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Abstract

Crystal plasticity models that track strain gradients and associated geometrically necessary dislocations
(GNDs) typically determine the Nye tensor, mimicking the experimental approach. However, estimating
GND densities for each slip-system is then intrinsically ambiguous. This study seeks to build upon current
state of the art by quantifying GNDs at the slip-system level in the model using the local strain gradients.
The model is exercised by replicating experiments undertaken on AA6016, which are performed under
multi-step strain paths; both GND and SSD populations are quantified at various stages using both high
resolution EBSD (HREBSD) and XRD. A full 3D volume of the material is extracted using ion beam serial
sectioning to enable the creation of a high-fidelity model of the material.

The combined modeling and experimental campaigns conclude that: 1) Calculation of the GND content
at the slip level gives effectively equivalent GND evolution as the tradition Nye tensor method, but provides
the significant advantage of knowing unambiguously the contribution on each slip system. 2) The net
hardening predicted by the SGCP model is accurate, including prediction of a rapid increase in hardening
(and associated dislocation content) following strain path change; and 3) Comparisons of observed and
simulated GND populations reveal that buildup in the real sample is dominated by precipitate distribution
rather than by grain boundary (GB) networks; such precipitates are not present in the current model, hence

this result was not predicted.



1. Introduction

Hardening behavior during deformation of metals is generally strongly tied to dislocation
evolution. Early crystal plasticity (CP) models typically applied a phenomenological hardening
law, with no explicit dislocation quantification, but with isotropic hardening on a given slip system
being tied to the amount of slip that had occurred [1]. In order to account for observed nuances is
hardening behavior, evolution of dislocation populations began to be explicitly tracked by the
models, with dislocations further being categorized as forest or parallel dislocations, for example
[2]. The resistance to applied loads can be thought of as a local friction stress associated with
statistically stored dislocations (SSDs). However, such models do not account for kinematic
hardening, which plays a vital role during unloading, reverse loading and other strain path changes,
such as those experienced during automotive panel forming operations. Backstresses experienced
during such complex loading are generally associated with the long-range stress fields arising from
geometrically necessary dislocations (GNDs).

Nye, Kroner and others have shown how GNDs can be quantified from a knowledge of the
plastic strain gradients about a given point [3, 4]. Since strain fields are locally mapped by many
CP finite element codes, it is a relatively straightforward task to quantify GND content [2, 5, 6].
At one level of implementation these dislocations simply contribute to the overall friction type
flow stress [2]; a more complex implementation associates a backstress to the local GND
populations in the form of a microforce [6]. Generally the Nye tensor is determined using the curl
of the plastic strain field, and then densities on different slip systems can be estimated from an
under-constrained set of equations, leading to a non-unique mapping onto the individual systems

[7, 8].



This paper builds upon previous work with advances in both the modelling strategy, and in
terms of the experimental data obtained for guiding and validating the model. A Gurtin type strain
gradient CP (SGCP) model is implemented (based upon the theory presented in [9]), but with the
GND density calculated directly at the slip system level from the slip gradients; i.e. the full Nye
tensor, with resultant ambiguity in slip-level GND content, is not calculated. Backstress
development is not incorporated into this version of the model. It is confirmed that the calculated
GND content from the new approach is consistent with the Nye tensor approach. Furthermore,
both the GND content and the SSD content are experimentally determined at various points of a
2-stage deformation in AA6016 sheet using high resolution EBSD (HREBSD) and XRD. Multi-
strain path forming is undertaken by pre-straining aluminum alloy (AA) 6016-T4 samples under
biaxial tension followed by subsequent in-situ uniaxial tension. The experimental dataset captures
total dislocation and GND density, texture, sub-grain plastic strain, and macroscopic stress-strain
response at key points in the multi-strain deformations. A full 3D volume was constructed via
serial sectioning to characterize the GND distribution at various depths and the grain structure of
the final deformed material for accurate implementation of the model. Correlations between GND
distributions and microstructural features (such as grain size, precipitates and GBs) are analyzed,
along with the net Burgers vector fields for both the experimental and simulated material response.

The evolution of GNDs is discussed in many previous paper, including theory development
by Ashby [10] and experimental observations by Shen et al. [11]. Ashby explains the evolution of
GNDs near GB to maintain the strain accommodation due to differing deformation modes of the
neighboring grains. Shen observes GND pileups at the GB due to Frank-Reed sources and
peculiarities of the microstructure, such as slip incompatibility across the GB. However, various

studies have noted that in order to fully explain, and accurately predict, sub-grain strain and strain



gradients, it is insufficient to observe 2D characteristics and behavior from a surface scan of the
microstructure [12, 13] but the full 3D structure is required. A statistical volume element (SVE) is
needed that embodies the actual grain morphology and local texture in order for the SG-CPFE
model to have a hope of capturing the correct local deformation response. Several open-source
data analysis packages, such as Dream.3D, offer the capability of generating synthetic SVEs.
Synthetic SVEs tools generally generate 3D elements with grain orientation, shape and size
statistics that match the information from a 2D experimental map. Apart from the fact that the 2D
information may not be representative of the 3D morphology, important descriptors such as small
grains and edges, which influence the strain gradient development, are often neglected in the
simulated SVEs. As described by Hall and Petch, grain size plays a significant role in the
deformation response of polycrystalline metal alloys [14, 15]. The importance of grain size effects
on strain gradient crystal plasticity analysis is further echoed by several authors [16-18]. Hence,
the current study presents an effective and high-fidelity replacement of simulated SVEs with a
measured SVE for accurate modeling of multi-strain path forming. Combined EBSD and serial
sectioning via broad ion beam milling provides a relatively inexpensive approach to high-volume
data collection compared with synchrotron radiation measurements (for example).
2. Experimental procedure

The metal for this study was provided by Commonwealth Rolled Products. Aluminum
6016 alloy was processed and received in T4 aged condition. The composition of the AA6016-T4
is given in Table 1. The experiments in this study were guided by a previous study on AA6016-
T4 by Sharma et al. [19] (see that paper for illustrations of the Marciniak tooling setup and sheet

dimension). The virgin material had a grain size (determined by EBSD, describe later) of 32 um,

30 um, and 18 um, when measured on the surfaces perpendicular to the rolling, transverse and



normal directions, respectively. The sheet specimens were aligned along the rolling direction (RD)
and ASTM-ES8 uniaxial tension specimens were pulled at a 1.5 mm/min crosshead displacement
rate and the force-strain data was recorded using a load cell and extensometer. Specimens of as-
received sheet material were tested uniaxially to fracture for the calibration of hardening
parameters of the modeling campaign. Square specimens were deformed under biaxial tension
using an Interlaken Hydraulic press. The blanks were restrained using small lock beads in the
clamping system. Standard Marciniak tooling was employed, with a 100 mm diameter flat-topped
punch. A carrier blank between the sheet specimen and the punch was introduced to distribute
strain and avoid pre-mature localization. A total clamp load of 200 kN was applied and friction
between all the surfaces in contact (between the punch, carrier blank, and sheet specimen) was
minimized by a combination of mineral oil and 0.5 mm thick Teflon sheets. The normal direction
(ND) surface of the sheet specimens was patterned using a polymer-based black paint, speckled
over a layer of white paint, to measure surface strains. 2-D strain maps were obtained by employing
the DIC approach, using the Aramis system from Trillion Quality Systems [20]. The captured
series of deformation images were processed through Aramis software to produce surface strain

maps and ensure uniform biaxial deformation.

Table 1 Nominal chemical composition of AA6016-T4

Sample Al Si Mg Fe Mn Zn Cu Ti Cr

AA6016 96.4-988 1.0-1.5 0.25-06 0-05 0-02 0-02 0-02 0-0.15 0-0.1

After pre-straining under biaxial tension, scaled-down ASTM-ES tensile samples (gauge
length 15.8 mm, total length, with reduced length grips, of 31.6 mm) were extracted from the
central uniform-strain region of the sheet for subsequent in-situ uniaxial tension straining. These

are termed ‘pre-strained specimens’ in the current study. Waterjet-cut pre-strained specimens were



temporarily mounted (using polymeric bond) on the flat surface of round 9-inch diameter
aluminum pucks for metallographic sample processing. The ND surface of specimens was first
ground with grits of 400, 600, 800, 1200, and 1200 fine abrasive paper. The glue was then
dissolved in acetone to prepare the ground surface for electron-backscattered diffraction (EBSD)
data collection by electropolishing in an electrolyte solution of 1:9 ratio of perchloric acid and
methanol under 20 volts and 2 amps at room temperature for 30 seconds. The final result was a
slightly etched surface. While severe etching can result in a surface topography that negatively
affects EBSD results, the etch was mild, and the HREBSD results from the surface were consistent

with HREBSD performed at sub-surface layers that were exposed via ion beam serial sectioning.

Polished pre-strained specimens were subjected to subsequent uniaxial straining using an
in-situ stage. The surface strains were recorded by employing HRDIC. We note that for the
purposes of this paper, the HRDIC is being used merely as a digital extensometer; the value of the
HRDIC will be more apparent in future comparisons with model predictions. Strains were tracked
of an initial 250x250 sq. um region that was marked using a micro-indenter (Fig. 1a). A speckle
pattern was applied by loosely depositing copper particles onto the polished ND surface, following
a similar method to that pioneered by Carroll et al. [21] (few details are included in the published
paper, but were shared with the authors directly by Carroll), and using the same design of in-situ
stage. For depositing the pattern, the powder was passed through a series of filter paper layers with
a 10 pm pore size using compressed air to capture most of the big powder particles and avoid
concentration of the powder in clumps. A final pattern with a random distribution of particles
ranging from 0.3-0.2 um was obtained (Fig. 1b). High-resolution scanning electron microscope
(SEM) images were captured at approximately every 1.2% strain. The captured images were

processed through GOM Aramis software (Fig. 1c).
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Figure 1 HRDIC process to measure surface strains under in-situ uniaxial tension: a) the region of interest marked by
micro-indents, b) image of the copper powder pattern around the ROI, c) a map of strain in the x-direction from the

HRDIC software

After recording the surface strains via HRDIC, the deposited Cu powder pattern was
cleaned in an ultrasonic cleaner, first using acetone (for 10 mins), then methanol (for 10 mins) and
finally using ethanol (for 5 mins). As illustrated in Fig. 2, the sample was then subjected to serial
sectioning for 3D data collection, in an inert Argon gas environment of a JEOL ion-beam cross-
section polisher. The surface of the sample was milled at an angle of 85° from the horizontal (a
glancing angle of 5°) to produce a close-to-even surface finish (Fig. 2a). The broad ion beam has
a diameter of 3000 pm which covered the entire region of interest (ROI) well. The surface was

first coarsely milled at 5 kV and 4.2 atm for 20 mins which removed most of the material. A second



finer step removed unevenness by milling the surface at 4 kV and 6.2 atm for 10 mins. The milled
layer depth was calculated by measuring the profile of the indents using Zeta instruments’ 3D
optical profilometer (Fig. 2b). A line scan from the 3D optical measurement was then extracted to
plot and analyze the vertical depth of the indents. Minor aberrations in the measurements were
manually corrected by fitting a trend on the general profile of the indent to accurately project the
vertical depth (Fig. 2c). The process was repeated for all four indents in the ROI to measure an

average of 2.56 um milled layer after each (combined coarse and fine) milling step.
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Figure 2 Schematic depicting serial sectioning and milled layer measurements

The sample was milled up to a total depth of 87.04 um and sequential EBSD data was
collected from a 300x300 sq. um region after each milling step. The polished surfaces of the
samples were analyzed using EDAX OIM software (2010) to index the aluminum (FCC) phase. A

20 keV beam with an accelerating voltage and a spot size of 3.2 nano-amps was utilized, along



with a dwell time of 100 nanoseconds. The exposure was set to 8.10, with a gain of 500 and a step
size of 1 um for the EBSD camera. Additionally, 2x2 binning was employed for the Kikuchi
patterns to achieve a maximum frame rate of 115 s°!, thus optimizing the scan time.

The layers at 0 um, ~21.76 um, ~43.52 pum, ~65.28 pm, and ~87.04 um of the SVE were
processed for GND analysis and scanned using slightly different EBSD parameters. For these
scans, 1x1 binning was used to obtain high-quality Kikuchi patterns, allowing for post-scan High-
Resolution EBSD (HREBSD) processing with a maximum frame rate of 75 s'!. The collected
EBSD data was first processed through EDAX OIM software to crop out the indents and
surrounding deformation regions. These regions were eliminated from all subsequent analyses
because of modifications in the original microstructure due to strains induced in the sample surface
by the indents. A 190x190 sq. um layer along with accurate milled depth measurement was fed to
the open-source Dream.3D software to create a stack of layers. A user-specified Dream.3D
pipeline with a series of post-processing filters was used to create a 3D SVE of the EBSD-scanned
layers. The pipeline yielded a final SVE volume of dimensions 150x150x87.04 um (Fig. 3). It is
noted that the SVE is extracted from a deformed sample, and therefore does not accurately
represent the undeformed material. However, a single average orientation is assumed within each
grain of the modeled SVE, removing the strain gradients resulting from deformation, while not
necessarily correcting for texture evolution and grain fragmentation during deformation.
Producing an SVE via non-destructive methods for a sample of the size required for these
experiments is difficult, and not available to the authors; the method followed seems to be a

reasonable compromise.
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Figure 3 EBSD scan and Dream.3D SVE output (a) & mesh as inputted to ABAQUS (b). The dimensions for both
figures are 150x150x87.04 um.

During EBSD data collection, Kikuchi patterns were saved at various stages of forming
(unstrained — pre-strain — post subsequent in-situ strain) to map GND density. In this study, the
HR-EBSD technique was employed to calculate the GND density using OpenXY. Three different
areas of 90x90 sq. um with 3 pm step size, from each sample (unstrained, pre-strained, and
subsequent strained) were used to plot GND. The GND calculations are based on the dislocation

density tensor (@) introduced by Nye:

p~pllaly, a=7xp 0
where p is dislocation density, b is the Burgers vector size, B is the elastic distortion as measured
by HREBSD, and [|«|[; is the L; norm on a tensor (the sum of the absolute values of its
components). Total dislocation density was measured using x-ray analysis. The measured
diffracted x-ray peaks were processed through convolutional multiple whole profile (CMWP)
fitting open-source software developed at E6tvés Lorand University by Dr. Tamas Ungér and
collaborators [22, 23]. CMWP calculates total dislocation density (DD) by measuring the peak
broadening effect which indicates irregularities in a lattice. Other methods are available, such as

the method of moments [24], but it relies on the same physics; the results from both methods for
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total dislocation density have been seen to be in agreement. The measured total DD of 5.46e13
(from CMWP) and GND density of 4.83e13 (from HREBSD) for the virgin material indicates that
the statistically stored DD of 6.3e12 is reasonable. These values were used as input parameters to
the SG-CPFE model.

Precipitates were identified semiautomatically from EBSD maps. Contiguous regions of
low confidence index (as identified by the EBSD software) were assumed to be indicative of the
presence of a precipitate. Backscatter electron (BSE) images taken in the same region as the EBSD
maps were then used to confirm precipitate presence as indicated by regions of white in the maps
(Fig. 4). Pixels associated with precipitates are removed from the GND calculations by OpenXY,
and shown on the GND map as having zero GND (dark blue on the color scale). By comparing the
GND map (the right images in Fig. 4) with the BSE image on the left, one can see that precipitates
are correctly identified by this method. Note that the identification of precipitates is subject to the

EBSD map resolution; only precipitates that are bigger than the step size of 1 um are identified.
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Figure 4 Backscattered electron (BSE) micrograph (left) and corresponding HREBSD GND maps (right) of certain
section for unstrained AA6016-T4 sheet

3. SG-CPFE
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A single crystal elasto-viscoplastic crystal plasticity model is employed as a constitutive
law within the FEM to relate a pair of work-conjugated stress and strain measures at every
integration point of finite elements [1]. The formulation is briefly summarized below for
completeness and to appreciate the new strain gradient formulation. The total deformation gradient
tensor given by Abaqus, F, at each integration point is multiplicatively decomposed into an elastic

stretching and lattice rotation part, F*, and the plastic part, F?, embedding the crystallographic slip

deformation
F = F*F? @)
The stress-strain relations are

3)

T* = CE*
T* = F*Y{(detF*)c}F*T 4)

1
* *Top* _

E'=_{F"F -1} 5)

where C is the fourth rank elastic stiffness tensor based on crystal orientation and C;; =
108.2 GPa, €, = 61.3 GPa, and C,, = 28.5 GPa,, T* is the second Piola—Kirchhoff stress, E* is
the Green-Lagrangian strain tensors, and o is the Cauchy stress. The flow rule for F? is
FP = LPFP (6)
1P = Z YsbS @ ns (7)
where y$ is the shearing rate on a given slipssystem s, while bj, and n denote the slip system
direction and slip plane normal, respectively, in the total Lagrangian framework denoted by the

subscript ‘o’. The power-law is used for the shearing rate [25-27].
1

ve =75 ('ji')’” sign(r®) ®)

c

where, T° is the resolved shear stress driving force (° = T* - by @ nj) on the slip system s, 77 is

the resistance to slip, which will be described shortly, y; is a reference slip rate of 0.001 s’!, and

12



m is the strain rate sensitivity constant of 0.05. To complete the theory incorporating the texture
evolution, the crystal lattice spin, W™, is
W — WP _ W ©)
WP =27 - 1) (10)
where W?PP is the applied spin over the polycrystal and WP is the plastic spin. The numerical
implementation of the above theory is described in detail in [1].

The constitutive model summarized above implements a hardening law based on the
evolution of statistically stored dislocation density (SSD) for the evolution of slip resistance [28,
29]. This approach builds upon the work originally presented in [30]. The model is advanced here
to include GNDs. The densities of dislocations evolved originally solely based on a thermally
activated rate law with shearing on slip systems [31]. The slip resistance, t , for {111}(110) slip

systems s is calculated. The 7. is the sum of three contributions as follows [27, 32-35]

11

Tg:T0+T[S)D+Tsub ( )

Where 1, is a friction stress fitted to predict yield stress, and embeds the Peierls stress, barrier
effect due to grain size, and any content of initial dislocation density (SSD and GND). The term
does not evolve with plastic strain. The remaining two terms contribute to the evolution of slip

resistance owing to the build up of dislocation density (SSD and GND) and substructure/debris,

Tpp and T4y, respectively. These two terms evolve according to the Taylor-type relations [36-38].

T = xbH jz L% (035 + Pin) (12)
NU

1 13
Teup = 0.086ub./peuplog (b ) (13)

Psub
where simulated ), pZyp Will be compared against HREBSD measurements from the experiments,

Psup 18 the substructure/debris dislocation density, which evolves from a very small magnitude 0.1, b is

13



the Burgers vector, u is the shear modulus (26 GPa), y is a dislocation interaction factor [39]
taken to be 0.7, and L%’ is the latent hardening matrix [40].

The initial density of the unstrained SSD is set to 6.3e12/12 and GND to 4.83e13/12 per
slip system, s, consistent with the measurements on virgin material. SSD evolves based on the
balance between the rate of generation and the rate of removal of dislocations i.e. dynamic

recovery [38, 41, 42],

dpssp _ 0Pgen,ssp _ 0pP7em,ssp
ays oy ays (14)

= kq+/ Pssp — k2(&, T)pssp

with k, as a fitting coefficient for statistical trapping and k, as a rate-sensitive coefficient defined

by

E:X_b< LI ) (1)
ki, g Db3 " €,
In Eq. (3.15), k, &,, g, and D are a Boltzmann constant, a reference strain rate of 107 s’!,

an activation enthalpy, and drag stress, respectively. The last two constants are also fitting

constants. Finally, the rate of debris DD evolves using

Apsup = qb\[psupk, ZpésplAysl (16)
with g as a rate fitting coefficient. The coefficient detsermines a fraction of dislocations that lead
to debris formation, while the rest is assumed annihilated.

While the above-described dislocation density based crystal plasticity model can be
regarded as a standard formulation, the current model has been advanced to enable the calculation
of GNDs through a strain gradient formulation. Thus, while most of the models in the literature
take the curl of plastic distortion or deformation gradient directly [9], our formulation takes
gradients of slip rates. As such, there is significant novelty in the current approach, as the

computation of slip rate gradients enables the model to quantify GNDs per slip system. In the
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CPFE model, the displacement gradient is additively decomposed into elastic and plastic
contributions as: H = H® + HP, where HP is defined as the sum of shears (y*) over all active slip
systems, and HP? = ). y*b° ® n°. As shown by Nye [43], the density of GND dislocations can be
quantified by a second rank tensor, which is defined as the curl of the plastic distortion (curl H?)
as [44] G =V X HP = T (VyS xb*)®n® =b T (pSts ® b* + pSbS ®b*), where t° =n® x
bS. The quantities g and pg, are the weighted GND densities (directional derivatives of slip) and

are defined as: p} = —%V)/ $-b%, pg = %V)f $-t5, where  and © represent the edge and screw

components of the GND densities, respectively. The total GND density on slip system, s, is defined

as the magnitude: pgyp, = \/(p,f)z + (pé)z.
The total GND density on a slip system thus requires a calculation of Vy*. This vector is computed
through the non-local values of y* at selected integration points at and around a given material

point. The values of y® are used in the quadratic interpolation function. An equivalent to the

quadratic interpolation function is a linear version as

S S

1, x4, Y1, 21, X1Y15 Z1Y1s Z1X1, X1Y171 €1 |41 (17)
S

1, X2, Y2, Z2) X2¥2) Z2Y2, Z2X2, X2Y222 c2 _|r:
- -

1ﬂxn' Ynr Zno XnVns ZnYnr ZnXn, XnYnZn nx8 Ci 8x1 Yn

where there are n integration points and i terms in the polynomial used to approximate the spatial
distribution of y*. While we show the linear interpolation in Eq. (3.17) for simplicity, we used the
quadratic interpolation over 40 integration points to evaluate Vy*® at a given point embedded in
between the 40 points. The coefficients ¢; can then be used to define a y*(x, y, z) interpolation
function of which the gradient can be readily taken. Given Vy*, pZyp is evaluated and used in the

hardening law.
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4. Results and discussion

Figure 5 shows the hardening curve under uniaxial tension for specimens cut along the RD
and TD directions. As can be seen, there is only a modest difference in behavior. Synthetic grain
structures from Dream.3d were populated with orientations consistent with the texture measured
from the virgin material (see [45] for the texture), and model hardening parameters were fit (Table
2 and Table 3) to the experimental RD data, and then the TD curve was predicted. Table 3 contains
the latent hardening parameters that define L°%', the latent hardening matrix in Eq. 12 [40] which
is also known as the dislocation interaction matrix that defines the potential interactions of
dislocations with each other; a, is for self-interactions, a, for coplanar interactions, a, for colinear
interactions, a; for glissile junctions, a, for Hirth junctions, and a5 for Lomer Lock junctions. The

model correctly predicts the slight lowering in yield stress and subsequent hardening behavior.
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Figure 5 Uniaxial tension work hardening curves of AA 6016 T4 specimens

Table 2 Hardening parameters

To D
[MPa] 8 [MPa] ki q

40 0.1 60 1.08e7 2

Table 3 Latent hardening parameters established in [46, 47] for FCC metals

a0 al a2 a3 a4 ab

0.068 0.068 0.0454 0.625 0.137 0.122

The dislocation evolution (both GND from HREBSD and total density from XRD) due to
for biaxially pre-strained specimens, and subsequent uniaxial tension, are shown
in Fig. 6. The overall dislocation density of the material is a combination of SSDs and GNDs.
SSDs generally accumulate due to dislocation-dislocation interactions and mutual trapping in the
crystal lattice, while GNDs accumulate in the strain gradient fields required to satisfy the geometric
crystal lattice arrangement. The total DD follows an evolution given by ~%¢ up
to failure. In comparison, the growth in GND density is much slower, with trends that are almost

n to total DD. The consequence of these trends is that GNDs account for a higher
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percentage of the total DD early in the deformation, while the fraction of SSDs becomes
significantly larger at high strain which is apparent upon taking a ratio of GND and DD for biaxial

tension pre-strain, in agreement with Ashby’s observation (Ashby, 1970).

/ -
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Figure 6 GND development (blue lines and markers) and total dislocation density (red lines and markers). Dashed
lines are measured values (HREBSD for GND and XRD for total dislocation density (DD)), and solid lines are simulated
values. The final markers to the right of the curves are data for samples pre-strained to ~15% pre-strain, and then
pulled a further 5.9% under uniaxial tension.

The asterisk and open circle in Fig. 6 represent DD and GND densities (respectively) for
samples pulled under biaxial tension to approximately 15% strain, followed by 5.9% deformation
in uniaxial tension (which was pre-fracture). While the rates of both DD and GND density
accumulation are fairly steady with strain during biaxial deformation, a change in strain path
results in a much more rapid accumulation of both DD and GND density. One might assume that
the higher dislocation density following strain path change might lead to faster exhaustion of
ductility; however, the biaxial-to-uniaxial strain path reached 5% higher strain-to-failure than pure
uniaxial deformation (not shown on the figure). When combined with the significantly lower yield
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stresses observed after strain path changes (yield stress after 15% biaxial effective pre-strain is
~250 MPa, compared with ~300 MPa following the same amount of uniaxial pre-strain; Fig. 10 in
[19]), it appears that latent hardening on non-active systems during biaxial deformation is
significantly lower than self-hardening on the active slip systems. When the strain path changes,
flow stress on the newly activated systems is significantly lower than on the originally active
systems, and self-hardening on the newly active systems occurs rapidly, leading to a rapid increase
in DD. It is interesting that GND density also increases rapidly due to the strain path change (i.e.,
as well as DD), indicating a similar increase in strain gradients to accommodate potential strain
incompatibility on the new systems. In fact, motivation for incorporating strain gradients /
backstress in the SG-CPFE model relates to changes in yield stress and other stress-strain
characteristics following strain path changes, as discussed in a previous study of the same material
[19].

Also shown in Fig. 6 are the dislocation density values simulated by the SG-CPFE model.
Measured values were input as the initial values for the model, and the hardening parameters for
the model were calibrated using a single uniaxial tension test. From the figure it is clear that the
model predicts the shape of the total dislocation curve extremely well, with only a relatively small
underprediction. However, the contribution of GNDs to the total density is much higher in the
model than for the measured values, indicating that some tuning is required in the modeling
parameters. While CPFE models have tunable latent hardening and self-hardening parameters,
these are generally calibrated against the relatively small information contained in a uniaxial-
tension stress-strain curve (potentially including texture information, although latent hardening
has been found to have a small effect on texture evolution) [48]. The insights from this study

indicate the potential need for more detailed validation of the model SG-CPFE model, including
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not only several stress-strain curves relating to different strain paths, but also tuning of both DD
and GND accumulation rates.

In order to check that the new approach to calculating GND density at the slip system level
gave equivalent GND content to the more traditional Nye tensor approach, a simulated volume of
the material containing twelve grains was modeled using both approaches. The sample was
deformed in uniaxial tension, and the overall GND content was calculated via both methods.
Figure 7 demonstrates that both methods predict almost equal overall GND content. Generally,
there are only small differences (<5%) manifest at the grain level, apart from almost 60%
difference between the two approaches for grain 9 at the highest level of strain. The evolution of
GNDs is integrated into the DD hardening model via Eq. (12). The Nye tensor obtained from the
gradient of slip rates and the Nye tensor obtained from the widely used curl of the plastic distortion
or deformation gradient (curl FP) are nearly identical. An advantage of taking the gradient of slip
rates is that it allows for the direct calculation of GND density per slip system, whereas using the
curl of the plastic distortion yields the sum of GNDs over the slip systems. The sum is then

distributed across slip systems according to their relative activity levels at every integration point

Y—s, Both methodologies result in similar overall (sum over the slip systems)

1 S —_ sum
UsSIng penp = PGND 5
sty

GND density (Figure 7).
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Figure 7 Comparison of GND fields predicted for a 12 grains FE sample, based on (a) curl(FP) and (b) Vy*, after
tension is applied along the x-direction to an overall strain of 0.1. At the bottom of each figure are average GND

density per grain vs plastic strain for the 12 grains in each model.

Figure 8 shows the relationship between grain size and GND density in the biaxial-to-
uniaxial sample. The relationship between the two microstructure variables is weak — the p value
is 2.25%, indicating a statistically significant relationship, but the R? value is only 0.14. However,
it is interesting to note that the relationship is positive. Usually one would expect that smaller
grains have a higher GB area-to-volume ratio, resulting in high GND content, due to strain
gradients near GBs. This was observed in a recent large survey of grains in a Ta polycrystal [49];
the statistical relationship was also weak, but the trend was significantly negative - i.e. larger grains
generally had lower average GND content. This is an important point for the more detailed

discussion of GND distribution below.
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Figure 8 Correlation between grain size and average grain GND density

2 point statistics were employed to map the statistical geometrical relationships between
GBs and GNDs, with an approach similar to that take by Ruggles et al. in a study relating GND
content to specific phases in steel [50]. To determine an average geometrical relationship between
GND content and GBs at individual scanned pixels, the position of GB pixels was assigned a value
of 1, and other pixels were assigned a value of 0 in the image I;5. The resultant image was then

convolved with the map of GNDs (captured in the map, I;yp ), as shown in the following equation:

PN = F(F Ues))" - FUonn)]/Nes (18)
In the above equation, F represents the Fourier transform, and ()" represents the complex
conjugate of a term; Ngp is the number of points in the GB network. A similar approach is taken
for precipitates in the EBSD map. A precipitate was taken to be a connected region of 6 pixels or
more with a confidence index below 0.1, and which was not already identified as belonging to the
GB network. This identification process is justified further below by comparing SEM images with

EBSD maps.

Maps of the 2-point statistics from the experimental measurements are shown in Fig. 9a,b;
note that the GND values for both the plots is on a log scale. An example area showing the GND

buildup at individual precipitates is shown in Fig. 10, and discussed below. The origins of the plots
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in Fig. 9 denote the representative positions of GBs or precipitates; the value of GND density close
to the origin indicates the average GND concentration near to GBs or precipitates, depending upon
the map. In these maps taken from experimental data, the central point takes a value of zero
because GND values are set to zero along the GB lines and within precipitates. The statistics for
points near to the origin are also lowered based upon the size and shape of regions with zero GND
density. From the map for precipitates (Fig. 9b), where the regions of zero GND are larger than
those for GBs, this region is relatively small and does not affect the interpretation made below, as
long as it is acknowledged. Taking into account this small region about the origin, the GND
density is nevertheless reduced in the vicinity of GBs, while increasing around precipitates. There
is ~21% higher average GND density within 10 pm of precipitates (Fig. 9b) compared to the
density near GBs (Fig. 9a); there is a ~14.6% decrease in the GND density around the GBs
compared to the average GND density. Sperry et al. observed strong strain gradients at all GBs in
FCC Ni-superalloy, along with local orientation gradients associated with increased GND density
[51]. Similarly, Hansen et al. observed significant GND accumulation at GBs and triple junctions
in BCC Ta [49]. Hence, the lack of accumulation of GNDs at GBs in the Al sheet deformed in this
study is an unexpected finding but helps to explain the surprising positive correlation between
grain size and GND content (Fig. 8); i.e., this relates to the fact that GBs are not a primary cause
of GND accumulation.

Figure 9 also compares the 2-pt. statistics trends in the GND development around the GBs
as measured and as predicted for ~21.76 milled depth layer in a biaxially pre-strained specimen
subjected to 5.86% subsequent uniaxial strain. Figure 9c applies the identical 2-point analysis to
GNDs and GBs in the simulated deformed sample for comparison with the experimental data

shown in Fig. 9a; note that there are no precipitates explicitly assumed in the simulation for
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comparison with Fig. 9b. The simulation incorrectly predicts a strong correlation between GNDs
and GBs. Such a correlation would typically be expected in many materials (as discussed above).
The results demonstrate that precipitates would need to be added to the model to better capture

trends in GND evolution.
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Figure 9 2-point statistics maps of biaxial-to-uniaxial GNDs vs GBs at ~21.76 um milled depth (a) and precipitates (b).
The same map is shown for simulated GNDs and GBs (c); the simulation does not include precipitates to compare
with the measured precipitate statistics. The origin in each map represents the position of GBs or precipitates in each
case. Note that the color scale is logarithmic

GND structures in the vicinity of precipitates, shown in a typical region in Fig. 10, might
be explained by the precipitates acting as barriers to dislocation glide, resulting in pileups. Also,
as observed by Orowan, incoherency between precipitates and the matrix causes dislocation
entanglement which upon further straining nucleates and increases dislocation density [52]. Many

examples of GND accumulation at precipitates can be seen, along with shear bands that often pass
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through strings of precipitates. These observations are vital for guiding the development of the
SG-CPFE model, in order for it to reflect the correct roles of GBs and precipitates in the evolution
of GNDs and associated backstress. Currently, the model does not include precipitates; the
experimental observation indicates that these will need to be included in order to reflect an

important source of strain gradients and internal stress in AA6016-T4.

16

GND (10%* m™2)

135

125
Figure 10 HREBSD map of the biaxial pre-strained specimen subjected to a subsequent uniaxial tension.

The direction of slip associated with local strain gradients, and associated GND
accumulations, can be visualized by plotting the net Burgers vector (NBV) for both the
experimental and simulated GND fields. In the case of the experimental data arising from
HREBSD, the Nye tensor encapsulates all information regarding GNDs that is available from the
surface measurements taken during an EBSD scan. While there are likely to be many dislocation
types present in a given pixel on the EBSD map, the Nye tensor can be thought of as being

associated with a single aggregated dislocation, and its related NBV. John Wheeler et al. proposed
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that the direction of this Burgers vector could be determined from the right-hand column of the
Nye tensor, for which all components are completely defined by the surface measurements taken
by HREBSD [53]. This vector was termed the weighted Burgers vector (WBV). More recently,
Ruggles et al. suggested a more accurate estimate of the NBV could be achieved by incorporating
other measured components of the Nye tensor (rather than simply the third column) [54]. The
improved estimate of the NBV, determined for each pixel in the HREBSD map, is the approach
taken in the current study.

Figures 11 (a) vs (b) compare the GND and NBV maps at the surface and ~21.76 um deep
into the SVE, correspondingly, for the simulated and experimental samples (left and right,
respectively). While full 3D slip information is available for the simulated GND fields, only the
same components of the Nye tensor that are available from the experimental data are used to
calculate the NBYV, in order to make the comparison fair. The simulated maps show that the SG-
CPFE model predicts development of strain gradient fields at the grain boundaries, and associated
GNDs, while the experimental data indicates higher GND density in the regions of precipitates.
The experimental observations of NBVs general alignment in <I110> direction within shear bands
generally lines up with the predictions from the SG-CPFE model. However, the experimental
observation indicates a much wider range of active slip systems, when compared with the
simulation (Fig. 11 a). This may be due to precipitates blocking directions with higher Schmid
Factors and requiring dislocations to take alternative routes. As mentioned, precipitates are
currently not included in the SG-CPFE model. Nevertheless, the model predicts the correct order

of magnitude of GNDs.
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Figure 11 Comparisons between the WBVs plotted for the experimentally calculated HREBSD-GNDs (right) against
the SG-EVPSC mode (left)! calculated GNDs. (a) compares GNDs from the surface layer, and (b) compare GNDs at
~21.76 um milled depth into biaxial pre-strain specimen with 5.86% subsequent uniaxial strain. The larger images
are all 150 um square. The load is applied in the x-direction (left to right).

5. Conclusions
AA6016-T4 specimens pre-strained under biaxial tension were subsequently deformed under
uniaxial tension. A combination of HREBSD, XRD/CMWP, and HRDIC revealed the nature of

the formation of GNDs, total DD, and strain gradients across the deformed samples. An SG-CPFE
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model was developed for multi-strain path forming, with microstructure reflecting an

experimentally collected 3D SVE of a deformed specimen. The following observations were made:

Y

2)

3)

4)

5)

Comparison between simulation and experimental data indicates a successful 3D
implementation of Gurtin’s gradient theory, with slip-level determination of GND content,
for strain path changes in AA6016-T4. Calculation of the GND content at the slip level gives
effectively equivalent GND evolution as the tradition Nye tensor method, but provides the
significant advantage of knowing unambiguously the contribution on each slip system.

The model correctly predicts the shape of the dislocation vs strain curve, and also
accurately predicts the rapid accumulation of dislocations following a strain path change;
it does, however, over-predict the ratio of GND-to-total dislocation densities, potentially
due to error in the initial assumed ratio.

A detailed 2-point statistics and BSE micrograph analysis revealed that GND development
in AA6016-T4 was dominated by precipitates, and GBs did not appear to have an important
role in the evolution of strain gradient fields for biaxial tension pre-strained specimens. In
the absence of precipitates in the current implementation, the SG-CPFE model predicted
that GNDs would mainly accumulate at GBs, highlighting the need for inclusion of
precipitates in the model. The net Burgers vector predictions from the model were in
general alignment with observed NBVs.

Total DD and GND followed a £%¢ curve with GND trends almost lying flat which was
similar for all three pre-strain cases. Therefore, an increase in total DD for later applied
strains must be associated with SSD increase which is in agreement with Ashby’s theory
(Ashby 1970).

A strain path change demonstrated a significant increase in dislocation activity in

comparison to single strain path deformation for a final 20% effective strain. However,
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6)

biaxial-to-uniaxial samples had lower yield stresses and 5% and 2% higher strain-to-
failure, respectively, in comparison to uniaxial tension; i.e. the higher dislocation content
did not result in lower ductility. The observations indicate the significantly lower level of
latent hardening of other slip systems, compared to self-hardening on the active slip
systems, during the initial pre-strain. Subsequent strain path change leads to relatively
easier slip and lower yield stresses in comparison to uniaxial-to-uniaxial deformation, but
rapid accumulation of dislocation density on the newly active systems — for both total and
GND densities.

Maps of the NBV, indicating the net local direction of slip, showed similar trends for both
the experimental and simulated data, with a wide range of scatter in directionality.
Qualitative inspection of experimental NBV maps revealed slip to be better aligned in

<110> directions in regions of high strain gradient fields, but more random in other areas.
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