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Abstract. We derive an explicit formula, valid for all integers r, d ≥ 0, for the dimension of the vector space
Cr

d(∆) of piecewise polynomial functions continuously differentiable to order r and whose constituents
have degree at most d, where ∆ is a planar triangulation that has a single totally interior edge. This
extends previous results of Tohǎneanu, Mináč, and Sorokina. Our result is a natural successor of
Schumaker’s 1979 dimension formula for splines on a planar vertex star. Indeed, there has not
been a dimension formula in this level of generality (valid for all integers d, r ≥ 0 and any vertex
coordinates) since Schumaker’s result. We derive our results using commutative algebra.
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1. Introduction. Suppose ∆ is a planar triangulation. A spline on ∆ is a function on ∆
which restricts to a polynomial on each triangle; we call such a spline bivariate to emphasize
that the domain of the spline is two-dimensional. The degree of a bivariate spline is the
maximum (total) degree of the polynomial constituents. Given integers r, d ≥ 0, we denote by
Cr
d(∆) the vector space of splines on ∆ which are continuously differentiable of order r and

whose degree is bounded by d.
Bivariate splines have grown in importance since around 1980, when the study of univariate

splines could be regarded as more or less complete, and problems arising in engineering and
computer-aided design made clear the need to understand multivariate splines. The modern
significance of multivariate splines is marked by the authoritative monograph of Lai and
Schumaker [16]. Today, bivariate splines are a fundamental tool in areas such as computer-
aided geometric design, data fitting, and numerical solutions to partial differential equations.
In such applications, it is important to find sufficiently rich spline spaces capable of modeling
complex data, but not so large that they are computationally intractable. In terms of the
parameters r and d for the spline space Cr

d(∆), one seeks for the parameter d to be large enough
(compared to r) to yield a sufficiently flexible spline space but not so large that computations
are impossible. It is thus a fundamental problem in numerical analysis to determine the
dimension of (and a basis for) Cr

d(∆), especially when d is relatively small compared to r [16].
It turns out that even finding the dimension of Cr

d(∆) is extraordinarily difficult. We
briefly summarize the salient results on this problem. It was known to Strang (see [3]) that
dimCr

d(∆) depends on local geometry (the number of slopes that meet at each interior vertex).
This dependence is standard by now, and is a fundamental part of a well-known lower bound
for dimCr

d(∆) derived by Schumaker [29]. Hong proves in [15] that Schumaker’s lower bound
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coincides with dimCr
d(∆) for d ≥ 3r+2. Under a genericity condition, Alfeld and Schumaker

show that dimCr
d(∆) also coincides with Schumaker’s lower bound for d = 3r + 1 [2].

The ‘2r+1’ conjecture of Schenck, appearing in his doctoral thesis [27] (see also [28, 23]),
is that dimCr

d(∆) coincides with Schumaker’s lower bound for d ≥ 2r + 1. When r ≥ 2, this
has recently been disproved by the second author together with Schenck and Stillman [37, 26].
If r = 1, Schenck’s conjecture reduces to a formula for the dimension of C1

3 (∆) that has been
conjectured since at least 1991 by Alfeld and Manni [23, 1]. This remains one of the most
difficult open problems in bivariate splines. To lend further credence to this problem, piecewise
cubic C1 splines are possibly the most commonly used splines in practice.

For r+1 ≤ d < 3r+1, there are relatively few general statements known about dimCr
d(∆).

In this range it is possible that dimCr
d(∆) depends upon global geometry of ∆ – illustrated in

the Morgan-Scott split [1]. The issue of geometric dependence can be sidestepped by assuming
that ∆ is suitably generic. If r = 1, Billera [3] shows that the generic dimension of dimC1

d(∆)
coincides with Schumaker’s lower bound for all d ≥ 2, proving a conjecture of Strang [33].
Whiteley computes certain generic dimension formulas for r > 1 in [36], but generic dimension
formulas for dimCr

d(∆) for all d ≥ r + 1 and r ≥ 2 are (as of yet) out of reach. Given the
difficulty of computing the dimension of Cr

d(∆) for d < 3r+1, it is natural and useful to have
a complete characterization of dimCr

d(∆) for interesting examples, which is the motivation for
our work. While we consider a limited class of triangulations, we hope that our new approach
will be of use to address the difficult problem of determining the dimension of spline spaces
in the range r + 1 ≤ d ≤ 3r, which is especially important for applications.

In this paper we derive in Theorem 6.1 an explicit formula for dimCr
d(∆) for all r, d ≥

0 whenever ∆ is a triangulation that has a single totally interior edge – that is, an edge
connecting two interior vertices (see Figure 1). Another formulation of our main result,
described in terms of lattice points in a polytope, appears in Theorem 4.1. Our formula
applies to any choice of vertex coordinates for ∆, and only depends on the number of distinct
slopes of edges meeting at each interior vertex. This is the first non-trivial dimension formula
for bivariate splines that applies in this level of generality (all r, d ≥ 0 and any choice of
vertex coordinates) since Schumaker computed the formula for splines on a planar vertex star
in 1979 [29]. In particular, we affirm the conjecture of Alfeld and Manni on dimC1

3 (∆) for
triangulations with two interior vertices and one totally interior edge in Corollary 4.4.

Our work directly extends results in previous papers of Tohǎneanu [34], Mináč and
Tohǎneanu [21], and Sorokina [32] which study the dimension of splines on a particular tri-
angulation with a single totally interior edge. As a consequence of our work, we see that
Schenck’s ‘2r + 1’ conjecture is satisfied for triangulations with a single totally interior edge
for all r ≥ 0 (Corollary 4.3). Moreover, it is clear from our result that the dimension of splines
on a triangulation with a single totally interior edge only depends on local geometry and not
global geometry. Thus the dependence of dimCr

d(∆) upon global geometry indicated by the
Morgan-Scott split does not manifest unless there is more than one totally interior edge.

We briefly outline the paper. In Section 2 we recall background on splines and dimension
formulas from previous papers. Section 3 is a largely technical section in which we prove a few
results in commutative algebra, possibly of independent interest, for use in future sections. We
then prove the first formulation of our main result – Theorem 4.1 – in Section 4, stated in terms
of lattice points. In Section 5 we characterize in what degrees the spline space does not change
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upon removal of the totally interior edge (this is related to the phenomenon of supersmoothness
explored in [32]). We give the fully explicit dimension formula in Theorem 6.1 of Section 6
and illustrate the result with several examples. We conclude with additional remarks and
open problems in Section 7.

2. Splines on planar triangulations. We call a domain Ω ⊂ R
2 polygonal if it consists

of a simple closed polygon and its interior. The simple closed polygon is the boundary of Ω,
which we denote by ∂Ω. Throughout we assume ∆ is a triangulation of a polygonal domain;
we denote the domain which ∆ triangulates by |∆|. A triangulation is a collection of triangles
in which each pair σ, σ′ of triangles satisfies σ ∩ σ′ = ∅ or σ ∩ σ′ is either an edge or vertex of
both σ and σ′.

We write ∆0 for the set of vertices of ∆, ∆1 for the set of edges of ∆, and ∆2 for the set
of triangles of ∆. An interior edge of ∆ is an edge that is a common edge of two triangles
of ∆. A boundary edge of ∆ is an edge that is only contained in a single triangle of ∆. An
interior vertex of ∆ is a vertex that is not contained in any boundary edges. Put ∆◦

0 and ∆◦
1

for the set of interior vertices and interior edges of ∆, respectively. A totally interior edge of
∆ is an edge that connects two interior vertices of ∆.

Let r ≥ 0 be an integer. We define Cr(∆) to be the set of Cr-differentiable piecewise
polynomial functions on ∆. These functions are called splines. More explicitly:

Definition 2.1. Cr(∆) is the set of functions F : |∆| → R such that:
1. For all triangles σ ∈ ∆, Fσ := F |σ is a polynomial in R[x, y].
2. F is differentiable of order r.

For each integer d ≥ 0, we define

Cr
d(∆) := {F ∈ Cr(∆) : deg(Fσ) ≤ d, for all σ ∈ ∆2}.

For an edge τ ∈ ∆1, we write ˜̀
τ for a choice of affine linear form that vanishes on the affine

span of τ .

Proposition 2.1 (Algebraic spline criterion). [4, Corollary 1.3] Suppose ∆ is a triangulation
of a polygonal domain and F : |∆| → R is a piecewise polynomial function. Then F ∈ Cr(∆)
if and only if

˜̀r+1
τ | Fσ1 − Fσ2

for every pair σ1, σ2 ∈ ∆2 so that σ1 ∩ σ2 = τ ∈ ∆1.

The space Cr
d(∆) is a finite dimensional R-vector space. One of the key problems in spline

theory is to determine dimCr
d(∆) for all (∆, r, d). To study this problem, we use a standard

coning construction due to Billera and Rose [4]. Namely, for any set U ⊂ R
2, define Û ⊂ R

3

by Û := {(sa, sb, s) : (a, b) ∈ U and 0 ≤ s ≤ 1}. Define ∆̂ to be the tetrahedral complex
whose tetrahedra are {σ̂ : σ ∈ ∆2}. All above definitions for triangulations in R

2 carry over
in the expected way to tetrahedral complexes in R

3. For a triangle τ̂ ∈ ∆2, we write `τ for
the linear form defining the linear span of τ̂ (`τ is the homogenization ˜̀

τ ). We put

[Cr(∆̂)]d := {F ∈ Cr(∆̂) : F ∈ R[x, y, z]d},

where R[x, y, z]d is the vector space of homogeneous polynomials of degree d. We relate this
space to Cr

d(∆) using:
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Proposition 2.2. [4, Theorem 2.6] [Cr(∆̂)]d ∼= Cr
d(∆) as real vector spaces.

The Billera-Schenck-Stillman (BSS) chain complex R•/J•, which we define below, is in-
troduced by Billera in [3] and modified by Schenck and Stillman in [25].

Definition 2.2. For an edge τ ∈ ∆◦
1 and vertex γ ∈ ∆◦

0, define
• J(τ) := 〈`r+1

τ 〉 (the principal ideal of R[x, y, z] generated by `r+1
τ ) and

• J(γ) :=
∑

γ∈τ J(τ) (the ideal of R[x, y, z] generated by {`r+1
τ : τ ∈ ∆◦

1 and γ ∈ τ}.

Let R = R[x, y, z]. We define the chain complex R• by

R• :=
⊕

σ∈∆2

R
∂2−→

⊕

τ∈∆◦
1

R
∂1−→

⊕

τ∈∆◦
0

R,

where the differentials ∂2 and ∂1 are the differentials in the simplicial chain complex of ∆
relative to ∂∆ with coefficients in R. By definition, the ith homology Hi(R•) is isomorphic to
Hi(∆, ∂∆;R), where the latter is the ith simplicial homology group of ∆ relative to ∂∆ with
coefficients in R. We also define the subcomplex J• ⊂ R• by

0
∂2−→

⊕

τ∈∆◦
1

J(τ)
∂1−→

⊕

γ∈∆◦
0

J(γ)

and the quotient complex (which we call the Billera-Schenck-Stillman chain complex)

R•/J• =
⊕

σ∈∆2

R
∂2−→

⊕

τ∈∆◦
1

R/J(τ)
∂1−→

⊕

τ∈∆◦
0

R/J(γ).

We use the following result of Schenck and Stillman.

Theorem 2.3 (Schenck and Stillman [24, 25]). The dimension of Cr
d(∆) is

(2.1) dimCr
d(∆) = L(∆, d, r) + dimH1(R•/J•)d,

where L(∆, d, r) is Schumaker’s lower bound [29]. In fact, L(∆, d, r) coincides with the Euler
characteristic, in degree d, of the Billera-Schenck-Stillman chain complex R•/J•.

We set some additional notation to give an expression for Schumaker’s lower bound
L(∆, d, r). If A,B ∈ Z are non-negative integers, we use the following convention for the
binomial coefficient

(
A
B

)
:

(
A

B

)
=





A!

B!(A−B)!
B ≤ A

0 otherwise
.

Proposition 2.4 (Schumaker’s lower bound [29]). For each vertex γ ∈ ∆◦
0 we let sγ be the

number of slopes of edges containing γ. Let αγ and νγ be the quotient and remainder when
sγ(r + 1) is divided by sγ − 1; that is, sγ(r + 1) = αγ(sγ − 1) + νγ, with αγ , νγ ∈ Z and
0 ≤ νγ < sγ − 1. Put µγ = sγ − 1− νγ.
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Using the above notation, let

L(∆, d, r) =

(
d+ 2

2

)
+


|∆◦

1| −
∑

γ∈∆◦
0

sγ




(
d+ 1− r

2

)

+
∑

γ∈∆◦
0

(
µγ

(
d+ 2− αγ

2

)
+ νγ

(
d+ 1− αγ

2

))
.

Then L(∆, d, r) ≤ Cr
d(∆).

Proof. Schumaker [29] gave a lower bound on the dimension of the spline space which
Schenck and Stillman show in [24] is equivalent to the above expression L(∆, d, r).

There is also an upper bound for dimCr
d(∆) due to Schumaker [30], which requires a

certain ordering of ∆◦
0. The bound is extended to any ordering on ∆◦

0 by Mourrain and
Villamizar in [22], and we record their formulation of Schumaker’s upper bound below.

Proposition 2.5. [30, 22] Let ∆ be a triangulation with a fixed ordering γ1, . . . , γ|∆◦
0|
on its

interior vertices. For each interior vertex γ = γi we let s̃γ be the number of different slopes
of edges containing γi which connect γi either to a vertex γj with j < i or to a vertex on the
boundary of ∆. We then define α̃γ , ν̃γ , µ̃γ in exactly the way αγ , νγ, and µγ are defined in
Proposition 2.4, except we replace sγ with s̃γ. Let U(∆, d, r) be the expression resulting from
substituting sγ → s̃γ , αγ → α̃γ , νγ → ν̃γ , and µγ → µ̃γ in Schumaker’s lower bound L(∆, d, r).
Then dimCr

d(∆) ≤ U(∆, d, r).

We will also consider splines on a partition ∆ which is not a triangulation but a rectilinear
partition – in this case the polygonal domain |∆| is subdivided into polygons which meet along
edges. All definitions and results stated thus far carry over to rectilinear partitions. The class
of rectilinear partitions we will have occasion to use are quasi-cross-cut partitions.

Definition 2.3. A rectilinear partition ∆ is a quasi-cross-cut partition if every edge of ∆ is
connected to the boundary of ∆ by a sequence of adjacent edges that all have the same slope.

We give a formulation of a result of Chui and Wang [5] which appears in [24].

Proposition 2.6. If ∆ is a quasi-cross-cut partition then dimCr
d(∆) = L(∆, d, r) for all

d, r ≥ 0.

2.1. Case of a single totally interior edge. In this section we specialize to the case of
interest in this paper. That is, ∆ is a triangulation with only two interior vertices v1 and
v2 connected by a single totally interior edge τ . We further assume that the triangulation
consists only of triangles which contain either v1 or v2 or both. There are two cases in which
the dimension formula on such a triangulation is trivial.

Proposition 2.7. Let ∆ be a triangulation with a single totally interior edge τ connecting
interior vertices v1 and v2. Suppose that either

• the interior edge τ has the same slope as another edge meeting τ at either v1 or v2 or
• the number of slopes of edges meeting at either v1 or v2 is at least r + 3.

Then dimCr
d(∆) = L(∆, d, r) for all integers d, r ≥ 0.
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v1
τ

v2

Figure 1. A triangulation with a single totally interior edge, p = 6, s = 3, q = 5, and
t = 4. A choice of coordinates that realizes this data is v1 = (−1, 0), v2 = (1, 0) and, for the re-
maining vertices (read counterclockwise around the boundary, starting with the vertex northeast of v2),
(2, 1), (1, 2), (0, 1), (−1, 7/4), (−2, 1), (−9/4,−5/4), (−1,−3/2), (0,−1), and (1, 7/4).

Proof. The result follows from [24, Theorem 5.2]. In either case, H1(R•/J•) = 0 and
Cr(∆̂) is a free module over the polynomial ring. This also follows from the upper bound
U(∆, d, r) of Schumaker [30] – see Proposition 2.5 – since either hypothesis forces L(∆, d, r) =
U(∆, d, r) for d ≥ 0.

Assumptions 2.1. In the remainder of the paper, we use the following notation and as-
sumptions whenever we have a triangulation ∆ with a single totally interior edge τ connecting
interior vertices v1 and v2.

• We assume no edge adjacent to v1 or v2 has the same slope as τ .
• We write p (respectively q) for the number of edges different from τ which are adjacent
to v1 (respectively v2).

• We write s (respectively t) for the number of different slopes achieved by the edges
different from τ which contain v1 (respectively v2).

• We assume (without loss) that 2 ≤ s ≤ t ≤ r + 1.

Remark 1. We explain the last bullet point in Assumptions 2.1. Since we assume no other
edge besides τ has a slope equal to the slope of τ , v1 is surrounded by p + 1 edges taking on
s+ 1 different slopes and v2 is surrounded by q + 1 edges taking on t+ 1 different slopes. See
Figure 1. We obtain s ≤ t by relabeling v1 and v2 if necessary. If s = 1 then either p = 1 or
p = 2. In either case it is not possible for ∆ to be a triangulation. (If p = 2 it would be possible
to have a so-called T -juncture or ‘hanging vertex’ at v1, but we do not allow these under our
definition of a triangulation.) Hence 2 ≤ s, t. We can also assume that s+1 and t+1 are both
at most r + 2 by Proposition 2.7. Putting these all together, we arrive at 2 ≤ s ≤ t ≤ r + 1.

We now consider the homology module H1(R•/J•).

Lemma 2.8. If ∆ has only one totally interior edge τ , then

(2.2) H1(R•/J•) ' R/(J1 : J(τ) + J2 : J(τ))(−r − 1),

where

(2.3) Ji =
∑

ε∈∆◦
1

vi∈ε,ε 6=τ

J(ε) for i = 1, 2.
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This lemma is a consequence of presentation for H1(R•/J•) due to Schenck and Stillman.
We recall this presentation before proceeding to the proof.

Lemma 2.9. [25, Lemma 3.8] Let
⊕

ε∈∆◦
1
R[eε] be the free R module with summands indexed

by the formal basis symbols {[eε] | ε ∈ ∆◦
1} which each have degree r + 1. Define Kr ⊂⊕

ε∈∆◦
1
R[eε] to be the submodule of

⊕
ε∈∆◦

1
R[eε] generated by

{[eε] | ε ∈ ∆◦
1 is not totally interior}

and, for each γ ∈ ∆◦
0, {

∑

γ∈ε

aε[eε]
∣∣∣
∑

γ∈ε

aε`
r+1
ε = 0

}
.

The R-module H0(J•) is given by generators and relations by

0 → Kr →
⊕

ε∈∆◦
1

R[eε] → H0(J•) → 0.

Proof of Lemma 2.8. First, since ∆ has no holes, H1(R•/J•) ∼= H0(J•). This follows
from the long exact sequence in homology associated to the short exact sequence of chain
complexes 0 → J• → R• → R•/J• → 0 and the fact that H1(R•) = H0(R•) = 0 (see [25]).

Thus we may use Lemma 2.9. Since ∆ has only one totally interior edge τ , Kr is generated
by the free module F = {[eε] | ε ∈ ∆◦

1, ε 6= τ} and the syzygy modules Ki = {
∑

vi∈ε
aε[eε]

∣∣∑
vi∈ε

aε`
r+1
ε = 0} for i = 1, 2. Since all factors of R indexed by an interior edge different

from τ are quotiented out, after trimming the presentation in Lemma 2.9 we are left with

0 → Kr → R[eτ ] → H0(J•) → 0,

where Kr = Kr/F . Observe that Kr is the internal sum of the submodules

Ki = {aτ [eτ ] | aτ `
r+1
τ ∈ Ji}

for i = 1, 2, where Ji =
∑

ε∈∆◦
1

vi∈ε,ε 6=τ

J(ε) for i = 1, 2. Thus Kr = J1 : `r+1
τ + J2 : `r+1

τ = J1 :

J(τ) + J2 : J(τ). Recalling that [eτ ] has degree r + 1, this proves that

H1(R•/J•) ∼= R/(J1 : J(τ) + J2 : J(τ))(−r − 1).

After coning, we apply a change of coordinates T : R3 → R
3 so that T (v̂1) points in the

direction of (0, 1, 0) and T (v̂2) points in the direction of (1, 0, 0). With respect to this new
choice of coordinates we may choose linear forms vanishing on the interior triangle so that:

J(τ) = 〈zr+1〉,

J1 = 〈(x+ b1z)
r+1, (x+ b2z)

r+1, . . . , (x+ bsz)
r+1〉, and

J2 = 〈(y + c1z)
r+1, (y + c2z)

r+1, . . . , (y + ctz)
r+1〉.

In Section 3 we study ideals of this type, returning to the study of the homology module in
Section 4.
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3. The initial ideal of a power ideal in two variables. This section is largely a technical
section in which we derive some results from commutative algebra – possibly of independent
interest – to use in our analysis for dimCr

d(∆) in future sections. The reader will not lose
much by skipping this section for now and returning later as needed or desired. Our references
are [6] for Gröbner bases, [13] for apolarity, and [20, Chapter 2] for lex-segment ideals.

Suppose we are given a set of points X = {p1, · · · , ps} ⊂ P
1, where pi = [bi : ci] for

1 ≤ i ≤ s, and a sequence a = (a1, . . . , as) of multiplicities for these points. We will assume
that the points are ordered so that a1 ≤ a2 ≤ · · · ≤ as. We associate two ideals to this set of
points. First, the power ideal

J(X ,a) := 〈(b1x+ c1y)
a1+1, . . . , (bsx+ csy)

as+1〉

in the polynomial ring R = R[x, y]. Secondly, the fat point ideal

I(X ,a) :=
s⋂

i=1

〈biY − ciX〉ai = 〈
s∏

i=1

(biY − ciX)ai〉

in the polynomial ring S = R[X,Y ] (S is the coordinate ring of P1). The ideal Ia(X ) consists
of all polynomials which vanish to order ai at pi, for i = 1, . . . , s.

Our objective is to show that, under the assumption that bi 6= 0 for i = 1, . . . , s, the initial
ideal In(J(X ,a)), with respect to either graded lexicographic or graded reverse lexicographic
order, is a lex-segment ideal. Since the graded lexicographic and graded reverse lexicographic
order coincide in two variables, we focus on the lexicographic order since it is consistent with
the lex-segment definition.

Definition 3.1. A monomial ideal I ⊆ R is called a lex-segment ideal if, whenever a mono-
mial m ∈ R of degree d satisfies m >lex n for some monomial n ∈ I of degree d, then
m ∈ I.

Lex-segment ideals play an important role in Macaulay’s classification of Hilbert func-
tions [18]. Before proceeding to the proof, we introduce the notion of apolarity ; see [13] for
an excellent survey. Define an action of S on R by

(XaY b) ◦ f =
∂f

∂xa∂yb
,

and extend linearly. That is, S acts on R as partial differential operators. It is straightforward
to see that this action induces a perfect pairing Rd × Sd → R via (f, F ) → F ◦ f . For an
R-vector subspace U ⊂ Rd we thus define

U⊥ := {F ∈ S : F ◦ f = 0 for all f ∈ U}.

Write Jd(X ,a) for the R-vector space spanned by homogeneous polynomials in J(X ,a) of
degree d (this definition clearly extends to any homogeneous ideal). A result of Emsalem
and Iarrobino describes Jd(X ,a)⊥ in terms of fat point ideals. In the statement of the result
below, we put [m]+ = max{m, 0} and [d− a]+ = ([d− a1]+, [d− a2]+, . . . , [d− as]+).

Theorem 3.1 (Emsalem and Iarrobino [11]). Jd(X ,a)⊥ = Id(X , [d− a]+)
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As a corollary, the Hilbert function HF(d, J(X ,a)) = dim Jd(X ,a) can be derived.

Corollary 3.2 (Geramita and Schenck [14]). dim Jd(X ,a) = min {d+ 1,
∑s

i=1[d− ai]+}

This shows that the Hilbert function of J(X ,a) has the maximal growth possible for its
number of generators. We take this analysis one step further.

Corollary 3.3. Suppose that no point of X has a vanishing x-coordinate. Then the initial
ideal In(J(X ,a)) is a lex-segment ideal.

Proof. Fix a degree d. Put F =
∏s

i=1(biY − ciX)[d−ai]+ and α = deg(F ) =
∑s

i=1[d−ai]+.
By assumption, bi 6= 0 for any i = 1, . . . , s, so the monomial Y α appears with non-zero
coefficient in F .

Since I(X , [d− a]+) is principle, a basis for Id(X , [d− a]+) is given by

{Xd−α−bY bF : 0 ≤ b ≤ d− α}

(Coupled with Theorem 3.1, this proves that dim Jd(X ,a) = α, which is Corollary 3.2.)
Observe that the given basis for Id(X ,a) has a polynomial whose lex-last term involves the
monomial Xd−α−bY b+α for 0 ≤ b ≤ d− α.

If d < min{ai | 1 ≤ i ≤ s} then Jd(X ,a) = 0. So suppose d ≥ min{ai | 1 ≤ i ≤ s}
and that the leading term of some polynomial f ∈ Jd(X ,a) with respect to lex order is
Cxd−α−byb+α for some b ≥ 0 and C 6= 0. Then every other term of f involves a power of y
which is larger than b + α. From our above observation, the lex-last (or lex-least) monomial
in the basis polynomial Xd−α−bY bF is Xd−α+bY b+α. Thus Xd−α−bY bF ◦ f 6= 0. In fact,
Xd−α−bY bF ◦ f =

∏s
i=1 biX

d−α−bY b+α ◦ (Cxd−α+byb+α), so we can compute it exactly as:

Xd−α−bY bF ◦ f = C(
s∏

i=1

bi)(d− α+ b)!(b+ α)!,

which is non-zero because the bi’s are all non-vanishing and C 6= 0. This contradicts Theo-
rem 3.1, since Xd−α−bY bF ∈ Id(X , [d− a]+) but X

d−α−bY bF ◦ f 6= 0.
It follows that the initial terms of Jd(X ,a) can only involve the monomials xAyB, where

0 ≤ B < α. Since dim Jd(X ,a) = α by Corollary 3.2, it follows that In(J(X ,a))d consists of
the α lex-largest monomials of degree d. Thus In(J(X ,a)) is a lex-segment ideal.

In the following corollary we use the ordering a1 ≤ a2 ≤ · · · ≤ as.

Corollary 3.4. With the same setup as Corollary 3.3, The initial ideal In(J(X ,a)) consists
of the monomials xAyB, where A ≥ 0, B ≥ 0, and one of the strict inequalities

∑j
i=1 ai <

jA+ (j − 1)B, 1 ≤ j ≤ s, is satisfied.

Proof. It suffices to show that xAyB 6∈ In(J(X ,a)) if and only if A ≥ 0, B ≥ 0 and∑j
i=1 ai ≥ jA+ (j − 1)B is satisfied for every j = 1, . . . , s.
Since In(J(X ,a)) is a lex-segment ideal with Hilbert function dim In(J(X ,a))d = min{d+

1,
∑s

i=1[d− ai]+, x
AyB 6∈ In(J(X ,a)) if and only if

B ≥ dim In(J(X ,a))A+B = min

{
A+B + 1,

s∑

i=1

[A+B − ai]+

}
.
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Since A,B ≥ 0 it is not possible that B ≥ A+B + 1. So we are left with the condition

B ≥
s∑

i=1

[A+B − ai]+.

Now, since a1 ≤ a2 ≤ · · · ≤ as, A+B−a1 ≥ A+B−a2 ≥ · · ·A+B−as. The ‘plus’ subscript
means only positive contributions to the sum on the right hand side are taken. So we can
interpret the above inequality as

B ≥ max

{
j∑

i=1

(A+B − ai) : j = 1, . . . , s

}
.

Equivalently, B ≥
∑j

i=1(A + B − ai) is satisfied for j = 1, . . . , s. Re-arranging, we get

xAyB 6∈ In(J(X ,a)) if and only if jA+ (j − 1)B ≤
∑j

i=1 ai for i = 1, . . . , s.

Remark 2. Given non-negative integers a1 ≤ a2 ≤ · · · ≤ as, the inequalities A ≥ 0, B ≥ 0,
and jA + (j − 1)B ≤

∑j
i=1 ai for 1 ≤ j ≤ s define a convex polygon in R

2. Corollary 3.4
says that the initial ideal of J(X ,a) consists of monomials which are in bijection with the
lattice points in the first quadrant of R2 and are additionally not contained in this polygon.
Equivalently, the monomials which are not in the initial ideal of J(X ,a) are in bijection with
the lattice points of this polygon.

In the next result, and following, if r is a non-negative integer we write J(X , r) and I(X , r)
for the case where a = (r, r, . . . , r) consists of s copies of r.

Corollary 3.5. With the same setup as Corollary 3.3, the initial ideal In(J(X , r)) consists
of those monomials xAyB satisfying A ≥ 0, B ≥ 0, and sr < sA+ (s− 1)B.

Proof. Due to Corollary 3.4, it suffices to show that the inequality sr < sA+ (s− 1)B is
implied by the inequality jr < jA+ (j − 1)B for any j ≤ s. This is clear by multiplying both
sides of jr < jA+ (j − 1)B by s/j.

3.1. Behavior under colon. In this section we discuss the behavior of J(X ,a) under
coloning with a power of y. We continue to assume that no point of X has a vanishing
x-coordinate. We use the following fact about graded reverse lexicographic order.

Proposition 3.6. If I ⊂ R = R[x1, . . . , xn] under graded reverse lexicographic order, then
In(I : xn) = In(I) : xn. In particular, for any integer e ≥ 0, In(J(X ,a) : ye) = In(J(X ,a)) :
ye.

Proof. This is a special case of [10, Proposition 15.12].

Corollary 3.7. For any integer e ≥ 0, In(J(X ,a) : ye) is a lex-segment ideal with Hilbert
function

dim In(J(X ,a) : ye)d = [dim In(J(X ,a))d+e − e]+ = [min{d+ 1,

s∑

i=1

[d+ e− ai]+} − e]+

The monomial xAyB is in In(J(X ,a) : ye) if and only if A ≥ 0, B ≥ 0, and the inequality∑j
i=1 ai − (j − 1)e < jA+ (j − 1)B is satisfied for some j = 1, . . . , s.
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Proof. Due to Proposition 3.6 and the fact that graded lexicographic and graded reverse
lexicographic orders coincide in two variables, we have In(J(X ,a) : ye) = In(J(X ,a)) : ye.
Now, a well-known identity is that (In(J(X ,a)) : ye)ye = In(J(X ,a)) ∩ 〈ye〉. Said otherwise,
the monomials in In(J(X ,a)) : ye of degree d are in bijection with the monomials of degree
d+e in In(J(X ,a)) which are divisible by ye. Since (In(J(X ,a)))d+e is spanned by lex-largest
monomials, In(J(X ,a)) : ye is either empty or consists of the dim(In(J(X ,a)))d+e − e lex-
largest monomials of degree d. This establishes both that In(J(X ,a)) : ye is lex-segment and
the claimed form of the Hilbert function.

For the description of the monomials xAyB which are in In(J(X ,a) : ye) = In(J(X ,a)) : ye,
it suffices to observe that xAyB ∈ In(J(X ,a)) : ye if and only if xAyB+e ∈ In(J(X ,a)). Then
apply Corollary 3.4.

3.2. A summation property of Gröbner bases. We would like to prove a general fact,
which will be useful in later sections. We refer the reader to [6, Chapter 2] for basics on
Gröbner bases and the Buchberger algorithm, and we follow the same notation.

Lemma 3.8. Let R be the polynomial ring R[x, y, z]. Assume I is a homogeneous ideal
generated by polynomials in the variables x and z and J is a homogeneous ideal generated by
polynomials in the variables y and z, then a Gröbner basis for I + J with respect to graded
lexicographic (or graded reverse lexicographic) order can be obtained by taking the union of
the Gröbner bases of I and J with respect to the graded lexicographic (or graded reverse
lexicographic) order. In particular, In(I + J) = In(I) + In(J).

Proof. Let G1 be a Gröbner basis for I and G2 be a Gröbner basis for J , both taken with
respect to either graded lexicographic order or graded reverse lexicographic order. It suffices
to show that G = G1 ∪ G2 satisfies Buchberger’s criterion - that is, the S-pair S(f, g) of any
two f, g ∈ G reduces to zero under the division algorithm. This is clearly true if both f and
g are in G1 or both f and g are in G2. So we assume f ∈ G1, g ∈ G2. We further assume the
leading coefficients of f and g are normalized to 1. Let LT(f) = xAzC and LT(g) = yBzD.
Then

f = xAzC + terms in x, z divisible by zC and
g = yBzD + terms in y, z divisible by zD.

Put f ′ = f−xAzC and g′ = g−yBzD. Assume C ≥ D (the case D ≥ C is entirely analogous).
Then we can write the S-pair of f and g as

S(f, g) =
g − g′

zD
f −

f − f ′

zD
g =

f ′

zD
g −

g′

zD
f,

where f ′

zD
and g′

zD
are both polynomials because every term of f ′ is divisible by zC (and hence

zD since C ≥ D) and every term of g′ is divisible by zD. There is no cancellation between the
lead terms of f ′g/zD and g′f/zD since the lead term of f ′g/zD has a higher power of y in it than

fg′/zD. Thus LT(S(f, g)) = max
{
LT

(
f ′

zD
g
)
,LT

(
g′

zD
f
)}

. Since LT
(

f ′

zD
g
)
≤ LT(S(f, g))

and LT
(

g′

zD
f
)
≤ LT(S(f, g)),

S(f, g) =
f ′

zD
g −

g′

zD
f
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is what is called a standard representation of S(f, g) in [6, Section 9]. It is shown in [6,
Section 9] that if every S-pair of G has a standard representation, then G is a Gröbner basis,
and so the result follows.

4. The dimension formula expressed via lattice points. In this section we prove our first
version of the dimension formula for Cr

d(∆) when ∆ is a triangulation with a single totally
interior edge. We also characterize when dimCr

d(∆) begins to agree with Schumaker’s lower
bound. We record these as two separate results, and their proofs are based on results before
and in the section.

Theorem 4.1. Let ∆ be a triangulation with a single totally interior edge τ satisfying As-
sumptions 2.1. Then for all integers d ≥ 0,

dimCr
d(∆) = L(∆, d, r) + #(P ∩ Z

3 ∩Hd)

where Hd = {(A,B,C) ∈ R
3 : A+B +C = d− r − 1} and P is the polytope in R

3 defined by
A,B,C ≥ 0, sA+ (s− 1)C ≤ r + 1− s, and tB + (t− 1)C ≤ r + 1− t. Equivalently, for all
integers d ≥ 0,

dimCr
d(∆) = L(∆, d, r) + #(Pd ∩ Z

2),

where Pd is the polygon in R
2 defined by the inequalities A ≥ 0, B ≥ 0, A − B(s − 1) ≤

sr − d(s− 1), B −A(t− 1) ≤ tr − d(t− 1), and A+B ≤ d− r − 1.

Proof. The first equation in Theorem 4.1 follows from Lemma 4.6, Theorem 2.3, and
Lemma 2.9. The second equation follows from the first and Proposition 4.7.

Theorem 4.2. Let ∆ be a triangulation with a single totally interior edge τ satisfying As-
sumptions 2.1. If r + 1 ≡ s− 1 (mod s) and r + 1 ≡ t− 1 (mod t) then

dimCr
d(∆) >L(∆, d, r) for d =

⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r, and

dimCr
d(∆) =L(∆, d, r) for d ≥

⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r + 1.

Otherwise,

dimCr
d(∆) >L(∆, d, r) for d =

⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r − 1, and

dimCr
d(∆) =L(∆, d, r) for d ≥

⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r.

Proof. Theorem 4.2 follows from Theorem 2.3 and Proposition 4.8.

Remark 3. In case there are three slopes that meet at each endpoint of the interior edge τ
(so s = t = 2), Theorem 4.2 yields that dimCr

d(∆) = L(∆, d, r) for d ≥ 2r+1, which recovers
the main result of Tohǎneanu and Mináč in [21]. We say more on this in Example 6.1.

Corollary 4.3. If ∆ has a single totally interior edge, then dimCr
d(∆) = L(∆, d, r) for

d ≥ 2r+1, so ∆ satisfies the ‘2r+1’ conjecture of Schenck [27] (see also [28, Conjecture 2.1]).
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Proof. This is immediate from Proposition 2.7 and Theorem 4.2, coupled with the fact
that t ≥ s ≥ 2.

Since the case r = 1, d = 3 receives lots of attention, we treat it separately and give an explicit
formula for dimC1

3 (∆).

Corollary 4.4. Assume ∆ has two interior vertices and one totally interior edge. Then
dimC1

d(∆) = L(∆, d, 1) for d ≥ 3, so ∆ satisfies the conjecture of Alfeld and Manni for
dimC1

3 (∆) (see [1, Conjecture 3] or [23]). Explicitly,

dimC1
3 (∆) = 10 · |∆2| − 7 · |∆◦

1|+ 6.

Proof. Corollary 4.3 yields dimC1
3 (∆) = L(∆, 3, 1). We know that L(∆, 3, 1) is the Euler

characteristic of R•/J• (see Theorem 2.3) in degree 3. A straightforward calculation then
yields the explicit formula. Any equivalent expression for Schumaker’s lower bound (e.g.
Proposition 2.4) may also be used to obtain the formula for L(∆, 3, 1), although it may
differ from the exact expression above by identities involving the number of triangles, interior
vertices, and interior edges.

We shall use Theorem 2.3 to prove Theorem 4.1 and Theorem 4.2, hence we spend the
remainder of this section analyzing the homology module H1(R•/J•), where R•/J• is the
Billera-Schenck-Stillman chain complex from Section 2. We use Assumptions 2.1 throughout
this section. As we observed in Subsection 2.1, we may change coordinates so that

J(τ) = 〈zr+1〉,

J1 = 〈(x+ b1z)
r+1, (x+ b2z)

r+1, . . . , (x+ bsz)
r+1〉, and

J2 = 〈(y + c1z)
r+1, (y + c2z)

r+1, . . . , (y + ctz)
r+1〉.

Using Lemma 2.8, Proposition 3.6, and Lemma 3.8, we obtain the following corollary.

Corollary 4.5. With the above definition of J1, J2 and J(τ),

(4.1) In(Ji : J(τ)) = In(Ji) : J(τ), for i = 1, 2 and

(4.2) In(J1 : J(τ) + J2 : J(τ)) = In(J1 : J(τ)) + In(J2 : J(τ)),

where the initial ideal is taken with respect to graded lexicographic order or graded reverse
lexicographic order.

Proof. The equation (4.1) follows from Proposition 3.6. Because J1 : J(τ) is only generated
in polynomials in x and z, and J2 : J(τ) is only generated in polynomials in y and z, we may
apply Lemma 3.8 here and obtain (4.2).

Lemma 4.6. A basis for R/(J1 : J(τ) + J2 : J(τ)) as an R-vector space is given by the
monomials xAyBzC which satisfy the inequalities A ≥ 0, B ≥ 0, C ≥ 0, r+1−s ≥ sA+(s−1)C,
and r + 1− t ≥ tB + (t− 1)C.
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Proposition 4.8. The regularity of H1(R•/J•) is bounded by

(4.3)

⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r − 1 ≤ reg H1(R•/J•) ≤

⌊
r + 1

s
+

r + 1

t

⌋
+ r − 1.

More precisely,

(4.4) reg H1(R•/J•) =





⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r if r + 1 ≡ s− 1 (mod s)

and r + 1 ≡ t− 1 (mod t)⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r − 1 otherwise.

Thus dimCr
d(∆) = L(∆, d, r) for d > r+1

s + r+1
t +r−1, where L(∆, d, r) is Schumaker’s lower

bound [29].

To prove Proposition 4.8, we use the following lemma:

Lemma 4.9. Assume 2 ≤ s ≤ t ≤ r + 1. Let P be the polytope in R
3 defined by the

inequalities A ≥ 0, B ≥ 0, C ≥ 0, r + 1 − s ≥ sA + (s − 1)C, and r + 1 − t ≥ tB + (t − 1)C.
Let H be the plane defined by A+B + C =

⌊
r+1
s

⌋
+

⌊
r+1
t

⌋
− 1. Then P ∩H ∩ Z

3 6= ∅ if and
only if r + 1 ≡ s − 1 (mod s) and r + 1 ≡ t − 1 (mod t). Moreover, if r + 1 ≡ s − 1 (mod s)
and r + 1 ≡ t− 1 (mod t) then

• If t ≥ 3 then P ∩H ∩ Z
3 = {(

⌊
r+1
s

⌋
− 1,

⌊
r+1
t

⌋
− 1, 1)}

• If s = t = 2 then P ∩H ∩ Z
3 = {(t, t, r − 1− 2t) | t = 0, 1, . . . , r/2− 1}

Proof. We first treat the case t ≥ 3 and s ≥ 2. Assume P = (A0, B0, C0) ∈ P ∩H ∩ Z
3.

If C0 = 0, then A0 ≤
⌊
r+1
s

⌋
− 1 and B0 ≤

⌊
r+1
t

⌋
− 1. Hence, (A0, B0, 0) 6∈ H, contradiction.

Therefore, C0 ≥ 1.
Next, we show that C0 ≤ 1. Let d0 =

⌊
r+1
s

⌋
+
⌊
r+1
t

⌋
−1. Substituting A0 = d0−B0−C0 to

sA0+(s−1)C0 ≤ r+1−s, we know that (B0, C0) ∈ Z
2
≥0 must satisfy sB0+C0 ≥ s+sd0−(r+1)

and tB0 + (t− 1)C0 ≤ r + 1− t. Eliminating B0 and simplifying, we obtain

(
1−

1

s
−

1

t

)
C0 ≤

{
r + 1

s

}
+

{
r + 1

t

}
− 1.

where
{
r+1
s

}
= r+1

s −
⌊
r+1
s

⌋
and

{
r+1
t

}
= r+1

t −
⌊
r+1
t

⌋
. Because

{
r+1
s

}
≤ 1− 1

s and
{
r+1
t

}
≤

1− 1
t , so

(
1− 1

s −
1
t

)
C0 ≤ 1− 1

s −
1
t . Since s ≥ 2 and t ≥ 3, this implies C0 ≤ 1.

Therefore, C0 = 1, and hence A0 ≤
⌊
r+2
s

⌋
−2 ≤

⌊
r+1
s

⌋
−1 and B0 ≤

⌊
r+2
t

⌋
−2 ≤

⌊
r+1
t

⌋
−1.

Observe that if
⌊
r+2
s

⌋
−2 <

⌊
r+1
s

⌋
−1 or

⌊
r+2
t

⌋
−2 <

⌊
r+1
t

⌋
−1 then H∩P∩Z

3 = ∅. Therefore
if H ∩ P ∩ Z

3 6= ∅ then
⌊
r+2
s

⌋
= b r+1

s c + 1 and
⌊
r+2
t

⌋
= b r+1

t c + 1 which in turn happens
if and only if r + 1 ≡ s − 1 (mod s) and r + 1 ≡ t − 1 (mod t). In case both congruences are
satisfied, it is clear from the above reasoning that (A0, B0, C0) = (

⌊
r+1
s

⌋
− 1,

⌊
r+1
t

⌋
− 1, 1) is

the only point in P ∩H ∩ Z
3.

Now we treat the case s = t = 2. First suppose r is odd, so r = 2k − 1 for some integer
k ≥ 1. Then d0 = 2k−1 and the polytope P is defined byA ≥ 0, B ≥ 0, C ≥ 0, 2A+C ≤ 2k−2,
and 2B+C ≤ 2k− 2. From the final two inequalities we deduce that A+B+C ≤ 2k− 2 and
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thus H∩P is empty. Now suppose r = 2k for some integer k ≥ 1. Then d0 = 2k−1 again, and
P is defined by the inequalities A ≥ 0, B ≥ 0, C ≥ 0, 2A+C ≤ 2k− 1, and 2B+C ≤ 2k− 1.
From A+ B + C = 2k − 1, 2A+ C ≤ 2k − 1, and 2B + C ≤ 2k − 1, we deduce that A = B.
Since A ≥ 0 and B ≥ 0, we deduce that H ∩P ∩Z

3 = {(t, t, r− 1− 2t) | t = 0, . . . , r/2− 1}.

Now we are ready to prove Proposition 4.8.

Proof of Proposition 4.8. We first prove the bounds (4.3). By Lemma 2.8, the regularity
of H1(R•/J•) is the largest degree of a monomial in R/(J1 : J(τ) + J2 : J(τ))(−r − 1). By
Lemma 4.6, xAyB ∈ R/(J1 : J(τ) + J2 : J(τ)) if r + 1 ≥ s(A + 1) and r + 1 ≥ t(B + 1). In
particular, A =

⌊
r+1
s

⌋
−1 and B =

⌊
r+1
t

⌋
−1 satisfy this condition. By Lemma 2.8, we obtain

⌊
r + 1

s

⌋
+

⌊
r + 1

t

⌋
+ r − 1 ≤ reg H1(R•/J•).

Note that the region of R3 bounded by inequalities in Lemma 4.6 is a polytope, which we
denote by P as in Lemma 4.9. Thus the largest degree of a monomial in R/(J1 : J(τ) + J2 :
J(τ)) is obtained by maximizing the linear functional A+B+C over P ∩Z

3. It is well-known
in linear programming that the maximum of this linear functional on P ∩R

3 occurs at one of
the vertices of P. Therefore, to prove the upper bound, it suffices to verify that evaluating
A+B + C at the vertices achieves a value of at most r+1

s + r+1
t − 2. The vertices of P are

(
t− s

s(t− 1)
r, 0,

r

t− 1
− 1

)
,

(
r + 1

s
− 1,

r + 1

t
− 1, 0

)
,

(
0, 0,

r

t− 1
− 1

)
,

(
r + 1

s
− 1, 0, 0

)
,

(
0,

r + 1

t
− 1, 0

)
, and (0, 0, 0),

respectively. Computing A+B + C for each of them, we have

t

s(t− 1)
r − 1,

r + 1

s
+

r + 1

t
− 2,

r

t− 1
− 1,

r + 1

s
− 1,

r + 1

t
− 1, and 0,

respectively. We want to show that r+1
s + r+1

t − 2 is the largest among all of them.
It is clear that

0 ≤
r + 1

t
− 1 ≤

r + 1

s
− 1 ≤

r + 1

s
+

r + 1

t
− 2,

and that
r

t− 1
− 1 ≤ t

s(t−1)r − 1. We only need to show that

(4.5)
t

s(t− 1)
r − 1 ≤

r + 1

s
+

r + 1

t
− 2.

We have

t

s(t− 1)
r − 1−

[
r + 1

s
+

r + 1

t
− 2

]
=

[
1− (t− 1)(s− 1)

t(t− 1)s

]
r + 1−

1

s
−

1

t
.
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Because t ≥ s ≥ 2, so 1− (t− 1)(s− 1) ≤ 0, where equality holds if and only if t = s = 2. If
t = s = 2, then equality in (4.5) holds. Otherwise, 1− (t− 1)(s− 1) < 0 and

[
1− (t− 1)(s− 1)

t(t− 1)s

]
r + 1−

1

s
−

1

t
≤

[
1− (t− 1)(s− 1)

t(t− 1)s

]
(t− 1) + 1−

1

s
−

1

t

= 0.

Thus, we have proved (4.5). This means reg H1(R•/J•) ≤

⌊
r + 1

s
+

r + 1

t

⌋
+r−1. Therefore,

the inequality (4.3) holds.
Now we prove Equation (4.4). If reg H1(R•/J•) 6=

⌊
r+1
s

⌋
+

⌊
r+1
t

⌋
+ r − 1, then by (4.3),

reg H1(R•/J•) =
⌊
r+1
s

⌋
+

⌊
r+1
t

⌋
+ r. By Lemma 2.8 and Lemma 4.6, this is equivalent to

saying that P ∩ H ∩ Z
3 6= ∅, where P and H are as in the setup of Lemma 4.9. Applying

Lemma 4.9 completes the proof.

Example 4.2. Assume that (s, t) = (3, 4) and r = 6. Then

In(J1) =〈x7, x6z, x5z2, x4z4, x3z5, x2z7, xz8, z10〉 and

In(J2) =〈y7, y6z, y5z2, y4z3, y3z5, y2z6, yz7, z9〉.

Therefore, In(J1 : J(τ) + J2 : J(τ)) = 〈x2, xz, y, z2〉. Every monomial of degree two or more
is in 〈x2, xz, y, z2〉, but x is not in this ideal. Therefore reg R/〈x2, xz, y, z2〉 = 1 and thus
reg H1(R•/J•) = 8 by Lemma 2.8. The bounds given by (4.3) are 8 ≤ reg H1(R•/J•) ≤ 9.
In this case, r + 1 6≡ s − 1 (mod s), so by Proposition 4.8, reg H1(R•/J•) = 8, which aligns
with what we have found already. On the other hand, if (s, t) = (3, 4) and r = 10, then

In(J1) =〈x11, x10z, x9z2, x8z4, x7z5, . . . , x4z10, x3z11, x2z13, xz14, z16〉 and

In(J2) =〈y11, y10z, y9z2, y8z3, y7z5, . . . , y4z9, y3z10, y2z11, yz13, z14〉.

Therefore, In(J1 : J(τ) + J2 : J(τ)) = 〈x3, x2z2, y2, yz2, z3〉. We can see by inspection that
any monomial of degree five or more is in 〈x3, x2z2, y2, yz2, z3〉, while x2yz is a monomial of
degree four not in this ideal. Thus reg R/In(J1 : J(τ) + J2 : J(τ)) = 4 and so, by Lemma 2.8,
reg H1(R•/J•) = 15. In this case, (4.3) specializes to 14 ≤ reg H1(R•/J•) ≤ 15. Since
r + 1 ≡ s− 1 (mod s) and r + 1 ≡ t− 1 (mod t), Proposition 4.8 yields reg H1(R•/J•) = 15,
which aligns with what we found by inspection.

5. Comparison to quasi-cross-cut. In this section we address the phenomenon that, for
certain pairs (r, d), dimCr

d(∆) = dimCr
d(∆

′) where ∆′ is obtained by removing the unique
totally interior edge from ∆ to get a quasi-cross-cut partition (see Definition 2.3), as shown
in Figure 3. In [32], Sorokina discusses this phenomenon using the Bernstein-Bézier form in
the case s = t = 2 (which she calls the Tohǎneanu partition due to its appearance in [34]). A
main result of [32] is that dimCr

d(∆) = dimCr
d(∆

′) for d ≤ 2r when s = t = 2. In this section,
we extend Sorokina’s result to arbitrary s and t. This equality of dimensions upon removal
of an edge is related to the phenomenon of supersmoothness [32, 12], although we will not go
into details about this.
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v1
τ v2

`qLp

L1 `1
L2

L3

Lp−2

Lp−1

`2

`3

`q−2

`q−1

σ1

σ2

σ1
1

σ1
2

σ1
p−2

σ1
p−1

σ2
1 σ2

2

σ1
q−2

σ1
q−1

Figure 3. The triangulation ∆ with edges and faces labeled for use in the proof of Lemma 5.1. The
quasi-cross-cut partition ∆′ is obtained by removing the totally interior edge τ .

Let ∆ be a triangulation with a single totally interior edge τ and let ∆′ be the partition
formed by removing the edge τ from ∆ as in Figure 3. As in Section 4, put Ji =

∑
vi∈ε,ε 6=τ J(ε)

for i = 1, 2.
Furthermore, for any homogeneous ideal I ⊆ R, define initdeg I := min{d : Id 6= 0}.

Lemma 5.1. There is a short exact sequence

(5.1) 0 → Cr(∆′)
ι
−→ Cr(∆)

δ
−→ J(τ) ∩ J1 ∩ J2 → 0

where ι is the natural inclusion and δ(F ) = Fσ2 − Fσ1 is the difference of F restricted to
the triangles σ2 and σ1 shown in Figure 3. In particular, if d < initdeg J1 ∩ J2 ∩ J(τ) then
dimCr

d(∆) = dimCr
d(∆

′).

Proof. We prove that (5.1) is a short exact sequence; the final statement follows immedi-
ately. Let τ be the totally interior edge of ∆, with corresponding linear form Lτ . Let L1, . . . , Lp

be the linear forms defining the edges which surround the interior vertex v1, in clockwise order.
Likewise suppose that the linear forms defining the edges which surround the interior vertex
v2 in counterclockwise order are `1, . . . , `q. See Figure 3, where the edges are labeled by the
corresponding linear forms. With this convention, J(τ) = 〈Lr+1

τ 〉, J1 = 〈Lr+1
1 , . . . , Lr+1

p 〉, and

J2 = 〈`r+1
1 , . . . , `r+1

q 〉.
It is clear that Cr(∆′) is the kernel of the map δ. It follows from the algebraic spline

criterion that if F ∈ Cr(∆) then δ(F ) ∈ J(τ)∩J1∩J2. We show that δ is surjective. Suppose
that f ∈ J(τ) ∩ J1 ∩ J2. We define a spline F ∈ Cr(∆) so that δ(F ) = f as follows. Let
Fσ1 = 0 and Fσ2 = f . Write σ1

1, . . . , σ
1
p−1 for the remaining triangles surrounding the vertex

v1 (in clockwise order) and σ2
1, . . . , σ

2
q−1 for the remaining triangles surrounding the vertex v2

(in counterclockwise order). See Figure 3.
Then the linear forms defining the interior edges adjacent to σ1

i are Li and Li+1 for
i = 1, . . . , p− 1 and the linear forms defining the interior edges adjacent to σ2

j are `j and `j+1
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for j = 1, . . . , q − 1.
Now we continue to define F . Since f ∈ J1, f =

∑p
i=1 giL

r+1
i for some polynomials

g1, . . . , gp. Define Fσ1
i

by f −
∑i

j=1 gjL
r+1
j for i = 1, . . . , p − 1. Likewise, since f ∈ J2,

f =
∑q

i=1 hi`
r+1
i for some polynomials h1, . . . , hq. Define Fσ2

i

by f −
∑i

j=1 hj`
r+1
j for i =

1, . . . , q − 1. One readily checks, using Proposition 2.1, that F ∈ Cr(∆). Clearly δ(F ) = f ,
so we are done.

Since J(τ) is principal, J1 ∩ J2 ∩ J(τ) = [(J1 ∩ J2) : J(τ)]J(τ) and (J1 ∩ J2) : J(τ) = (J1 :
J(τ))∩(J2 : J(τ)). Hence, the initdeg(J1∩J2∩J(τ)) = (r+1)+initdeg(J1 : J(τ)∩J2 : J(τ)).

Lemma 5.2. For i = 1, 2, let J ′
i = Ji : J(τ). We have In(J ′

1 ∩ J ′
2) = In(J ′

1) ∩ In(J ′
2).

Moreover, the monomial xAyBzC ∈ In(J ′
1) ∩ In(J ′

2) if and only if A,B,C ≥ 0, r + 1 − s <
sA+ (s− 1)C, and r + 1− t < tB + (t− 1)C.

Proof. The second part follows immediately from Corollary 3.7. So we only verify the first
part. It is clear that In(J ′

1 ∩ J ′
2) ⊆ InJ ′

1 ∩ InJ ′
2. We only need to show that dim In(J ′

1 ∩ J ′
2)d =

dim(InJ ′
1 ∩ InJ ′

2)d for all degrees d ≥ 0. By Corollary 4.5, we know that dim In(J ′
1 + J ′

2)d =
dim(InJ ′

1 + InJ ′
2)d. We also know that dim(InI)d = dim Id for any ideal I. Because

dim In(J ′
1 ∩ J ′

2)d =dim(J ′
1)d + dim(J ′

2)d − dim(J ′
1 + J ′

2)d and

dim(InJ ′
1 ∩ InJ ′

2)d =dim(J ′
1)d + dim(J ′

2)d − dim(InJ ′
1 + InJ ′

2)d,

we must have dim In(J ′
1 ∩ J ′

2)d = dim(InJ ′
1 ∩ InJ ′

2)d for all degree d ≥ 0.

Corollary 5.3. Let ∆ be a triangulation with a single totally interior edge satisfying As-
sumptions 2.1. For d ≤ t

s(t−1)r + r, dimCr
d(∆) = dimCr

d(∆
′).

Proof. As in Lemma 5.2, we let J ′
i = Ji : J(τ) for i = 1, 2. By Lemma 5.1, it suffices to

prove that t
s(t−1)r+ r < initdeg(J1 ∩ J2 ∩ J(τ)). From the discussion just prior to Lemma 5.2

coupled with the lemma itself, it suffices to prove that t
s(t−1)r − 1 < initdeg(In(J ′

1) ∩ In(J ′
2)).

Let Q be the collection of points (A,B,C) ∈ R
3 defined by the inequalities A,B,C ≥ 0,

r−s+1 < sA+(s−1)C and r−t+1 < tB+(t−1)C. Then its closure Q (in the usual topology
on R

3) is the polyhedron in R
3 defined by the inequalities A,B,C ≥ 0, r−s+1 ≤ sA+(s−1)C

and r − t+ 1 ≤ tB + (t− 1)C. Using Lemma 5.2 again,

initdeg(In(J ′
1) ∩ In(J ′

2)) = min{A+B + C : (A,B,C) ∈ Q ∩ Z
3}.

We first show that t
s(t−1)r− 1 is the smallest value achieved by A+B+C on the polyhedron

Q. Since we assume that s ≤ t ≤ r + 1, it is not possible for any (A,B,C) ∈ Q to satisfy
A = C = 0 or B = C = 0. The vertices of the polyhedron Q are

Q1 =

(
t− s

s(t− 1)
r, 0,

r

t− 1
− 1

)
, Q2 =

(
r + 1

s
− 1,

r + 1

t
− 1, 0

)
, and

Q3 =

(
0, 0,

r

s− 1
− 1

)
.

We have proved (4.5), which implies that A + B + C evaluated at Q2 is at least as large as
A + B + C evaluated at Q1. Since t

s(t−1)r − 1 ≤ r
s−1 − 1, A + B + C evaluated at Q1 is at
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most A+B +C evaluated at Q3. Therefore, over the real numbers, A+B +C is minimized
over Q at the vertex Q1, with a value of t

s(t−1)r − 1. Let H ′ be the affine hyperplane defined

by A + B + C = t
s(t−1)r − 1. A straightforward calculation with the inequalities also shows

that H ′ ∩ Q = Q1, hence H ′ ∩ Q = ∅ and also H ′ ∩ Q ∩ Z
3 = ∅. It follows that

initdeg(In(J ′
1) ∩ In(J ′

2)) = min{A+B + C : (A,B,C) ∈ Q ∩ Z
3} >

t

s(t− 1)
r − 1.

6. The explicit dimension formula. In this section we use the preceding sections to give
an explicit formula for dimCr

d(∆), where ∆ is a planar triangulation with a single totally
interior edge, for any d ≥ 0 and r ≥ 0. We then illustrate the formula in a few examples.

Theorem 6.1. Let ∆ be a triangulation with a single totally interior edge τ satisfying As-
sumptions 2.1 and ∆′ the partition formed by removing τ . Then

dimCr
d(∆) =





L(∆′, d, r) d ≤ t
s(t−1)r + r

L(∆, d, r) + f(∆, d, r) t
s(t−1)r + r < d ≤ r+1

s + r+1
t + r − 1

L(∆, d, r) d > r+1
s + r+1

t + r − 1,

where

f(∆, d, r) :=

d−r−1∑

i=
⌈

2st(d−r)−(s+t)d
(s−1)(t−1)−1

⌉

(⌊
(i− d)(s− 1)

s
+ r

⌋
−

⌈
i+ d(t− 1)

t
− r

⌉
+ 1

)
.

Moreover, put r = b(r + 1)/sc + b(r + 1)/tc + r. If t ≥ 3, r + 1 ≡ s − 1 (mods), and
r + 1 ≡ t− 1 (mod t), then f(∆, r, r) = 1. Otherwise f(∆, r, r) = 0.

Proof. First, it follows from t ≤ r+1 that t
s(t−1) ≤

r+1
s + r+1

t +r−1. Now, if d ≤ t
s(t−1)r+r

then dimCr
d(∆) = dimCr

d(∆
′) by Corollary 5.3. Since ∆′ is a quasi-cross-cut partition, it

follows from Proposition 2.6 that dimCr
d(∆

′) = L(∆′, d, r) for all d ≥ 0.
Likewise, if d > r+1

s + r+1
t + r − 1 then dimCr

d(∆) = L(∆, d, r) by Theorem 4.2. Observe
that these first two cases allow us to dispense of the case s = t = 2 (which we consider in
more detail in Example 6.1). So henceforth we assume t ≥ 3.

According to Theorem 4.1, it remains to show that, when t
s(t−1)r+r < d ≤ r+1

s + r+1
t +r−1,

f(∆, d, r) = #(Pd ∩ Z
2), where Pd is the polytope defined by the inequalities A ≥ 0, B ≥ 0,

A ≤ B(s− 1)− d(s− 1) + sr, B ≤ A(t− 1)− d(t− 1) + tr, and A+B ≤ d− r − 1.
We first show that, in the given range for d, Pd is a triangle bounded by A ≤ B(s− 1)−

d(s− 1) + sr, B ≤ A(t− 1)− d(t− 1) + tr, and A+B ≤ d− r − 1. For this observe that

B ≤ A(t− 1)− d(t− 1) + tr ≤ B(s− 1)(t− 1) + sr(t− 1)− d(s− 1)(t− 1) + tr − d(t− 1)

from which we deduce that ds(t− 1)− sr(t− 1)− tr ≤ B[(s− 1)(t− 1)− 1]. Since t ≥ 3, we
need only show that 0 ≤ ds(t− 1)− sr(t− 1)− tr. Re-arranging, we see this is equivalent to

tr

s(t− 1)
+ r ≤ d,
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which is precisely our assumption. So B ≥ 0 is a consequence of A ≤ B(s− 1)− d(s− 1)+ sr
and B ≤ A(t− 1)− d(t− 1) + tr. Since B ≥ 0, we obtain

0 ≤ A(t− 1)− d(t− 1) + tr

or d(t− 1)− tr ≤ A(t− 1). Using the given bound on d, we obtain r(t/s)− r ≤ d(t− 1)− tr.
Since s ≤ t, we thus have 0 ≤ A(t− 1) and so 0 ≤ A.

It follows that Pd is the triangle in the first quadrant bounded byA ≤ B(s−1)−d(s−1)+sr,
B ≤ A(t − 1) − d(t − 1) + tr, and A + B ≤ d − r − 1. Now we count the lattice points
(A,B) ∈ Z

2 ∩ Pd. We do this by counting the lattice points on the line segments defined by
the intersection of A + B = i with Pd, for 0 ≤ i ≤ d − r − 1. The two lines defined by the
equations A = B(s− 1)− d(s− 1)+ sr and B = A(t− 1)− d(t− 1)+ tr intersect at the point

(
t(s− 1)(d− r)− sr

(s− 1)(t− 1)− 1
,
s(t− 1)(d− r)− tr

(s− 1)(t− 1)− 1

)
,

where A+B (restricted to Pd) achieves its minimum value of

2st(d− r)− (s+ t)d

(s− 1)(t− 1)− 1
.

Thus we start our count at i = d(2st(d − r) − (s + t)d)/((s − 1)(t − 1) − 1)e, which is the
lower index of summation for the definition of f(∆, d, r) in the theorem statement. Clearly
the maximum is i = d− r − 1. Now put A+B = i, so B = i−A. We have

A ≤ B(s− 1) + sr − d(s− 1) = (i−A)(s− 1) + sr − d(s− 1)

yielding sA ≤ (i− d)(s− 1) + sr or A ≤ (i− d)(s− 1)/s+ r. Likewise we have

i−A = B ≤ A(t− 1) + tr − d(t− 1)

which yields i − tr + d(t − 1) ≤ tA or (i + d(t − 1))/t − r ≤ A. Putting these together, the
number of lattice points (A,B) ∈ Pd∩Z

2 with A+B = i is the same as the number of integers
A ∈ Z in the interval

(i+ d(t− 1))/t− r ≤ A ≤ (i− d)(s− 1)/s+ r,

which is counted by

⌊
(i− d)(s− 1)

s
+ r

⌋
−

⌈
i+ d(t− 1)

t
− r

⌉
+ 1.

Summing this over the appropriate range for i yields the expression for f(∆, d, r).
Now put r = b(r + 1)/sc + b(r + 1)/tc + r. If t ≥ 3, r + 1 ≡ s − 1 (mod s), and r + 1 ≡

t−1 ( mod t) then f(∆, r, r) = 1 by Lemma 4.9. Otherwise f(∆, r, r) = 0, also by Lemma 4.9.
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In the following examples we compute explicit formulas for certain triangulations with a
single totally interior edge. We assume that the triangulation ∆ satisfies Assumptions 2.1
and we introduce some additional notation to explicitly write out Schumaker’s lower bound.
Let α1 and ν1 (respectively α2 and ν2) be the quotient and remainder when (s+ 1)(r + 1) is
divided by s (respectively (t + 1)(r + 1) is divided by t). That is, (s + 1)(r + 1) = α1s + ν1
and (t+1)(r+1) = α2t+ ν2, where 0 ≤ ν1 < s and 0 ≤ ν2 < t. Furthermore, put µ1 = s− ν1
and µ2 = t− ν2. From Proposition 2.4 we have

L(∆, d, r) :=

(
d+ 2

2

)
+ (p− s+ q − t− 1)

(
d+ 1− r

2

)

+
∑

i=1,2

µi

(
d+ 2− αi

2

)
+ νi

(
d+ 1− αi

2

)
.

(6.1)

Now let α′
1 and ν ′1 (respectively α′

2 and ν ′2) be the quotient and remainder when s(r + 1) is
divided by s− 1 (respectively t(r + 1) is divided by t− 1). That is, s(r + 1) = α′

1(s− 1) + ν ′1
and t(r + 1) = α′

2(t − 1) + ν ′2, where 0 ≤ ν ′1 < s − 1 and 0 ≤ ν ′2 < t − 1. Furthermore, put
µ′
1 = s− 1− ν ′1 and µ′

2 = t− 1− ν ′2. Again from Proposition 2.4 we have

L(∆′, d, r) :=

(
d+ 2

2

)
+ (p− s+ q − t)

(
d+ 1− r

2

)

+
∑

i=1,2

µ′
i

(
d+ 2− α′

i

2

)
+ ν ′i

(
d+ 1− α′

i

2

)
.

(6.2)

Schumaker’s upper bound U(∆, d, r) – see Proposition 2.5 – depends on an ordering of
the two interior vertices of ∆. The optimal upper bound is obtained by ordering the vertex
with the larger number of slopes first, and this amounts to replacing t by t− 1 in (6.1) (this
also affects µi, αi, and νi since they are defined using t).

Example 6.1. Consider the triangulation with p = q = 4 and s = t = 2. This triangulation
is studied in [32], [34], and [21]. According to Theorem 6.1, we have

dimCr
d(∆) =

{
L(∆′, d, r) d ≤ 2r

L(∆, d, r) d ≥ 2r + 1.

The first case (for d ≤ 2r) recovers [32, Theorem 3.1]. The second case (for d ≥ 2r + 1)
recovers the main result of [21]. From Equation (6.2) we have

L(∆′, d, r) =

(
d+ 2

2

)
+ 4

(
d+ 1− r

2

)
+ 2

(
d− 2r

2

)
.

Since the final term of L(∆′, d, r) vanishes for d ≤ 2r, we have dimCr
d(∆) =

(
d+2
2

)
+4

(
d+1−r

2

)

for d ≤ 2r, recovering [32, Theorem 3.2]. Furthermore, dimCr
2r(∆) > L(∆, 2r, r) by Theo-

rem 4.2, recovering the main result of [34].
We observe that Schumaker’s upper bound U(∆, d, r) satisfies U(∆, d, r) − L(∆′, d, r) =(

d+2−d(3(r+1))/2e
2

)
+
(
d+2−b(3(r+1))/2c

2

)
−
(
d−2r
2

)
. Thus if d < b3(r+1)/2c we see that dimCr

d(∆) =
U(∆, d, r) while if d ≥ b3(r + 1)/2c we have dimCr

d(∆) < U(∆, d, r).
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Example 6.2. Consider the triangulation ∆ shown in Figure 1, with p = 6, s = 3, q = 5,
and t = 4. If r ≤ 5 then Cr(∆) is free and dimCr

d(∆) = L(∆, d, r) for all integers d ≥ 0 by
Proposition 2.7. For r ≥ 6, according to Theorem 6.1, dimCr

d(∆) = L(∆′, d, r) for d ≤ 13r/9
and dimCr

d(∆) = L(∆, d, r) for d > (19r − 5)/12. For 13r/9 < d ≤ (19r − 5)/12,

dimCr
d(∆) =L(∆, d, r) + f(∆, d, r)

=L(∆, d, r) +

d−r−1∑

i=d(17d−24r)/5e

(b2/3(i− d) + rc − d(i+ 3d)/4− re+ 1) .

We now use Equations (6.1) and (6.2) to compute dimension formulas for r = 6, 7, 8. When
r = 6, we have

dimC6
d(∆) =

{
L(∆′, d, 6) =

(
d+2
2

)
+ 4

(
d−5
2

)
+ 2

(
d−7
2

)
+ 2

(
d−8
2

)
+
(
d−9
2

)
d ≤ 8

L(∆, d, 6) =
(
d+2
2

)
+ 3

(
d−5
2

)
+
(
d−6
2

)
+ 5

(
d−7
2

)
+
(
d−8
2

)
d ≥ 10

.

When d = 9, f(∆, d, r) =
∑2

i=2 (b2/3(i− 9) + 6c − d(i+ 3 · 9)/4− 6e+ 1) = 0, which simply
means that the triangle defined by the inequalities in Proposition 4.7 does not contain any
lattice points. Thus dimC6

9 (∆) = L(∆, 9, 6). This also is expected by Theorem 6.1 since
r = b7/3c+ b7/4c+ 6 = 9 and r + 1 = 7 6≡ 2 (mod 3).

Observing that the last three terms of L(∆′, d, r) vanish when d ≤ 8, we conclude that

dimC6
d(∆) =

{(
d+2
2

)
+ 4

(
d−5
2

)
d ≤ 8(

d+2
2

)
+ 3

(
d−5
2

)
+
(
d−6
2

)
+ 5

(
d−7
2

)
+
(
d−8
2

)
d ≥ 9

.

We also have U(∆, d, 6) =
(
d+2
2

)
+ 4

(
d−5
2

)
+ 4

(
d−7
2

)
+ 2

(
d−8
2

)
, so Schumaker’s upper bound

coincides with L(∆′, d, 6) for d ≤ 8 and gives the dimension of the spline space. However
U(∆, 9, 6) = 28 = dimC6

9 (∆) + 2 and U(∆, d, 6) > dimC6
d(∆) for d ≥ 9.

When r = 7, there is no integer d so that 91/9 = 13r/9 < d ≤ (19r − 5)/12 = 128/12, so
we simply have

dimC7
d(∆) =

{
L(∆′, d, 7) =

(
d+2
2

)
+ 4

(
d−6
2

)
+

(
d−8
2

)
+ 2

(
d−9
2

)
+ 2

(
d−10
2

)
d ≤ 10

L(∆, d, 7) =
(
d+2
2

)
+ 3

(
d−6
2

)
+ 5

(
d−8
2

)
+ 2

(
d−9
2

)
d ≥ 11

We also have U(∆, d, 7) =
(
d+2
2

)
+4

(
d−6
2

)
+2

(
d−8
2

)
+4

(
d−9
2

)
, which gives the dimension of the

spline space for d ≤ 9 but exceeds it for d ≥ 10.
When r = 8, we hit our first non-zero contribution from f(∆, d, r). Namely, when d = 12,

f(∆, 12, 8) = 1 (this comes from the single lattice point pictured on the right in Figure 2).
Notice that r = b9/3c+ b9/4c+ 8 = 13, so we must compute f(∆, 12, 8) directly. Thus

dimC8
d(∆) =





L(∆′, d, r) =
(
d+2
2

)
+ 4

(
d−7
2

)
+ 3

(
d−10
2

)
+
(
d−11
2

)
+
(
d−12
2

)
d ≤ 11

L(∆, 12, r) + f(∆, 12, r) = 134 + 1 = 135 d = 12

L(∆, d, r) =
(
d+2
2

)
+ 3

(
d−7
2

)
+ 3

(
d−9
2

)
+ 4

(
d−10
2

)
d ≥ 13

We also have U(∆, d, 8) =
(
d+2
2

)
+ 4

(
d−7
2

)
+ 6

(
d−10
2

)
, which gives the dimension of the spline

space for d ≤ 11 but exceeds it for d ≥ 12.
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Remark 4. The smallest values of s, t, r, and d where we see a non-zero contribution from
f(∆, d, r) in Theorem 6.1 are s = 2, t = 3, r = 5, and d = 9, where f(∆, 9, 5) = 1.

7. Concluding remarks and open problems. We close with a number of remarks on
connections to the literature and open problems.

Remark 5. It should be possible to use our techniques to analyze both additional ‘super-
smoothness’ across the totally interior edge (as Sorokina does in [32]) and varying smoothness
conditions across each edge (see also Remark 8).

Remark 6. We can apply the methods of this paper to determine dimCr
d(∆) whenever the

only non-trivial generators of H1(R•/J•) correspond to totally interior edges which do not
meet each other. In this case the dimension of H1(R•/J•)d would be obtained by simply
adding together the contributions from the different totally interior edges.

The recent counterexample to Schenck’s ‘2r + 1’ conjecture in [37, 26] is a triangula-
tion with two totally interior edges which meet at a vertex. Thus, contrary to our result
for triangulations with a single totally interior edge in Corollary 4.3, we might not have
dimCr

d(∆) = L(∆, d, r) for d ≥ 2r + 1 when ∆ is a triangulation with two totally interior
edges meeting at a vertex.

Remark 7. The well-known Morgan-Scott split ∆MS, for which dimCr
d(∆MS) depends on

the global geometry of ∆MS, has three totally interior edges which form a triangle. In [7],
Diener proves that all the spline spaces Cr

2r(∆MS) for r ≥ 1 have the same instability coming
from global geometry (see also [8] where Diener considers the instability of a wider class of
rectilinear partitions). In a remarkable preprint [35], Whiteley shows that the process of vertex
splitting applied to the Morgan-Scott split leads to infinitely many triangulations for which the
dimension of C1 quadratic splines depends on global geometry. Vertex splitting results in
a triangulation with additional triangles all of whose edges are totally interior edges. For
each r ≥ 2, there is a variation ∆r

MS of the Morgan-Scott split so that Cr
r+1(∆

r
MS) exhibits

dependence on global geometry [17]. Each of these has three totally interior edges forming
a triangle as well. Given that Theorem 6.1 implies that a triangulation with a single totally
interior edge depends only on local geometry, we pose Problem 1.

Problem 1. If no triangle of ∆ is surrounded by totally interior edges – equivalently, the
dual graph has no interior vertex – does the dimension of Cr

d(∆) depend only on local geometry
(that is, the number of slopes meeting at each interior vertex)?

Remark 8. If ∆ is a rectilinear partition, a mixed spline space on ∆, written Cα(∆), is one
where different orders of smoothness are imposed across different edges according to a function
α : ∆◦

1 → Z≥0. Generally speaking, decreasing the order of smoothness across certain edges
of a partition enriches the resulting spline space, while increasing the smoothness coarsens the
spline space.

In [9] it is shown that the (Castelnuovo-Mumford) regularity of the mixed spline space
Cα(∆) on a rectilinear partition ∆ can be bounded by the maximum regularity of the space of
mixed splines on the union of two adjacent polygonal cells of ∆ –that is, the star of an edge
–where vanishing is imposed (to the order prescribed by α) across all edges which the polygonal
cells do not have in common. It may be possible that the methods of this paper can be used
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to improve the regularity bounds derived in [9] for mixed splines on the star of an edge with
vanishing imposed across the boundary. Improving the regularity bound for splines on the star
of an edge with vanishing across the boundary will give a better bound on the degree d needed
for the formula dimCα

d (∆) to stabilize.

Remark 9. A generalized quasi-cross-cut partition (see [19]) is defined as follows. We call
a sequence of adjacent edges of ∆ a cross-cut if they all have the same slope and both endpoints
of the sequence touch the boundary of ∆. We call a sequence of adjacent edges of ∆ a quasi-
cross-cut if all edges have the same slope, one endpoint of the sequence touches the boundary,
and the other endpoint cannot be extended to include another adjacent edge of the same slope.
It is possible that a cross-cut or quasi-cross-cut consists of only a single edge – for instance,
any edge which is not totally interior is either a quasi-cross-cut or it can be extended to a quasi-
cross-cut. For a vertex γ ∈ ∆◦

0, we define Cγ to be the number of cross-cuts passing through
γ and Fγ to be the number of quasi-cross-cuts passing through γ. The rectilinear partition
∆ is a generalized quasi-cross-cut partition if Cγ + Fγ ≥ 2 for every γ ∈ ∆◦

0. Generalized
quasi-cross-cut partitions are studied by Manni in [19] and Shi, Wang, and Yin in [31].

If ∆ has a single totally interior edge, it is clearly a generalized quasi-cross-cut partition.
If ∆ has a single totally interior edge connecting vertices v1 and v2 with s+1 different slopes
meeting at v1 and t + 1 different slopes meeting at v2, it follows from [19, Theorem 2.2]
that dimCr

d(∆) = L(∆, d, r) for d ≥ r + 1 + 2d(r + 1)/(s − 1)e and from [31, Theorem 5]
that dimCr

d(∆) = L(∆, d, r) for d ≥ r + br/(s − 1)c + br/(t − 1)c. Theorem 4.2 shows an
improvement on both of these bounds. This leads us to pose Problem 2, inspired by the result
of Shi, Wang, and Yin and our Theorem 4.2.

Problem 2. If ∆ is a generalized quasi-cross-cut partition, define for each edge τ = {u, v} ∈
∆1 the quantity ξτ = (r + 1)/(Cu +Nu) + (r + 1)/(Cv +Nv). Let ξ∆ = max{ξτ : τ ∈ ∆◦

1}. Is
it true that dimCr

d(∆) = L(∆, d, r) for d > ξ∆ + r − 1?

If Problem 2 has a positive answer, it would imply that all generalized quasi-cross-cut
partitions satisfy Schenck’s ‘2r + 1’ conjecture (and the conjecture of Alfeld and Manni for
dimC1

3 (∆)). Notice that the only known counterexample to Schenck’s conjecture in [37, 26] is
not a generalized quasi-cross-cut partition since the central vertex has only a single cross-cut
passing through it, and no quasi-cross-cuts.
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