Bivariate splines on a triangulation with a single totally interior edge*
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Abstract. We derive an explicit formula, valid for all integers r,d > 0, for the dimension of the vector space
C7(A) of piecewise polynomial functions continuously differentiable to order r and whose constituents
have degree at most d, where A is a planar triangulation that has a single totally interior edge. This
extends previous results of Tohdneanu, Mina¢, and Sorokina. Our result is a natural successor of
Schumaker’s 1979 dimension formula for splines on a planar vertex star. Indeed, there has not
been a dimension formula in this level of generality (valid for all integers d,r > 0 and any vertex
coordinates) since Schumaker’s result. We derive our results using commutative algebra.
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1. Introduction. Suppose A is a planar triangulation. A spline on A is a function on A
which restricts to a polynomial on each triangle; we call such a spline bivariate to emphasize
that the domain of the spline is two-dimensional. The degree of a bivariate spline is the
maximum (total) degree of the polynomial constituents. Given integers r,d > 0, we denote by
C}(A) the vector space of splines on A which are continuously differentiable of order r and
whose degree is bounded by d.

Bivariate splines have grown in importance since around 1980, when the study of univariate
splines could be regarded as more or less complete, and problems arising in engineering and
computer-aided design made clear the need to understand multivariate splines. The modern
significance of multivariate splines is marked by the authoritative monograph of Lai and
Schumaker [16]. Today, bivariate splines are a fundamental tool in areas such as computer-
aided geometric design, data fitting, and numerical solutions to partial differential equations.
In such applications, it is important to find sufficiently rich spline spaces capable of modeling
complex data, but not so large that they are computationally intractable. In terms of the
parameters 7 and d for the spline space Cj(A), one seeks for the parameter d to be large enough
(compared to r) to yield a sufficiently flexible spline space but not so large that computations
are impossible. It is thus a fundamental problem in numerical analysis to determine the
dimension of (and a basis for) C}j(A), especially when d is relatively small compared to r [16].

It turns out that even finding the dimension of C}(A) is extraordinarily difficult. We
briefly summarize the salient results on this problem. It was known to Strang (see [3]) that
dim C(A) depends on local geometry (the number of slopes that meet at each interior vertex).
This dependence is standard by now, and is a fundamental part of a well-known lower bound
for dim CJ;(A) derived by Schumaker [29]. Hong proves in [15] that Schumaker’s lower bound
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coincides with dim C(A) for d > 3r +2. Under a genericity condition, Alfeld and Schumaker
show that dim C};(A) also coincides with Schumaker’s lower bound for d = 3r + 1 [2].

The ‘2r + 1’ conjecture of Schenck, appearing in his doctoral thesis [27] (see also [28, 23]),
is that dim Cj(A) coincides with Schumaker’s lower bound for d > 2r + 1. When r > 2, this
has recently been disproved by the second author together with Schenck and Stillman [37, 26].
If r = 1, Schenck’s conjecture reduces to a formula for the dimension of C3(A) that has been
conjectured since at least 1991 by Alfeld and Manni [23, 1]. This remains one of the most
difficult open problems in bivariate splines. To lend further credence to this problem, piecewise
cubic C! splines are possibly the most commonly used splines in practice.

For r+1 < d < 3r+1, there are relatively few general statements known about dim Cj(A).
In this range it is possible that dim C};(A) depends upon global geometry of A — illustrated in
the Morgan-Scott split [1]. The issue of geometric dependence can be sidestepped by assuming
that A is suitably generic. If r = 1, Billera [3] shows that the generic dimension of dim C}(A)
coincides with Schumaker’s lower bound for all d > 2, proving a conjecture of Strang [33].
Whiteley computes certain generic dimension formulas for > 1 in [36], but generic dimension
formulas for dim Cj(A) for all d > 7 + 1 and r > 2 are (as of yet) out of reach. Given the
difficulty of computing the dimension of Cj;(A) for d < 3r 41, it is natural and useful to have
a complete characterization of dim CJ;(A) for interesting examples, which is the motivation for
our work. While we consider a limited class of triangulations, we hope that our new approach
will be of use to address the difficult problem of determining the dimension of spline spaces
in the range r + 1 < d < 3r, which is especially important for applications.

In this paper we derive in Theorem 6.1 an explicit formula for dim C};(A) for all r,d >
0 whenever A is a triangulation that has a single totally interior edge — that is, an edge
connecting two interior vertices (see Figure 1). Another formulation of our main result,
described in terms of lattice points in a polytope, appears in Theorem 4.1. Our formula
applies to any choice of vertex coordinates for A, and only depends on the number of distinct
slopes of edges meeting at each interior vertex. This is the first non-trivial dimension formula
for bivariate splines that applies in this level of generality (all r,d > 0 and any choice of
vertex coordinates) since Schumaker computed the formula for splines on a planar vertex star
in 1979 [29]. In particular, we affirm the conjecture of Alfeld and Manni on dim C1(A) for
triangulations with two interior vertices and one totally interior edge in Corollary 4.4.

Our work directly extends results in previous papers of Tohaneanu [34], Mind¢ and
Tohaneanu [21], and Sorokina [32] which study the dimension of splines on a particular tri-
angulation with a single totally interior edge. As a consequence of our work, we see that
Schenck’s ‘2r 4+ 1’ conjecture is satisfied for triangulations with a single totally interior edge
for all > 0 (Corollary 4.3). Moreover, it is clear from our result that the dimension of splines
on a triangulation with a single totally interior edge only depends on local geometry and not
global geometry. Thus the dependence of dim C;(A) upon global geometry indicated by the
Morgan-Scott split does not manifest unless there is more than one totally interior edge.

We briefly outline the paper. In Section 2 we recall background on splines and dimension
formulas from previous papers. Section 3 is a largely technical section in which we prove a few
results in commutative algebra, possibly of independent interest, for use in future sections. We
then prove the first formulation of our main result — Theorem 4.1 —in Section 4, stated in terms
of lattice points. In Section 5 we characterize in what degrees the spline space does not change
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upon removal of the totally interior edge (this is related to the phenomenon of supersmoothness
explored in [32]). We give the fully explicit dimension formula in Theorem 6.1 of Section 6
and illustrate the result with several examples. We conclude with additional remarks and
open problems in Section 7.

2. Splines on planar triangulations. We call a domain Q C R? polygonal if it consists
of a simple closed polygon and its interior. The simple closed polygon is the boundary of 2,
which we denote by 0€). Throughout we assume A is a triangulation of a polygonal domain;
we denote the domain which A triangulates by |A|. A triangulation is a collection of triangles
in which each pair o, ¢’ of triangles satisfies c No’ = () or o N ¢’ is either an edge or vertex of
both ¢ and o”.

We write Ag for the set of vertices of A, A; for the set of edges of A, and As for the set
of triangles of A. An interior edge of A is an edge that is a common edge of two triangles
of A. A boundary edge of A is an edge that is only contained in a single triangle of A. An
interior vertex of A is a vertex that is not contained in any boundary edges. Put Aj and A}
for the set of interior vertices and interior edges of A, respectively. A totally interior edge of
A is an edge that connects two interior vertices of A.

Let r > 0 be an integer. We define C"(A) to be the set of C"-differentiable piecewise
polynomial functions on A. These functions are called splines. More explicitly:

Definition 2.1. C"(A) is the set of functions F : |A] — R such that:
1. For all triangles 0 € A, F, := F|, is a polynomial in R[x,y].
2. F is differentiable of order r.

For each integer d > 0, we define
Cy(A) :={F € C"(A) : deg(F,) < d, for all o € Ay}.

For an edge 7 € A1, we write ¢, for a choice of affine linear form that vanishes on the affine
span of 7.

Proposition 2.1 (Algebraic spline criterion). [4, Corollary 1.3] Suppose A is a triangulation
of a polygonal domain and F : |A| — R is a piecewise polynomial function. Then F € C"(A)
if and only if .
E:Jrl ’Fm _F02

for every pair 1,09 € Ag so that o1 Nog =7 € Aq.

The space Cj(A) is a finite dimensional R-vector space. One of the key problems in spline
theory is to determine dim C7j(A) for all (A,r,d). To study this problem, we use a standard
coning construction due to Billera and Rose [4]. Namely, for any set U C R?, define UcR3
by U := {(sa,sb,s) : (a,b) € U and 0 < s < 1}. Define A to be the tetrahedral complex
whose tetrahedra are {7 : ¢ € Ag}. All above definitions for triangulations in R? carry over
in the expected way to tetrahedral complexes in R3. For a triangle 7 € Ag, we write £, for

the linear form defining the linear span of 7 (¢, is the homogenization ¢;). We put

A~ ~

[C"(A)]g:={F € C"(A): F € Rz, y, z]a},

where R[z,y, z]4 is the vector space of homogeneous polynomials of degree d. We relate this
space to C}(A) using:
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Proposition 2.2. [4, Theorem 2.6] [C"(A)]4 = Cy(A) as real vector spaces.

The Billera-Schenck-Stillman (BSS) chain complex Ro/Je, which we define below, is in-
troduced by Billera in [3] and modified by Schenck and Stillman in [25].

Definition 2.2. For an edge T € A} and vertex v € Ag, define
o J(7):= ({rFY) (the principal ideal of Rz, vy, 2] generated by (') and
o J(v) = >_,e, J(7) (the ideal of Rlz,y, 2] generated by {17 € A and v € 7}.

Let R = R[z,y, z]. We define the chain complex R, by

Re=PREPr™ Pr

og€EAs TEAS TEA]

where the differentials 0y and 0; are the differentials in the simplicial chain complex of A
relative to A with coefficients in R. By definition, the ith homology H;(R,) is isomorphic to
H;(A,0A; R), where the latter is the ith simplicial homology group of A relative to A with
coefficients in R. We also define the subcomplex J, C Re by

0% P Jin 2 @I

TEAY YEA]

and the quotient complex (which we call the Billera-Schenck-Stillman chain complex)

R/Te= P RE P RIIT D P RITO).

oc€Ag TEAS TEA

We use the following result of Schenck and Stillman.

Theorem 2.3 (Schenck and Stillman [24, 25]). The dimension of Cj(A) is
(2.1) dim Cy(A) = L(A,d,r) + dim Hi(Re/Te)ds

where L(A, d,r) is Schumaker’s lower bound [29]. In fact, L(A,d,r) coincides with the Euler
characteristic, in degree d, of the Billera-Schenck-Stillman chain complex Re/Te.

We set some additional notation to give an expression for Schumaker’s lower bound
L(A,d,r). If A,B € Z are non-negative integers, we use the following convention for the
binomial coefficient (g):

A
_— <
@) _IJB@a-Br °°

0 otherwise

Proposition 2.4 (Schumaker's lower bound [29]). For each vertex v € Af we let s, be the
number of slopes of edges containing . Let v, and v, be the quotient and remainder when
sy(r 4+ 1) is divided by sy — 1; that is, sy(r + 1) = ay(sy — 1) + vy, with ., vy € Z and
0<v,<sy—1. Put p,=s,—1~-v,.
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Using the above notation, let

d+2 o d+1-r
N I E (NED S N G
YEA]
d+2 -« d+1—-«
FR () ()
YEAG

Then L(A,d,r) < Ch(A).

Proof. Schumaker [29] gave a lower bound on the dimension of the spline space which
Schenck and Stillman show in [24] is equivalent to the above expression L(A,d,r). [ |

There is also an upper bound for dim C};(A) due to Schumaker [30], which requires a
certain ordering of Aj. The bound is extended to any ordering on Af by Mourrain and
Villamizar in [22], and we record their formulation of Schumaker’s upper bound below.

Proposition 2.5. [30, 22] Let A be a triangulation with a fized ordering v1, . .. s Vag| on its
interior vertices. For each interior vertex v = ~y; we let 5, be the number of different slopes
of edges containing ~y; which connect vy; either to a vertex y; with j < i or to a vertex on the
boundary of A. We then define &y, Uy, fi, in exactly the way o, vy, and jiy are defined in
Proposition 2.4, except we replace s with 5. Let U(A,d,r) be the expression resulting from
substituting sy — 5y, 0y = @y, Uy = Uy, and iy — fiy in Schumaker’s lower bound L(A,d,r).
Then dim C}(A) < U(A,d,r).

We will also consider splines on a partition A which is not a triangulation but a rectilinear
partition — in this case the polygonal domain |A| is subdivided into polygons which meet along
edges. All definitions and results stated thus far carry over to rectilinear partitions. The class
of rectilinear partitions we will have occasion to use are quasi-cross-cut partitions.

Definition 2.3. A rectilinear partition A is a quasi-cross-cut partition if every edge of A is
connected to the boundary of A by a sequence of adjacent edges that all have the same slope.

We give a formulation of a result of Chui and Wang [5] which appears in [24].

Proposition 2.6. If A is a quasi-cross-cut partition then dim C}(A) = L(A,d,r) for all
d,” > 0.

2.1. Case of a single totally interior edge. In this section we specialize to the case of
interest in this paper. That is, A is a triangulation with only two interior vertices v; and
ve connected by a single totally interior edge 7. We further assume that the triangulation
consists only of triangles which contain either v; or v9 or both. There are two cases in which
the dimension formula on such a triangulation is trivial.

Proposition 2.7. Let A be a triangulation with a single totally interior edge T connecting
interior vertices v1 and vy. Suppose that either
e the interior edge T has the same slope as another edge meeting T at either vy or vy or
o the number of slopes of edges meeting at either v1 or vy is at least r + 3.
Then dim C}(A) = L(A,d,r) for all integers d,r > 0.
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Figure 1. A triangulation with a single totally interior edge, p = 6, s = 3, ¢ = 5, and
t = 4. A choice of coordinates that realizes this data is vi = (—1,0),v2 = (1,0) and, for the re-
maining vertices (read counterclockwise around the boundary, starting with the wvertexr mortheast of vs),
(2,1),(1,2),(0,1),(-1,7/4),(-2,1),(=9/4,-5/4),(-1,-3/2),(0,—1), and (1,7/4).

Proof. The result follows from [24, Theorem 5.2]. In either case, H1(Re/Js) = 0 and
C"(A) is a free module over the polynomial ring. This also follows from the upper bound
U(A,d,r) of Schumaker [30] — see Proposition 2.5 — since either hypothesis forces L(A, d,r) =

U(A,d,r) for d > 0. [ ]

Assumptions 2.1. In the remainder of the paper, we use the following notation and as-
sumptions whenever we have a triangulation A with a single totally interior edge T connecting
nterior vertices v1 and vs.

o We assume no edge adjacent to v1 or vy has the same slope as T.

o We write p (respectively q) for the number of edges different from T which are adjacent
to vy (respectively va ).

o We write s (respectively t) for the number of different slopes achieved by the edges
different from T which contain vy (respectively v).

o We assume (without loss) that 2 < s <t <r+1.

Remark 1. We explain the last bullet point in Assumptions 2.1. Since we assume no other
edge besides T has a slope equal to the slope of T, vy is surrounded by p + 1 edges taking on
s+ 1 different slopes and vy is surrounded by q + 1 edges taking on t + 1 different slopes. See
Figure 1. We obtain s < t by relabeling v1 and va if necessary. If s =1 then either p =1 or
p = 2. In either case it is not possible for A to be a triangulation. (If p = 2 it would be possible
to have a so-called T-juncture or ‘hanging vertex’ at vi, but we do not allow these under our
definition of a triangulation.) Hence 2 < s,t. We can also assume that s+1 and t+1 are both
at most v + 2 by Proposition 2.7. Putting these all together, we arrive at 2 < s <t <r+1.

We now consider the homology module Hi(Re/Te).
Lemma 2.8. If A has only one totally interior edge T , then

(2.2) Hi(Roe/Ts) =~ R/(J1: J(T)+ J2: J(7))(—r — 1),
where
(2.3) Ji= > Je) fori=1,2.

e€A?

VU, €€,EFAT
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This lemma is a consequence of presentation for H;(Re/Je) due to Schenck and Stillman.
We recall this presentation before proceeding to the proof.

Lemma 2.9. [25, Lemma 3.8] Let @seA‘f Rle.]| be the free R module with summands indexed
by the formal basis symbols {le:] | € € A}} which each have degree r + 1. Define K" C
@seA‘; Rle.]| to be the submodule of @seA;’ Rle.| generated by

{[ec] | € € AF is not totally interior}

and, for each v € Ag,

{Z aclec] Zagﬁyl = 0} .

YEE yEe

The R-module Hy(Js) is given by generators and relations by

0— K" — @ Rlec] = Ho(Js) — 0.
e€AY

Proof of Lemma 2.8. First, since A has no holes, H1(Re/Js) = Hy(Js). This follows
from the long exact sequence in homology associated to the short exact sequence of chain
complexes 0 = Jo — Re — Re/Te — 0 and the fact that H1(Re) = Ho(Re) = 0 (see [25]).

Thus we may use Lemma 2.9. Since A has only one totally interior edge 7, K" is generated
by the free module F' = {[e;] | ¢ € A7, # 7} and the syzygy modules K; = {}_, _ac[ec] ’
D oviee alrt = 0} for i = 1,2. Slnce all factors of R indexed by an interior edge different
from 7 are quotiented out, after trimming the presentation in Lemma 2.9 we are left with

0— K™ — Rle;] = Ho(Je) — 0,
where K™ = K" /F. Observe that K" is the internal sum of the submodules

K; = {a,[e;] | a, 71 € J;}

for i = 1,2, where J; = Y. J(¢) fori = 1,2. Thus K" = Jy : &£ 4 Jp - 0070 = ]y
€AY
viEEE,E;léT
J(7) + Ja : J(7). Recalling that [e;] has degree r + 1, this proves that
Hi(Re/Te) = R/(J1: J(1) + Ja: J(7))(—r — 1). [

After coning, we apply a change of coordinates T : R? — R? so that T'(v1) points in the
direction of (0,1,0) and T'(v2) points in the direction of (1,0,0). With respect to this new
choice of coordinates we may choose linear forms vanishing on the interior triangle so that:

J(T) = (1),
= ((z + b1z) Uz +bez)™ o (24 bs2)™™), and
= ((y+c12)™ M (y+e22)™ L (g4 ).

In Section 3 we study ideals of this type, returning to the study of the homology module in
Section 4.



8 M. DIPASQUALE AND B. YUAN

3. The initial ideal of a power ideal in two variables. This section is largely a technical
section in which we derive some results from commutative algebra — possibly of independent
interest — to use in our analysis for dim Cj(A) in future sections. The reader will not lose
much by skipping this section for now and returning later as needed or desired. Our references
are [6] for Grobner bases, [13] for apolarity, and [20, Chapter 2] for lex-segment ideals.

Suppose we are given a set of points X = {p1,---,ps} C P!, where p; = [b; : ¢;] for
1 <1i<s, and a sequence a = (ay,...,as) of multiplicities for these points. We will assume
that the points are ordered so that a1 < ag < --- < as. We associate two ideals to this set of
points. First, the power ideal

J(X,a) = ((byz + cly)‘“H, ey (bsz + csy)as+1>

in the polynomial ring R = R[xz,y]. Secondly, the fat point ideal

S S

I(X,a) = (b — ;. X)" = ([[(0Y — ;. X)™)
=1 =1

in the polynomial ring S = R[X, Y] (S is the coordinate ring of P!). The ideal I,(X) consists
of all polynomials which vanish to order a; at p;, fort =1,...,s.

Our objective is to show that, under the assumption that b; # 0 for ¢ = 1, ..., s, the initial
ideal In(J (X, a)), with respect to either graded lexicographic or graded reverse lexicographic
order, is a lex-segment ideal. Since the graded lexicographic and graded reverse lexicographic
order coincide in two variables, we focus on the lexicographic order since it is consistent with
the lex-segment definition.

Definition 3.1. A monomial ideal I C R is called a lex-segment ideal if, whenever a mono-
mial m € R of degree d satisfies m >, n for some monomial n € I of degree d, then
m € I.

Lex-segment ideals play an important role in Macaulay’s classification of Hilbert func-
tions [18]. Before proceeding to the proof, we introduce the notion of apolarity; see [13] for
an excellent survey. Define an action of S on R by

of

xoy?b -
( ) o f axaayb )

and extend linearly. That is, S acts on R as partial differential operators. It is straightforward
to see that this action induces a perfect pairing Ry x Sq — R via (f,F) — F o f. For an
R-vector subspace U C Ry we thus define

Ul :={FeS:Fof=0forall feU}.

Write Jy(X,a) for the R-vector space spanned by homogeneous polynomials in J(X,a) of
degree d (this definition clearly extends to any homogeneous ideal). A result of Emsalem
and Tarrobino describes J4(X,a)" in terms of fat point ideals. In the statement of the result
below, we put [m]+ = max{m,0} and [d — a]y = ([d — a1]+, [d — a2+, ..., [d — as]+).

Theorem 3.1 (Emsalem and larrobino [11]). Jg(X,a)t = I4(X,[d — a]4)
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As a corollary, the Hilbert function HF(d, J(X,a)) = dim J;(X,a) can be derived.
Corollary 3.2 (Geramita and Schenck [14]). dim Jg(X,a) =min{d +1,> 7 ;[d — a;]+}

This shows that the Hilbert function of J(X',a) has the maximal growth possible for its
number of generators. We take this analysis one step further.

Corollary 3.3. Suppose that no point of X has a vanishing x-coordinate. Then the initial
ideal In(J(X,a)) is a lex-segment ideal.

Proof. Fix a degree d. Put F = [[I_,(b:;Y — ¢; X)l=%]+ and a = deg(F) = 27_,[d — ai]+
By assumption, b; # 0 for any ¢ = 1,...,s, so the monomial Y appears with non-zero
coefficient in F.

Since I(X, [d — al4) is principle, a basis for I4(X, [d — al;) is given by

(X2 byP P 0<b<d—a}

(Coupled with Theorem 3.1, this proves that dim Jy(X,a) = «, which is Corollary 3.2.)
Observe that the given basis for I;(X,a) has a polynomial whose lex-last term involves the
monomial X4~a-bybta for 0 < b < d— a.

If d < min{a; | 1 < i < s} then Jy(X,a) = 0. So suppose d > min{a; | 1 < i < s}
and that the leading term of some polynomial f € J;(X,a) with respect to lex order is
Ca?=2=bybte for some b > 0 and C' # 0. Then every other term of f involves a power of y
which is larger than b + a. From our above observation, the lex-last (or lex-least) monomial
in the basis polynomial X%~ ~bYbF is Xd-atbybte  Thuys X4 bYPF o f #£ 0. In fact,
Xd-azbybp o f =T[5, b X4 abybtao (Ogd-atbyb+a) g0 we can compute it exactly as:

Xdabybpo f = C(ﬁ bi)(d— a+b)(b+ ),

i=1

which is non-zero because the b;’s are all non-vanishing and C' # 0. This contradicts Theo-
rem 3.1, since XY F € I;(X,[d — a],) but X9 Y F o f £ 0.

It follows that the initial terms of J;(X,a) can only involve the monomials 24y?, where
0 < B < «. Since dim J4(X,a) = a by Corollary 3.2, it follows that In(J(X,a))s consists of
the o lex-largest monomials of degree d. Thus In(J(X,a)) is a lex-segment ideal. [ ]

In the following corollary we use the ordering a1 < as < --- < as.

Corollary 3.4. With the same setup as Corollary 3.3, The initial ideal In(J(X,a)) consists
of the monomials xy®, where A > 0, B > 0, and one of the strict inequalities Zgzl a; <
JA+ (j—1)B, 1 < j <s, is satisfied.

Proof. Tt suffices to show that zy® ¢ In(J(X,a)) if and only if A > 0,B > 0 and
>l _ja; > jA+ (j — 1)B is satisfied for every j =1,...,s.

Since In(J(X, a)) is a lex-segment ideal with Hilbert function dim In(J(X,a))y = min{d+
1,38 [d—ai]y, 22YP ¢ In(J(X,a)) if and only if

B >dimIn(J(X,a))a+B = min{A—l- B+ I,Z[A‘i'B - az’]+} .
i=1
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Since A, B > 0 it is not possible that B > A + B + 1. So we are left with the condition
S
B> [A+B-ai;.
i=1

Now, since a1 < ags < ---<ag, A+ B—a1 > A+B—a9 > --- A+ B —as. The ‘plus’ subscript
means only positive contributions to the sum on the right hand side are taken. So we can
interpret the above inequality as

J
BZmax{Z(A—l—B—ai):jzl,...,s}.

=1

Equivalently, B > Zgzl(A + B — a;) is satisfied for j = 1,...,s. Re-arranging, we get
zAyP ¢ In(J(X,a)) if and only if jJA+ (j —1)B< Y7 _a;fori=1,...,s. [ ]

Remark 2. Given non-negative integers ay < az < --- < ag, the inequalities A>0,B>0,
and jJA+ (j — 1)B < Y)_a; for 1 < j < s define a convex polygon in R%.  Corollary 3.4
says that the initial ideal of J(X,a) consists of monomials which are in bijection with the
lattice points in the first quadrant of R? and are additionally mot contained in this polygon.
Equivalently, the monomials which are not in the initial ideal of J(X,a) are in bijection with
the lattice points of this polygon.

In the next result, and following, if r is a non-negative integer we write J(X',r) and I(X,r)
for the case where a = (r,r,...,r) consists of s copies of .

Corollary 3.5. With the same setup as Corollary 3.3, the initial ideal In(J(X,r)) consists
of those monomials xy® satisfying A > 0,B >0, and sr < sA+ (s — 1)B.

Proof. Due to Corollary 3.4, it suffices to show that the inequality sr < sA + (s — 1)B is
implied by the inequality jr < jA+ (j — 1)B for any j < s. This is clear by multiplying both
sides of jr < jA+ (j — 1)B by s/j. [ |

3.1. Behavior under colon. In this section we discuss the behavior of J(X,a) under

coloning with a power of y. We continue to assume that no point of X has a vanishing
z-coordinate. We use the following fact about graded reverse lexicographic order.

Proposition 3.6. If I C R = R[xy,...,x,] under graded reverse lexicographic order, then
In(I : xy,) = In(I) : ®,. In particular, for any integer e > 0, In(J(X,a) : y¢) = In(J(X,a)) :
ye

Proof. This is a special case of [10, Proposition 15.12]. [ ]

Corollary 3.7. For any integer e > 0, In(J(X,a) : y°) is a lex-segment ideal with Hilbert
function

dim In(J(X,a) : y°)q = [dim In(J (X, ))are — €]y = [min{d+ 1, [d+e—al} —ely
=1

The monomial 2AyPB s in In(J(X,a) : y°) if and only if A > 0,B > 0, and the inequality
Sl iai—(j—1)e < jA+ (j— 1)B is satisfied for some j =1,...,s.
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Proof. Due to Proposition 3.6 and the fact that graded lexicographic and graded reverse
lexicographic orders coincide in two variables, we have In(J(X,a) : y¢) = In(J(X,a)) : y°.
Now, a well-known identity is that (In(J(X,a)) : y¢)y® = In(J(X,a)) N (y¢). Said otherwise,
the monomials in In(J(X,a)) : y© of degree d are in bijection with the monomials of degree
d+ein In(J(X,a)) which are divisible by y°. Since (In(J(X,a)))4+e is spanned by lex-largest
monomials, In(J(X,a)) : y© is either empty or consists of the dim(In(J(X,a)))gre — € lex-
largest monomials of degree d. This establishes both that In(J(X,a)) : y° is lex-segment and
the claimed form of the Hilbert function.

For the description of the monomials 24y which are in In(J (X, a) : ) = In(J(X,a)) : y°,
it suffices to observe that x4y? € In(J(X,a)) : ¢ if and only if z4yB+¢ € In(J(X,a)). Then
apply Corollary 3.4. |

3.2. A summation property of Grobner bases. We would like to prove a general fact,
which will be useful in later sections. We refer the reader to [6, Chapter 2| for basics on
Grobner bases and the Buchberger algorithm, and we follow the same notation.

Lemma 3.8. Let R be the polynomial ring Rlx,y,z]. Assume I is a homogeneous ideal
generated by polynomials in the variables x and z and J is a homogeneous ideal generated by
polynomials in the variables y and z, then a Grobner basis for I + J with respect to graded
lexicographic (or graded reverse lexicographic) order can be obtained by taking the union of
the Grobner bases of I and J with respect to the graded lexicographic (or graded reverse
lezicographic) order. In particular, In(I + J) = In(I) + In(J).

Proof. Let G1 be a Grobner basis for I and Gy be a Grobner basis for J, both taken with
respect to either graded lexicographic order or graded reverse lexicographic order. It suffices
to show that G = Gy U Gy satisfies Buchberger’s criterion - that is, the S-pair S(f, g) of any
two f,g € G reduces to zero under the division algorithm. This is clearly true if both f and
g are in G; or both f and g are in G3. So we assume f € Gi,g € Go. We further assume the
leading coefficients of f and g are normalized to 1. Let LT(f) = 242¢ and LT(g) = yZ2P.
Then

f =a2% + terms in z, z divisible by 2¢ and
g = yB2P + terms in y, z divisible by 2.

Put f' = f—242% and ¢ = g—yP2P. Assume C > D (the case D > C is entirely analogous).
Then we can write the S-pair of f and g as

where sz; and ng’) are both polynomials because every term of f’ is divisible by z¢ (and hence
2P since C' > D) and every term of ¢’ is divisible by z”. There is no cancellation between the

lead terms of f’g/z" and ¢’ f /2" since the lead term of f'g/z" has a higher power of y in it than
fg'/zP. Thus LT(S(f,g)) = maX{LT (Zf—;g) , LT (Z%f)} Since LT (j%g) < LT(S(f,9))
and LT (4 1) < LT(S(f,9)),

S(f,9) = sz,g— z%f
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is what is called a standard representation of S(f,g) in [6, Section 9]. It is shown in [6,
Section 9] that if every S-pair of G has a standard representation, then G is a Grobner basis,
and so the result follows. [ |

4. The dimension formula expressed via lattice points. In this section we prove our first
version of the dimension formula for Cj(A) when A is a triangulation with a single totally
interior edge. We also characterize when dim C;(A) begins to agree with Schumaker’s lower
bound. We record these as two separate results, and their proofs are based on results before
and in the section.

Theorem 4.1. Let A be a triangulation with a single totally interior edge T satisfying As-
sumptions 2.1. Then for all integers d > 0,

dim C(A) = L(A, d,7) + #(PNZ> N Hy)

where Hy = {(A,B,C) €R3: A+ B+ C =d—r— 1} and P is the polytope in R3 defined by
A, B,C>0,sA4+(s—1)C<r+1-—s,andtB+ (t—1)C <r+1—t. Equivalently, for all
integers d > 0,

dim C(A) = L(A, d,r) + #(Py N Z?),
where Py is the polygon in R? defined by the inequalities A > 0,B > 0, A — B(s — 1) <
sr—d(s—1), B—A({t—-1)<tr—d(t—1),and A+ B<d-—r—1.

Proof. The first equation in Theorem 4.1 follows from Lemma 4.6, Theorem 2.3, and
Lemma 2.9. The second equation follows from the first and Proposition 4.7. |

Theorem 4.2. Let A be a triangulation with a single totally interior edge T satisfying As-
sumptions 2.1. If r+1=s—1(mod s) andr +1 =t —1(mod t) then

dim C(A) SL(A, d, ) for d — Y + 1J 4 V 1

J + 7, and

dim C(A) =L(A, d, ) for d > {“J i Vﬂ S

Otherwise,

r+1
t

dim C}(A) >L(A,d,r) for d= Y—FlJ + { J +r—1, and
s

dim C7(A) =L(A, d, 7) for d > V 1‘ 1J + VTJ +r.

Proof. Theorem 4.2 follows from Theorem 2.3 and Proposition 4.8. |

Remark 3. In case there are three slopes that meet at each endpoint of the interior edge T
(so s =t=2), Theorem 4.2 yields that dim C};(A) = L(A,d,r) for d > 2r+1, which recovers
the main result of Tohdaneanu and Mindé in [21]. We say more on this in Example 6.1.

Corollary 4.3. If A has a single totally interior edge, then dim C}(A) = L(A,d,r) for
d>2r+1, so A satisfies the 2r+1" conjecture of Schenck [27] (see also [28, Conjecture 2.1]).
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Proof. This is immediate from Proposition 2.7 and Theorem 4.2, coupled with the fact
that t > s > 2. [ |

Since the case r = 1,d = 3 receives lots of attention, we treat it separately and give an explicit
formula for dim C3(A).

Corollary 4.4. Assume A has two interior vertices and one totally interior edge. Then
dim C}(A) = L(A,d,1) for d > 3, so A satisfies the conjecture of Alfeld and Manni for
dim C3(A) (see [1, Conjecture 3] or [25]). Explicitly,

dim C3(A) = 10 - |Ag| — 7+ |AJ] + 6.

Proof. Corollary 4.3 yields dim C3(A) = L(A, 3,1). We know that L(A,3,1) is the Euler
characteristic of Re/Je (see Theorem 2.3) in degree 3. A straightforward calculation then
yields the explicit formula. Any equivalent expression for Schumaker’s lower bound (e.g.
Proposition 2.4) may also be used to obtain the formula for L(A,3,1), although it may
differ from the exact expression above by identities involving the number of triangles, interior
vertices, and interior edges. |

We shall use Theorem 2.3 to prove Theorem 4.1 and Theorem 4.2, hence we spend the
remainder of this section analyzing the homology module Hi(Re/Js), where Re/Js is the
Billera-Schenck-Stillman chain complex from Section 2. We use Assumptions 2.1 throughout
this section. As we observed in Subsection 2.1, we may change coordinates so that

J(r) = (2",
Jp={(z+ blz)rH, (x + bgz)”l, oo (x4 bsz)”l), and
Jr={(y+c2) " (y+ ) (y+az) ).

Using Lemma 2.8, Proposition 3.6, and Lemma 3.8, we obtain the following corollary.

Corollary 4.5. With the above definition of Jy, Jo and J(7),

(4.1) In(J; : J(7)) =In(J;) : J(7), fori=1,2 and

(4.2) In(Jy : J(1)+ Jo: J(7)) = In(Jy : J(7)) + In(J2 : J(7)),

where the initial ideal is taken with respect to graded lexicographic order or graded reverse
lexicographic order.

Proof. The equation (4.1) follows from Proposition 3.6. Because J; : J(7) is only generated
in polynomials in = and z, and Jy : J(7) is only generated in polynomials in y and z, we may
apply Lemma 3.8 here and obtain (4.2). [ |

Lemma 4.6. A basis for R/(J1 : J(7) + J2 : J(7)) as an R-vector space is given by the

monomials x4y? 2C which satisfy the inequalities A > 0,B > 0,C > 0,74+1—5 > sA+(s—1)C,
andr+1—t>tB+ (t—1)C.
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C C

A A

Figure 2. Ezponent vectors of monomials outside R/(Jy : J(7)+ J2 : J(7)) when p=6,s =3,q=5,t =4,
and r = 8. The blue shaded plane (parallel to the B-azis) has equation 3A+ 2C = 6, while the red shaded plane
(parallel to the A-azis) has equation 4B + 3C = 5. The picture at right shows the slice of this polytope when
A+ B+ C =2. There are three lattice points of the polytope in this slice.

Proof. A common use of initial ideals is that the monomials outside of In(/) form a basis
for R/I [6, Section 5.3]. Thus it suffices to show that z4yB2C¢ & In(J; : J(7) + Jo : J(7))
if and only if A, B,C satisfy the claimed inequalities. Since In(J; : J(7) + J2 : J(7)) =
In(Jy : J(7)) +In(Jy : J(7)) by (4.2), it suffices to show that z4y®2C ¢ In(J; : J(7)) and
zAyB2C ¢ In(Jy : J(7)) if and only if the claimed inequalities hold. Since the initial ideals
are monomial, z4y52¢ ¢ In(Jy : J(1)) <= 242¢ ¢ In(J; : J(7)) and 2yB2C ¢ In(Jy :
J(1)) <= yB2¢ ¢ In(Jy : J(7)). Thus we reduce in both cases to two variables, and the
result now follows from Corollary 3.7. |

Example 4.1. Let A be the triangulation in Figure 1, with s =3 and t = 4. When r = 8,
a basis for R/(Jy : J(7) + Ja : J(7)) as an R-vector space is given by the monomials xy® 2¢
with A > 0,B > 0,0 > 0,34 +2C < 6, and 4B + 3C < 5. The lattice points (A, B,C) € 73
satisfying these inequalities are shown in Figure 2. When A+ B+ C = 2 the only lattice points
satisfying these inequalities are (2,0,0), (1,1,0), and (1,0, 1) (see the plot at right in Figure 2).
Thus dim(R/(J1 . J(T) + JQ . J(T)))Q =3 and dimHl(R./J.)7~+1+2 = dimHl(R./J.)n =3.

Proposition 4.7. The dimension of H1(Re/Je) in degree d is given by the number of lattice
points (A, B) € 72 satisfying the inequalities A > 0,B > 0, A — B(s —1) < sr —d(s — 1),
B—A{t—-1)<tr—d(t—1),and A+ B<d—r—1.

Proof. The graded isomorphism (2.2) shows that the dimension of H;(R4/J,) in degree d
is equal to the dimension of R/(Jy : J(7)+ J2 : J(7)) in degree d — r — 1. From Lemma 4.6,
this is the number of lattice points (4, B, C) € Z3, satisfying A+ B+C =d—r—1, A> 0,
B>0,C>0,844+(s—1)C<r—s+1,and tB+(t —1)C <r —t+1. We get the result by
substituting C' =d —r — 1 — A — B and simplifying the ensuing inequalities. |

If M is a graded module of finite length, recall that the (Castelnuovo-Mumford) regularity
of M, written reg M, is defined by reg M := max{d | My # 0}.
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Proposition 4.8. The regularity of H1(Re/Js) is bounded by

(43) VTJWflhr—ls]reng(R./J.)sHlﬁﬂw_l.

More precisely,

1 1
\‘T_}— J—l—v—l_ J—{—T ifr+1=s—1(mods)
s
(4.4) reg H1(Re/Te) = andr+1=t—1(modt)
r+1 r+1 )
{ J + { " J +r—1 otherwise.
s

Thus dim C(A) = L(A,d,r) ford > "+ ™ 4 r — 1 where L(A, d,r) is Schumaker’s lower
bound [29].

To prove Proposition 4.8, we use the following lemma:

Lemma 4.9. Assume 2 < s <t < r+ 1. Let P be the polytope in R3 defined by the
inequalities A > 0,B>0,C >0,r+1—-s>sA+(s—1)C,andr+1—-t >tB+ (t—1)C.
Let H be the plane defined by A+ B+ C = L%J + LitlJ —1. Then PONHNZ3 # 0 if and
only ifr+1=s—1(mods) andr+1=t—1(modt). Moreover, if r+1 = s —1(mods)
andr+1=t—1(modt) then

o Ift>3then PNHNZ = {([“] —1,[] —1,1)}
o Ifs=t=2then PNHNZ>={(t,t,r —1—2t)|t=0,1,...,7/2 1}

Proof. We first treat the case ¢t > 3 and s > 2. Assume P = (Ag, Bo,Co) € PN H NZ3.
If Cy =0, then Ay < L%J —1and By < LitlJ — 1. Hence, (Ao, Bo,0) ¢ H, contradiction.
Therefore, Cy > 1.

Next, we show that Cy < 1. Let dy = L%J + L%J — 1. Substituting Ag = dg— Bg—C) to

sAp+(s—1)Cy < r+1—s, we know that (B, Cp) € ZQZO must satisfy sBy+Cy > s+sdo—(r+1)
and tBy + (t — 1)Cy < r + 1 — t. Eliminating By and simplifying, we obtain

(1—1—1>Cb§{r+1}+{r+1}—1
s t S t
where {%} = rti Lﬂj and {%} = % — LN{IJ Because {TH} <1-—1LYand {i}
1-— llt,so (1—%—1)6’0<1—l % Since s > 2 and t > 3, thlslmphesCO§1

Therefore, Cy = 1, and hence Ag < LH'QJ 2 < LﬂJ —land By < LT+2J 2 < LTHJ 1.
Observe that if 72| —2 < | =] — 1 or [ZF2 | — LLJ —1 then HNPNZ3 = (). Therefore
if HNPNZ® # 0 then |“2] =[] 41 and |“2| = [ZH| 4+ 1 which in turn happens
ifand only if r+1=s—1(mods) and r+1=1¢— 1 (mod t). In case both congruences are
satisfied, it is clear from the above reasoning that (Ag, By, Cp) = (L%J -1, L%J —1,1)is
the only point in P N H N Z3.

Now we treat the case s =t = 2. First suppose r is odd, so r = 2k — 1 for some integer
k > 1. Then dy = 2k—1 and the polytope P is defined by A > 0, B > 0, C > 0, 2A+C < 2k—2,
and 2B + C < 2k — 2. From the final two inequalities we deduce that A+ B+ C < 2k —2 and

IN

o~
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thus HNP is empty. Now suppose r = 2k for some integer k£ > 1. Then dy = 2k —1 again, and
P is defined by the inequalities A >0, B>0,C >0,2A+C <2k—1,and 2B+ C < 2k — 1.
From A+ B+C =2k—1,2A4+C <2k—1,and 2B + C < 2k — 1, we deduce that A = B.
Since A > 0 and B > 0, we deduce that HNPNZ> = {(t,t,r—1-2t) |t=0,...,7/2—1}. 1
Now we are ready to prove Proposition 4.8.

Proof of Proposition 4.8. We first prove the bounds (4.3). By Lemma 2.8, the regularity
of H1(Re/Js) is the largest degree of a monomial in R/(Jy : J(7) + J2 : J(7))(—r — 1). By
Lemma 4.6, x4yB € R/(J1 : J(7) + Jo: J(7)) ifr +1>s(A+1)and r+1 > (B +1). In
particular, A = L%J —land B = L%J — 1 satisfy this condition. By Lemma 2.8, we obtain

ST

Note that the region of R? bounded by inequalities in Lemma 4.6 is a polytope, which we
denote by P as in Lemma 4.9. Thus the largest degree of a monomial in R/(J; : J(7) + Jo :
J(7)) is obtained by maximizing the linear functional A+ B+ C over PNZ3. It is well-known
in linear programming that the maximum of this linear functional on P NR? occurs at one of
the vertices of P. Therefore, to prove the upper bound, it suffices to verify that evaluating
A+ B+ C at the vertices achieves a value of at most isl + ”{—1 — 2. The vertices of P are

t—s "0, r 1) r+1—1,r+1—1,0 ’
s(t—1) t—1 s t

1 1
0,0, —1), ("2 _10,0), (0,2 —1,0), and (0,0,0),
t—1 s t

respectively. Computing A + B + C for each of them, we have

t 1 1 1 1
poq, TELLTEL o T T T and o,
s(t—1) s t t—1 s t

respectively. We want to show that %1 + % — 2 is the largest among all of them.
It is clear that

r+1 <7“—i—1 r+1 r+1

0< 1< -1 + 2,
S S t
and that %—1§ﬁr—l. We only need to show that
r+1 r+1
4.5 -1< — 2.
(45) s(t—l)r s + t
We have
t 1 r+1 r+1 5 1-(t—-1)(s—1) 1 1 1
r—1-— —-2| = r - ——-
s(t—1) s t t(t—1)s st
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Because t > s > 2,801 — (t —1)(s — 1) <0, where equality holds if and only if t = s = 2. If
t = s = 2, then equality in (4.5) holds. Otherwise, 1 — (¢ —1)(s — 1) < 0 and
1-(t—-1)(s—1 1 1 1-(t—-1)(s—1 1 1
CEEAICE 1) S SR WOR PRy (20 VI CEor ) DTS B
t(t—1)s st t(t—1)s s t
= 0.

r+1 r+1
+

Thus, we have proved (4.5). This means reg Hi(Re/Je) < { J +7r—1. Therefore,

the inequality (4.3) holds.

Now we prove Equation (4.4). If reg Hi(Re/Js) # |“2L| 4+ [“] 4+ r — 1, then by (4.3),
reg H1(Re/Ts) = [%J + [%J +r. By Lemma 2.8 and Lemma 4.6, this is equivalent to
saying that P N H NZ3 # (), where P and H are as in the setup of Lemma 4.9. Applying
Lemma 4.9 completes the proof. ]

Example 4.2. Assume that (s,t) = (3,4) and r = 6. Then

(x7, 252, 2°22, awt2 2320, 2227 w2, 210)

2

and

In(Jy)
In(J2) =(y",4%2,9°2

4.3 3.5 2.6 7 .9
Y2yt Yt et 2.

Therefore, In(Jy: J(7) + Jo: J(7)) = (22, 22,9, 2%). Every monomial of degree two or more
is in (22, x2,y, 2%), but x is not in this ideal. Therefore reg R/{x? xz,y,2%) = 1 and thus
reg Hi(Re/TJs) = 8 by Lemma 2.8. The bounds given by (4.3) are 8 < reg Hi(Re/Ts) < 9.
In this case, 7+ 1 # s — 1 (mod s), so by Proposition 4.8, reg Hi(Re/TJe) = 8, which aligns

with what we have found already. On the other hand, if (s,t) = (3,4) and r = 10, then

11 .1 9.2 .84 7.5 410 3,11 .2_13 14 16>and

In(Jy) =zt 2102, 2%22 2824 2720, ... 2210 232 22213 a2t 2

In( o) =y, y"0%, 4722, 4520 yT20, Lyt 210 e P ),
Therefore, In(Jy: J(7) + Jo: J(7)) = (23,222,942, y2%,23). We can see by inspection that
any monomial of degree five or more is in (x3, 2222, 32, y22, 23), while 2%yz is a monomial of
degree four not in this ideal. Thus reg R/In(Jy: J(1) + J2: J(7)) = 4 and so, by Lemma 2.8,
reg Hi(Re/Je) = 15. In this case, (4.3) specializes to 14 < reg Hi(Re/Je) < 15. Since
r+1=s—1(mods) andr+1=t—1(modt), Proposition 4.8 yields reg H1(Re/Ts) = 15,
which aligns with what we found by inspection.

5. Comparison to quasi-cross-cut. In this section we address the phenomenon that, for
certain pairs (r,d), dim C}(A) = dim C}j(A’) where A’ is obtained by removing the unique
totally interior edge from A to get a quasi-cross-cut partition (see Definition 2.3), as shown
in Figure 3. In [32], Sorokina discusses this phenomenon using the Bernstein-Bézier form in
the case s =t = 2 (which she calls the Tohaneanu partition due to its appearance in [34]). A
main result of [32] is that dim C(A) = dim C}(A’) for d < 2r when s = ¢t = 2. In this section,
we extend Sorokina’s result to arbitrary s and ¢. This equality of dimensions upon removal
of an edge is related to the phenomenon of supersmoothness [32, 12], although we will not go
into details about this.
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Lp—l Zq,1
1 L, Ly 1
g g
Lp,Q p—1 q—1
ol 1 Y’
p—2 O'qu q—2
. 01
- .
v V9
02
L3 0.1 9
2 ‘7% 01 P
{3
Ly (4}
L2 62

Figure 3. The triangulation A with edges and faces labeled for use in the proof of Lemma 5.1. The
quasi-cross-cut partition A" is obtained by removing the totally interior edge T.

Let A be a triangulation with a single totally interior edge 7 and let A’ be the partition
formed by removing the edge 7 from A as in Figure 3. As in Section 4, put J; = ) J(g)
fori=1,2.

Furthermore, for any homogeneous ideal I C R, define initdeg I := min{d : I # 0}.

v; €€,EF£T

Lemma 5.1. There is a short exact sequence
(5.1) 0= C™(A) S Cm(A) S J(r)NJiNJs — 0

where v is the natural inclusion and §(F) = F,, — F,, is the difference of F restricted to
the triangles o9 and oy shown in Figure 3. In particular, if d < initdeg J; N Jo N J(T) then
dim C%(A) = dim CJj(AY).

Proof. We prove that (5.1) is a short exact sequence; the final statement follows immedi-
ately. Let 7 be the totally interior edge of A, with corresponding linear form L.. Let L1,..., L,
be the linear forms defining the edges which surround the interior vertex vy, in clockwise order.
Likewise suppose that the linear forms defining the edges which surround the interior vertex

vy in counterclockwise order are {1,...,{;. See Figure 3, where the edges are labeled by the
corresponding linear forms. With this convention, J(r) = (LzH), Jy = (L7™, ... L5+, and
Jy = (T e,

It is clear that C"(A’) is the kernel of the map §. It follows from the algebraic spline
criterion that if ' € C"(A) then §(F) € J(7)NJiNJa. We show that d is surjective. Suppose
that f € J(r) N Jy N Jo. We define a spline F' € C"(A) so that §(F) = f as follows. Let

F,, =0 and F,, = f. Write of,... ,0;71 for the remaining triangles surrounding the vertex
v1 (in clockwise order) and o2, ... ,02_1 for the remaining triangles surrounding the vertex vy

(in counterclockwise order). See Figure 3.
Then the linear forms defining the interior edges adjacent to O‘il are L; and L;y1 for
i=1,...,p—1 and the linear forms defining the interior edges adjacent to 0]2 are £; and £j41
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forj=1,...,q—1.

Now we continue to define F. Since f € Ji,f = >F giL;H for some polynomials
gis...,9p. Define F 1 by f — 23:1 gjL;fH for i = 1,...,p — 1. Likewise, since f € Js,
=% hiﬁfﬂ for some polynomials hy,...,hs. Define FG? by f — 23‘21 hjE;H for i =

1,...,q — 1. One readily checks, using Proposition 2.1, that F € C"(A). Clearly 6(F) = f,
so we are done.

Since J(7) is principal, J1 N JoNJ(7) = [(J1NJ2) : J(7)]J(7) and (J1 N J2) : J(7) = (J1 :
J(7))N(J : J(7)). Hence, the initdeg(J; NJoNJ (7)) = (r+1)+initdeg(J; : J(7)NJo : J(T)

Lemma 5.2. For i = 1,2, let J, = J; : J(1). We have In(J] N J5) = In(J7) N In(J;
Moreover, the monomial l‘A B2C ¢ In(J}) NIn(Jb) if and only if A,B,C >0, r+1—s
sA+(s—1)C, andr+1—-t<tB+ (t—1)C.

Proof. The second part follows immediately from Corollary 3.7. So we only verify the first
part. It is clear that In(J] N J5) C InJ] NInJ). We only need to show that dim In(J; N J45)y =
dim(InJ{ NInJj)q for all degrees d > 0. By Corollary 4.5, we know that dimIn(J] + J3)q =
dim(InJ{ + InJj),. We also know that dim(Inl); = dim I for any ideal I. Because

)-
)-
<

dim In(J] N J4)g =dim(J7)g + dim(J3)g — dim(J] + J3)4 and
dim(InJ; N InJ3)y =dim(J])g + dim(J3)g — dim(InJ] + InJ3)g,

we must have dimIn(J] N J5)4 = dim(InJj N InJj), for all degree d > 0. |

Corollary 5.3. Let A be a triangulation with a single totally interior edge satisfying As-
sumptions 2.1. For d < (t s’ 7 dimCg(A) = dim Ch(A).

Proof. As in Lemma 5.2, we let J/ = J; : J(7) for i = 1,2. By Lemma 5.1, it suffices to
prove that ( seen’ < 1n1tdeg(J1 NJaNJ(7)). From the discussion just prior to Lemma 5.2
coupled with the lemma itself, it suffices to prove that ﬁr — 1 < initdeg(In(J7) N In(J3)).

Let Q be the collection of points (A, B,C) € R3 defined by the inequalities 4, B,C > 0,
r—s+1< sA+(s—1)C and r—t+1 < tB+(t—1)C. Then its closure Q (in the usual topology
on R3) is the polyhedron in R? defined by the inequalities A, B,C >0, r—s+1 < sA+(s—1)C
and r —t+1<tB+ (t —1)C. Using Lemma 5.2 again,

initdeg(In(J7) NIn(J3)) = min{A+ B+ C: (A, B,C) € QN Z%}.

We first show that (=) t 0" — 1 is the smallest value achieved by A + B + C' on the polyhedron

Q. Since we assume that s < t < r 4+ 1, it is not possible for any (A, B,C) € Q to satisfy
A=C=0o0r B=C =0. The vertices of the polyhedron Q are

t—s T r+1 r+1
Ql (S(t—l)’r’ ) t—1 )7 QQ ( s ) n 3 )) an

Q3:<0, 0, — —1).
s—1

We have proved (4.5), which implies that A + B + C evaluated at Q9 is at least as large as
A+ B+ C evaluated at Q1. Since S(tt_l) —1< = -1, A+ B+ C evaluated at @); is at
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most A+ B + C evaluated at Q3. Therefore, over the real numbers, A + B + C is minimized
over Q at the vertex @1, with a value of ﬁr — 1. Let H' be the affine hyperplane defined

by A+ B+C = ﬁr — 1. A straightforward calculation with the inequalities also shows

that H' N Q = Q1, hence H' N Q = () and also H' N QN Z3 = . It follows that

initdeg(In(.J;) N In(J3)) = min{A+ B+ C: (A, B,C) € QNZ*} > r—1.

s(t—1) [ ]

6. The explicit dimension formula. In this section we use the preceding sections to give
an explicit formula for dim Cj(A), where A is a planar triangulation with a single totally
interior edge, for any d > 0 and r > 0. We then illustrate the formula in a few examples.

Theorem 6.1. Let A be a triangulation with a single totally interior edge T satisfying As-
sumptions 2.1 and A the partition formed by removing 7. Then

L(A' d,r) d< 73(;1)7’ +r
dim C(A) = ¢ L(A,d,r) + f(A,d,r) 7s(ti1)r+r <d< % + % +r—1
L(A, d,r) d>m 4 4 p -1,

where

D N (L N E]

i_”Qst(d—r)—(s—Q—t)d“

=|"G-De=D=1

Moreover, put v = |(r+1)/s| + |(r+1)/t| +r. Ift > 3, r+1 = s — 1(mods), and
r+1=t—1(modt), then f(A,v,r)=1. Otherwise f(A,t,r)=0.

Proof. First, it follows from ¢ < r+1 that s(til) < isl—l—itl—i—r—l. Now, if d < ﬁr—&—r
then dim C}(A) = dim C(A’") by Corollary 5.3. Since A’ is a quasi-cross-cut partition, it
follows from Proposition 2.6 that dim C(A") = L(A’,d,r) for all d > 0.

Likewise, if d > ™ 4+ 1 4 p — 1 then dim Cj(A) = L(A, d,r) by Theorem 4.2. Observe
that these first two cases allow us to dispense of the case s = ¢ = 2 (which we consider in
more detail in Example 6.1). So henceforth we assume t > 3.

According to Theorem 4.1, it remains to show that, when ﬁr—i—r <d< ”—?4—%—1—7“—1,
f(A,d,r) = #(P;4 N Z?), where Py is the polytope defined by the inequalities A > 0, B > 0,
A<B(s—1)—d(s—1)+sr, B<A{t—1)—d(t—1)+tr,and A+ B<d—r—1.

We first show that, in the given range for d, Py is a triangle bounded by A < B(s — 1) —
d(s—1)4+sr, B< A(t—1)—d(t—1)+tr,and A+ B <d—r — 1. For this observe that

B<A(t—1)—dt—1)+tr <B(s— 1)t —1)+sr(t—1) —d(s — 1)(t — 1) + tr — d(t — 1)

from which we deduce that ds(t — 1) —sr(t —1) —tr < B[(s —1)(t — 1) — 1]. Since t > 3, we
need only show that 0 < ds(t — 1) — sr(t — 1) — tr. Re-arranging, we see this is equivalent to

<d
s(t—1)+r_ ’
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which is precisely our assumption. So B > 0 is a consequence of A < B(s—1) —d(s—1)+ sr
and B < A(t—1) —d(t — 1) + tr. Since B > 0, we obtain

0<A(t—1)—d(t—1)+tr

or d(t—1) —tr < A(t —1). Using the given bound on d, we obtain r(t/s) —r < d(t — 1) — tr.
Since s < t, we thus have 0 < A(t — 1) and so 0 < A.

It follows that Py is the triangle in the first quadrant bounded by A < B(s—1)—d(s—1)+sr,
B<A(t—1)—d(t—1)+tr,and A+ B < d—r — 1. Now we count the lattice points
(A, B) € Z* N'P;. We do this by counting the lattice points on the line segments defined by
the intersection of A + B = ¢ with Py, for 0 < i < d —r — 1. The two lines defined by the
equations A = B(s—1) —d(s—1)+sr and B = A(t —1) —d(t — 1) + tr intersect at the point

(t(s—l)(d—r)—sr s(t—l)(d—r)—tr)
(s—DHt—-1)—-1" (s—=1(t-1)—-1 )"

where A 4+ B (restricted to P,;) achieves its minimum value of

2st(d —1) — (s +t)d
(s—=1)(t—-1)—1

Thus we start our count at i = [(2st(d —r) — (s + t)d)/((s — 1)(t — 1) — 1)], which is the
lower index of summation for the definition of f(A,d,r) in the theorem statement. Clearly
the maximum is i =d —r — 1. Now put A+ B=14,s0 B=1i— A. We have

A<B(s—1)+sr—d(s—1)=(i—A)(s—1)+sr—d(s—1)
yielding sA < (i —d)(s — 1)+ sror A < (i —d)(s —1)/s + r. Likewise we have
i—A=B<A(t—1)+tr—d(t—1)
which yields i —tr +d(t —1) < tAor (i +d(t — 1))/t —r < A. Putting these together, the
number of lattice points (A, B) € PyNZ? with A+ B = i is the same as the number of integers
A € Z in the interval
(i+dit—=1)/t—r<A<(i—d)(s—1)/s+r,

which is counted by

—d)(s—1 : 1
\‘M(S)_*_TJ — ’VHd(t)_r-‘ +1_
s t
Summing this over the appropriate range for i yields the expression for f(A,d,r).
Now put v = [(r+1)/s] + [(r+ 1)/t] +r. ft >3, r+1=s—1(mods), and r+1=
t—1(mod t) then f(A,t,r) =1 by Lemma 4.9. Otherwise f(A,t,r) = 0, also by Lemma 4.9.1
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In the following examples we compute explicit formulas for certain triangulations with a
single totally interior edge. We assume that the triangulation A satisfies Assumptions 2.1
and we introduce some additional notation to explicitly write out Schumaker’s lower bound.
Let v and v (respectively ag and v2) be the quotient and remainder when (s + 1)(r + 1) is
divided by s (respectively (¢ + 1)(r + 1) is divided by ¢). That is, (s + 1)(r +1) = a1s + 11
and (t+1)(r+1) = ast + v9, where 0 < v; < s and 0 < vy < t. Furthermore, put p; = s —1,
and pg =t — 9. From Proposition 2.4 we have

HA A <d;2> +(p‘5+q—t—1><d+;_r>

d+2— oy d+1—q
—l—ZMi( 9 )4—%( 9 >
i=1,2

Now let o} and v} (respectively af and 1)) be the quotient and remainder when s(r + 1) is
divided by s — 1 (respectively ¢(r + 1) is divided by ¢t — 1). That is, s(r+ 1) = (s — 1) + /4
and t(r + 1) = ab(t — 1) + v, where 0 < 1/f < s—1 and 0 < vy < ¢t — 1. Furthermore, put
py=s—1—1fand pf =t —1—vh. Again from Proposition 2.4 we have

(6.1)

san = (45 -srano (1)

(6.2) d+2—a d+1—a
/ ) / )

i=1,2

Schumaker’s upper bound U(A,d,r) — see Proposition 2.5 — depends on an ordering of
the two interior vertices of A. The optimal upper bound is obtained by ordering the vertex
with the larger number of slopes first, and this amounts to replacing ¢ by ¢ — 1 in (6.1) (this
also affects u;, o, and v; since they are defined using t).

Example 6.1. Consider the triangulation with p = q =4 and s =t = 2. This triangulation
is studied in [32], [34], and [21]. According to Theorem 6.1, we have

L(A',d,r) d<2r

dim C7(A) =
m Cg(2) {L(A,d,r) d>2r +1.

The first case (for d < 2r) recovers [32, Theorem 3.1]. The second case (for d > 2r + 1)
recovers the main result of [21]. From Equation (6.2) we have

, _(d+2 d+1—-7r d—2r
L(A,d,r)-( ) +4 9 +2 5 .

Since the final term of L(A',d,r) vanishes for d < 2r, we have dim C}j(A) = (dJQFZ) +4(d+5_r)
for d < 2r, recovering [32, Theorem 3.2]. Furthermore, dim C5 (A) > L(A,2r,r) by Theo-
rem 4.2, recovering the main result of [34].

We observe that Schumaker’s upper bound U(A,d,r) satisfies U(A,d,r) — L(A',d,r) =
(d+24(3gﬂ+1))/21)+(d+27[(3§r+1))/2j)—(d52r). Thus if d < |3(r+1)/2] we see that dim Cj(A) =
U(A,d,r) while if d > [3(r +1)/2] we have dim C}(A) < U(A,d,r).
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Example 6.2. Consider the triangulation A shown in Figure 1, with p = 6,8 = 3,q = 5,
and t = 4. If r <5 then C"(A) is free and dim C}(A) = L(A,d,r) for all integers d > 0 by
Proposition 2.7. For r > 6, according to Theorem 6.1, dim C}(A) = L(A',d,r) for d < 13r/9
and dim CY(A) = L(A,d,r) for d > (197 — 5)/12. For 13r/9 < d < (19r — 5)/12,

dim C5(A) =L(A,d,r) + f(A,d,7)
d—r—1
=L(A,d,r) + > (12/3(G —d) +7] — [(i +3d)/4—r] +1).

i=[(17d—24r) /5]

We now use Equations (6.1) and (6.2) to compute dimension formulas for r = 6,7,8. When
r =6, we have

L(A,d,6) = (“5%) +4(7°) +2() +2(,%) + (7)) d<8

LA, d6) = (59 +3(57) + (57 +5(5) + (59 dz10

dim CS(A) = {

When d =9, f(A,d,r) =37, (12/3(i —9) + 6] — [(i +3-9)/4 — 6] + 1) = 0, which simply
means that the triangle defined by the inequalities in Proposition 4.7 does not contain any
lattice points. Thus dim C§(A) = L(A,9,6). This also is expected by Theorem 6.1 since
v=|7/3]+17/4]+6=9 and r+1 =7 % 2 (mod 3).

Observing that the last three terms of L(A',d,r) vanish when d < 8, we conclude that

(13) +4(%5") d<8
(57 +3(7) + (B0 +5(HN + (57 dz9

We also have U(A,d,6) = (d+2) + 4( ) + 4(d;7) + Z(dgg), so Schumaker’s upper bound
coincides with L(A',d,6) for d < 8 and gives the dimension of the spline space. However
U(A,9,6) =28 = dim C§(A) + 2 and U(A,d,6) > dim CS(A) for d > 9.

When r =7, there is no integer d so that 91/9 = 13r/9 < d < (19r — 5)/12 = 128/12, so
we simply have

dim C$(A) = {

. LA, d,7) = (37) +4(75°) + (5°) +2(5°) +2(5°) d<10
dim Cj(A) = LIA.d.7) = (4+2 3d6 5 (48 2dg d>11
(a7 = (49 + 3059 + 55 + 2(5) >
We also have U(A,d,7) = (dgz) +4(d;6) + 2(d;8) + 4(d§9), which gives the dimension of the
spline space for d <9 but exceeds it for d > 10.
When r = 8, we hit our first non-zero contribution from f(A,d,r). Namely, when d =12,
f(A,12,8) = 1 (this comes from the single lattice point pictured on the right in Figure 2).
Notice that v = [9/3| + [9/4]| + 8 = 13, so we must compute f(A,12,8) directly. Thus

L(A ) (d+2) +4( ) + 3(d 10) + (d—211) + (d—212) d < 11
dim C5(A) = { L(A, 12 )+ f(A12,7) =134 +1 =135 d=12
L(Ad,r) = (13%) +3(47) +3(%5°) +4(*5") d>13

We also have U(A,d,8) = (d+2) + 4( ) + 6(d 10), which gives the dimension of the spline
space for d < 11 but exceeds it for d > 12
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Remark 4. The smallest values of s, t, r, and d where we see a non-zero contribution from
f(A,d,r) in Theorem 6.1 are s =2,t =3,7r =5, and d =9, where f(A,9,5) = 1.

7. Concluding remarks and open problems. We close with a number of remarks on
connections to the literature and open problems.

Remark 5. It should be possible to use our techniques to analyze both additional ‘super-
smoothness’ across the totally interior edge (as Sorokina does in [32]) and varying smoothness
conditions across each edge (see also Remark 8).

Remark 6. We can apply the methods of this paper to determine dim CJ;(A) whenever the
only non-trivial generators of Hi(Re/Je) correspond to totally interior edges which do not
meet each other. In this case the dimension of H1(Re/Je)a would be obtained by simply
adding together the contributions from the different totally interior edges.

The recent counterexample to Schenck’s ‘2r + 1’ conjecture in [37, 26] is a triangula-
tion with two totally interior edges which meet at a vertex. Thus, contrary to our result
for triangulations with a single totally interior edge in Corollary 4.3, we might not have
dimC}(A) = L(A,d,r) for d > 2r + 1 when A is a triangulation with two totally interior
edges meeting at a vertex.

Remark 7. The well-known Morgan-Scott split Ay, for which dim C(Ays) depends on
the global geometry of Anrs, has three totally interior edges which form a triangle. In [7],
Diener proves that all the spline spaces C4, . (Aprs) for v > 1 have the same instability coming
from global geometry (see also [8] where Diener considers the instability of a wider class of
rectilinear partitions). In a remarkable preprint [35], Whiteley shows that the process of vertex
splitting applied to the Morgan-Scott split leads to infinitely many triangulations for which the
dimension of C' quadratic splines depends on global geometry. Vertex splitting results in
a triangulation with additional triangles all of whose edges are totally interior edges. For
each r > 2, there is a variation Al ¢ of the Morgan-Scott split so that C] (A’;g) exhibits
dependence on global geometry [17]. Each of these has three totally interior edges forming
a triangle as well. Given that Theorem 6.1 implies that a triangulation with a single totally
interior edge depends only on local geometry, we pose Problem 1.

Problem 1. If no triangle of A is surrounded by totally interior edges — equivalently, the
dual graph has no interior vertex — does the dimension of C;(A) depend only on local geometry
(that is, the number of slopes meeting at each interior vertex)?

Remark 8. If A is a rectilinear partition, a mized spline space on A, written C*(A), is one
where different orders of smoothness are imposed across different edges according to a function
o A = Z>o. Generally speaking, decreasing the order of smoothness across certain edges
of a partition enriches the resulting spline space, while increasing the smoothness coarsens the
spline space.

In [9] it is shown that the (Castelnuovo-Mumford) regularity of the mized spline space
C*(A) on a rectilinear partition A can be bounded by the maximum regularity of the space of
mixed splines on the union of two adjacent polygonal cells of A —that is, the star of an edge
—where vanishing is imposed (to the order prescribed by o) across all edges which the polygonal
cells do not have in common. It may be possible that the methods of this paper can be used
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to improve the regularity bounds derived in [9] for mized splines on the star of an edge with
vanishing imposed across the boundary. Improving the reqularity bound for splines on the star
of an edge with vanishing across the boundary will give a better bound on the degree d needed
for the formula dim C§(A) to stabilize.

Remark 9. A generalized quasi-cross-cut partition (see [19]) is defined as follows. We call
a sequence of adjacent edges of A a cross-cut if they all have the same slope and both endpoints
of the sequence touch the boundary of A. We call a sequence of adjacent edges of A a quasi-
cross-cut if all edges have the same slope, one endpoint of the sequence touches the boundary,
and the other endpoint cannot be extended to include another adjacent edge of the same slope.
It is possible that a cross-cut or quasi-cross-cut consists of only a single edge — for instance,
any edge which is not totally interior is either a quasi-cross-cut or it can be extended to a quasi-
cross-cut. For a vertex v € Ay, we define Cy to be the number of cross-cuts passing through
v and F, to be the number of quasi-cross-cuts passing through . The rectilinear partition
A is a generalized quasi-cross-cut partition if Coy + Fy, > 2 for every v € Aj. Generalized
quasi-cross-cut partitions are studied by Manni in [19] and Shi, Wang, and Yin in [31].

If A has a single totally interior edge, it is clearly a generalized quasi-cross-cut partition.
If A has a single totally interior edge connecting vertices vi and vy with s+ 1 different slopes
meeting at v1 and t + 1 different slopes meeting at ve, it follows from [19, Theorem 2.2]
that dim C(A) = L(A,d,r) ford > r+ 14 2[(r +1)/(s — 1)] and from [31, Theorem 5]
that dim C}(A) = L(A,d,r) ford > r+ |r/(s = 1)] + [r/(t = 1)]. Theorem 4.2 shows an
improvement on both of these bounds. This leads us to pose Problem 2, inspired by the result
of Shi, Wang, and Yin and our Theorem 4.2.

Problem 2. If A is a generalized quasi-cross-cut partition, define for each edge T = {u,v} €
Ay the quantity & = (r+1)/(Cu 4+ Ny) + (1 +1)/(Cy + Ny). Let Ea = max{&, : 7 € AS}. Is
it true that dim C))(A) = L(A,d,r) ford > &x +1r —17

If Problem 2 has a positive answer, it would imply that all generalized quasi-cross-cut
partitions satisfy Schenck’s ‘2r + 1’ conjecture (and the conjecture of Alfeld and Manni for
dim C3(A)). Notice that the only known counterexample to Schenck’s conjecture in [37, 26] is
not a generalized quasi-cross-cut partition since the central vertex has only a single cross-cut
passing through it, and no quasi-cross-cuts.
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