms of the action of 𝜋1 (𝑃, ∗) on the set of
based homotopy classes of maps between them. Each of these definable results is applied in the proof of
the one which follows it, and by facilitating the passage between pointed and unpointed settings, the last
of them both simplifies the argument of some of our results and extends their scope, as we have noted
already. That said, these definable results play a sufficiently minor role in later sections that readers may
skip over this one without much loss of continuity; put differently, we have recorded them as much for
their general interest and place in the development of the field as for any particular application herein.

6.1. The definable version of Urysohn’s Lemma

Let X be a locally compact Polish space. Fix a countable basis B of open sets of X. Let 𝐹 (𝑋) be
the collection of closed subsets of X. We regard 𝐹 (𝑋) as a topological space with respect to the Fell
topology. This has a basis of sets of the form

{𝐹 ∈ 𝐹 (𝑋) : 𝐹 ∩ 𝐾 = ∅, 𝐹 ∩𝑈1 ≠ ∅, . . . , 𝐹 ∩𝑈𝑛 ≠ ∅} ,

where 𝐾 ⊆ 𝑋 is compact and 𝑈1, . . . ,𝑈𝑛 are open subsets of X. This topology renders 𝐹 (𝑋) a Polish
space [30].

We let 𝑂 (𝑋) be the collection of open subsets of X. We regard 𝑂 (𝑋) as a topological space by
declaring the bijection 𝐹 (𝑋) → 𝑂 (𝑋), 𝐹 ↦→ 𝑋\𝐹 to be a homeomorphism. Observe that the function
B𝜔 → 𝑂 (𝑋) which maps a sequence to its union is Borel, as is the function 𝑂 (𝑋) → 𝐹 (𝑋) : 𝑈 ↦→ 𝑈.

Lemma 6.1. The set 𝑆 = {(𝐹,𝑂) : 𝐹 ⊆ 𝑂} is a Borel subset of 𝐹 (𝑋) ×𝑂 (𝑋), and there exists a Borel
function 𝑓 : 𝑆 → 𝑂 (𝑋) such that 𝐹 ⊆ 𝑓 (𝐹,𝑂) ⊆ 𝑓 (𝐹,𝑂) ⊆ 𝑂 for all (𝐹,𝑂) ⊆ 𝑆.

Proof. First, fix a cofiltration of 𝑋 =
⋃

𝑛∈N 𝑋𝑛 of X by compact subsets 𝑋𝑛 (see Definition 7.1); note
then that the collection 𝐾 (𝑋) of compact subsets of X is a Borel subset of 𝐹 (𝑋) since 𝐹 ∈ 𝐹 (𝑋) is
in 𝐾 (𝑋) if and only if there exists an 𝑛 ∈ N such that 𝐹 ⊆ 𝑋𝑛. Observe also that for any compact
𝐾 ⊆ 𝑋 , the function 𝑓𝐾 : 𝐹 (𝑋) → 𝐾 (𝑋) : 𝐹 ↦→ 𝐹 ∩ 𝐾 is Borel. To see this, fix a compatible
metric d on X, and for all 𝑟 > 0, let 𝐵(𝐾, 𝑟) = {𝑥 ∈ 𝑋 : inf{𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐾} < 𝑟} and observe that
{𝐹 : 𝐹 ∩ 𝐾 ∩𝑈 ≠ ∅} =

⋂
𝑛∈N{𝐹 : 𝐹 ∩ 𝐵(𝐾, 1

𝑛+1 ) ≠ ∅}.

Claim 6.2. The set 𝑆𝑐 = {(𝐾,𝑂) : 𝐾 ⊆ 𝑂} is a Borel subset of 𝐾 (𝑋) ×𝑂 (𝑋).

Proof of Claim. Fix a dense {𝑥𝑛 : 𝑛 ∈ N} ⊆ 𝑋 and, as above, for any 𝑥 ∈ 𝑋 and 𝑟 > 0, write
𝐵(𝑥, 𝑟) for the open ball about x of d-radius r. Observe that 𝐾 ⊆ 𝑂 if and only if there exist an N
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and 𝑖0, . . . , 𝑖𝑁 in N and positive rational 𝑞0, . . . , 𝑞𝑁 such that 𝐾 ⊆ 𝐵(𝑥𝑖0 , 𝑞0) ∪ · · · ∪ 𝐵(𝑥𝑖𝑁 , 𝑞𝑁 ) and
𝐵(𝑥𝑖0 , 2𝑞0) ∪ · · · ∪ 𝐵(𝑥𝑖𝑁 , 2𝑞𝑁 ) ⊆ 𝑂. �

To establish our first assertion, it now suffices to observe that 𝐹 ⊆ 𝑂 for (𝐹,𝑂) ∈ 𝐹 (𝑋) × 𝑂 (𝑋) if
and only if 𝑓𝑋𝑛 (𝐹) ⊆ 𝑂 for all 𝑛 ∈ N.

For the second assertion, let ⊳ well-order B2 in order-type 𝜔 and recursively define (𝑈𝑘 , 𝑉𝑘 ) to be
the ⊳-least (𝑈,𝑉) such that
• 𝑈𝑘 ∩𝑉𝑘 = ∅,
• 𝑈𝑘 ⊆ 𝑂 and 𝑉𝑘 ∩ 𝐹 = ∅,
• either 𝐹 ⊆

⋃
𝑖<𝑘 𝑈𝑖 or 𝑈𝑘 ∩ (𝐹\

⋃
𝑖<𝑘 𝑈𝑖) ≠ ∅, and

• letting 𝑃 = 𝑋\𝑂, either 𝑃 ⊆
⋃

𝑖<𝑘 𝑉𝑖 or 𝑉𝑘 ∩ (𝑃\
⋃

𝑖<𝑘 𝑉𝑖) ≠ ∅.
This defines for each 𝑘 ∈ N a Borel function 𝑆 → B2 given by (𝐹,𝑂) ↦→ (𝑈𝑘 , 𝑉𝑘 ). The map
(𝐹,𝑂) ↦→

⋃
𝑘∈N𝑈𝑘 is then a Borel function 𝑓 : 𝑆 → 𝑂 (𝑋), as desired. �

In the setting of LC, Urysohn’s Lemma takes the following form: if X is a locally compact Polish
space and 𝐴, 𝐵 are disjoint closed subsets of X, then there exists a continuous function 𝑓 : 𝑋 → [0, 1]
such that 𝑓 [𝐴] = 0 and 𝑓 [𝐵] = 1. The following should be regarded as the definable version of this
statement.
Lemma 6.3. Let X be a locally compact Polish space, and let P denote the Borel set of pairs (𝐴, 𝐵) ∈
𝐹 (𝑋) × 𝐹 (𝑋) such that 𝐴 ∩ 𝐵 = ∅. For each such pair (𝐴, 𝐵), there exists a map 𝑓 : 𝑋 → [0, 1] such
that 𝑓 [𝐴] = 0 and 𝑓 [𝐵] = 1; this map f may, moreover, be taken to depend in a Borel way on the pairs
(𝐴, 𝐵), in the sense that there exists a choice function

P → LC(𝑋, [0, 1]), (𝐴, 𝐵) ↦→ 𝑓

witnessing this assertion which is Borel.
Proof. We adopt the notation of the proof of Urysohn’s Lemma in [67, Theorem 33.1]. Endow 𝑂 (𝑋)Q

with the product topology. LetZ be the Borel subset of𝑂 (𝑋)Q consisting of families
(
𝑈𝑝

)
𝑝∈Q ∈ 𝑂 (𝑋)

Q

such that 𝑈 𝑝 ⊆ 𝑈𝑞 whenever 𝑝 < 𝑞, 𝑈𝑝 = ∅ for 𝑝 < 0, and 𝑈𝑞 = 𝑋 for 𝑞 > 1.
As in the proof of [67, Theorem 33.1], for any disjoint A and B in 𝐹 (𝑋), there exists a

(
𝑈𝑝

)
𝑝∈Q ∈ Z

such that 𝐴 ⊆ 𝑈0 and 𝑈1 = 𝑋\𝐵; letting 𝑓 (𝑥) := inf{𝑝 ∈ Q : 𝑥 ∈ 𝑈𝑝} then determines a function 𝑓 :
𝑋 → [0, 1], as desired. The sequence

(
𝑈𝑝

)
𝑝∈Q is defined by recursion, with respect to an enumeration

(𝑝𝑛)𝑛∈𝜔 of Q, as follows. One lets 𝑈1 = 𝑋\𝐵 and then chooses 𝑈0 so that

𝐴 ⊆ 𝑈0 ⊆ 𝑈0 ⊆ 𝑈1.

By Lemma 6.1, 𝑈0 can be chosen in a Borel fashion. Suppose that 𝑈𝑝𝑚 has been defined for 𝑚 < 𝑛 (as
is vacuously the case if 𝑛 = 0) and that 𝑝𝑛 ∉ {0, 1}. If 𝑝𝑛 < 0, then let 𝑈𝑝𝑛 = ∅, and if 𝑝𝑛 > 1, then
let 𝑈𝑝𝑛 = 𝑋 . If 𝑝𝑛 ∈ (0, 1), then let p and q be the immediate predecessor and immediate successor,
respectively, of 𝑝𝑛 in {𝑝𝑚 : 𝑚 < 𝑛} with respect to the standard ordering of Q, and let 𝑈𝑝𝑛 be such that

𝑈𝑝 ⊆ 𝑈𝑝𝑛 ⊆ 𝑈 𝑝𝑛 ⊆ 𝑈𝑞 .

Again, by Lemma 6.1, 𝑈𝑝𝑛 may be chosen in a Borel fashion.
It remains only to show that the function Z → LC(𝑋, [0, 1]), (𝑈𝑝)𝑝∈Q ↦→ 𝑓 given by

𝑓 (𝑥) := inf{𝑝 ∈ Q : 𝑥 ∈ 𝑈𝑝}

is Borel. This, though, is immediate: for any 𝑏 ∈ [0, 1] and compact 𝐾 ⊆ 𝑋 , we have that 𝑓 (𝐾) ⊆
(−∞, 𝑏) if and only if there exist ℓ ∈ 𝜔 and 𝑝0, . . . , 𝑝ℓ ∈ Q ∩ (−∞, 𝑏) such that 𝐾 ⊆ 𝑈𝑝0 ∪ · · · ∪𝑈𝑝ℓ .
Similarly, 𝑓 (𝐾) ⊆ (𝑏, +∞) if and only if there exists a 𝑞 ∈ Q such that 𝑞 > 𝑏 and [𝑈𝑝∩𝐾 ≠ ∅ ⇒ 𝑝 > 𝑞]
for every 𝑝 ∈ Q. This concludes the proof. �
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6.2. The definable version of the Homotopy Extension Theorem

We recorded the classical framing of Borsuk’s Homotopy Extension Theorem for locally compact Polish
spaces as Theorem 4.1 above. Implicit in its proof is its definable version:

Theorem 6.4. Suppose that A is a closed subspace of a locally compact Polish space X and that P is
a polyhedron. Then for every map 𝑔 : (𝐴 × 𝐼) ∪ (𝑋 × {0}) → 𝑃, there exists a map 𝑔̃ : 𝑋 × 𝐼 → 𝑃
which extends g. Furthermore, 𝑔̃ can be chosen in a Borel fashion from g, in the sense that there exists
a choice function

LC((𝐴 × 𝐼) ∪ (𝑋 × {0}), 𝑃) → LC(𝑋 × 𝐼, 𝑃), 𝑔 ↦→ 𝑔̃

witnessing this assertion which is Borel.

Proof. By [56, Chapter I.3, Theorem 2], we may assume that P is a closed subspace of a convex subset
D of a Banach space L. Since P is an absolute neighborhood retract [56, Tppendix 1, Theorem 1.11],
there exists a neighborhood N of P in D and a retraction 𝑠 : 𝑁 → 𝑃.

Consider now a map 𝑔 : (𝐴 × 𝐼) ∪ (𝑋 × {0}) → 𝑃. By [56, Chapter I.3, Theorem 2], there exists a
map 𝐺 : 𝑋 × 𝐼 → 𝐷 that extends g. It is plain from the proof of this theorem that G depends in a Borel
fashion on g, and that one may in a Borel manner choose along with G an open subset 𝑉 ⊇ 𝐴 of X such
that 𝐺 (𝑉 × 𝐼) ⊆ 𝑁 . By the definable version of Urysohn’s Lemma, one may, in a Borel fashion, then
choose for each V a continuous map 𝜙 : 𝑋 → 𝐼 such that 𝜙|𝐴 = 1 and 𝜙|𝑋\𝑉 = 0. As in the proof of
[56, Chapter I.3, Lemma 2], 𝜙 determines an extension of the inclusion map

(𝐴 × 𝐼) ∪ (𝑋 × {0}) → (𝑉 × 𝐼) ∪ (𝑋 × {0})

to the continuous map

𝑟 : 𝑋 × 𝐼 → (𝑉 × 𝐼) ∪ (𝑋 × {0}) , (𝑥, 𝑡) ↦→ (𝑥, 𝜙(𝑥)𝑡) .

To conclude the construction, let 𝑔̃ = 𝑠 ◦ 𝐺 ◦ 𝑟 : 𝑋 × 𝐼 → 𝑃. �

6.3. The definable relation of based and unbased homotopy classes of maps

The following theorem, which relies on both our definable homotopy extension and homotopy selection
theorems, is the definable version of the well-known isomorphism [(𝑋,★), (𝑃, ∗)]/𝜋1(𝑃, ∗) � [𝑋, 𝑃]
[80, §7.3].

Theorem 6.5. Let P be a path-connected polyhedron with basepoint ∗, and let X be an object of
LC∗. There exists a definable right action of the definable group [(𝑆1,�), (𝑃, ∗)] on the semidefinable
set [(𝑋,★), (𝑃, ∗)] whose semidefinable set of orbits [(𝑋,★), (𝑃, ∗)]/[(𝑆1,�), (𝑃, ∗)] is definably
isomorphic to the semidefinable set [𝑋, 𝑃].

Proof. We describe a Borel function

𝐹 : LC∗((𝑋,★), (𝑃, ∗)) × LC∗((𝑆1,�), (𝑃, ∗)) → LC∗((𝑋,★), (𝑃, ∗))

which induces the action in question. F is defined as follows. Any ( 𝑓 , 𝛾) ∈ LC∗((𝑋,★), (𝑃, ∗)) ×
LC∗((𝑆1,�), (𝑃, ∗)) naturally identifies with a map 𝑓 ∨ 𝛾 : 𝑋 ∨ 𝐼 → 𝑃. By the Homotopy Extension
Theorem, this map extends to a homotopy ℎ ( 𝑓 ,𝛾) : 𝑋 × 𝐼 → 𝑃 for which ℎ ( 𝑓 ,𝛾) (−, 0) = 𝑓 and
ℎ ( 𝑓 ,𝛾) (∗,−) = 𝛾 and ℎ ( 𝑓 ,𝛾) (−, 1) ∈ LC∗((𝑋,★), (𝑃, ∗)); moreover, by Theorem 6.4, these extensions
may be chosen in a Borel fashion. Assume that they have been, and let 𝐹 ( 𝑓 , 𝑔) = ℎ ( 𝑓 ,𝛾) (−, 1) for each
( 𝑓 , 𝛾) ∈ LC∗((𝑋,★), (𝑃, ∗)) × LC∗((𝑆1,�), (𝑃, ∗)).

Clearly, F is Borel. To see that F induces an action as claimed, suppose the pairs 𝑓 , 𝑔 : (𝑋,★) → (𝑃, ∗)
and 𝛾, 𝛿 : (𝑆1,�) → (𝑃, ∗) are each homotopic; together with ℎ ( 𝑓 ,𝛾) and ℎ (𝑔, 𝛿) , these homotopies
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determine a map r from

(𝑋 × 𝐼 × {0} ∪ ({★} × 𝐼 ∪ 𝑋 × {0, 1}) × 𝐼) ⊆ 𝑋 × 𝐼 × 𝐼

to P. More precisely, r is defined by identifying 𝑟 � 𝑋 × 𝐼 ×{0} with 𝑓 ⇒ 𝑔, 𝑟 � {★}× 𝐼 × 𝐼 with 𝛾 ⇒ 𝛿,
and 𝑟 � 𝑋×{0}× 𝐼 and 𝑟 � 𝑋×{1}× 𝐼 with ℎ ( 𝑓 ,𝛾) and ℎ (𝑔, 𝛿) , respectively. By the Homotopy Extension
Theorem, this map extends to an 𝐻 : 𝑋 × 𝐼 × 𝐼 → 𝑃, and 𝐻 (−,−, 1) is then the desired basepoint-
preserving homotopy from 𝐹 ( 𝑓 , 𝛾) to 𝐹 (𝑔, 𝛿). This shows that F induces a well-defined operation at
the level of the quotients; that this operation is a right action is then immediate.

To see the isomorphism in question, regard [(𝑋,★), (𝑃, ∗)]/[(𝑆1,�), (𝑃, ∗)] as the semidefinable
set (𝑌, 𝐸) wherein 𝑌 = LC∗((𝑋,★), (𝑃, ∗)) and E is the equivalence relation defined by 𝑓 𝐸 𝑔 if and
only if there exists an 𝛼 : (𝑋,★) → (𝑃, ∗) such that [ 𝑓 ] · [𝛼] = [𝑔]. Observe then that the map
LC∗((𝑋,★), (𝑃, ∗)) → LC(𝑋, 𝑃) : 𝑓 ↦→ 𝑓 induces a definable function

𝜙 : [(𝑋,★), (𝑃, ∗)]/[(𝑆1,�), (𝑃, ∗)] → [𝑋, 𝑃] .

We describe a definable inverse 𝜓 to 𝜙. By Proposition 4.18, we may, in a Borel fashion, choose for
each 𝑓 ∈ LC(𝑋, 𝑃) a homotopy 𝛾 [ 𝑓 ] : {★} × 𝐼 → 𝑃 with 𝛾 [ 𝑓 ] (★, 0) = 𝑓 (★). As above, we may
then apply the definable Homotopy Extension Theorem to, in a Borel fashion, extend each 𝑓 ∨ 𝛾 [ 𝑓 ]
to an ℎ ( 𝑓 ,𝛾 [ 𝑓 ]) : 𝑋 × 𝐼 → 𝑃. The definable function 𝜓 is then that induced by the assignments
𝑓 ↦→ ℎ ( 𝑓 ,𝛾 [ 𝑓 ]) (−, 1). The verification that 𝜓 is well defined is almost exactly as before: within the
framework of this construction, any 𝑓 ⇒ 𝑔 : 𝑋 → 𝑃 induces maps from ‘walls’ of 𝑋 × 𝐼 × 𝐼 which, by
the Homotopy Extension Theorem, extend to a map 𝑋 × 𝐼 × 𝐼 → 𝑃 whose restriction to 𝑋 × 𝐼 × {1}
defines a homotopy from ℎ ( 𝑓 ,𝛾 [ 𝑓 ]) (−, 1) to ℎ (𝑔,𝛾 [𝑔]) (−, 1). Unlike before, this homotopy need not be
basepoint-preserving. Its restriction to {★} × 𝐼, however, determines an 𝛼 : (𝑆1,�) → (𝑃, ∗), from
which it follows that [ℎ ( 𝑓 ,𝛾 [ 𝑓 ]) (−, 1)] · [𝛼] = [ℎ (𝑔,𝛾 [𝑔]) (−, 1)], as desired. That 𝜓 is both a right and
left inverse of 𝜙 is now immediate from their definitions. �

By an easy corollary, the semidefinable sets [(𝑋,★), (𝑃, ∗)] and [𝑋, 𝑃] may often be definably
identified.

Corollary 6.6. Let X and P be as above. If either (i) P is simply connected, or (ii) P is an H-space with
identity element ∗, then [(𝑋,★), (𝑃, ∗)] is definably isomorphic to [𝑋, 𝑃].

Proof. In both cases, the action of [(𝑆1,�), (𝑃, ∗)] on [(𝑋,★), (𝑃, ∗)] is trivial. In case (i), this is
because the group is trivial. In case (ii), note first that without loss of generality, in the H-space structure
on P, the homotopies of 𝜇(−, ∗) and 𝜇(∗,−) with the identity may each be taken to be basepoint-
preserving (see [33]). Note next that for any ( 𝑓 , 𝛾) ∈ LC∗((𝑋,★), (𝑃, ∗)) × LC∗((𝑆1,�), (𝑃, ∗)), the
operation 𝜇 on P determines a homotopy

ℎ : 𝑋 × 𝐼 → 𝑃 : (𝑥, 𝑠) ↦→ 𝜇( 𝑓 (𝑥), 𝛾(𝑠)),

where 𝛾 is viewed as a map (𝐼, {0, 1}) → (𝑃, ∗). Since both ℎ(−, 0) and ℎ(−, 1) are (basepoint-
preserving) homotopic to f and ℎ(★,−) is (basepoint-preserving) homotopic to 𝛾, we conclude that
[ 𝑓 ] · [𝛾] = [ 𝑓 ]. �

Remark 6.7. An upshot of our definable version of Huber’s Theorem is that the assignments of definable
cohomology groups to spaces may be developed into definable cohomology functors from either a
combinatorial or homotopical perspective. In this direction, we note in passing that a generalization
of the preceding arguments constructs the definable connecting homomorphisms 𝜕𝑛 : H𝑛 (𝐴;𝐺) →
H𝑛+1 (𝑋, 𝐴;𝐺) in the long exact cohomology sequence associated to a locally compact pair (𝑋, 𝐴) from
the homotopical perspective, in counterpoint to Section 2.5. The basic ingredients are application of the
generalized reduced suspension operation Σ̄, introduced in Section 7.3 below, to the subspace A (the
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key 𝑆1 term above may be regarded as Σ̄(𝐴) for 𝐴 = ★), together with the operation of its adjoint Ω on
𝐾 (𝐺, 𝑛).

7. The homotopy classification of maps and phantom maps

In this section, we study the homotopy relation on maps (𝑋, 𝐴) → (𝑃, ∗) where (𝑋, 𝐴) is a locally
compact pair and P is a path-connected pointed polyhedron with distinguished point ∗; notice that this
includes the case when 𝐴 = ∅, whereupon the problem reduces to the classification of maps 𝑋 → 𝑃.
Working, in other words, in the setting of LCP from a perspective essentially subsuming the cases of
LC∗ and LC affords a certain streamlining of arguments, requiring only some extra care around the
operation of suspension; see the remarks early in Section 7.3. Below, we will let ∗ denote the map
(𝑋, 𝐴) → (𝑃, ∗) which is constantly equal to ∗ and say that a map 𝑓 : (𝑋, 𝐴) → (𝑃, ∗) is nullhomotopic
if there is a homotopy ℎ : 𝑓 ⇒ ∗ : (𝑋, 𝐴) → (𝑃, ∗). In this way, we regard [(𝑋, 𝐴), (𝑃, ∗)] as a pointed
semidefinable set with distinguished element equal to the homotopy class of ∗. For any cofiltration
(𝑋𝑛, 𝐴𝑛)𝑛∈N of (𝑋, 𝐴) by compact pairs, we may consider also those maps f for which each 𝑓 � 𝑋𝑛 is
nullhomotopic; these are the phantom maps from (𝑋, 𝐴) to (𝑃, ∗), and they form this section’s main
focus. Our primary results herein are the following:

• A series of decompositions of [(𝑋, 𝐴), (𝑃, ∗)] in terms of its class of phantom maps (Theorems
7.10 and 7.11), culminating in the case when P is an H-group (Theorem 7.13), whereupon this
decomposition takes the form of a short exact sequence specializing in Proposition 7.14 to a Milnor-
type exact sequence of definable cohomology groups.

• Using this decomposition, we show that [(𝑋, 𝐴), (𝑃, ∗)] is a definable group whenever P is an H-
group, thereby generalizing the results of Section 5.

• Along the way, we prove a topological characterization of the class of phantom maps: they are the
closure in [(𝑋, 𝐴), (𝑃, ∗)] of [{∗}]; see Proposition 7.9.

7.1. Cofiltrations and Ind𝝎 (C), and Pro𝝎 (C) and lim and lim1

Instrumental in the arguments of Section 2 was the existence, for any locally compact Polish space X,
of a sequence of compact subspaces approximating to X; we now fix a slight refinement of this notion.

Definition 7.1. A cofiltration of a locally compact pair (𝑋, 𝐴) is an increasing sequence (𝑋𝑖 , 𝐴𝑖)𝑖∈N
of pairs of compact subspaces of X such that 𝑋𝑖 ⊆ int(𝑋𝑖+1) and 𝐴𝑖 = 𝑋𝑖 ∩ 𝐴 for each 𝑖 ∈ N, and
𝑋 =

⋃
𝑖∈N 𝑋𝑖 .

Such a sequence is naturally viewed as a direct or inductive system X = ((𝑋𝑖 , 𝐴𝑖), 𝜂𝑖)𝑖∈N with each
𝜂𝑖 : (𝑋𝑖 , 𝐴𝑖) → (𝑋𝑖+1, 𝐴𝑖+1) an inclusion map. Such a system, of course, also contains the morphisms
𝜂𝑖, 𝑗 : (𝑋𝑖 , 𝐴𝑖) → (𝑋 𝑗 , 𝐴 𝑗 ) for any 𝑖 ≤ 𝑗 but is fully determined by those of the form 𝜂𝑖,𝑖+1, which we
will continue to abbreviate as 𝜂𝑖 . It will be convenient below to view these and other inductive sequences
in any given category C themselves as objects of a category Ind𝜔 (C). To do so, we need only to describe
the morphisms of the latter; to better motivate this description, let us first observe the following.

(i) Given cofiltrations X = ((𝑋𝑖 , 𝐴𝑖), 𝜂𝑋𝑖 )𝑖∈N and Y = ((𝑌𝑖 , 𝐵𝑖), 𝜂𝑌𝑖 )𝑖∈N of locally compact pairs (𝑋, 𝐴)
and (𝑌, 𝐵), respectively, and a continuous function 𝑓 : 𝑋 → 𝑌 , there exists for each 𝑖 ∈ N a least
𝑔(𝑖) with 𝑓 [𝑋𝑖] ⊆ 𝑌𝑔 (𝑖) . In other words, letting 𝑓𝑖 = 𝑓 � 𝑋𝑖 : 𝑋𝑖 → 𝑌𝑔 (𝑖) for each i, any such f
induces a family of morphisms ( 𝑓𝑖 , 𝑔)𝑖∈N satisfying the following property:

𝑔(𝑖) ≤ 𝑔( 𝑗) and 𝑓 𝑗 𝜂
𝑋
𝑖, 𝑗 = 𝜂𝑌𝑔 (𝑖) ,𝑔 ( 𝑗) 𝑓𝑖 for all 𝑖 ≤ 𝑗 in N. (23)

(ii) Higher choices for each 𝑔(𝑖) above would not, for our purposes, make any essential difference;
more broadly, we are much more interested in ‘cofinal’ relations among cofiltrations or functions

https://doi.org/10.1017/fmp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.7


48 J. Bergfalk, M. Lupini and A. Panagiotopoulos

between them than in strict ones. More formally, we would prefer not to distinguish between families
( 𝑓𝑖 , 𝑔)𝑖∈N as above which exhibit the following relation:

( 𝑓𝑖 , 𝑔)𝑖∈N ∼ (𝑒𝑖 , ℎ)𝑖∈N if 𝑔(𝑖) ≤ ℎ(𝑖) and 𝑒𝑖 = 𝜂𝑌𝑔 (𝑖) ,ℎ (𝑖) 𝑓𝑖 for all 𝑖 ∈ N. (24)

These considerations lead to the following definition.

Definition 7.2. Fix any category C. The category Ind𝜔 (C) has as objects the inductive sequences
X = (𝑋𝑖 , 𝜂𝑖)𝑖∈N in C, or, in other words, the functors from the partial order category N to C. Its
morphisms are the ∼-equivalence classes of families ( 𝑓𝑖 , 𝑔)𝑖∈N of functions 𝑓𝑖 : 𝑋𝑖 → 𝑌𝑔 (𝑖) coupled
with a 𝑔 : N→ N which together satisfy equation 23, where ∼ is the equivalence relation generated by
line 24 above.

We may then define Pro𝜔 (C) as Ind𝜔 (Cop)op. In particular, any contravariant functor C → D induces
a functor Ind𝜔 (C)op → Pro𝜔 (D); the composition of such a functor with the lim and lim1 functors
is a basic motif in what follows. The latter functors were reviewed in abelian settings in some detail
in [9, §5]; here, we will require and review their extension in [13, Section IX.2] to inverse sequences
(𝐺𝑛, 𝜂𝑛)𝑛∈N of possibly nonabelian groups. Much as above, 𝜂𝑛 abbreviates 𝜂𝑛,𝑛+1 : 𝐺𝑛+1 → 𝐺𝑛; for
brevity, we will also sometimes term such inverse sequences towers. To simplify notation, we adopt the
sometimes tacit convention that towers and the arguments of lim and lim1 are always indexed by 𝑛 ∈ N.

Writing CGrp for the category of countable groups, it is straightforward first of all to see that the
inverse limit defines a functor from Pro𝜔 (CGrp) to the category of non-archimedean Polish groups
and continuous homomorphisms. Suppose next that G = (𝐺𝑛, 𝜂𝑛) is a tower in CGrp, and consider the
Polish group 𝐶0 (G) :=

∏
𝑛∈N𝐺

𝑛. We then have a continuous action of the Polish group 𝐶0(G) on the
Polish space Z1(G) =

∏
𝑛∈N𝐺

𝑛 defined by (𝑔 · ℎ)𝑛 = 𝑔𝑛 · ℎ𝑛 · (𝜂
𝑛 (𝑔𝑛+1))

−1 for each 𝑛 ∈ N, which we
call the lim1-action of G. If B1 (G) is the corresponding orbit equivalence relation on Z1 (G), defined
by setting ℎB1 (G) ℎ′ if and only if there exists a 𝑔 ∈ 𝐶0 (G) such that 𝑔 · ℎ = ℎ′, then lim1 G is the
pointed semidefinable set Z1 (G)/B1 (G), with distinguished point corresponding to the identity element
of Z1 (G) (regarded as a group).

The construction clearly specializes to the more familiar lim1 of a tower G of countable abelian
groups: in this case, Z1 (G) is also an abelian group, and B1 (G) is the coset equivalence relation with
respect to a Borel Polishable subgroup of Z1 (G); hence, lim1 G is a group with a Polish cover when
endowed with the group operation inherited from Z1(G) – a fact explored at length in [9].

7.2. Weak homotopy

As indicated, the broad focus of the remainder of this section is the sets or groups of homotopy classes
of maps from a locally compact pair (𝑋, 𝐴) to a pointed polyhedron (𝑃, ∗); based maps (𝑋, 𝑥) → (𝑃, ∗)
or unbased maps 𝑋 → 𝑃 appear as special cases, by letting 𝐴 = {𝑥} or ∅, respectively.

Definition 7.3. Let f and g be maps from a locally compact pair (𝑋, 𝐴) to a pointed polyhedron (𝑃, ∗).
We say that f and g are weakly homotopic, writing 𝑓 �w 𝑔, if for every compact subspace K of X, the
maps 𝑓 |𝐾 , 𝑔 |𝐾 : (𝐾, 𝐾 ∩ 𝐴) → (𝑃, ∗) are homotopic.

Lemma 7.4. Let f and g be as in Definition 7.3. The following are equivalent:

(1) f and g are weakly homotopic,
(2) for every subspace (𝑌, 𝐵) of (𝑋, 𝐴) that is homotopy equivalent to a compact pair, 𝑓 |𝑌 , 𝑔 |𝑌 :

(𝑌, 𝐵) → (𝑃, ∗) are homotopic.

Proof. That (2) implies (1) is obvious; we will show that (1) implies (2). To that end, let 𝛼 : (𝐾, 𝐿) →
(𝑌, 𝐵)witness the homotopy equivalence of a compact pair (𝐾, 𝐿)with (𝑌, 𝐵) ⊆ (𝑋, 𝐴). By assumption,
there exists a homotopy ℎ : 𝑓 |𝛼(𝐾 ) ⇒ 𝑔 |𝛼(𝐾 ) : (𝛼(𝐾), 𝛼(𝐾) ∩ 𝐴) → (𝑃, ∗). Thus, ℎ̃ := ℎ ◦ (𝛼 × id𝐼 ) :
(𝐾 × 𝐼, 𝐿 × 𝐼) → (𝑃, ∗) witnesses that ℎ̃(−, 0) = 𝑓 ◦ 𝛼 and ℎ̃(−, 1) = 𝑔 ◦ 𝛼 are homotopic. Since
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𝛼 : (𝐾, 𝐿) → (𝑌, 𝐵) is a homotopy equivalence, this implies that 𝑓 |𝑌 , 𝑔 |𝑌 : (𝑌, 𝐵) → (𝑃, ∗) are
homotopic; this concludes the proof. �

Let [(𝑋, 𝐴), (𝑃, ∗)]w denote the pointed semidefinable set of weak homotopy classes of maps
(𝑋, 𝐴) → (𝑃, ∗).

Lemma 7.5. Let (𝑋, 𝐴) be a locally compact pair, and let (𝑃, ∗) be a pointed polyhedron. The relation
�w of weak homotopy on maps (𝑋, 𝐴) → (𝑃, ∗) is a closed equivalence relation with the property that
the saturation [𝑈]�w of any open subset U of LCP((𝑋, 𝐴), (𝑃, ∗)) is open.

Furthermore, �w is the closure inside LCP((𝑋, 𝐴), (𝑃, ∗))2 of the relation � of homotopy of maps
(𝑋, 𝐴) → (𝑃, ∗).

Proof. Associated to any cofiltration (𝑋𝑛, 𝐴𝑛)𝑛∈N of (𝑋, 𝐴) are restriction maps

𝑓𝑛 : LCP((𝑋, 𝐴), (𝑃, ∗)) → LCP((𝑋𝑛, 𝐴𝑛), (𝑃, ∗)).

These, clearly, are continuous. The relation of weak homotopy for continuous maps (𝑋, 𝐴) → (𝑃, ∗) is
the intersection of the ( 𝑓𝑛 × 𝑓𝑛)-inverse images of the homotopy relation on LCP((𝑋𝑛, 𝐴𝑛), (𝑃, ∗)). It
then follows from Lemma 4.4 that �w is closed. It is also clear from this characterization (together with
the Homotopy Extension Theorem 4.1 above) that �w is the closure of the homotopy relation �.

Suppose now that𝑈 ⊆ LCP((𝑋, 𝐴), (𝑃, ∗)) is open. We will show that [𝑈]�w is open. Since saturation
commutes with unions, it will suffice to show this for 𝑈 = { 𝑓 ∈ LCP((𝑋, 𝐴), (𝑃, ∗)) : 𝑓 (𝐾) ⊆ 𝑊},
where K and W are an arbitrary compact subset of X and an open subset of P, respectively. Fix an 𝑛 ∈ N
such that 𝐾 ⊆ 𝑋𝑛.

Claim. A map 𝑔 ∈ LCP((𝑋, 𝐴), (𝑃, ∗)) belongs to [𝑈]�w if and only if there exists an 𝑓 ∈
LCP((𝑋𝑛, 𝐴𝑛), (𝑃, ∗)) such that 𝑓 (𝐾) ⊆ 𝑊 and 𝑔 |𝑋𝑛 and f are homotopic.

Proof. By the Homotopy Extension Theorem, any f as in the statement of the claim extends to a map
𝑓 ′ : (𝑋, 𝐴) → (𝑃, ∗) which is homotopic to g. Since 𝑓 ′ ∈ 𝑈, then, 𝑔 ∈ [𝑈]�w . The converse implication
is obvious. �

It is immediate from the claim and Lemma 4.4 that [𝑈]�w is indeed open. �

By Lemma 7.5, Lemma 3.10 and [44, Theorem 12.16], we now have the following.

Corollary 7.6. Suppose that (𝑋, 𝐴) is a locally compact pair and P is a pointed polyhedron.
Then the relation �w on LCP((𝑋, 𝐴), (𝑃, ∗)) has a Borel selector; there is, in other words, a
Borel map LCP((𝑋, 𝐴), (𝑃, ∗)) → LCP((𝑋, 𝐴), (𝑃, ∗)) : 𝑓 ↦→ 𝑠( 𝑓 ) such that 𝑓 �w 𝑠( 𝑓 ) for all
𝑓 , 𝑔 ∈ LCP((𝑋, 𝐴), (𝑃, ∗)), and 𝑓 �w 𝑔 if and only if 𝑠( 𝑓 ) = 𝑠(𝑔). In particular, [(𝑋, 𝐴), (𝑃, ∗)]w is a
definable set.

Let P be a polyhedron, and let (𝑋𝑛, 𝐴𝑛)𝑛∈N be a cofiltration for the locally compact pair (𝑋, 𝐴).
Together with the natural restriction maps, the countable sets [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] then assemble into an
inverse sequence. Endow these sets with the discrete topology, and let

lim [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)]

denote the Polish space obtained as their limit. Having chosen a cofiltration for each locally compact pair
(𝑋, 𝐴), we may regard both [(𝑋, 𝐴), (𝑃, ∗)]w and lim [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] as functors to the category of
pointed definable sets, contravariant in the first coordinate (i.e., from LCP) and covariant in the second
(i.e., from P∗).

Proposition 7.7. There is a definable bijection between the pointed definable sets

[(𝑋, 𝐴), (𝑃, ∗)]w and lim [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)]

which is natural in each coordinate of the two bifunctors.
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Proof. Consider for each n the definable function [(𝑋, 𝐴), (𝑃, ∗)]w → [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] given by
restriction; these functions together induce a definable function Φ(𝑋,𝐴) , (𝑃,∗) : [(𝑋, 𝐴), (𝑃, ∗)]w →
lim [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)].

We noted above that two maps 𝑓 , 𝑓 ′ : (𝑋, 𝐴) → (𝑃, ∗) are weakly homotopic if and only if 𝑓 � 𝑋𝑛
and 𝑓 ′ � 𝑋𝑛 are homotopic for every 𝑛 ∈ N; it follows immediately that Φ(𝑋,𝐴) , (𝑃,∗) is injective. To
see that Φ(𝑋,𝐴) , (𝑃,∗) is surjective, let ([ 𝑓𝑛])𝑛∈N be an element of lim [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)]. In particular,
𝑓𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) and 𝑓𝑛+1 � 𝑋𝑛 are homotopic for each 𝑛 ∈ N. By the Homotopy Extension
Theorem, we may, without leaving their homotopy classes, recursively modify each of the functions 𝑓𝑛
so that 𝑓𝑛+1 � 𝑋𝑛 = 𝑓𝑛 for each 𝑛 ∈ N. If we then define 𝑓 : (𝑋, 𝐴) → (𝑃, ∗) by letting 𝑓 (𝑥) = 𝑓𝑛 (𝑥)
for 𝑥 ∈ 𝑋𝑛, then Φ(𝑋,𝐴) , (𝑃,∗) ( [ 𝑓 ]) = ([ 𝑓𝑛])𝑛∈N, as desired.

Naturality with respect to maps 𝑔 : (𝑃, ∗) → (𝑄,★) in the second coordinate follows from the
observation that 𝑔 ◦ ( 𝑓 � 𝑋𝑛) = (𝑔 ◦ 𝑓 ) � 𝑋𝑛 for every 𝑓 : (𝑋, 𝐴) → (𝑃, ∗) and 𝑛 ∈ N, and naturality
with respect to maps (𝑋, 𝐴) → (𝑌, 𝐵) in the first coordinate follows from the same principle. �

7.3. The classification of phantom maps

We turn now to the classification of phantom maps [32, 55, 60, 61, 62]. Here we simply call phantom
maps what in [60] are called phantom maps of the second kind.
Definition 7.8. Let (𝑋, 𝐴) be a locally compact pair, and let P be a pointed polyhedron. A phantom map
from (𝑋, 𝐴) to (𝑃, ∗) is a map which is weakly homotopic to the constant map. We let Ph((𝑋, 𝐴), (𝑃, ∗))
denote the collection of phantom maps from (𝑋, 𝐴) to (𝑃, ∗).

By Lemmas 7.4 and 7.5, Ph((𝑋, 𝐴), (𝑃, ∗)) is a homotopy-invariant closed subspace of the space
LCP((𝑋, 𝐴), (𝑃, ∗)). More precisely,
Proposition 7.9. Ph((𝑋, 𝐴), (𝑃, ∗)) is the closure in LCP((𝑋, 𝐴), (𝑃, ∗)) of [∗], the class of maps
homotopic to the constant map.
Proof. As noted, by Lemma 7.5, Ph((𝑋, 𝐴), (𝑃, ∗)) is closed in LCP((𝑋, 𝐴), (𝑃, ∗)) and therefore
contains the closure of [∗]. For the reverse inclusion, fix 𝑓 ∈ Ph((𝑋, 𝐴), (𝑃, ∗)); applying Lemma
7.4 with 𝑔 = ∗ then implies, together with the Homotopy Extension Theorem, that any basic open
neighborhood of f in LCP((𝑋, 𝐴), (𝑃, ∗)) contains some 𝑔′ homotopic to g. �

Thus, we may consider the pointed semidefinable set [(𝑋, 𝐴), (𝑃, ∗)]∞ of homotopy classes of
phantom maps (𝑋, 𝐴) → (𝑃, ∗). Just as for [−,−]w, this defines a functor to the category of pointed
semidefinable sets which is contravariant in the first coordinate and covariant in the second.

Observe now that when 𝐴 = {𝑥} for some single element x of X, then we may regard (𝑋, 𝐴) as a
pointed space, and, in particular, may apply to it the reduced suspension operation Σ : LC∗ → LC∗
described in Section 5.1. In fact, in the present context of maps (𝑋, 𝐴) → (𝑃, ∗), in which A functions
as little more than a basepoint, it is reasonable to regard Σ as an instance of a generalized reduced
suspension operation Σ̄ : LCP → LC∗ defined for nonempty A as

Σ̄(𝑋, 𝐴) = 𝑋 × 𝐼/(𝑋 × {0, 1} ∪ 𝐴 × 𝐼),

or, more concisely,

Σ̄(𝑋, 𝐴) = Σ(𝑋/𝐴,★),

where★ is the quotient-image of A. Doing so will allow us a more general unified statement and argument
of this section’s main result. Note, however, that the second of the above formulations raises questions
of interpretation when 𝐴 = ∅. We take the standard homotopy theoretic approach of defining 𝑋/∅ to
equal what is sometimes (as in [59]) denoted 𝑋+ – namely, the union of X with a discrete basepoint
{★}.2 These conventions have the virtue of ensuring that any Σ̄(𝑋, 𝐴) is an H-cogroup (𝑋 ↦→ 𝑋+ is

2It is perhaps worth remarking that under this convention, Σ̄ (𝑋,∅) = Σ𝑋+ is not homotopy equivalent to 𝑆𝑋 , but rather to
𝑆𝑋 ∨ 𝑆1 (cf. [58, p. 106]), but that this additional 𝑆1 factor is, in our contexts, of no computational consequence.
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left adjoint to the forgetful functor from pointed to unpointed spaces and extends to a left adjoint to the
inclusion 𝜄 of pointed spaces in pairs of spaces; Σ̄ is simply Σ ◦ 𝜄, and is consequently left adjoint to the
standard loop-space functor Ω on LC∗).

Now assume, as before, that we have assigned a cofiltration (𝑋𝑛, 𝐴𝑛)𝑛∈N to each locally compact pair
(𝑋, 𝐴). These assignments determine an inductive sequence of compact H-cogroups (Σ̄(𝑋𝑛, 𝐴𝑛))𝑛∈N
and thereby, in turn, a tower ( [

Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)
] )
𝑛∈N

of countable groups. Taking

lim1 [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)]

then determines a functor to the category of pointed semidefinable sets, which again is contravariant in
the first coordinate and covariant in the second. Note that any other family of choices of cofiltrations for
locally compact pairs (𝑋, 𝐴) would yield a definably isomorphic functor.

We now present a definable version of a description of the set of phantom maps which has appeared
in several contexts – all of them pointed. It may be found in [13, Section IX.3, Corollary 3.3] in the
context of pointed simplicial sets, and in [59, Section 2.1, Proposition 2.1.9 and Corollary 2.1.11] in the
context of inductive sequences of pointed spaces and cofibrations, for example; see also [60, Section 5],
where the fundamental insight is attributed to [81]. Readers may also find the heuristic discussion at
[60, p. 1229] valuable.

Theorem 7.10. For each locally compact pair (𝑋, 𝐴), let (𝑋𝑛, 𝐴𝑛)𝑛∈N denote the associated cofiltration
described above. There exists a definable isomorphism of the bifunctors LCPop × P∗ → SemiDef∗ given
by ((𝑋, 𝐴), (𝑃, ∗)) ↦→ [(𝑋, 𝐴), (𝑃, ∗)]∞ and ((𝑋, 𝐴), (𝑃, ∗)) ↦→ lim1 [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] which is
natural in each coordinate.

The following notation will render portions of our proof simpler and more intuitive. For any 0 ≤ 𝑎, 𝑏
in R and 𝑓 : 𝑋 × [0, 𝑎] → 𝑌 and 𝑔 : 𝑋 × [0, 𝑏] → 𝑌 with 𝑓 � 𝑋 × {𝑎} = 𝑔 � 𝑋 × {0}, define
𝑓 · 𝑔 : 𝑋 × [0, 𝑎 + 𝑏] → 𝑌 by

𝑓 · 𝑔(𝑥, 𝑡) =

{
𝑓 (𝑥, 𝑡) 𝑡 ∈ [0, 𝑎],
𝑔(𝑥, 𝑡 − 𝑎) 𝑡 ∈ [𝑎, 𝑏].

Define also − 𝑓 : 𝑋 × [0, 𝑎] → 𝑌 by − 𝑓 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑎 − 𝑡) and observe that 𝑓 · − 𝑓 is homotopic to the
map 𝑋 × [0, 2𝑎] → 𝑌 given by (𝑥, 𝑡) ↦→ 𝑓 (𝑥, 0). Lastly, for any real 𝑘 ≥ 0, define 𝑘 𝑓 : 𝑋 × [0, 𝑘𝑎] → 𝑌
by 𝑘 𝑓 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑘𝑡).

Proof. As indicated, we begin by describing a definable function 𝜑 : [(𝑋, 𝐴), (𝑃, ∗)]∞ →

lim1 [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)]. We will then verify that 𝜑 is indeed an isomorphism in the category of pointed
semidefinable sets. For ease of reading, let G denote the tower of groups ([Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)])𝑛∈N for
the duration of the proof.

By Corollary 4.19, one may in a Borel fashion choose for each phantom map 𝑓 : (𝑋, 𝐴) → (𝑃, ∗)
and 𝑛 ∈ N a homotopy ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗). Hence, ℎ𝑛 : (𝑋𝑛 × 𝐼, 𝐴𝑛 × 𝐼) → (𝑃, ∗)
is a map such that ℎ𝑛 ( · , 0) = ∗, ℎ𝑛 ( · , 1) = 𝑓 � 𝑋𝑛, and ℎ𝑛 (𝑥, · ) = ∗ for each 𝑥 ∈ 𝐴𝑛. As above, we let
(𝑥, 𝑡) ↦→ 〈𝑥, 𝑡〉 be the quotient map 𝑋𝑛 × 𝐼 → Σ̄(𝑋𝑛, 𝐴𝑛).3 Define then 𝐷𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) by

〈𝑥, 𝑡〉 ↦→

{
ℎ𝑛 (𝑥, 2𝑡) 0 ≤ 𝑡 ≤ 1/2,
ℎ𝑛+1 (𝑥, 2 − 2𝑡) 1/2 ≤ 𝑡 ≤ 1. (25)

3Of course, if 𝐴𝑛 = ∅, then this is not quite a quotient map, but the discrepancy from one is so small that it seems clearest to
continue to speak of such maps as though they are quotients; we will do so.
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In the notation introduced just above, 𝐷𝑛 is the map induced on Σ̄(𝑋𝑛, 𝐴𝑛) by 1/2(ℎ𝑛 · −(ℎ𝑛+1 �
𝑋𝑛 × 𝐼)) : 𝑋𝑛 × 𝐼 → 𝑃. Writing [𝐷𝑛] ∈ [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] for the homotopy class of 𝐷𝑛, we then let
𝜑([ 𝑓 ]) be the element of lim1 G represented by the sequence ([𝐷𝑛])𝑛∈N ∈

∏
𝑛∈N𝐺

𝑛 = Z1 (G).
In the following three claims, we verify that 𝜑 does not depend on our choices of homotopies ℎ𝑛,

or of representative of [ 𝑓 ], and hence that 𝜑 : [(𝑋, 𝐴), (𝑃, ∗)]∞ → lim1 G is a well-defined basepoint-
preserving definable function, as desired.

Claim. The element 𝜑([ 𝑓 ]) of lim1 G does not depend on the choice of homotopies ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 :
(𝑋, 𝐴) → (𝑃, ∗).

Proof. Let 𝑓 : (𝑋, 𝐴) → (𝑃, ∗) be a phantom map, and let 𝑔𝑛, ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) →
(𝑃, ∗) be homotopies for each 𝑛 ∈ N. Suppose that 𝐶𝑛, 𝐷𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) are defined as in
equation (25) from 𝑔𝑛, 𝑔𝑛+1 and ℎ𝑛, ℎ𝑛+1, respectively. We will show that the corresponding sequences
([𝐶𝑛])𝑛∈N, ([𝐷𝑛])𝑛∈N ∈ 𝑍1 (G) define the same element of lim1 G. To this end, we define maps
𝐸𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) for 𝑛 ∈ N such that

[𝐸𝑛] · [𝐷𝑛] · [𝐸𝑛+1 � Σ̄(𝑋𝑛, 𝐴𝑛)]−1 = [𝐶𝑛]

for every 𝑛 ∈ N; these maps 𝐸𝑛 are defined by

〈𝑥, 𝑡〉 ↦→

{
𝑔𝑛 (𝑥, 2𝑡) 0 ≤ 𝑡 ≤ 1/2,
ℎ𝑛 (𝑥, 2 − 2𝑡) 1/2 ≤ 𝑡 ≤ 1. .

Observe that 𝐸𝑛 is well defined for essentially the same reason that 𝐷𝑛 is, and that in our alternative
notation, 𝐸𝑛 is the map induced on Σ̄(𝑋𝑛, 𝐴𝑛) by 1/2(𝑔𝑛 · −ℎ𝑛) : 𝑋𝑛 × 𝐼 → 𝑃. In this notation,
[𝐸𝑛] · [𝐷𝑛] · [𝐸𝑛+1 � Σ̄(𝑋𝑛, 𝐴𝑛)]−1 is the homotopy class of the map induced on Σ̄(𝑋𝑛, 𝐴𝑛) by
1/6(𝑔𝑛 · −ℎ𝑛 · ℎ𝑛 · −ℎ𝑛+1 · ℎ𝑛+1 · −𝑔𝑛+1), where the last three functions are understood to be restricted
to 𝑋𝑛 × 𝐼; it should be at least intuitively clear that this map is homotopic to the function induced
on Σ̄(𝑋𝑛, 𝐴𝑛) by 1/2(𝑔𝑛 · −(𝑔𝑛+1 � 𝑋𝑛 × 𝐼)) or, in other words, to 𝐶𝑛, as claimed. For the sake of
thoroughness, we record explicit homotopies below.

By definition, [𝐸𝑛] · [𝐷𝑛] · [𝐸𝑛+1 � Σ̄(𝑋𝑛, 𝐴𝑛)]−1 = [𝐷̃𝑛], where 𝐷̃𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) is
defined by

〈𝑥, 𝑡〉 ↦→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑔𝑛 (𝑥, 6𝑡) 0 ≤ 𝑡 ≤ 1/6,
ℎ𝑛 (𝑥, 1 − 6(𝑡 − 1/6)) 1/6 ≤ 𝑡 ≤ 2/6,
ℎ𝑛 (𝑥, 6(𝑡 − 2/6)) 2/6 ≤ 𝑡 ≤ 3/6,
ℎ𝑛+1 (𝑥, 1 − 6(𝑡 − 3/6)) 3/6 ≤ 𝑡 ≤ 4/6,
ℎ𝑛+1 (𝑥, 6(𝑡 − 4/6)) 4/6 ≤ 𝑡 ≤ 5/6,
𝑔𝑛+1 (𝑥, 1 − 6(𝑡 − 5/6)) 5/6 ≤ 𝑡 ≤ 1.

Define ℎ̃𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) × 𝐼 → (𝑃, ∗), a homotopy beginning at ℎ̃𝑛 ( · , 0) = 𝐷̃𝑛, by setting

ℎ̃𝑛 (〈𝑥, 𝑡〉, 𝑠) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐷̃𝑛 (〈𝑥, 𝑡〉) 𝑡 ∈ [0, 1/6] ∪ [5/6, 1],
ℎ𝑛 (𝑥, 1 − 6(𝑡 − 1/6)) 1/6 ≤ 𝑡 ≤ (2 − 𝑠)/6,
ℎ𝑛 (𝑥, 1 − 6((2 − 𝑠)/6 − 1/6)) (2 − 𝑠)/6 ≤ 𝑡 ≤ (2 + 𝑠)/6,
ℎ𝑛 (𝑥, 6(𝑡 − 2/6)) (2 + 𝑠)/6 ≤ 𝑡 ≤ 3/6,
ℎ𝑛+1 (𝑥, 1 − 6(𝑡 − 3/6)) 3/6 ≤ 𝑡 ≤ (4 − 𝑠)/6,
ℎ𝑛+1 (𝑥, 1 − 6((4 − 𝑠)/6 − 3/6)) (4 − 𝑠)/6 ≤ 𝑡 ≤ (4 + 𝑠)/6,
ℎ𝑛+1 (𝑥, 6(𝑡 − 4/6)) (4 + 𝑠)/6 ≤ 𝑡 ≤ 5/6
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for all 〈𝑥, 𝑡〉 ∈ Σ̄(𝑋𝑛, 𝐴𝑛) and 𝑠 ∈ 𝐼. Observe that ℎ̃𝑛 is a homotopy from 𝐷̃𝑛 to the function Σ̄(𝑋𝑛, 𝐴𝑛) →
(𝑃, ∗) given by

ℎ̃𝑛 (〈𝑥, 𝑡〉, 1) =
⎧⎪⎪⎨⎪⎪⎩
𝑔𝑛 (𝑥, 6𝑡) 0 ≤ 𝑡 ≤ 1/6,
𝑓 (𝑥) 1/6 ≤ 𝑡 ≤ 5/6,
𝑔𝑛+1 (𝑥, 1 − 6(𝑡 − 5/6)) 5/6 ≤ 𝑡 ≤ 1.

ℎ̃( · , 1) is clearly homotopic to 𝐶𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) in turn. Since we have argued [𝐸𝑛] · [𝐷𝑛] ·

[𝐸𝑛+1 � Σ̄(𝑋𝑛, 𝐴𝑛)]−1 = [𝐶𝑛] for arbitrary 𝑛 ∈ N, we conclude that the sequences ([𝐷𝑛])𝑛∈N and
([𝐶𝑛])𝑛∈N represent the same element of lim1 G, as desired. �

Claim. The element 𝜑([ 𝑓 ]) of lim1 G does not depend on the choice of representative f of the homotopy
class [ 𝑓 ].

Proof. Fix a homotopy 𝜌 : 𝑓 ⇒ 𝑓 ′ between phantom maps 𝑓 , 𝑓 ′ : (𝑋, 𝐴) → (𝑃, ∗). We will show that
𝜑([ 𝑓 ]) = 𝜑([ 𝑓 ′]). Fix homotopies 𝑔𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) for each 𝑛 ∈ N. Observe that
these induce homotopies ℎ𝑛 : ∗ ⇒ 𝑓 ′ � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) defined by

ℎ𝑛 (𝑥, 𝑡) =

{
𝑔𝑛 (𝑥, 2𝑡) 0 ≤ 𝑡 ≤ 1/2,
𝜌(𝑥, 2(𝑡 − 1/2)) 1/2 ≤ 𝑡 ≤ 1.

For 𝑛 ∈ N, let 𝐷𝑛 denote the map Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) defined as above from 𝑔𝑛, 𝑔𝑛+1, and let 𝐷̃𝑛

denote the map Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) defined as above from ℎ𝑛, ℎ𝑛+1. In our alternative notation, 𝐷𝑛 and
𝐷̃𝑛 are the functions induced on Σ̄(𝑋𝑛, 𝐴𝑛) by 1/4(𝑔𝑛 · 𝜌 ·−𝜌 ·−𝑔𝑛+1) and 1/2(𝑔𝑛 ·−𝑔𝑛+1), respectively,
where the constituent functions are all restricted to 𝑋𝑛 × 𝐼. It should now be clear that by arguments
just as above, 𝐷𝑛 is homotopic to 𝐷̃𝑛 for each 𝑛 ∈ N; the provision of explicit homotopies is left to the
interested reader. �

Claim. The 𝜑-image of the class [∗] of nullhomotopic functions is the basepoint of lim1 G.

Proof. When 𝑓 = ∗, we may choose ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) to be the trivial homotopy.
In this case, 𝐷𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) is the constant map ∗. Clearly, (𝐷𝑛)𝑛∈N is the neutral element of
Z1 (G), and hence, 𝜑([ 𝑓 ]) is the basepoint of lim1 G. �

By the foregoing claims, 𝜑 : [(𝑋, 𝐴), (𝑃, ∗)]∞ → lim1 G is a well-defined basepoint-preserving
definable function.

Claim. The function 𝜑 : [(𝑋, 𝐴), (𝑃, ∗)]∞ → lim1 G is injective.

Proof. We will assume that 𝜑([ 𝑓 ]) = 𝜑([ 𝑓 ′]) for two phantom maps 𝑓 , 𝑓 ′ : (𝑋, 𝐴) → (𝑃, ∗) and
deduce that f and 𝑓 ′ are homotopic.

Let 𝑌 ⊆ 𝑋 be the union of the boundaries 𝜕𝑋𝑛 for 𝑛 ∈ N. Note that Y is a closed subset of X, being
the union of a locally finite family of closed subsets of X. Furthermore, as f is a phantom map, each
𝑓 � 𝜕𝑋𝑛 is nullhomotopic; hence, 𝑓 � 𝑌 is nullhomotopic as well. Thus, by the Homotopy Extension
Theorem, after replacing f with a phantom map homotopic to f, we may assume that 𝑓 � 𝑌 = ∗. By the
same reasoning, we may assume that 𝑓 ′ � 𝑌 = ∗ as well.

Fix homotopies ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) and ℎ′𝑛 : ∗ ⇒ 𝑓 ′ � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗)
for each 𝑛 ∈ N. These determine functions 𝐷𝑛 : Σ̄ → (𝑃, ∗) and 𝐷 ′𝑛 : Σ̄ → (𝑃, ∗) in the manner
described above, defining in turn the values 𝜑([ 𝑓 ]) and 𝜑([ 𝑓 ′]), respectively. Since 𝜑([ 𝑓 ]) = 𝜑([ 𝑓 ′]),
there exist maps 𝐸𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) such that [𝐸𝑛] · [𝐷𝑛] · [𝐸𝑛+1 � Σ̄(𝑋𝑛, 𝐴𝑛)]−1 = [𝐷 ′𝑛] for
every 𝑛 ∈ N. Therefore, by replacing each ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) with the homotopy
defined by

(𝑥, 𝑡) ↦→

{
𝐸𝑛 (〈𝑥, 2𝑡〉) 0 ≤ 𝑡 ≤ 1/2
ℎ𝑛 (2𝑡 − 1) 1/2 ≤ 𝑡 ≤ 1
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we may assume without loss of generality that [𝐷𝑛] = [𝐷 ′𝑛] for every 𝑛 ∈ N. Assume in other words
that for each 𝑛 ∈ N, there exists a homotopy ℎ̃𝑛 : 𝐷𝑛 ⇒ 𝐷 ′𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗).

Fix for each 𝑛 ∈ N a continuous function 𝜆𝑛 : 𝑋 → [0, 1] such that 𝜆𝑛 � 𝑋𝑛−1 = 0 and 𝜆𝑛 �
𝑋\int(𝑋𝑛) = 1, letting 𝑋−1 = ∅. Define the phantom map 𝑔 : (𝑋, 𝐴) → (𝑃, ∗) by 𝑥 ↦→ 𝐷𝑛 (〈𝑥, 𝜆𝑛 (𝑥)〉)
for 𝑥 ∈ 𝑋𝑛 \ 𝑋𝑛−1. To see that g is continuous, observe that for 𝑛 ∈ N and 𝑥 ∈ 𝜕𝑋𝑛−1,

𝐷𝑛 (〈𝑥, 𝜆𝑛 (𝑥)〉) = 𝐷𝑛 (〈𝑥, 1〉) = ∗ = 𝐷𝑛+1 (〈𝑥, 0〉) = 𝐷𝑛+1 (〈𝑥, 𝜆𝑛+1(𝑥)〉).

We then have a homotopy 𝑓 ⇒ 𝑔 : (𝑋, 𝐴) → (𝑃, ∗), defined by setting (𝑥, 𝑡) ↦→ 𝐷𝑛 (〈𝑥, (1 − 𝑡)/2 +
𝑡𝜆𝑛 (𝑥)〉) for all 𝑡 ∈ [0, 1], 𝑥 ∈ 𝑋𝑛 \ 𝑋𝑛−1, and 𝑛 ∈ N.

Similarly, 𝑓 ′ is homotopic to the map 𝑔′ : (𝑋, 𝐴) → (𝑃, ∗) defined by 𝑔′(𝑥) = 𝐷 ′𝑛 (〈𝑥, 𝜆𝑛 (𝑥)〉) for
all 𝑥 ∈ 𝑋𝑛 \ 𝑋𝑛−1 and 𝑛 ∈ N. Hence, our task reduces to showing that g and 𝑔′ are homotopic. One may
define a homotopy 𝑔 ⇒ 𝑔′ : (𝑋, 𝐴) → (𝑃, ∗) by

(𝑥, 𝑡) ↦→ ℎ̃𝑛 (〈𝑥, 𝜆𝑛 (𝑥)〉, 𝑡)

for 𝑥 ∈ 𝑋𝑛 \ 𝑋𝑛−1 and 𝑡 ∈ 𝐼, where ℎ̃𝑛 is the homotopy 𝐷𝑛 ⇒ 𝐷 ′𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) described
above. This concludes the proof. �

We have established that 𝜑 : [(𝑋, 𝐴), (𝑃, ∗)]∞ → lim1 G is an injective basepoint-preserving
definable function. In order to conclude the proof that 𝜑 is an isomorphism in the category of pointed
semidefinable sets, it will suffice to describe a definable function 𝜓 : lim1 G → [(𝑋, 𝐴), (𝑃, ∗)]∞ which
is a right inverse of 𝜑.

Begin by fixing a continuous function 𝜆𝑛 : 𝑋 → 𝐼 as above for each 𝑛 ∈ N. We define 𝜓 via
representatives ([𝐷̃𝑛])𝑛∈N ∈ Z1(G) of elements of lim1 G. Let 𝜓([([𝐷̃𝑛])𝑛∈N]) = [ 𝑓 ], where 𝑓 :
(𝑋, 𝐴) → (𝑃, ∗) is the phantom map defined by setting

𝑓 (𝑥) := 𝐷̃𝑛 (〈𝑥, 𝜆𝑛 (𝑥)〉)

for all 𝑥 ∈ 𝑋𝑛\𝑋𝑛−1.

Claim. The map 𝑓 : (𝑋, 𝐴) → (𝑃, ∗) is a well-defined phantom map.

Proof. Just as above, for all 𝑛 ∈ N and 𝑥 ∈ 𝜕𝑋𝑛, we have

𝑓 (𝑥) = 𝐷𝑛 (〈𝑥, 𝜆𝑛 (𝑥)〉) = 𝐷𝑛 (〈𝑥, 1〉) = ∗ = 𝐷𝑛+1 (〈𝑥, 0〉) = 𝐷𝑛+1 (〈𝑥, 𝜆𝑛+1(𝑥)〉).

This shows that f is well defined and continuous. Define for each 𝑛 ∈ N a homotopy ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 :
(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) by setting

ℎ𝑛 (𝑥, 𝑡) = 𝐷̃𝑛 (〈𝑥, 𝑡𝜆𝑛 (𝑥)〉).

This shows that f is a phantom map. �

Claim. Adopt the notation above, and suppose that [ 𝑓 ] = 𝜓([([𝐷̃𝑛])𝑛∈N]). Then 𝜙([ 𝑓 ]) =
[([𝐷̃𝑛])𝑛∈N].

Proof. The argument amounts to computing 𝜑([ 𝑓 ]) ∈ lim1 G. Let ℎ𝑛 : ∗ ⇒ 𝑓 � 𝑋𝑛 : (𝑋𝑛, 𝐴𝑛) →
(𝑃, ∗) be the homotopy recorded in the proof of the previous claim, and consider the map 𝐷𝑛 :
Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) defined from ℎ𝑛, ℎ𝑛+1 as in the definition of 𝜑([ 𝑓 ]). Thus,

𝐷𝑛 (〈𝑥, 𝑡〉) =

{
ℎ𝑛 (𝑥, 2𝑡) = 𝐷̃𝑛 (〈𝑥, 2𝑡𝜆𝑛 (𝑥)〉) 0 ≤ 𝑡 ≤ 1/2,
ℎ𝑛+1 (𝑥, 2𝑡 − 1) = 𝐷̃𝑛+1 (〈𝑥, (2𝑡 − 1)𝜆𝑛+1(𝑥)〉) = ∗ 1/2 ≤ 𝑡 ≤ 1.
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Observe that 𝐷𝑛, 𝐷̃𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) are homotopic, as witnessed by the homotopy

([𝑥, 𝑡], 𝑠) ↦→

{
𝐷𝑛 (〈𝑥, 2𝑡 (1 − 𝑠)𝜆𝑛 (𝑥) + 𝑠𝑡〉) 0 ≤ 𝑡 ≤ 1/2 + 𝑠/2,

∗ 1/2 + 𝑠/2 ≤ 𝑡 ≤ 1.

Therefore, [𝐷𝑛] = [𝐷̃𝑛] for every 𝑛 ∈ N. This shows that 𝜑([ 𝑓 ]) = [([𝐷̃𝑛])𝑛∈N], as desired. �

By the previous claim, the function 𝜓 : lim1 G → [(𝑋, 𝐴), (𝑃, ∗)]∞ is well defined and basepoint-
preserving and is a right inverse for 𝜑. Since 𝜑 is injective, 𝜑 and 𝜓 are, in fact, mutually inverse
functions. Since 𝜑 and 𝜓 are definable functions, they are mutually inverse isomorphisms in the category
of pointed semidefinable sets.

It is quite clear from our construction and claims above that 𝜑 defines a transformation of functors
which is natural in the polyhedral coordinate. Naturality in the first coordinate follows for the same
reasons, coupled with the fact that maps (𝑋, 𝐴) → (𝑌, 𝐵) induce Ind𝜔 maps at the level of the
cofiltrations in the manner described in Section 7.1. �

7.4. Phantom maps to H-spaces

We now restrict our analysis to phantom maps from a locally compact pair (𝑋, 𝐴) to a polyhedral H
-space (𝑃, ∗, 𝑚). Recall that such a P is a pointed polyhedron endowed with a map 𝑚 : 𝑃∧ 𝑃→ 𝑃 such
that the maps 𝑚(∗,−) and 𝑚(−, ∗) : 𝑃→ 𝑃 are each homotopic to the identity; m then induces a binary
operation on [(𝑋, 𝐴), (𝑃, ∗)] with [∗] as identity element defined by

[ 𝑓 ] · [𝑔] = [𝑚 ◦ ( 𝑓 ∧ 𝑔)]

for any maps 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑃, ∗). This renders [(𝑋, 𝐴), (𝑃, ∗)] a semidefinable unital magma (i.e.,
a pointed (semidefinable) set with a (definable) binary operation in which the basepoint serves as the
neutral element).

It is clear that [(𝑋, 𝐴), (𝑃, ∗)]∞ is a semidefinable unital submagma of [(𝑋, 𝐴), (𝑃, ∗)]. We now
show that [(𝑋, 𝐴), (𝑃, ∗)]∞ is, in fact, a definable abelian group, and even a group with a Polish cover.

Theorem 7.11. Suppose that (𝑋𝑛, 𝐴𝑛)𝑛∈N is a cofiltration of a locally compact pair (𝑋, 𝐴) and (𝑃, ∗, 𝑚)
is a polyhedral H-space. Then [(𝑋, 𝐴), (𝑃, ∗)]∞ is a definable abelian group naturally isomorphic to
lim1 [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)]; in particular, it is naturally definably isomorphic to a group with a Polish
cover.

The term natural here should be understood in the sense more precisely articulated in the statement
of Theorem 7.10 and the conclusion of its proof; as is standard, for concision, we will omit those sorts
of details from now on.

Proof. Since P is an H-space, [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] is a countable abelian group for every 𝑛 ∈ N, by
Lemmas 5.3 and 4.4. Therefore, lim1 [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] is a group with a Polish cover and, hence, a
definable abelian group.

Thus, it suffices to check that the definable basepoint-preserving map

𝜑 : [(𝑋, 𝐴), (𝑃, ∗)]∞ → lim1 [Σ̄(𝑋, 𝐴), (𝑃, ∗)]

defined in the proof of Theorem 7.10 is a magma homomorphism (i.e., that it satisfies

𝜑 ([ 𝑓 ] · [ 𝑓 ′]) = 𝜙 ( [ 𝑓 ]) + 𝜑 ( [ 𝑓 ′])

for [ 𝑓 ], [ 𝑓 ′] ∈ [(𝑋, 𝐴), (𝑃, ∗)]∞). To this end, suppose that 𝑓 , 𝑓 ′ : 𝑋 → 𝑃 are phantom maps, and
choose for each 𝑛 ∈ N homotopies ℎ𝑛 : ∗ ⇒ 𝑓 |𝑋𝑛 and ℎ′𝑛 : ∗ ⇒ 𝑓 ′|𝑋𝑛 ; we then have homotopies
𝑚 ◦

(
ℎ𝑛 ∧ ℎ′𝑛

)
: ∗ ⇒ 𝑚 ◦ ( 𝑓 ∧ 𝑓 ′) |𝑋𝑛 for each 𝑛 ∈ N as well.
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By the definition of 𝜑,

𝜑 ( [ 𝑓 ]) = ([𝐷𝑛])𝑛∈N ,

𝜑 ( [ 𝑓 ′]) =
(
[𝐷 ′𝑛]

)
𝑛∈N , and

𝜑 ( [ 𝑓 ] · [ 𝑓 ′]) = 𝜑 ( [𝑚 ◦ ( 𝑓 ∧ 𝑓 ′)]) = ([𝐸𝑛])𝑛∈N ,

where 𝐷𝑛, 𝐷
′
𝑛, 𝐸𝑛 : Σ̄(𝑋𝑛, 𝐴𝑛) → (𝑃, ∗) are defined for each 𝑛 ∈ N by

𝐷𝑛 (〈𝑥, 𝑡〉) =

{
ℎ𝑛 (𝑥, 2𝑡) 0 ≤ 𝑡 ≤ 1/2
ℎ𝑛+1 (𝑥, 2 − 2𝑡) 1/2 ≤ 𝑡 ≤ 1

𝐷 ′𝑛 (〈𝑥, 𝑡〉) =

{
ℎ′𝑛 (𝑥, 2𝑡) 0 ≤ 𝑡 ≤ 1/2
ℎ′𝑛+1 (𝑥, 2 − 2𝑡)) 1/2 ≤ 𝑡 ≤ 1

𝐸𝑛 (〈𝑥, 𝑡〉) =

{ (
𝑚 ◦

(
ℎ𝑛 ∧ ℎ′𝑛

) )
(𝑥, 2𝑡) 0 ≤ 𝑡 ≤ 1/2(

𝑚 ◦
(
ℎ𝑛+1 ∧ ℎ′𝑛+1

) )
(𝑥, 2 − 2𝑡)) 1/2 ≤ 𝑡 ≤ 1

=
(
𝑚 ◦

(
𝐷𝑛 ∧ 𝐷 ′𝑛

) )
(〈𝑥, 𝑡〉).

In short, 𝐸𝑛 = 𝑚 ◦
(
𝐷𝑛 ∧ 𝐷 ′𝑛

)
. And since, by Lemma 5.3, the operation on [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] defined

in terms of the H-space structure on P coincides with the operation induced by the H-cogroup structure
on Σ̄(𝑋𝑛, 𝐴𝑛),

[𝐸𝑛] =
[
𝑚 ◦

(
𝐷𝑛 ∧ 𝐷 ′𝑛

) ]
= [𝐷𝑛] +

[
𝐷 ′𝑛

]
,

and hence, 𝜑([ 𝑓 ] · [ 𝑓 ′]) = 𝜑([ 𝑓 ])+𝜑([ 𝑓 ′]). This concludes the proof that 𝜑 is a magma homomorphism.
�

7.5. The homotopy classification of maps to H-groups

We now consider the even more restrictive case in which (𝑃, ∗, 𝑚) is a polyhedral H-group. To this end,
let (𝑋, 𝐴) be a locally compact pair, and let (𝑃, ∗) be a pointed polyhedron with H-group operation
𝑚 : 𝑃 ∧ 𝑃 → 𝑃. In this case, the H-group structure on P renders [(𝑋, 𝐴), (𝑃, ∗)] a (not necessarily
abelian) semidefinable group. The group operation on [(𝑋, 𝐴), (𝑃, ∗)] is defined as before by setting
[ 𝑓 ] · [𝑔] = [𝑚 ◦ ( 𝑓 ∧ 𝑔)]. Similarly, if 𝜁 : (𝑃, ∗) → (𝑃, ∗) is a map such that the map (𝑃, ∗) → (𝑃, ∗) :
𝑥 ↦→ 𝑚(𝑥, 𝜁 (𝑥)) is homotopic to the constant map, then the inverse [ 𝑓 ]−1 of [ 𝑓 ] ∈ [(𝑋, 𝐴), (𝑃, ∗)] is
given by [𝜁 ◦ 𝑓 ].

Lemma 7.12. Suppose that (𝑋, 𝐴) is a locally compact Polish space and (𝑃, ∗, 𝑚) is a polyhedral
H-group. Any two maps 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑃, ∗) are weakly homotopic if and only if [ 𝑓 ] · [𝑔]−1 ∈
[(𝑋, 𝐴), (𝑃, ∗)]∞.

Proof. Begin by observing that the map 𝑝𝑛 : [(𝑋, 𝐴), (𝑃, ∗)] → [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)] given by function
restriction is a group homomorphism. By definition, [(𝑋, 𝐴), (𝑃, ∗)]∞ is the intersection of {ker(𝑝𝑛) |
𝑛 ∈ N}. Thus, 𝑓 �𝑤 𝑔 if and only if 𝑝𝑛 ([ 𝑓 ]) = 𝑝𝑛 ([𝑔]) for every 𝑛 ∈ N, if and only if 𝑝𝑛 ([ 𝑓 ] · [𝑔]−1) =
0 = [∗] for every 𝑛 ∈ N, if and only if [ 𝑓 ] · [𝑔]−1 ∈ [(𝑋, 𝐴), (𝑃, ∗)]∞. �

Under the present assumptions, [(𝑋, 𝐴), (𝑃, ∗)] is, by the foregoing lemmas, a definable group.

Theorem 7.13. Suppose that (𝑋, 𝐴) is a locally compact Polish space with cofiltration (𝑋𝑛, 𝐴𝑛)𝑛∈N
and (𝑃, ∗, 𝑚) is a polyhedral H-group. Then,

(1) [(𝑋, 𝐴), (𝑃, ∗)]∞ is a definable abelian group, naturally definably isomorphic to the group with a
Polish cover lim1 [Σ̄(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)];
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(2) [(𝑋, 𝐴), (𝑃, ∗)] is a definable group;
(3) [(𝑋, 𝐴), (𝑃, ∗)]w is a definable group, naturally definably isomorphic to the pro-countable Polish

group lim [(𝑋𝑛, 𝐴𝑛), (𝑃, ∗)].

Furthermore, these groups naturally array in the definable exact sequence of definable groups

{∗} → [(𝑋, 𝐴), (𝑃, ∗)]∞ → [(𝑋, 𝐴), (𝑃, ∗)] → [(𝑋, 𝐴), (𝑃, ∗)]w → {∗} . (26)

Proof. (1) This just a particular instance of Theorem 7.11.
(2) Since the group operations on [(𝑋, 𝐴), (𝑃, ∗)] are definable, [(𝑋, 𝐴), (𝑃, ∗)] is a semidefinable

group. Furthermore, [(𝑋, 𝐴), (𝑃, ∗)]∞ is a definable subgroup of [(𝑋, 𝐴), (𝑃, ∗)] by (1). The conclusion
that [(𝑋, 𝐴), (𝑃, ∗)] is a definable set now follows from Lemma 3.15 and Corollary 7.6.

(3) It suffices to notice that, under our assumptions, the natural definable bijection in Proposition 7.7
is a group homomorphism.

The last assertion now follows immediately from definitions. �

7.6. A definable exact sequence decomposition of Čech cohomology

By Theorem 5.7 (or its version for LCP pairs), we may identify the Čech cohomology groups H𝑞 (𝑋, 𝐴;𝐺)
with the representable, or homotopical, cohomology groups [(𝑋, 𝐴), (𝐾 (𝐺, 𝑞), ∗)]. We may then con-
sider its definable subgroup

H𝑞
∞(𝑋, 𝐴;𝐺) := [(𝑋, 𝐴), (𝐾 (𝐺, 𝑞), ∗)]∞,

which we term the asymptotic cohomology group. We may also consider the weak cohomology group

H𝑞
w(𝑋, 𝐴;𝐺) = [(𝑋, 𝐴), (𝐾 (𝐺, 𝑞), ∗)]w.

Also by Theorem 7.13, we have a natural definable exact sequence

0 → H𝑞
∞(𝑋, 𝐴;𝐺) → H𝑞 (𝑋, 𝐴;𝐺) → H𝑞

w(𝑋, 𝐴;𝐺) → 0.

More precisely, Theorem 7.13 gives us the following, which shows that this exact sequence is naturally
isomorphic to the exact sequence (26) above.

Proposition 7.14. Suppose that q is a positive integer, G is a countable discrete abelian group, and
(𝑋, 𝐴) is a locally compact pair with cofiltration (𝑋𝑛, 𝐴𝑛)𝑛∈N. Then,

(1) H𝑞
∞(𝑋, 𝐴;𝐺) is naturally definably isomorphic to

lim1 H𝑞 (Σ̄(𝑋𝑛, 𝐴𝑛), ∗;𝐺) � lim1 H𝑞−1 (𝑋𝑛, 𝐴𝑛;𝐺);

(2) H𝑞
w(𝑋, 𝐴;𝐺) is naturally definably isomorphic to the pro-countable abelian group

lim H𝑞 (𝑋𝑛, 𝐴𝑛;𝐺).

Proof. Only the isomorphism in item (1) requires comment; it follows from the sequence of definable
isomorphisms

H𝑞 (Σ̄(𝑋𝑛, 𝐴𝑛), ∗;𝐺) � [(Σ̄(𝑋𝑛, 𝐴𝑛), ∗), (𝐾 (𝐺, 𝑞), ★)] � [(𝑋𝑛, 𝐴𝑛),Ω(𝐾 (𝐺, 𝑞),★)]

� [(𝑋𝑛, 𝐴𝑛), (𝐾 (𝐺, 𝑞 − 1), ★)] � H𝑞−1 (𝑋𝑛, 𝐴𝑛;𝐺)

of countable groups. �

https://doi.org/10.1017/fmp.2024.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2024.7


58 J. Bergfalk, M. Lupini and A. Panagiotopoulos

In [52], this work’s second author showed that the map taking (𝐺, 𝑁) to the closure of {0} in 𝐺/𝑁
is functorial in the category APC of groups with an abelian Polish cover. More precisely, by the 𝛼 = 0
case of [52, Theorem 6.3], this is a subfunctor of the identity. Hence, by Proposition 7.9, the definable
functor H𝑞

∞ as well as its definable quotient H𝑞/H𝑞
∞ � H𝑞

w may each be definably recovered from the
single definable functor H𝑞 – facts we summarize in the following proposition.

Proposition 7.15. For any 𝑞 ≥ 0 and countable abelian group G, the definable functors H𝑞
∞(−;𝐺) and

H𝑞
w(−;𝐺) each map LCP to APC. Each of these, moreover, definably derives from the definable functor

H𝑞 in the sense that the first is its postcomposition with a subfunctor of the identity, and the second is
its postcomposition with that subfunctor’s cokernel.

7.7. Hopf’s Theorem

Čech cohomology is a main tool for the study and classification of maps up to homotopy. This is due
to descriptions, like those above, of Čech cohomology groups as groups of homotopy classes of maps,
whereby homotopy classification problems for maps between spaces may reduce to a corresponding
problem for maps to Eilenberg–MacLane spaces.

One of the first such results was Hopf’s theorem for maps to spheres [37, Chapter VII, Theorem
11.5]. We cite it both for a quick application of our machinery and for use in the following section.
Henceforth, we will omit notation of the cohomology coefficient group when 𝐺 = Z. Viewing the n
-dimensional sphere 𝑆𝑛 as a pointed space, we have that H𝑛 (𝑆𝑛, ★) = Z. One may choose, as generator
of this group, an [𝜄] ∈ [(𝑆𝑛, ★), (𝐾 (Z, 𝑛), ∗)] such that 𝜄 is an inclusion of (𝑆𝑛, ★) as a closed subspace
of (𝐾 (Z, 𝑛), ∗); see [2, Theorem 2.5.14]. Any map f from a locally compact pair (𝑋, 𝐴) to (𝑆𝑛, ★) then
determines a map 𝜄 ◦ 𝑓 : (𝑋, 𝐴) → (𝐾 (Z, 𝑛), ∗), a determination amounting to a definable function
[(𝑋, 𝐴), (𝑆𝑛, ★)] → H𝑛 (𝑋, 𝐴).

Theorem 7.16 (Hopf). Fix 𝑛 ≥ 1. For every polyhedral pair (𝑃,𝑄) satisfying H𝑞 (𝑃,𝑄) = 0 for 𝑞 > 𝑛,
the definable function [(𝑃,𝑄), (𝑆𝑛, ★)] → H𝑛 (𝑃,𝑄) is a bijection.

Corollary 7.17. Under the assumptions of Theorem 7.16, [(𝑃,𝑄), (𝑆𝑛, ★)] is a pointed definable set.

Proof. This amounts to saying that the relation of homotopy for maps (𝑃,𝑄) → (𝑆𝑛, ★) is Borel
and idealistic. This relation is idealistic by Theorem 4.15. As the relation of homotopy for maps
(𝑃,𝑄) → (𝐾 (Z, 𝑛), ∗) is Borel by Theorem 7.13, it follows from Theorem 7.16 that the relation of
homotopy for maps (𝑃,𝑄) → (𝑆𝑛, ★) is Borel as well. �

8. The Borsuk-Eilenberg problem and the definable cohomology of mapping telescopes

This section records several sample applications of the definable cohomology functors and decomposi-
tion theorems of the preceding pages. We begin by reviewing the core construction in these applications
– namely, the mapping telescope or homotopy colimit of a sequence of maps 〈 𝑓𝑛 : 𝑋𝑛 → 𝑋𝑛+1 | 𝑛 ∈ N〉
of topological spaces. The results of this section reconnect with those of [9], from which, together with
Proposition 8.8, it will follow almost immediately that definable Čech cohomology is, in strong contrast
to classical Čech cohomology, a complete homotopy invariant both of mapping telescopes of d-tori and
of d-spheres. Equally immediate from the machinery we have developed are solutions to the natural
generalizations of the Borsuk-Eilenberg problem of classifying the maps from the complement of a
canonically embedded p-adic solenoid Σ𝑝 ⊂ 𝑆3 to a 2-sphere. This problem played a critical role in the
development of multiple areas of mathematics, in historical senses that we briefly pause to review. We
show that definable cohomology is a complete invariant of the homotopy classes of maps to 𝑆𝑑+1 from
mapping telescopes of d-spheres. We conclude with an analysis of the problems of classifying those
maps up to homotopy, as well as up to homotopy modulo a homotopy equivalence of their domain. Put
differently, we study the problem of equivariant classification; the affinity of the associated quotients
with the structure sets of manifold theory should be noted as well [73, Definition 2.1]. We describe lower
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bounds for the Borel complexity degrees of these problems and the existence of an infinite antichain of
complexity degrees among them, and we show also that this complexity rises with dimension.

In subsections 8.1 and 8.2, we conduct our review of homotopy colimits in the unbased category LC.
This is solely for conceptual clarity; the discussion applies with only superficial modifications to the
context of LC∗, as readers may easily verify. Results in which the homotopy bracket figures thereafter
will, by Corollary 6.6, admit interpretation in either category, as we will note below.

8.1. Colimits and homotopy colimits

First, recall the notion of a colimit of a diagram in a category C.

Definition 8.1 [57]. LetJ be a small category; as above, writeJ (𝑊, 𝑋) for the collection of morphisms
in J from W to X. By a diagram of shape J in a category C, we simply mean a functor 𝐹 : J → C.
For any such diagram a collection of morphisms, { 𝑓𝑊 : 𝐹 (𝑊) → 𝑌 | 𝑊 ∈ obj(J )} is coherent if
𝑓𝑊 = 𝑓𝑋 ◦𝐹 (𝑔) for all 𝑔 ∈ J (𝑊, 𝑋). An object Y of C is a colimit of a diagram F if it admits a coherent
collection of morphisms { 𝑓𝑊 : 𝐹 (𝑊) → 𝑌 | 𝑊 ∈ obj(J )} such that for any coherent collection
{𝑔𝑊 : 𝐹 (𝑊) → 𝑍 | 𝑊 ∈ obj(J )} of morphisms to any object Z of C, there exists a unique ℎ : 𝑌 → 𝑍
such that 𝑔𝑊 = ℎ ◦ 𝑓𝑊 for all 𝑊 ∈ obj(J ). A weak colimit of the diagram F is a Y satisfying these
same conditions, but without the requirement that all such maps ℎ : 𝑌 → 𝑍 be unique.

In more concrete contexts, colimits admit more concrete descriptions; for example, the colimit of a
pushout diagram of topological spaces (i.e., of a diagram of the form

𝑊
𝑓

←−−− 𝑋
𝑔
−−−→ 𝑌 ) (27)

is

(𝑊 # 𝑌 )/∼, (28)

where ∼ is the equivalence relation generated by { 𝑓 (𝑥) ∼ 𝑔(𝑥) | 𝑥 ∈ 𝑋}. This brings us to a standard
motivating example (see [23]): consider the diagrams

∗ ←− 𝑆𝑛−1 −→ 𝐷𝑛 (29)

and

∗ ←− 𝑆𝑛−1 −→ ∗ (30)

in which, as usual, ∗ denotes the one-point space, and the only nontrivial map is the inclusion into 𝐷𝑛

of its boundary 𝜕𝐷𝑛 � 𝑆𝑛−1. What interests us is the following: each of the corresponding terms of
(29) and (30) are homotopy equivalent; the colimits of (29) and (30), however, are not (the latter are
homeomorphic to 𝑆𝑛 and ∗, respectively, as the reader may verify). More formally, what these diagrams
together show is that colimits in the topological category are not, in general, homotopy invariant; indeed,
as the example might suggest, colimits in the category Ho(LC) may even fail altogether to exist (see [84,
pp. 245–246]).

What do more generally exist, however, are homotopy colimits; these are particular representatives
of weak colimits in homotopy categories in the sense of Definition 8.1. We follow [59, 2] in foregoing
their rather abstract general definition, focusing instead on their construction in the contexts which are
our immediate interest; their idea, in the process, will grow clear. The first of these is pushout diagrams
of topological spaces, as in (27), (29) and (30) above. The homotopy colimit hocolim 𝐷 of any diagram
D of spaces of the form (27) is (

𝑊 # (𝑋 × [0, 1]) # 𝑌
)
/∼ , (31)
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where the equivalence relation ∼ is that given by the identifications 𝑓 (𝑥) ∼ (𝑥, 0) and (𝑥, 1) ∼ 𝑔(𝑥) for
each 𝑥 ∈ 𝑋 . Observe that this construction resolves the discord of (29) and (30) above, in the sense that
the homotopy colimits of these two diagrams are, indeed, homotopy equivalent. Just as we would hope,
this holds more generally for any two naturally homotopy equivalent pushout diagrams of polyhedra
(and even for naturally weakly homotopy equivalent pushout diagrams of arbitrary topological spaces;
see [23, p. 5]). We record in the lemma below the special instance of this fact which we will need.

Observe first, though, how many of homotopy theory’s most fundamental constructions arise in the
above manner: the homotopy colimits of the diagrams

∗ ←− 𝑋 −→ ∗ , ∗ ←− 𝑋
𝑔
−−−→ 𝑌 , and 𝑋

id
←−−− 𝑋

𝑔
−−−→ 𝑌

are the suspension 𝑆𝑋 of X and the mapping cone𝐶 (𝑔) and mapping cylinder 𝑀𝑔 of the map 𝑔 : 𝑋 → 𝑌 ,
respectively. The last of these is the basic building block of the homotopy colimits of towers of topological
spaces, the so-called mapping telescopes at the center of our applications below. Note also the natural
identification of the homotopy colimit of (27) with two mapping cylinders 𝑀 𝑓 and 𝑀𝑔 glued together
along their respective copies of X. Hence, to show that the homotopy type of the homotopy colimit of
(27) depends only upon the homotopy classes of the maps f and g, it suffices to observe the following.

Lemma 8.2. For any two homotopic maps 𝑔, ℎ : 𝑋 → 𝑌 , the mapping cylinders 𝑀𝑔 and 𝑀ℎ are
homotopy equivalent.

The proof is, at the referee’s suggestion, left to the reader, but it is worth lingering over its essential
mechanism: in contrast with colimits, homotopy colimits like (31) identify spaces only ‘up to a homotopy
factor’ of ×𝐼; put differently, the ×𝐼 component in homotopy colimits supplies a space ‘within which’ to
realize homotopies between various connecting maps. Each of these components also readily collapses,
furnishing a canonical map from the homotopy colimit of a diagram to its colimit, as is easily seen in
the case of (31) and (28), for example. The deformation retract of 𝑀𝑔 to its target space Y is a special
case. With these recognitions in place, we turn our attention to mapping telescopes.

8.2. Mapping telescopes

The following construction may first have appeared in Milnor’s [63] which, not coincidentally, was a
seminal first appearance of the lim1 functor within algebraic topology as well. In general, though, this
section’s results have the status of folklore.

Definition 8.3. The mapping telescope associated to a diagram of the form

X : 𝑋0
𝜂0
−−→ 𝑋1

𝜂1
−−→ . . .

𝜂𝑛−1
−−−→ 𝑋𝑛

𝜂𝑛
−−→ . . . (32)

is the space ( ∐
𝑛∈N

𝑋𝑛 × [𝑛, 𝑛 + 1]
)
/∼ , (33)

where ∼ is the equivalence relation generated by the identifications (𝑥, 𝑛 + 1) ∼ (𝜂𝑛 (𝑥), 𝑛 + 1) for each
𝑛 ∈ N and 𝑥 ∈ 𝑋𝑛. This space is the homotopy colimit of the diagram X and henceforth will accordingly
be denoted hocolim X [59]. We will sometimes refer to diagrams of the form (32) as towers or inductive
sequences below.

Clearly, the space (33) may equivalently be viewed as an assemblage of mapping cylinders in the
following way:

hocolim X �
( ∐
𝑛∈N

𝑀𝜂𝑛

)
/∼ , (34)
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where ∼ identifies the copy of 𝑋𝑛 in 𝑀𝜂𝑛−1 with 𝑋𝑛× {0} in 𝑀𝜂𝑛 , for each 𝑛 > 0. From this observation,
the following lemma is immediate (what we are proving is simply an aspect of the fact that mapping
telescopes are homotopy colimits which we will later invoke).

Lemma 8.4. If (𝑋𝑛)𝑛∈N is a sequence of topological spaces and 𝜂𝑛, 𝜂
′
𝑛 : 𝑋𝑛 → 𝑋𝑛+1 are homotopic

for each 𝑛 ∈ N, then the corresponding mapping telescopes hocolim (𝑋𝑛, 𝜂𝑛) and hocolim (𝑋𝑛, 𝜂′𝑛) are
homotopy equivalent.

Proof. Observe simply that the homotopy equivalences (and the witnessing homotopies) between each
𝑀𝜂𝑛 and 𝑀𝜂′𝑛 are compatible with the identifications of (34), and consequently assemble to define
homotopy equivalences of hocolim (𝑋𝑛, 𝜂𝑛) and hocolim (𝑋𝑛, 𝜂′𝑛), as desired. �

Corollary 8.5. If X is an inductive sequence of polyhedra, then hocolim X is homotopy equivalent to a
polyhedron.

Proof. This is immediate from Proposition 8.4, the Simplicial Approximation Theorem and the fact
that mapping cylinders of simplicial maps are polyhedra. �

We will require two more basic facts before proceeding. For the first, recall the previous section’s
reference to a canonical map hocolim X → colim X. Under the conditions of the following lemma, this
is a homotopy equivalence.

Lemma 8.6. The homotopy colimit of an inductive sequence X of embeddings of compact Polish spaces
is homotopy equivalent to colim X.

Proof. Let 𝑌 = colim X. For each 𝑛 ∈ N, we have a canonical embedding 𝜓𝑛 : 𝑋𝑛 → 𝑌 with range a
compact 𝑌𝑛 ⊆ 𝑌 . By passing to a subsequence, we may assume that (𝑌𝑛)𝑛∈N is a sequence of compact
subsets of Y such that 𝑌𝑛 ⊆ int(𝑌𝑛+1) for every 𝑛 ∈ N, and Y is the union of {𝑌𝑛 | 𝑛 ∈ N} (if we
cannot, then (𝑋𝑛)𝑛∈N eventually stabilizes, in which case the conclusion of the lemma is clear). Let also
𝑌−1 = ∅. For each 𝑛 ∈ N, fix a continuous function 𝜆𝑛 : 𝑌𝑛 → [𝑛, 𝑛 + 1] such that 𝜆𝑛 [𝑌𝑛−1] ⊆ {𝑛}
and 𝜆𝑛 [𝜕𝑌𝑛] = {𝑛 + 1}. Define the function 𝜆 : 𝑌 → [0,∞) by setting 𝜆(𝑥) = 𝜆𝑛 (𝑥) for all 𝑛 ∈ N and
𝑥 ∈ 𝑌𝑛 \ 𝑌𝑛−1, and let

𝐿 = {(𝑥, 𝜆(𝑥)) ∈ 𝑌 × [0,∞) | 𝑥 ∈ 𝑌 }

and

𝐵 = {(𝑥, 𝑡) ∈ 𝑌 × [0,∞) | 𝑥 ∈ 𝑌𝑛, 𝑡 ≥ 𝑛} .

Notice that L is a subset of B and that

• L is a deformation retract of B, via the map (𝑥, 𝑡) ↦→ (𝑥, 𝜆(𝑥)), and
• Y is homeomorphic to L, via the map 𝑌 → 𝐿, 𝑥 ↦→ (𝑥, 𝜆 (𝑥)), and
• hocolim X is homeomorphic to B, via the map hocolim X → 𝐵, 〈𝑥, 𝑡〉 ↦→ (𝜓𝑛 (𝑥), 𝑡) for all 𝑛 ∈ N,

𝑛 ≤ 𝑡 ≤ 𝑛 + 1 and 𝑥 ∈ 𝑋𝑛.

This concludes the proof. �

The last of the mapping telescope facts we will collect was tacitly invoked in the ‘passage to a
subsequence” step of the above argument; namely, it is the following:

Proposition 8.7. The mapping telescope construction determines a functor from the category Ind𝜔 (C)
of inductive sequences of compact Polish spaces to the homotopy category Ho(LC) of locally compact
Polish spaces.

See again Section 7.1 for the definition of Ind𝜔 (C).
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Proof. Suppose that X = (𝑋𝑛)𝑛∈N and Y = (𝑌𝑛)𝑛∈N are inductive sequences of compact spaces and
(ℓ𝑘 , 𝑓𝑘 )𝑘∈N represents a morphism from X to Y. We define the corresponding map 𝑓 = hocolim (ℓ𝑘 , 𝑓𝑘 ) :
hocolim X → hocolim Y as follows. We denote the constituent maps 𝑌𝑘 → 𝑌ℓ of Y by 𝜂 (𝑘,ℓ) and let
𝑑𝑘 = ℓ𝑘+1 − ℓ𝑘 for 𝑘 ∈ N. For 𝑘 ∈ N and 𝑥 ∈ 𝑋𝑘 and 𝑠 ∈ [0, 1], let

𝑓 (〈𝑥, 𝑘 + 𝑠〉) = 〈𝜂 (ℓ𝑘 ,ℓ𝑘+𝑑𝑘 𝑠) 𝑓𝑘 (𝑥), ℓ𝑘 + 𝑑𝑘 𝑠〉,

where we write 〈𝜂 (ℓ,𝑡) (𝑦), 𝑡〉 for 〈𝜂 (ℓ,𝑛) (𝑦), 𝑡〉 when t is in [𝑛, 𝑛 + 1] and y is in 𝑌𝑛. It is easy to see that
this gives a well-defined continuous function hocolim X → hocolim Y.

We now show that if (ℓ𝑘 , 𝑓𝑘 )𝑘∈N and (ℓ′𝑘 , 𝑓
′
𝑘 )𝑘∈N represent the same morphism from X to Y, then 𝑓 =

hocolim (ℓ𝑘 , 𝑓𝑘 ) and 𝑓 ′ = hocolim (ℓ′𝑘 , 𝑓
′
𝑘 ) are homotopic maps hocolim X → hocolim Y. By definition,

under these assumptions, there exists an increasing sequence
(
ℓ′′𝑘

)
𝑘∈N

such that max{ℓ𝑘 , ℓ′𝑘 } ≤ ℓ′′𝑘 and
𝜂 (ℓ𝑘 ,ℓ′′𝑘 ) 𝑓𝑘 = 𝜂(ℓ′𝑘 ,ℓ

′′
𝑘 )

𝑓 ′𝑘 for every 𝑘 ∈ N. Hence, by the transitivity of the homotopy relation, it suffices
to consider the case when ℓ𝑘 ≤ ℓ′𝑘 and 𝑓 ′𝑘 = 𝜂(ℓ𝑘 ,ℓ′𝑘)

𝑓𝑘 for every 𝑘 ∈ N. Again, let 𝑑𝑘 = ℓ𝑘+1 − ℓ𝑘 and
𝑑 ′𝑘 = ℓ′𝑘+1 − ℓ′𝑘 for all 𝑘 ∈ N. For all such k and 𝑥 ∈ 𝑋𝑘 and 𝑠 ∈ [0, 1], we then have

𝑓 (〈𝑥, 𝑘 + 𝑠〉) = 〈𝜂 (ℓ𝑘 ,ℓ𝑘+𝑑𝑘 𝑠) 𝑓𝑘 (𝑥), ℓ𝑘 + 𝑑𝑘 𝑠〉

and

𝑓 ′(〈𝑥, 𝑘 + 𝑠〉) = 〈𝜂 (ℓ′
𝑘
,ℓ′

𝑘
+𝑑′

𝑘
𝑠) 𝑓

′
𝑘 (𝑥), ℓ

′
𝑘 + 𝑑

′
𝑘 𝑠〉.

We may then define a homotopy ℎ : 𝑓 ⇒ 𝑓 ′ by setting

ℎ(〈𝑥, 𝑘 + 𝑠〉, 𝑡) = 〈𝜂 (ℓ𝑘 , (1−𝑡) (ℓ𝑘+𝑑𝑘 𝑠)+𝑡 (ℓ′𝑘+𝑑′𝑘 𝑠)) 𝑓𝑘 (𝑥), (1 − 𝑡) (ℓ𝑘 + 𝑑𝑘 𝑠) + 𝑡 (ℓ
′
𝑘 + 𝑑

′
𝑘 𝑠))〉.

This shows that the homotopy class of hocolim (ℓ𝑘 , 𝑓𝑘 ) does not depend on the choice of representative
(ℓ𝑘 , 𝑓 𝑓 ) of a morphism from X to Y. Thus, given an Ind𝜔-morphism [(ℓ𝑘 , 𝑓𝑘 )] from X to Y, we may
let hocolim [(ℓ𝑘 , 𝑓𝑘 )] be the homotopy class of hocolim (ℓ𝑘 , 𝑓𝑘 ), thereby defining a functor from the
category of inductive sequences of compact Polish spaces to the homotopy category of locally compact
Polish spaces, as desired. �

8.3. The cohomology of mapping telescopes

Suppose now that X = (𝑋𝑛)𝑛∈N is an inductive sequence of compact spaces. Then hocolim X has a
canonical cofiltration ( 𝑋̃𝑛)𝑛∈N obtained by letting 𝑋̃𝑛 be the set

{〈𝑥, 𝑡〉 ∈ hocolim X : 0 ≤ 𝑡 ≤ 𝑛}.

It is easy to see that 𝑋̃𝑛 is a compact subset of hocolim X that is homotopy equivalent to 𝑋𝑛 (via a
sequence of mapping cylinder deformation retractions of the sort alluded to at the end of Section 8.1).
Furthermore, the inductive sequence ( 𝑋̃𝑛)𝑛∈N, with inclusions as bonding maps, is naturally isomorphic
in Ind𝜔 (Ho(C)) to X. Thus, as a particular instance of Proposition 7.14, we have the following.

Proposition 8.8. Suppose that q is a positive integer and G is a countable discrete group and X =
(𝑋𝑛, 𝜂𝑛)𝑛∈N is an inductive sequence of compact spaces. Then,

(1) H𝑞
∞(hocolim X;𝐺) is naturally definably isomorphic to lim1 H𝑞 (𝑆(𝑋𝑛), ∗ ;𝐺) �

lim1 H𝑞−1 (𝑋𝑛;𝐺);
(2) H𝑞

w(hocolim X;𝐺) is naturally definably isomorphic to the pro-countable abelian group
lim H𝑞 (𝑋𝑛;𝐺).
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8.4. Mapping telescopes of tori

Call an inductive sequence X = (𝑋𝑛, 𝜂𝑛)𝑛∈N of d-dimensional tori 𝑋𝑛 = T𝑑 nontrivial if its bonding
maps 𝜂𝑛 : 𝑋𝑛 → 𝑋𝑛+1 are each of nonzero degree. In this section, we show that definable Čech
cohomology is a complete invariant for homotopy colimits of such sequences.

Theorem 8.9. The definable Čech cohomology groups completely classify homotopy colimits of non-
trivial towers of d-tori up to homotopy equivalence, for all 𝑑 ≥ 1. In fact, the mapping telescopes
associated to any two such towers are homotopy equivalent if and only if they have definably isomorphic
weak and asymptotic Čech cohomology groups.

In contrast, there exist uncountable families of homotopy inequivalent mapping telescopes of d-tori
whose weak and asymptotic Čech cohomology — and, moreover, classical Čech cohomology — groups
are isomorphic, as we show in Theorem 8.15 below.

We will precede the proof of Theorem 8.9 with a few observations. Most immediately, observe that
by Proposition 7.15, the first assertion of Theorem 8.9 follows from its second; it is the latter which we
will prove below.

Next, recall the notion of mapping degree:

Definition 8.10. Fix closed, connected, oriented d-dimensional manifolds M and N; the degree deg( 𝑓 )
of a continuous function 𝑓 : 𝑀 → 𝑁 is the integer k for which 𝑓 ∗ : H𝑑 (𝑁) → H𝑑 (𝑀) is multiplication
by k.4

The value of restricting our attention to telescopes of maps of nonzero degree will grow clearer
momentarily; we return to the question of its necessity in a concluding remark. We may, in fact, without
any loss of generality, restrict our attention yet further: by [76, Corollary 2], any map T𝑑 → T𝑑 is
homotopic to a group homomorphism. Hence, by Lemma 8.4, it will suffice to argue Theorem 8.9
for nontrivial inductive sequences (𝑋𝑛, 𝜂𝑛) in which all bonding maps are homomorphisms. For ease
of reference, we term the full subcategory of Ind𝜔 (C) consisting of such sequences the category of
monomorphic inductive sequences of d-tori. The prefix ‘mono’ references firstly the injectivity of the
induced 𝑑th cohomology maps but will apply as well in the first and second of the related contexts which
we now describe.

Let Λ be a torsion-free rank d abelian group. A cofiltration of Λ is an increasing sequence (Λ𝑛)𝑛∈N
of finitely generated rank d free abelian subgroups of Λ such that Λ =

⋃
𝑛∈N Λ𝑛. A cofiltration

(Λ𝑛)𝑛∈N gives rise to an inverse sequence (Hom(Λ𝑛,Z))𝑛∈N of finitely generated rank d free abelian
groups. By Pontryagin duality, this tower, in turn, induces a monomorphic inductive sequence XΛ :=
(Hom(Λ𝑛,Z)

∗)𝑛∈N of d-tori. In this way, a choice of cofiltration for each torsion-free rank d abelian
group determines a functor Λ ↦→ XΛ from the category of rank d torsion-free abelian groups to the
category of monomorphic inductive sequences of d-tori. As shown in [9], the group invariant Ext(𝐶, 𝐴)
for countable abelian groups A and C first defined in [26] admits a canonical definable abelian group
structure. Using Proposition 8.8, we may formulate the definable cohomology of XΛ in terms of this
definable Ext.

We therefore pause to recall this functor’s essentials from [9, §7]. By an extension E of a countable
abelian group C by a countable abelian group A, we mean any short exact sequence

0 𝐴 𝐸 𝐶 0

of abelian groups. The extensions E and E ′ are isomorphic if there is a group isomorphism 𝐸 → 𝐸 ′

which makes the following diagram commute:

4It is more common to define mapping degree in terms of homology groups, but it is easily seen, for example, via the Universal
Coefficient Theorem for cohomology that our definition is equivalent.
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𝐸

0 𝐴 𝐶 0

𝐸 ′

�

We denote by Ext(𝐶, 𝐴) the collection of all isomorphism classes of extensions of C by A. As is
well known, this collection admits a natural abelian group structure, and Ext is more generally the first
derived functor of the bifunctor Hom : Abop × Ab → Ab. The definable versions of Hom and Ext are
each bifunctors from the category of countable abelian groups to the category APC of groups with an
abelian Polish cover: A and C being discrete, the compact-open topology (or equivalently the product
topology) renders Hom(𝐶, 𝐴) itself a Polish abelian group. And Ext(𝐶, 𝐴), in a definition tracing to
[26], is the group with a Polish cover Z(𝐶, 𝐴)/B(𝐶, 𝐴), where

• Z(𝐶, 𝐴) is the closed subgroup of the abelian Polish group 𝐴𝐶×𝐶 , consisting of all cocycles on C with
coefficients in A. Here, 𝐴𝐶×𝐶 is, as above, endowed with the compact-open topology; by a cocycle on
C with coefficients in A, we mean any function 𝑔 : 𝐶 × 𝐶 → 𝐴 such that for all 𝑥, 𝑦, 𝑧 ∈ 𝐶, we have
(1) 𝑔(𝑥, 0) = 𝑔(0, 𝑦) = 0;
(2) 𝑔(𝑥, 𝑦) + 𝑔(𝑥 + 𝑦, 𝑧) = 𝑔(𝑥, 𝑦 + 𝑧) + 𝑔(𝑦, 𝑧);
(3) 𝑔(𝑥, 𝑦) = 𝑔(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝐶.

• 𝛿 is the continuous group homomorphism Hom(𝐶, 𝐴) → Z(𝐶, 𝐴) given by

𝛿(𝑔) (𝑥, 𝑦) := 𝑔(𝑥) + 𝑔(𝑦) − 𝑔(𝑥 + 𝑦).

• B(𝐶, 𝐴) is the Polishable Borel subgroup 𝛿[Hom(𝐶, 𝐴)] of Z(𝐶, 𝐴).

Returning to our cohomology computations, we have the following.

Proposition 8.11. Let Λ be a rank d torsion-free abelian group. Then

(1) H𝑑+1 (hocolim XΛ) = H𝑑+1
∞ (hocolim XΛ) is naturally definably isomorphic to Ext(Λ,Z);

(2) H𝑑
w(hocolim XΛ) is naturally definably isomorphic to Hom(Λ,Z);

(3) H𝑘 (hocolim XΛ) = 0 for 𝑘 > 𝑑 + 1.

Proof. (1) By Proposition 8.8, H𝑑+1
∞ (hocolim XΛ) is naturally definably isomorphic to

lim1 H𝑑 (Hom(Λ𝑛,Z)
∗). Furthermore, H𝑑 (Hom(Λ𝑛,Z)

∗) is naturally isomorphic to the countable group
Hom(Λ𝑛,Z) [36, Theorem 8.83]. Hence, by the definable version of Jensen’s Theorem [9, Theorem
7.4], we have natural definable isomorphisms

lim1 H𝑑 (Hom(Λ𝑛,Z)
∗) � lim1 Hom(Λ𝑛,Z)

� Ext(colimΛ𝑛,Z)

� Ext(Λ,Z).

This is definably isomorphic to the entirety of H𝑑+1 (hocolim XΛ) by Proposition 7.14, together with the
observation that H𝑑+1 (Hom(Λ𝑛,Z)

∗) = 0 for every 𝑛 ∈ N implies that

H𝑑+1
w (hocolim XΛ) � lim H𝑑 (Hom(Λ𝑛,Z)

∗) = 0.

(2) By Proposition 8.8, H𝑑
w(hocolim XΛ) is naturally definably isomorphic to

lim H𝑑 (Hom(Λ𝑛,Z)
∗) � lim Hom(Λ𝑛,Z) � Hom(colimΛ𝑛,Z) � Hom(Λ,Z).
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(3) This is an immediate consequence of Proposition 8.8, upon observation that H𝑘 (Hom(Λ𝑛,Z)
∗) =

0 for 𝑘 > 𝑑. �

Observe that the functor Λ ↦→ XΛ described above, from the category of countable torsion-free rank
d abelian groups to the category of monomorphic inductive sequences of d-tori, is fully faithful. To see
this, observe that a choice of cofibrations (Λ𝑛) and (Λ′𝑛) of Λ and Λ′, respectively, induces a bijection

HomAb(Λ,Λ
′) � HomInd𝜔 (Ab) ((Λ𝑛), (Λ

′
𝑛))

and that the sequences of matrices (𝑀𝑛 : Λ𝑛 → Λ′𝑛) representing maps in the latter correspond precisely
to those representing maps in HomInd𝜔 (C) ((T(Λ𝑛)), (T(Λ′𝑛))), where (T(Λ𝑛)) and (T(Λ′𝑛)) denote the
sequences of tori comprising XΛ and XΛ′ , respectively. It is also easy to see that each monomorphic
inductive sequence of d-tori is isomorphic in Ind𝜔 (C) to XΛ for some torsion-free rank d abelian group
Λ. Hence, the functor Λ ↦→ XΛ is an equivalence of categories from the category of countable torsion-
free rank d abelian groups to the category of monomorphic inductive sequences of d-tori. Thus, in order
to establish Theorem 8.9, it suffices to prove the following.

Theorem 8.12. The asymptotic and weak definable cohomology groups of hocolim XΛ together provide
a complete invariant for a finite rank torsion-free abelian group Λ up to isomorphism.

Proof. A finite rank torsion-free abelian group Λ uniquely decomposes as Λ∞ ⊕Λw where Λw is finitely
generated and Λ∞ has no finitely generated summand. Hence, it will suffice to show that the asymptotic
and weak definable cohomology groups of hocolim XΛ provide complete invariants for such groups Λ∞
and Λw, respectively.

By Proposition 8.11, we have definable isomorphisms

H𝑑+1 (hocolim XΛ) � Ext(Λ,Z) � Ext(Λ∞,Z)

and

H𝑑 (hocolim XΛ) � Hom(Λ,Z) � Hom(Λw,Z).

By [9, Corollary 7.6], the definable group Ext (−,Z) is a complete invariant for torsion-free finite rank
groups with no finitely generated summands. The complementary fact, that Hom (−,Z) is a complete
invariant for finitely generated torsion-free abelian groups, is trivial. �

In the setting of finite rank torsion-free abelian groups with no finitely generated direct summand,
the proof of Theorem 8.12 allows for a strengthening of its conclusion as follows:

Theorem 8.13. The map Λ ↦→ H𝑑+1 (hocolim XΛ) is a fully faithful functor from the category of rank d
torsion-free abelian groups with no finitely generated direct summand to the category of groups with a
Polish cover.

Remark 8.14. To see that the assumption that bonding maps are of nonzero degree is needed for our
arguments, let 𝑋𝑛 = 𝑌𝑛 = T×T for all 𝑛 ∈ 𝜔; let each 𝜂𝑛 : 𝑋𝑛 → 𝑋𝑛+1 be the projection to the first factor,
and let each 𝑌𝑛 → 𝑌𝑛+1 be constant. Letting X and Y denote hocolim (𝑋𝑛, 𝜂𝑛) and hocolim (𝑌𝑛, 𝛽𝑛),
respectively, we then have that 𝑋 � 𝑌 but

H3
∞(𝑋) � H3

∞(𝑌 ) � H2
w(𝑋) � H2

w(𝑌 ) � 0.

Here, then, the reasoning of Theorems 8.11 and 8.12 no longer applies. Note that it remains quite
plausible that definable cohomology classifies mapping telescopes of tori even without assumptions on
maps’ degrees; the example simply suggests that ascertaining this would require a deeper analysis of
the cohomology groups than is in the spirit of the present work.
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As indicated, the sensitivities of definable cohomology recorded above contrast strongly with those
of classical cohomology.

Theorem 8.15. There exist size-continuum families of pairwise homotopy inequivalent mapping tele-
scopes of monomorphic inductive sequences of tori whose classical Čech cohomology groups are,
viewed as graded abelian groups, all isomorphic.

Proof. Recall the following notations from [9, p. 28]: for every sequence 𝒎 =
(
𝑚𝑝

)
𝑝∈P ∈ N

P , where
N is the set of strictly positive integers, define Z[ 1

P𝒎 ] to be the set of rational numbers of the form 𝑎/𝑏

where 𝑎 ∈ Z, 𝑏 ∈ N, and for every 𝑝 ∈ P and 𝑘 ∈ N, if 𝑝𝑘 divides b, then 𝑘 ≤ 𝑚𝑝 . Write 𝒎 =∗ 𝒏 if and
only if {𝑝 ∈ P : 𝑚𝑝 ≠ 𝑚′𝑝} is finite. The following appears as Corollary 7.9 in [9].

Proposition 8.16. Fix 𝑑 ≥ 1. For every 𝒎, 𝒏 ∈ NP , Ext(Z[ 1
P𝒎 ]

𝑑 ,Z) and Ext(Z[ 1
P𝒏 ]

𝑑 ,Z) are isomor-
phic as discrete groups, and are Borel isomorphic if and only if 𝒎 =∗ 𝒏. In particular, the collection{

Ext(Z
[ 1
P𝒎

]𝑑
,Z) : 𝒎 ∈ NP

}
contains a continuum of groups with a Polish cover that are pairwise isomorphic as discrete groups but
not definably isomorphic.

Though this result carries implications contrasting with Proposition 8.11 and Theorem 8.12 for all
𝑑 ≥ 1, for simplicity, we focus on the case of 𝑑 = 1. Choosing 𝒎 ∈ NP and letting Λ = Z[ 1

P𝒎 ],
we may represent hocolim XΛ as the mapping telescope tel(𝒎) of the sequence of maps 𝜂𝑛 : T → T
(𝑛 ∈ N) defined by 𝑧 ↦→ 𝑧𝑝

𝑚𝑝 , where p is the 𝑛th prime number. It is straightforward to verify that
H0 (tel(𝒎)) = H1(tel(𝒎)) = Z; it then follows from Proposition 8.11 that for any family M of sequences
𝒎 witnessing Proposition 8.16, the family {tel(𝒎) | 𝒎 ∈ 𝑀} is a witness to Theorem 8.15. �

8.5. Mapping telescopes of spheres

Similarly, definable cohomology classifies mapping telescopes of spheres up to homotopy equivalence.

Theorem 8.17. The definable Čech cohomology groups completely classify homotopy colimits of non-
trivial inductive sequences of d-spheres up to homotopy equivalence, for all 𝑑 ≥ 1. In fact, the mapping
telescopes associated to any two such inductive sequences are homotopy equivalent if and only if they
have definably isomorphic weak and asymptotic Čech cohomology groups.

Just as for Theorem 8.9, Theorem 8.17 contrasts with the fact that there exist uncountable families
of pairwise homotopy inequivalent mapping telescopes of sequences of spheres whose classical Čech
cohomology groups, viewed as graded abelian groups, are all isomorphic; the handiest examples of such
are the families {tel(𝒎) | 𝒎 ∈ 𝑀} concluding the proof of Theorem 8.15 above.

As in that proof, for each (cofiltered) rank 1 torsion-free abelian group Λ, let XΛ denote the corre-
sponding inductive sequence (𝑋𝑛)𝑛∈N of 1-dimensional tori, which we regard as pointed 1-spheres. Let
𝑆𝑑−1 (XΛ) =

(
𝑆𝑑−1 (𝑋𝑛

)
)𝑛∈N, where 𝑆𝑘 for 𝑘 ≥ 0 denotes the k-fold iterated reduced suspension of a

pointed space, defined by setting 𝑆𝑘+1(𝑋) = 𝑆(𝑆𝑘 (𝑋)) for every 𝑘 ∈ N; evidently, 𝑆𝑑−1 (XΛ) is an in-
ductive sequence of d-spheres. Conversely, by Hopf’s Theorem 7.16, since 𝐻̃𝑑 (𝑆𝑑) is isomorphic to Z,
every inductive sequence of d-spheres and maps of nonzero degree is isomorphic in Ind𝜔 (Ho(C)) to an
inductive sequence of this form. Thus, by Proposition 8.4, it suffices to show that definable cohomology
is a complete invariant for hocolim 𝑆𝑑−1 (XΛ) where Λ is a rank 1 torsion-free abelian group. This is
immediate from the following proposition, whose proof is the same as the proof of Proposition 8.11.

Proposition 8.18. Let Λ be a rank 1 torsion-free abelian group. Then,

(1) H𝑑+1
∞ (𝑆𝑑−1 (XΛ)) is naturally definably isomorphic to Ext(Λ,Z);

(2) H𝑑
w(𝑆

𝑑−1 (XΛ)) is naturally definably isomorphic to Hom(Λ,Z).
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8.6. The Borsuk–Eilenberg classification problem

A d-dimensional solenoid is an indecomposable continuum and, in particular, a compact Polish space
which is homeomorphic to the Pontryagin dual of an infinitely generated rank d torsion-free abelian
group. One-dimensional solenoids played a prominent role in the work of Smale and Williams in the
context of dynamical systems, as they provided the first examples of uniformly hyperbolic (or Axiom
A) attractors that are strange; see [74, 79, 90]. In these contexts, a 1-dimensional solenoid arising as a
uniformly hyperbolic attractor of a dynamical system is termed a Smale (solenoid) attractor or Smale–
Williams (solenoid) attractor. For any 𝑝 ≥ 2 (not necessarily prime), let Σ𝑝 be the p-adic solenoid (i.e.,
the Pontryagin dual of Z[1/𝑝]). An explicit construction of an orientation-preserving diffeomorphism
ℎ𝑝 of 𝑆3 with Σ𝑝 as attractor is also given in [38, 39]; we now recall some definitions from that work.

Let T × 𝐷2 be the solid torus, viewing T as the unit circle in the complex plane, and let 𝜙 : T→ T
be the map 𝜁 ↦→ 𝜁 𝑝 . The canonical unbraided solenoidal mapping T× 𝐷2 → T× 𝐷2 of degree p is the
mapping

𝑒𝜙 : (𝜁, 𝑧) ↦→
(
𝜁 𝑝 , 𝜁 + 𝜀𝜁1−𝑝

)
,

where 𝜀 is a fixed positive real number chosen to be small enough that 𝑒𝜙 is injective. An intrinsic
characterization of 𝑒𝜙 up to conjugacy is given in [38, Theorem 3.11]. It is shown in [38, Section 4] that
there exists an orientation-preserving diffeomorphism h of 𝑆3 and a smooth embedding 𝑗+ : T×𝐷2 → 𝑆3

such that h lifts 𝑒𝜙 through 𝑗+, in the sense that ℎ ◦ 𝑗+ = 𝑗+ ◦ 𝑒𝜙 . Setting 𝑇+ := 𝑗+(T × 𝐷2) and

𝑇+𝑛 := (ℎ𝑛 ◦ 𝑗+)(T × 𝐷2) = ( 𝑗 ◦ 𝑒𝑛𝜙) (T × 𝐷2),

one has that

Σ𝑝 (ℎ) :=
⋂
𝑛∈𝜔

𝑇+𝑛

is an attractor for h homeomorphic to Σ𝑝 . Furthermore, if one lets 𝑇− be the closure of the complement
of 𝑇+, then one has that ℎ−1 |𝑇 − is conjugate to 𝑒𝜙 , meaning that there exists a diffeomorphism 𝑗− :
T × 𝐷2 → 𝑇− such that ℎ−1 ◦ 𝑗− = 𝑒𝜙. Hence,

𝑆3 \ Σ𝑝 (ℎ) =
⋃
𝑛∈𝜔

ℎ−1 (𝑇−)

is homeomorphic to

colim (T × 𝐷2, 𝑒𝜙).

This colimit, in turn, is homotopy equivalent to the mapping telescope hocolim (T, 𝜙), by Lemma 8.6.
The complement 𝑆3 \ Σ𝑝 (ℎ) of Σ𝑝 (ℎ) is called a (one-dimensional) solenoid complement. The

problem of classifying the maps 𝑆3 \ Σ𝑝 (ℎ) → 𝑆2 up to homotopy was posed by Borsuk and Eilenberg
in [11], and we conclude this subsection with a brief review of this question’s rather striking history.
More immediately, though, we have the following.
Theorem 8.19. Fix 𝑝 ≥ 2. Then [𝑆3 \ Σ𝑝 (ℎ), 𝑆

2] = [𝑆3 \ Σ𝑝 (ℎ), 𝑆
2]∞ is a definable set, and there is a

basepoint-preserving definable bijection between [𝑆3 \ Σ𝑝 (ℎ), 𝑆
2] and Ext(Z[1/𝑝],Z).

Proof. By the foregoing discussion, 𝑆3 \ Σ𝑝 (ℎ) is homotopy equivalent to XΛ for Λ = Z[1/𝑝]. By the
𝑑 = 1 instance of Proposition 8.11(3), Hopf’s Theorem 7.16 applies, giving a definable bijection of
[𝑆3 \ Σ𝑝 (ℎ), 𝑆

2] and H2(𝑆3 \ Σ𝑝 (ℎ)), and the latter, by Proposition 8.11(1), is definably isomorphic to
Ext(Z[1/𝑝],Z). That the composite bijection is basepoint-preserving is clear, and just as in Corollary
7.17, [𝑆3 \ Σ𝑝 (ℎ), 𝑆

2] is then a definable set. Proposition 8.11(1) also gives the first definable bijection
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in the series

[𝑆3 \ Σ𝑝 (ℎ), 𝑆
2] � H2

∞(𝑆
3 \ Σ𝑝 (ℎ)) � lim1 H2 (𝑆(T)) � [𝑆3 \ Σ𝑝 (ℎ), 𝑆

2]∞.

Proposition 8.8 supplies the second, and the last follows again from Hopf’s Theorem 7.16, together with
Theorem 7.10. �

As 𝑆3 \ Σ𝑝 (ℎ) is homotopy equivalent to the mapping telescope hocolim (T, 𝜙), one may consider
the following generalization of Theorem 8.19 to arbitrary homotopy colimits of d-tori. This theorem
follows just as above from Hopf’s Theorem 7.16 and Propositions 8.8 and 8.11.
Theorem 8.20. Fix 𝑑 ≥ 1, and let Λ be a torsion-free rank 𝑑 abelian group. Then there are
basepoint-preserving definable bijections between [hocolim XΛ, 𝑆

𝑑+1]∞ and Ext(Λ,Z), and between
[hocolim XΛ, 𝑆

𝑑+1]w and Hom(Λ,Z).
Turning now to the question’s history, we quote from Eilenberg’s memoirs of his work with Karol

Borsuk:

The main problem concerning us was the following: given a solenoid Σ in 𝑆3, how big is the set
S of homotopy classes of maps 𝑓 : 𝑆3 \ Σ → 𝑆2? Our algebraic equipment was so poor that we
could not tackle the problem in the whole generality even though all the tools needed were in
our paper. In 1938, using the newly developed “obstruction theory,” I established that the set S in
question is equipotent to [the second Čech cohomology group of 𝑆3 \ Σ]. [25]

This motivated Steenrod [81] to introduce a homology theory dual to Čech cohomology; this theory is
now known as Steenrod homology. Steenrod’s duality principle (a form of Alexander duality) entailed
that H̃0 (Σ) � H2 (𝑆3 \ Σ). Steenrod then computed the group H̃0 (Σ) and showed that it – and hence the
set of homotopy classes of maps 𝑓 : 𝑆3 \ Σ→ 𝑆2 – is uncountable. Eilenberg continues:

When Saunders MacLane lectured in 1940 at the University of Michigan on group extensions
one of the groups appearing on the blackboard was exactly the group calculated by Steenrod. I
recognized it and spoke about it to MacLane. The result was the joint paper “Group extensions
and homology,” Ann. of Math., 43, 1942. This was the birth of Homological Algebra.

This joint paper, which introduced the functors Hom and Ext, is often cited as the beginning of category
theory as well: a central concern of the work is canonical or so-called ‘natural homomorphisms’ between
groups – a notion category theory was in part developed to make precise [27, 89].5

The affinity of that concern with our own concern for definable homomorphisms should be clear.
The novelty of this subsection’s theorems consists in both the generalization to higher dimensions
(Theorem 8.20), and in their formulation within the category of DSet. This latter point allows both for
finer characterizations (in the sense of Borel complexity) of the sets in question and an analysis of their
orbits under automorphism actions, the subjects of the following subsection.

8.7. Actions and Borel complexity

Let us begin by recalling that a definable set 𝑋/𝐸 is
• smooth if and only if and only if there is an injective definable function 𝑋/𝐸 → 𝑌 where Y is a Polish

space;
• essentially hyperfinite if and only if there is an injective definable function 𝑋/𝐸 → 𝑌/𝐹 where Y is

a Polish space, and F is the orbit equivalence relation associated with a Borel action of Z on Y;
• essentially treeable if and only if there exists an injective definable function 𝑋/𝐸 → 𝑌/𝐹 where Y is

a Polish space, and F is the orbit equivalence relation associated with a Borel action of a free group
on Y.

5To respond to a query of the referee, this paper also established the Universal Coefficient Theorem [27, §35] from which,
together with the aforementioned Steenrod duality, the abstract isomorphism H2 (𝑆3\Σ𝑝) � Ext(Z[1/𝑝], Z) is readily deduced.
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Consider next the definable sets Ext(Λ,Z) featuring in Theorem 8.20 above; more generally, consider
Ext(Λ,Z) for any countable torsion-free group Λ. Since Λ has no finite subgroup, Ext(Λ,Z) equals,
in modern notation, PExt(Λ,Z), or in other words the group which Eilenberg and MacLane denote
Ext 𝑓 (Λ,Z) and identify as the closure of {0} in Ext(Λ,Z) in [26]; more succinctly, {0} is dense in
Ext(Λ,Z) (here, {0} is a convenient locution for N in the presentation 𝐺/𝑁 of Ext(Λ,Z) as a group
with a Polish cover). From this, the first item of the following theorem is almost immediate.

Theorem 8.21. Let Λ be a countable torsion-free abelian group.

• The equivalence relation of isomorphism of extensions of Λ by Z is smooth if and only if {0} is closed
in Ext(Λ,Z) if and only if Ext(Λ,Z) = 0 if and only if Λ is free abelian.

• The equivalence relation of isomorphism of extensions of Λ by Z is essentially hyperfinite if and only
if {0} is 𝚺0

2 in Ext(Λ,Z) if and only if Λ = Λ∞ ⊕ Λfree where Λfree is free and Λ∞ is finite-rank.

In particular, for any prime 𝑝 ≥ 2, the problem of classifying extensions of Z[1/𝑝] by Z is essentially
hyperfinite and not smooth, and so, in consequence, is the problem of classifying maps 𝑆3 \Σ𝑝 (ℎ) → 𝑆2

up to homotopy.

Proof. The third of the first item’s bi-implications is due to [83]; the second simply restates our above
observation that {0} is dense in Ext(Λ,Z). For the left-to-right portion of its first bi-implication, again
recast that observation as the orbit equivalence relation given by {0} is generically ergodic [31, Prop.
6.1.9] and apply the contrapositive of [31, Prop. 6.1.10] to conclude that {0} is comeager and, hence, by
Pettis’s Lemma [31, Thm. 2.3.2], is closed, as claimed. The right-to-left portion of its first bi-implication
is trivial.

Let us turn now to the theorem’s second item, from which our last assertion directly follows by an
application of Theorem 8.19. Note that since Ext(−,Z) commutes with sums, in arguing the second
item’s right-to-left implications, we may suppose at the outset that Λ is finite-rank. Next, let 𝐸 ⊆ Λ be
a free abelian group such that Λ/𝐸 is torsion. To see that {0} is 𝚺0

2 in Ext(Λ,Z), consider the tail of the
long definable exact sequence relating Hom and Ext:

Hom(𝐸,Z) → Ext(Λ/𝐸,Z) → Ext(Λ,Z) → Ext(𝐸,Z) = 0,

whereby

Ext(Λ,Z) �
Ext(Λ/𝐸,Z)

ran(Hom(𝐸,Z) → Ext(Λ/𝐸,Z))
,

where ran( 𝑓 ) denotes the range, of course, of a function f. Considering next the fragment

0 = Hom(Λ/𝐸,Q) → Hom(Λ/𝐸,Q/Z) → Ext(Λ/𝐸,Z) → Ext(Λ/𝐸,Q) = 0

of the long definable exact sequence associating to Z→ Q→ Q/Z, we see that Ext(Λ/𝐸,Z) is definably
isomorphic to the Polish group Hom(Λ/𝐸,Q/Z). Hence, the complexity of {0} in Ext(Λ,Z) equals the
complexity of ran(Hom(𝐸,Z) → Ext(Λ/𝐸,Z)) in Ext(Λ/𝐸,Z) (for the preservation of this complexity
by definable isomorphisms, see [52, Proposition 4.12]). Since E is finite-rank, Hom(𝐸,Z) is countable;
hence ran(Hom(𝐸,Z) → Ext(Λ/𝐸,Z)) is also countable, and consequently 𝚺0

2 in Ext(Λ/𝐸,Z). From
this, we conclude that the equivalence relation of isomorphism of extensions of Λ by Z is essentially
hyperfinite by [31, Theorem 12.5.7] and [22, Theorem 6.1].

The second item’s left-to-right implications are as follows: the essential hyperfiniteness of the relation
implies that {0} is 𝚺0

2 in Ext(Λ,Z) by [52, Proposition 4.14], and this, in turn, implies that Λ is a sum
of a finite-rank abelian group and a free one by [51, Proposition 6.4]. �

We turn now to an analysis of actions on definable sets. Suppose that Γ is a group and 𝑋/𝐸 is a
semidefinable set. A definable left action Γ � 𝑋/𝐸 of Γ on 𝑋 /𝐸 is a function Γ × 𝑋 /𝐸 → 𝑋/𝐸 ,
(𝛾, 𝑥) ↦→ 𝛾 · 𝑥 such that
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• for every 𝛾 ∈ Γ, the map 𝑓𝛾 : 𝑋/𝐸 → 𝑋/𝐸 , 𝑥 ↦→ 𝛾 · 𝑥 is definable, and
• the assignment 𝛾 ↦→ 𝑓𝛾 is a group homomorphism from Γ to the group of definable bijections of X.

The orbit space of the action is the semidefinable set (𝑋/𝐸)/Γ = 𝑋/𝐹 where F is the equivalence
relation on X defined by setting 𝑥𝐹𝑦 if and only if there exists 𝛾 ∈ Γ such that (𝛾 · 𝑥) 𝐸 𝑦. A definable
morphism of actions from Γ � 𝑋/𝐸 to Γ′ � 𝑋 ′/𝐸 ′ is a pair (𝜑, 𝑓 ) such that 𝜑 : Γ → Γ′ is a group
homomorphism and 𝑓 : 𝑋/𝐸 → 𝑋 ′/𝐸 ′ is a definable function satisfying 𝜑(𝛾) · 𝑓 (𝑥) = 𝑓 (𝛾 · 𝑥) for all
𝛾 ∈ Γ and 𝑥 ∈ 𝑋/𝐸 . A definable right action is simply a definable left action of its opposite group.

Consider the group E (𝑋) of Ho(LC)-automorphisms of a locally compact Polish space X. If P is a
polyhedron, then E (𝑋) possesses a canonical right action on the space [𝑋, 𝑃]. If we let K𝑃 (𝑋) be the
kernel of this action, then we obtain a faithful right action [𝑋, 𝑃] � E (𝑋)/K𝑃 (𝑋). Similarly, if G is
a definable group, and Aut(G) is the group of definable group automorphisms of G, then we have a
faithful left action Aut(G) � G.

Consider now the case in which d is a positive integer, X is a polyhedron with 𝐻𝑞 (𝑋) = 0 for
𝑞 > 𝑑 + 1, and 𝑃 = 𝑆𝑑+1. In this case, by Hopf’s theorem, we have a natural definable bijection
𝑓 : [𝑋, 𝑆𝑑+1] → H𝑑+1 (𝑋). By the functoriality of definable Čech cohomology, we have also a group
anti-homomorphism 𝜑 : E (𝑋)/K𝑆𝑑+1 (𝑋) → Aut(H𝑑+1 (𝑋)) such that (𝜑, 𝑓 ) is a morphism of actions
from [𝑋, 𝑆𝑑+1] � E (𝑋)/K𝑆𝑑+1 (𝑋) to Aut(H𝑑+1 (𝑋)) � H𝑑+1 (𝑋).

In particular, when 𝑋 = hocolim XΛ for some a rank d torsion-free abelian group Λ with no finitely
generated summands, then by Theorem 7.16, Theorem 8.13 and Proposition 8.11 we have the following
(see, for example, [47, p. 15] for the notion of a conjugacy of actions).

Theorem 8.22. Suppose that Λ is a rank d torsion-free abelian group with no finitely generated direct
summand. Let 𝑋Λ := hocolim XΛ. Then the natural definable bijection

𝑓 : [𝑋Λ, 𝑆
𝑑+1] → H𝑑+1 (𝑋Λ) � Ext(Λ,Z)

and the group anti-homomorphism

𝜑 : E (𝑋Λ) /K𝑆𝑑+1 (𝑋Λ) → Aut(H𝑑+1 (𝑋Λ)) � Aut(Ext(Λ,Z)) � Aut(Λ)

establish a conjugacy between the actions E (𝑋Λ) /K𝑆𝑑+1 (𝑋Λ) � [𝑋Λ, 𝑆
𝑑+1] and the action Aut(Λ) �

Ext(Λ,Z).

Corollary 8.23. Suppose that Λ is a rank d torsion-free abelian group with no finitely generated direct
summand. Set 𝑋Λ := hocolim XΛ. Then the orbit space [𝑋Λ, 𝑆

𝑑+1]/E (𝑋Λ) is a definable set, and there
is a definable bijection between [

𝑋Λ, 𝑆
𝑑+1] /E (𝑋Λ)

and

Ext(Λ,Z) /Aut(Λ) .

The next corollary follows immediately from Corollary 8.23 and [9, Theorem 1.3].

Corollary 8.24. Suppose that 𝑛, 𝑚 ≥ 2, and 𝑝, 𝑞 are prime numbers. Consider the groups Λ = Z[1/𝑝]𝑛
and Γ = Z[1/𝑞]𝑚. Then,

(1) [𝑋Λ, 𝑆
𝑛+1]/E (𝑋Λ) is not smooth;

(2) [𝑋Λ, 𝑆
𝑛+1]/E (𝑋Λ) is essentially hyperfinite if and only if 𝑛 = 1 ;

(3) [𝑋Λ, 𝑆
𝑛+1]/E (𝑋Λ) is not essentially treeable if 𝑛 > 1;

(4) if 𝑚 > 𝑛, then there is no injective definable function from [𝑋Γ, 𝑆
𝑚+1]/E (𝑋Γ) to [𝑋Λ, 𝑆

𝑛+1]/E (𝑋Λ);
(5) if 𝑚, 𝑛 ≥ 3 and 𝑝, 𝑞 are distinct, then there is no injective definable function from [𝑋Γ, 𝑆

𝑚+1]/E (𝑋Γ)

to [𝑋Λ, 𝑆
𝑛+1]/E (𝑋Λ).
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9. Conclusion

This work opens onto further tasks and questions in a number of directions, and of various degrees of
concreteness; we close with a few of the most conspicuous among them.

Question 9.1. Is our definition of an idealistic equivalence relation in Definition 3.1 equivalent to the
classical one?

Question 9.2. Does the category DSet possess arbitrary countable products?

Question 9.3. Is every abelian group with a Polish cover definably isomorphic to a group with an abelian
Polish cover?

Question 9.4. Is every definable group essentially a group with a Polish cover?

Since an affirmative answer would imply one for Is the category of definable abelian groups an exact
category?, one may regard the latter as a weaker version of Question 9.4 (note, though, that multiple
notions of exact category circulate; those of Quillen and of [41] both seem interesting here. See [20]).

Question 9.5. Which of the major generalized homology and cohomology theories – for example,
topological K-theory, cobordism, or stable homotopy [86] – lift to functors to the category of definable
groups?

This question condenses several. Its primary background, of course, is our work on the homotopical
representation of Čech cohomology, and it, in part, asks how far in the Brown representability [15]
direction this work may be extended; it is arguably also a question of extending our analysis to categories
of spectra. We may take it more generally to stand for the further development, in the spirit of the present
work, of any of contemporary algebraic topology’s extraordinary array of computational resources,
including, perhaps most immediately, homotopy groups and the ring structure of cohomology theories,
which we simply lacked the space to treat herein; we should further note in this connection the second
author’s [49, 50, 52].

Any such developments should tend, as in the present work, to shed light on the complexity of a
number of classification problems, but we are at least as interested in the possibilities of their more
direct application to the fields of algebraic or geometric topology. As this work’s authors have shown,
for example, the existence of definable homology functors very readily implies the topological rigidity
of solenoids, and although this fact may also be argued by classical means, it seems also to underscore
the prospect of others which may not be.

Question 9.6. Do there exist classes of topological spaces for which the rigidities of definable
(co)homological functors carry implications not accessible by classical means?

Not unrelated is the following line of inquiry, best phrased as a task:

Task 9.7. Characterize those locally compact Polish spaces whose definable cohomology groups are all
of the form (𝐺, 𝑁) with N countable, or locally profinite, or procountable, respectively.

Returning to the Borel complexity framework, in recent joint work [1], this work’s third author
exhibited a dynamical obstruction to classification by actions of TSI Polish groups, roughly paralleling
Hjorth’s turbulence obstruction to classification by countable structures. Recall that a Polish group is
TSI if it admits a two-sided invariant metric. As abelian groups are TSI, the dynamical condition from
[1] can also serve as an obstruction to classification by cohomological invariants.

Question 9.8. Does there exist a dynamical obstruction to classification by cohomological invariants
sharper than the obstruction by TSI-groups appearing in [1]?

Question 9.9. Can Corollary 8.24(5) be extended to the cases when one or both of the variables m and
n are 2?
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One last question has as partial background the first author’s independence results in homology
and cohomology computations. As shown in the joint work [6], for example, both the vanishing and
the nonvanishing of the first Čech cohomology group of the locally compact Hausdorff space 𝜔2 are
consistent relative to large cardinals; similar independence phenomena arise for strong homology even
within the category LC, even in the absence of large cardinal hypotheses (see [7, 54]). On the other hand,
the homotopy-bracket representation of Čech cohomology on the category LC, as well as our analysis
of its complexity, suggests that Ȟ• may, on that category, be immune to independence phenomena of
this sort, a possibility we evoke in the following question:

Question 9.10. Are the values of the Čech cohomology groups of a locally compact Polish space X in
some suitable sense forcing absolute?

A more precise framing of any such prospect should, of course, be taken to be part of the question.
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