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Abstract  

Crystal plasticity models that track strain gradients and associated geometrically necessary dislocations 

(GNDs) typically determine the Nye tensor, mimicking the experimental approach. However, estimating 

GND densities for each slip-system is then intrinsically ambiguous. This study seeks to build upon current 

state of the art by quantifying GNDs at the slip-system level in the model using the local strain gradients. 

The model is exercised by replicating experiments undertaken on AA6016, which are performed under 

multi-step strain paths; both GND and SSD populations are quantified at various stages using both high 

resolution EBSD (HREBSD) and XRD. A full 3D volume of the material is extracted using ion beam serial 

sectioning to enable the creation of a high-fidelity model of the material. 

The combined modeling and experimental campaigns conclude that: 1) Calculation of the GND content 

at the slip level gives effectively equivalent GND evolution as the tradition Nye tensor method, but provides 

the significant advantage of knowing unambiguously the contribution on each slip system. 2) The net 

hardening predicted by the SGCP model is accurate, including prediction of a rapid increase in hardening 

(and associated dislocation content) following strain path change; and 3) Comparisons of observed and 

simulated GND populations reveal that buildup in the real sample is dominated by precipitate distribution 

rather than by grain boundary (GB) networks; such precipitates are not present in the current model, hence 

this result was not predicted.  
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1. Introduction 

Hardening behavior during deformation of metals is generally strongly tied to dislocation 

evolution. Early crystal plasticity (CP) models typically applied a phenomenological hardening 

law, with no explicit dislocation quantification, but with isotropic hardening on a given slip system 

being tied to the amount of slip that had occurred [1]. In order to account for observed nuances is 

hardening behavior, evolution of dislocation populations began to be explicitly tracked by the 

models, with dislocations further being categorized as forest or parallel dislocations, for example 

[2]. The resistance to applied loads can be thought of as a local friction stress associated with 

statistically stored dislocations (SSDs). However, such models do not account for kinematic 

hardening, which plays a vital role during unloading, reverse loading and other strain path changes, 

such as those experienced during automotive panel forming operations. Backstresses experienced 

during such complex loading are generally associated with the long-range stress fields arising from 

geometrically necessary dislocations (GNDs). 

Nye, Kroner and others have shown how GNDs can be quantified from a knowledge of the 

plastic strain gradients about a given point [3, 4]. Since strain fields are locally mapped by many 

CP finite element codes, it is a relatively straightforward task to quantify GND content [2, 5, 6]. 

At one level of implementation these dislocations simply contribute to the overall friction type 

flow stress [2]; a more complex implementation associates a backstress to the local GND 

populations in the form of a microforce [6]. Generally the Nye tensor is determined using the curl 

of the plastic strain field, and then densities on different slip systems can be estimated from an 

under-constrained set of equations, leading to a non-unique mapping onto the individual systems 

[7, 8]. 
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This paper builds upon previous work with advances in both the modelling strategy, and in 

terms of the experimental data obtained for guiding and validating the model. A Gurtin type strain 

gradient CP (SGCP) model is implemented (based upon the theory presented in [9]), but with the 

GND density calculated directly at the slip system level from the slip gradients; i.e. the full Nye 

tensor, with resultant ambiguity in slip-level GND content, is not calculated. Backstress 

development is not incorporated into this version of the model. It is confirmed that the calculated 

GND content from the new approach is consistent with the Nye tensor approach. Furthermore, 

both the GND content and the SSD content are experimentally determined at various points of a 

2-stage deformation in AA6016 sheet using high resolution EBSD (HREBSD) and XRD. Multi-

strain path forming is undertaken by pre-straining aluminum alloy (AA) 6016-T4 samples under 

biaxial tension followed by subsequent in-situ uniaxial tension. The experimental dataset captures 

total dislocation and GND density, texture, sub-grain plastic strain, and macroscopic stress-strain 

response at key points in the multi-strain deformations. A full 3D volume was constructed via 

serial sectioning to characterize the GND distribution at various depths and the grain structure of 

the final deformed material for accurate implementation of the model. Correlations between GND 

distributions and microstructural features (such as grain size, precipitates and GBs) are analyzed, 

along with the net Burgers vector fields for both the experimental and simulated material response. 

The evolution of GNDs is discussed in many previous paper, including theory development 

by Ashby [10] and experimental observations by Shen et al. [11]. Ashby explains the evolution of 

GNDs near GB to maintain the strain accommodation due to differing deformation modes of the 

neighboring grains. Shen observes GND pileups at the GB due to Frank-Reed sources and 

peculiarities of the microstructure, such as slip incompatibility across the GB. However, various 

studies have noted that in order to fully explain, and accurately predict, sub-grain strain and strain 
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gradients, it is insufficient to observe 2D characteristics and behavior from a surface scan of the 

microstructure [12, 13] but the full 3D structure is required. A statistical volume element (SVE) is 

needed that embodies the actual grain morphology and local texture in order for the SG-CPFE 

model to have a hope of capturing the correct local deformation response. Several open-source 

data analysis packages, such as Dream.3D, offer the capability of generating synthetic SVEs. 

Synthetic SVEs tools generally generate 3D elements with grain orientation, shape and size 

statistics that match the information from a 2D experimental map. Apart from the fact that the 2D 

information may not be representative of the 3D morphology, important descriptors such as small 

grains and edges, which influence the strain gradient development, are often neglected in the 

simulated SVEs. As described by Hall and Petch, grain size plays a significant role in the 

deformation response of polycrystalline metal alloys [14, 15]. The importance of grain size effects 

on strain gradient crystal plasticity analysis is further echoed by several authors [16-18]. Hence, 

the current study presents an effective and high-fidelity replacement of simulated SVEs with a 

measured SVE for accurate modeling of multi-strain path forming. Combined EBSD and serial 

sectioning via broad ion beam milling provides a relatively inexpensive approach to high-volume 

data collection compared with synchrotron radiation measurements (for example). 

2. Experimental procedure 

The metal for this study was provided by Commonwealth Rolled Products. Aluminum 

6016 alloy was processed and received in T4 aged condition. The composition of the AA6016-T4 

is given in Table 1. The experiments in this study were guided by a previous study on AA6016-

T4 by Sharma et al. [19] (see that paper for illustrations of the Marciniak tooling setup and sheet 

dimension). The virgin material had a grain size (determined by EBSD, describe later) of 32 µm, 

30 µm, and 18 µm, when measured on the surfaces perpendicular to the rolling, transverse and 
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normal directions, respectively.  The sheet specimens were aligned along the rolling direction (RD) 

and ASTM-E8 uniaxial tension specimens were pulled at a 1.5 mm/min crosshead displacement 

rate and the force-strain data was recorded using a load cell and extensometer. Specimens of as-

received sheet material were tested uniaxially to fracture for the calibration of hardening 

parameters of the modeling campaign. Square specimens were deformed under biaxial tension 

using an Interlaken Hydraulic press. The blanks were restrained using small lock beads in the 

clamping system. Standard Marciniak tooling was employed, with a 100 mm diameter flat-topped 

punch. A carrier blank between the sheet specimen and the punch was introduced to distribute 

strain and avoid pre-mature localization. A total clamp load of 200 kN was applied and friction 

between all the surfaces in contact (between the punch, carrier blank, and sheet specimen) was 

minimized by a combination of mineral oil and 0.5 mm thick Teflon sheets. The normal direction 

(ND) surface of the sheet specimens was patterned using a polymer-based black paint, speckled 

over a layer of white paint, to measure surface strains. 2-D strain maps were obtained by employing 

the DIC approach, using the Aramis system from Trillion Quality Systems [20]. The captured 

series of deformation images were processed through Aramis software to produce surface strain 

maps and ensure uniform biaxial deformation. 

Table 1 Nominal chemical composition of AA6016-T4 

Sample Al Si Mg Fe Mn Zn Cu Ti Cr 

AA6016 96.4-98.8 1.0-1.5 0.25-0.6 0-0.5 0-0.2 0-0.2 0-0.2 0-0.15 0-0.1 
 

After pre-straining under biaxial tension, scaled-down ASTM-E8 tensile samples (gauge 

length 15.8 mm, total length, with reduced length grips, of 31.6 mm) were extracted from the 

central uniform-strain region of the sheet for subsequent in-situ uniaxial tension straining. These 

are termed ‘pre-strained specimens’ in the current study. Waterjet-cut pre-strained specimens were 
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temporarily mounted (using polymeric bond) on the flat surface of round 9-inch diameter 

aluminum pucks for metallographic sample processing. The ND surface of specimens was first 

ground with grits of 400, 600, 800, 1200, and 1200 fine abrasive paper. The glue was then 

dissolved in acetone to prepare the ground surface for electron-backscattered diffraction (EBSD) 

data collection by electropolishing in an electrolyte solution of 1:9 ratio of perchloric acid and 

methanol under 20 volts and 2 amps at room temperature for 30 seconds. The final result was a 

slightly etched surface. While severe etching can result in a surface topography that negatively 

affects EBSD results, the etch was mild, and the HREBSD results from the surface were consistent 

with HREBSD performed at sub-surface layers that were exposed via ion beam serial sectioning. 

Polished pre-strained specimens were subjected to subsequent uniaxial straining using an 

in-situ stage. The surface strains were recorded by employing HRDIC. We note that for the 

purposes of this paper, the HRDIC is being used merely as a digital extensometer; the value of the 

HRDIC will be more apparent in future comparisons with model predictions. Strains were tracked 

of an initial 250x250 sq. μm region that was marked using a micro-indenter (Fig. 1a). A speckle 

pattern was applied by loosely depositing copper particles onto the polished ND surface, following 

a similar method to that pioneered by Carroll et al. [21] (few details are included in the published 

paper, but were shared with the authors directly by Carroll), and using the same design of in-situ 

stage. For depositing the pattern, the powder was passed through a series of filter paper layers with 

a 10 µm pore size using compressed air to capture most of the big powder particles and avoid 

concentration of the powder in clumps. A final pattern with a random distribution of particles 

ranging from 0.3-0.2 µm was obtained (Fig. 1b). High-resolution scanning electron microscope 

(SEM) images were captured at approximately every 1.2% strain. The captured images were 

processed through GOM Aramis software (Fig. 1c). 
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Micro-indents 

(a) 

  
SEM image of the DIC pattern Surface strain map 

(b) (c) 
Figure 1 HRDIC process to measure surface strains under in-situ uniaxial tension: a) the region of interest marked by 
micro-indents, b) image of the copper powder pattern around the ROI, c) a map of strain in the x-direction from the 

HRDIC software 

After recording the surface strains via HRDIC, the deposited Cu powder pattern was 

cleaned in an ultrasonic cleaner, first using acetone (for 10 mins), then methanol (for 10 mins) and 

finally using ethanol (for 5 mins). As illustrated in Fig. 2, the sample was then subjected to serial 

sectioning for 3D data collection, in an inert Argon gas environment of a JEOL ion-beam cross-

section polisher. The surface of the sample was milled at an angle of 85° from the horizontal (a 

glancing angle of 5°) to produce a close-to-even surface finish (Fig. 2a). The broad ion beam has 

a diameter of 3000 µm which covered the entire region of interest (ROI) well. The surface was 

first coarsely milled at 5 kV and 4.2 atm for 20 mins which removed most of the material. A second 
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finer step removed unevenness by milling the surface at 4 kV and 6.2 atm for 10 mins. The milled 

layer depth was calculated by measuring the profile of the indents using Zeta instruments’ 3D 

optical profilometer (Fig. 2b). A line scan from the 3D optical measurement was then extracted to 

plot and analyze the vertical depth of the indents. Minor aberrations in the measurements were 

manually corrected by fitting a trend on the general profile of the indent to accurately project the 

vertical depth (Fig. 2c). The process was repeated for all four indents in the ROI to measure an 

average of 2.56 µm milled layer after each (combined coarse and fine) milling step. 

 
 

(a) (b) 

 
(c) 

Figure 2 Schematic depicting serial sectioning and milled layer measurements 

The sample was milled up to a total depth of 87.04 µm and sequential EBSD data was 

collected from a 300x300 sq. µm region after each milling step.  The polished surfaces of the 

samples were analyzed using EDAX OIM software (2010) to index the aluminum (FCC) phase. A 

20 keV beam with an accelerating voltage and a spot size of 3.2 nano-amps was utilized, along 
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with a dwell time of 100 nanoseconds. The exposure was set to 8.10, with a gain of 500 and a step 

size of 1 µm for the EBSD camera. Additionally, 2x2 binning was employed for the Kikuchi 

patterns to achieve a maximum frame rate of 115 s-1, thus optimizing the scan time. 

The layers at 0 µm, ~21.76 µm, ~43.52 µm, ~65.28 µm, and ~87.04 µm of the SVE were 

processed for GND analysis and scanned using slightly different EBSD parameters. For these 

scans, 1x1 binning was used to obtain high-quality Kikuchi patterns, allowing for post-scan High-

Resolution EBSD (HREBSD) processing with a maximum frame rate of 75 s-1. The collected 

EBSD data was first processed through EDAX OIM software to crop out the indents and 

surrounding deformation regions. These regions were eliminated from all subsequent analyses 

because of modifications in the original microstructure due to strains induced in the sample surface 

by the indents. A 190x190 sq. µm layer along with accurate milled depth measurement was fed to 

the open-source Dream.3D software to create a stack of layers. A user-specified Dream.3D 

pipeline with a series of post-processing filters was used to create a 3D SVE of the EBSD-scanned 

layers. The pipeline yielded a final SVE volume of dimensions 150x150x87.04 µm (Fig. 3). It is 

noted that the SVE is extracted from a deformed sample, and therefore does not accurately 

represent the undeformed material. However, a single average orientation is assumed within each 

grain of the modeled SVE, removing the strain gradients resulting from deformation, while not 

necessarily correcting for texture evolution and grain fragmentation during deformation. 

Producing an SVE via non-destructive methods for a sample of the size required for these 

experiments is difficult, and not available to the authors; the method followed seems to be a 

reasonable compromise. 
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Figure 3 EBSD scan and Dream.3D SVE output (a) & mesh as inputted to ABAQUS (b). The dimensions for both 
figures are 150x150x87.04 µm. 

During EBSD data collection, Kikuchi patterns were saved at various stages of forming 

(unstrained → pre-strain → post subsequent in-situ strain) to map GND density. In this study, the 

HR-EBSD technique was employed to calculate the GND density using OpenXY. Three different 

areas of 90x90 sq. µm with 3 µm step size, from each sample (unstrained, pre-strained, and 

subsequent strained) were used to plot GND. The GND calculations are based on the dislocation 

density tensor (α) introduced by Nye:  

 𝜌 ≈
1
𝑏 ‖𝛂‖!	, 𝛂 = 𝛻 × 𝛃 (1) 

where ρ is dislocation density, b is the Burgers vector size, 𝛃 is the elastic distortion as measured 

by HREBSD, and ‖𝛂‖! is the 𝐿! norm on a tensor (the sum of the absolute values of its 

components). Total dislocation density was measured using x-ray analysis. The measured 

diffracted x-ray peaks were processed through convolutional multiple whole profile (CMWP) 

fitting open-source software developed at Eötvös Loránd University by Dr. Tamás Ungár and 

collaborators [22, 23]. CMWP calculates total dislocation density (DD) by measuring the peak 

broadening effect which indicates irregularities in a lattice. Other methods are available, such as 

the method of moments [24], but it relies on the same physics; the results from both methods for 
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total dislocation density have been seen to be in agreement. The measured total DD of 5.46e13 

(from CMWP) and GND density of 4.83e13 (from HREBSD) for the virgin material indicates that 

the statistically stored DD of 6.3e12 is reasonable. These values were used as input parameters to 

the SG-CPFE model.  

Precipitates were identified semiautomatically from EBSD maps. Contiguous regions of 

low confidence index (as identified by the EBSD software) were assumed to be indicative of the 

presence of a precipitate. Backscatter electron (BSE) images taken in the same region as the EBSD 

maps were then used to confirm precipitate presence as indicated by regions of white in the maps 

(Fig. 4). Pixels associated with precipitates are removed from the GND calculations by OpenXY, 

and shown on the GND map as having zero GND (dark blue on the color scale). By comparing the 

GND map (the right images in Fig. 4) with the BSE image on the left, one can see that precipitates 

are correctly identified by this method. Note that the identification of precipitates is subject to the 

EBSD map resolution; only precipitates that are bigger than the step size of 1 μm are identified. 

 

Figure 4 Backscattered electron (BSE) micrograph (left) and corresponding HREBSD GND maps (right) of certain 
section for unstrained AA6016-T4 sheet 

3. SG-CPFE 
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A single crystal elasto-viscoplastic crystal plasticity model is employed as a constitutive 

law within the FEM to relate a pair of work-conjugated stress and strain measures at every 

integration point of finite elements [1]. The formulation is briefly summarized below for 

completeness and to appreciate the new strain gradient formulation. The total deformation gradient 

tensor given by Abaqus, 𝐅, at each integration point is multiplicatively decomposed into an elastic 

stretching and lattice rotation part, 𝐅∗, and the plastic part, 𝐅#, embedding the crystallographic slip 

deformation  

 𝐅 = 𝐅∗𝐅# (2) 

The stress-strain relations are 

 
𝐓∗ = 𝐂𝐄∗ 

			𝐓∗ = 𝐅∗$!{(𝑑𝑒𝑡𝐅∗)𝛔}𝐅∗$% 

𝐄∗ =
1
2
{𝐅∗%𝐅∗ − 𝐈} 

(3) 

(4) 

(5) 

where 𝐂 is the fourth rank elastic stiffness tensor based on crystal orientation and 𝐶!! =

108.2	GPa, 𝐶!& = 61.3	GPa, and 𝐶'' = 28.5	GPa,, 𝐓∗ is the second Piola–Kirchhoff stress, 𝐄∗ is 

the Green-Lagrangian strain tensors, and 𝛔 is the Cauchy stress. The flow rule for 𝐅# is 

 
𝐅̇# = 𝐋#𝐅# 

𝐋# =I𝛾 (̇𝐛)( ⊗𝐧)(
(

 

(6) 

(7) 

where 𝛾 (̇ is the shearing rate on a given slip system 𝑠, while 𝐛)( , and 𝐧)(  denote the slip system 

direction and slip plane normal, respectively, in the total Lagrangian framework denoted by the 

subscript ‘𝑜’. The power-law is used for the shearing rate [25-27]. 

 
𝛾̇( = 𝛾̇*( P

|𝜏(|
𝜏+(
S

!
,
𝑠𝑖𝑔𝑛(𝜏() (8) 

where, 𝜏( is the resolved shear stress driving force (𝜏( = 𝐓∗ ∙ 𝐛)( ⊗𝐧)( ) on the slip system 𝑠, 𝜏+( is 

the resistance to slip, which will be described shortly, 𝛾̇*( is a reference slip rate of 0.001 s-1, and 
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m is the strain rate sensitivity constant of 0.05. To complete the theory incorporating the texture 

evolution, the crystal lattice spin, 𝐖∗, is 

 𝐖∗ = 𝐖-## −𝐖# 

𝐖# =
1
2
(𝐋# − 𝐋#%) 

(9) 

(10) 

where 𝐖-## is the applied spin over the polycrystal and 𝐖# is the plastic spin. The numerical 

implementation of the above theory is described in detail in [1]. 

The constitutive model summarized above implements a hardening law based on the 

evolution of statistically stored dislocation density (SSD) for the evolution of slip resistance [28, 

29]. This approach builds upon the work originally presented in [30]. The model is advanced here 

to include GNDs. The densities of dislocations evolved originally solely based on a thermally 

activated rate law with shearing on slip systems [31]. The slip resistance, 𝜏+(	, for {111}〈110〉 slip 

systems s is calculated. The 𝜏+ is the sum of three contributions as follows [27, 32-35] 

 𝜏+( = 𝜏* + 𝜏..( + 𝜏(/0 
(11) 

Where 𝜏* is a friction stress fitted to predict yield stress, and embeds the Peierls stress, barrier 

effect due to grain size, and any content of initial dislocation density (SSD and GND). The term 

does not evolve with plastic strain. The remaining two terms contribute to the evolution of slip 

resistance owing to the build up of dislocation density (SSD and GND) and substructure/debris, 

𝜏..(  and 𝜏(/0, respectively. These two terms evolve according to the Taylor-type relations [36-38]. 

 
𝜏..( = 𝜒𝑏𝜇^I𝐿((1

(1

(𝜌22.(1 + 𝜌34.(1 ) 

𝜏(/0 = 0.086𝜇𝑏_𝜌(/0𝑙𝑜𝑔 P
1

𝑏_𝜌(/0
S 

(12) 

(13) 

where simulated ∑ 𝜌34.( 	( will be compared against HREBSD measurements from the experiments, 

𝜌!"# is the substructure/debris dislocation density, which evolves from a very small magnitude 0.1, 𝑏 is 
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the Burgers vector, 𝜇 is the shear modulus (26	𝐺𝑃𝑎), 𝜒 is a dislocation interaction factor [39] 

taken to be 0.7, and 𝐿((1 is the latent hardening matrix [40].  

The initial density of the unstrained SSD is set to 6.3e12/12 and GND to 4.83e13/12 per 

slip system, s, consistent with the measurements on virgin material. SSD evolves based on the 

balance between the rate of generation and the rate of removal of dislocations i.e. dynamic 

recovery [38, 41, 42], 

 
𝜕𝜌22.(

𝜕𝛾( =
𝜕𝜌567,22.(

𝜕𝛾( −
𝜕𝜌96,,22.(

𝜕𝛾(

= 𝑘!_𝜌22.( − 𝑘&(𝜀̇, 𝑇)𝜌22.(  

(14) 

with 𝑘! as a fitting coefficient for statistical trapping and 𝑘& as a rate-sensitive coefficient defined 

by 

 𝑘&
𝑘!
=
𝜒𝑏
𝑔 i1 −

𝑘𝑇
𝐷𝑏: 𝑙𝑛	(

𝜀̇
𝜀)̇
)k (15) 

In Eq. (3.15), 𝑘, 𝜀)̇, 𝑔, and 𝐷 are a Boltzmann constant, a reference strain rate of 107 s-1, 

an activation enthalpy, and drag stress, respectively. The last two constants are also fitting 

constants. Finally, the rate of debris DD evolves using 

 𝛥𝜌(/0 = 𝑞𝑏_𝜌(/0𝑘&I𝜌22.( |∆𝛾(|
(

 (16) 

with 𝑞 as a rate fitting coefficient.  The coefficient determines a fraction of dislocations that lead 

to debris formation, while the rest is assumed annihilated.  

While the above-described dislocation density based crystal plasticity model can be 

regarded as a standard formulation, the current model has been advanced to enable the calculation 

of GNDs through a strain gradient formulation. Thus, while most of the models in the literature 

take the curl of plastic distortion or deformation gradient directly [9], our formulation takes 

gradients of slip rates. As such, there is significant novelty in the current approach, as the 

computation of slip rate gradients enables the model to quantify GNDs per slip system. In the 
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CPFE model, the displacement gradient is additively decomposed into elastic and plastic 

contributions as: 𝐇 = 𝐇6 +𝐇#, where 𝐇# is defined as the sum of shears (𝛾() over all active slip 

systems, and 𝐇# = ∑ 𝛾(𝐛( 𝐧(( . As shown by Nye [43], the density of GND dislocations can be 

quantified by a second rank tensor, which is defined as the curl of the plastic distortion (curl	𝐇#) 

as [44] 𝐆 = ∇ × 𝐇# = ∑ (∇𝛾( × 𝐛() 𝐧( =( 𝑏 ∑ v𝜌⊢(𝐭( 𝐛( + 𝜌⊙( 𝐛( 𝐛(x( , where 𝐭( = 𝐧( ×

𝐛(. The quantities 𝜌y⊢(  and 𝜌y⊙(  are the weighted GND densities (directional derivatives of slip) and 

are defined as: 𝜌⊢( = − !
0
∇𝛾( ∙ 𝐛(,  𝜌⊙( = !

0
∇𝛾( ∙ 𝐭(, where ⊢ and ⊙ represent the edge and screw 

components of the GND densities, respectively. The total GND density on slip system, s, is defined 

as the magnitude: 𝜌34.( = |(𝜌⊢()& + v𝜌⊙( x
&. 

The total GND density on a slip system thus requires a calculation of 𝛻𝛾(.  This vector is computed 

through the non-local values of 𝛾( at selected integration points at and around a given material 

point. The values of 𝛾( are used in the quadratic interpolation function. An equivalent to the 

quadratic interpolation function is a linear version as 

where there are 𝑛 integration points and 𝑖 terms in the polynomial used to approximate the spatial 

distribution of 𝛾(.  While we show the linear interpolation in Eq. (3.17) for simplicity, we used the 

quadratic interpolation over 40 integration points to evaluate 𝛻𝛾( at a given point embedded in 

between the 40 points. The coefficients 𝑐= can then be used to define a 𝛾((𝑥, 𝑦, 𝑧) interpolation 

function of which the gradient can be readily taken. Given 𝛻𝛾(, 𝜌34.(  is evaluated and used in the 

hardening law.  

⊗
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4. Results and discussion  

Figure 5 shows the hardening curve under uniaxial tension for specimens cut along the RD 

and TD directions. As can be seen, there is only a modest difference in behavior. Synthetic grain 

structures from Dream.3d were populated with orientations consistent with the texture measured 

from the virgin material (see [45] for the texture), and model hardening parameters were fit (Table 

2 and Table 3) to the experimental RD data, and then the TD curve was predicted. Table 3 contains 

the latent hardening parameters that define 𝐿((1, the latent hardening matrix in Eq. 12 [40] which 

is also known as the dislocation interaction matrix that defines the potential interactions of 

dislocations with each other; 𝑎* is for self-interactions, 𝑎! for coplanar interactions, 𝑎& for colinear 

interactions, 𝑎: for glissile junctions, 𝑎' for Hirth junctions, and 𝑎@ for Lomer Lock junctions. The 

model correctly predicts the slight lowering in yield stress and subsequent hardening behavior.  
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Figure 5 Uniaxial tension work hardening curves of AA 6016 T4 specimens 

Table 2 Hardening parameters 

𝝉𝟎 
[MPa] g D 

[MPa] 𝒌𝟏 q 

40	 0.1	 60	 1.08e7	 2	

Table 3 Latent hardening parameters established in [46, 47] for FCC metals 

a0	 a1	 		a2	 a3	 a4	 a5	

0.068	 0.068	 0.0454	 0.625	 0.137	 0.122	

The dislocation evolution (both GND from HREBSD and total density from XRD) due to 

work-hardening for biaxially pre-strained specimens, and subsequent uniaxial tension, are shown 

in Fig. 6. The overall dislocation density of the material is a combination of SSDs and GNDs. 

SSDs generally accumulate due to dislocation-dislocation interactions and mutual trapping in the 

crystal lattice, while GNDs accumulate in the strain gradient fields required to satisfy the geometric 

constraint of the crystal lattice arrangement. The total DD follows an evolution given by ~𝜀*.D up 

to failure. In comparison, the growth in GND density is much slower, with trends that are almost 

flat in comparison to total DD. The consequence of these trends is that GNDs account for a higher 
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percentage of the total DD early in the deformation, while the fraction of SSDs becomes 

significantly larger at high strain which is apparent upon taking a ratio of GND and DD for biaxial 

tension pre-strain, in agreement with Ashby’s observation (Ashby, 1970).   

 

Figure 6 GND development (blue lines and markers) and total dislocation density (red lines and markers). Dashed 
lines are measured values (HREBSD for GND and XRD for total dislocation density (DD)), and solid lines are simulated 
values. The final markers to the right of the curves are data for samples pre-strained to ~15% pre-strain, and then 
pulled a further 5.9% under uniaxial tension. 

The asterisk and open circle in Fig. 6 represent DD and GND densities (respectively) for 

samples pulled under biaxial tension to approximately 15% strain, followed by 5.9% deformation 

in uniaxial tension (which was pre-fracture). While the rates of both DD and GND density 

accumulation are fairly steady with strain during biaxial deformation, a change in strain path 

results in a much more rapid accumulation of both DD and GND density.  One might assume that 

the higher dislocation density following strain path change might lead to faster exhaustion of 

ductility; however, the biaxial-to-uniaxial strain path reached 5% higher strain-to-failure than pure 

uniaxial deformation (not shown on the figure). When combined with the significantly lower yield 
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stresses observed after strain path changes (yield stress after 15% biaxial effective pre-strain is 

~250 MPa, compared with ~300 MPa following the same amount of uniaxial pre-strain; Fig. 10 in 

[19]), it appears that latent hardening on non-active systems during biaxial deformation is 

significantly lower than self-hardening on the active slip systems. When the strain path changes, 

flow stress on the newly activated systems is significantly lower than on the originally active 

systems, and self-hardening on the newly active systems occurs rapidly, leading to a rapid increase 

in DD. It is interesting that GND density also increases rapidly due to the strain path change (i.e., 

as well as DD), indicating a similar increase in strain gradients to accommodate potential strain 

incompatibility on the new systems. In fact, motivation for incorporating strain gradients / 

backstress in the SG-CPFE model relates to changes in yield stress and other stress-strain 

characteristics following strain path changes, as discussed in a previous study of the same material 

[19]. 

Also shown in Fig. 6 are the dislocation density values simulated by the SG-CPFE model. 

Measured values were input as the initial values for the model, and the hardening parameters for 

the model were calibrated using a single uniaxial tension test. From the figure it is clear that the 

model predicts the shape of the total dislocation curve extremely well, with only a relatively small 

underprediction. However, the contribution of GNDs to the total density is much higher in the 

model than for the measured values, indicating that some tuning is required in the modeling 

parameters. While CPFE models have tunable latent hardening and self-hardening parameters, 

these are generally calibrated against the relatively small information contained in a uniaxial-

tension stress-strain curve (potentially including texture information, although latent hardening 

has been found to have a small effect on texture evolution) [48]. The insights from this study 

indicate the potential need for more detailed validation of the model SG-CPFE model, including 
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not only several stress-strain curves relating to different strain paths, but also tuning of both DD 

and GND accumulation rates.   

In order to check that the new approach to calculating GND density at the slip system level 

gave equivalent GND content to the more traditional Nye tensor approach, a simulated volume of 

the material containing twelve grains was modeled using both approaches. The sample was 

deformed in uniaxial tension, and the overall GND content was calculated via both methods. 

Figure 7 demonstrates that both methods predict almost equal overall GND content. Generally, 

there are only small differences (<5%) manifest at the grain level, apart from almost 60% 

difference between the two approaches for grain 9 at the highest level of strain. The evolution of 

GNDs is integrated into the DD hardening model via Eq. (12). The Nye tensor obtained from the 

gradient of slip rates and the Nye tensor obtained from the widely used curl of the plastic distortion 

or deformation gradient (curl	𝐅$) are nearly identical. An advantage of taking the gradient of slip 

rates is that it allows for the direct calculation of GND density per slip system, whereas using the 

curl of the plastic distortion yields the sum of GNDs over the slip systems. The sum is then 

distributed across slip systems according to their relative activity levels at every integration point 

using 𝜌%&'! = 𝜌%&'!"( )̇!

∑ ,̇!"!"
. Both methodologies result in similar overall (sum over the slip systems) 

GND density (Figure 7).  
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Figure 7 Comparison of GND fields predicted for a 12 grains FE sample, based on (a) 𝑐𝑢𝑟𝑙(𝑭!) and (b) 𝛻𝛾", after 

tension is applied along the x-direction to an overall strain of 0.1. At the bottom of each figure are average GND 

density per grain vs plastic strain for the 12 grains in each model.   

Figure 8 shows the relationship between grain size and GND density in the biaxial-to-

uniaxial sample. The relationship between the two microstructure variables is weak – the p value 

is 2.25%, indicating a statistically significant relationship, but the R2 value is only 0.14. However, 

it is interesting to note that the relationship is positive. Usually one would expect that smaller 

grains have a higher GB area-to-volume ratio, resulting in high GND content, due to strain 

gradients near GBs. This was observed in a recent large survey of grains in a Ta polycrystal [49]; 

the statistical relationship was also weak, but the trend was significantly negative - i.e. larger grains 

generally had lower average GND content. This is an important point for the more detailed 

discussion of GND distribution below. 
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Figure 8 Correlation between grain size and average grain GND density 

2 point statistics were employed to map the statistical geometrical relationships between 

GBs and GNDs, with an approach similar to that take by Ruggles et al. in a study relating GND 

content to specific phases in steel [50]. To determine an average geometrical relationship between 

GND content and GBs at individual scanned pixels, the position of GB pixels was assigned a value 

of 1, and other pixels were assigned a value of 0 in the image 𝐼3E. The resultant image was then 

convolved with the map of GNDs (captured in the map, 𝐼34.), as shown in the following equation: 

 𝑓&
3E,34. = ℱ$![(ℱ(𝐼3E))∗ ∙ ℱ(𝐼34.)]/𝑁3E (18) 

In the above equation, ℱ represents the Fourier transform, and ()* represents the complex 

conjugate of a term; 𝑁3E is the number of points in the GB network. A similar approach is taken 

for precipitates in the EBSD map. A precipitate was taken to be a connected region of 6 pixels or 

more with a confidence index below 0.1, and which was not already identified as belonging to the 

GB network. This identification process is justified further below by comparing SEM images with 

EBSD maps.  

Maps of the 2-point statistics from the experimental measurements are shown in Fig. 9a,b; 

note that the GND values for both the plots is on a log scale. An example area showing the GND 

buildup at individual precipitates is shown in Fig. 10, and discussed below. The origins of the plots 
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in Fig. 9 denote the representative positions of GBs or precipitates; the value of GND density close 

to the origin indicates the average GND concentration near to GBs or precipitates, depending upon 

the map. In these maps taken from experimental data, the central point takes a value of zero 

because GND values are set to zero along the GB lines and within precipitates. The statistics for 

points near to the origin are also lowered based upon the size and shape of regions with zero GND 

density. From the map for precipitates (Fig. 9b), where the regions of zero GND are larger than 

those for GBs, this region is relatively small and does not affect the interpretation made below, as 

long as it is acknowledged.  Taking into account this small region about the origin, the GND 

density is nevertheless reduced in the vicinity of GBs, while increasing around precipitates. There 

is ~21% higher average GND density within 10 μm of precipitates (Fig. 9b) compared to the 

density near GBs (Fig. 9a); there is a ~14.6% decrease in the GND density around the GBs 

compared to the average GND density. Sperry et al. observed strong strain gradients at all GBs in 

FCC Ni-superalloy, along with local orientation gradients associated with increased GND density 

[51]. Similarly, Hansen et al. observed significant GND accumulation at GBs and triple junctions 

in BCC Ta [49]. Hence, the lack of accumulation of GNDs at GBs in the Al sheet deformed in this 

study is an unexpected finding but helps to explain the surprising positive correlation between 

grain size and GND content (Fig. 8); i.e., this relates to the fact that GBs are not a primary cause 

of GND accumulation.  

Figure 9 also compares the 2-pt. statistics trends in the GND development around the GBs 

as measured and as predicted for ~21.76 milled depth layer in a biaxially pre-strained specimen 

subjected to 5.86% subsequent uniaxial strain. Figure 9c applies the identical 2-point analysis to 

GNDs and GBs in the simulated deformed sample for comparison with the experimental data 

shown in Fig. 9a; note that there are no precipitates explicitly assumed in the simulation for 
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comparison with Fig. 9b. The simulation incorrectly predicts a strong correlation between GNDs 

and GBs. Such a correlation would typically be expected in many materials (as discussed above). 

The results demonstrate that precipitates would need to be added to the model to better capture 

trends in GND evolution.  

 

Figure 9 2-point statistics maps of biaxial-to-uniaxial GNDs vs GBs at ~21.76 μm milled depth (a) and precipitates (b). 
The same map is shown for simulated GNDs and GBs (c); the simulation does not include precipitates to compare 
with the measured precipitate statistics. The origin in each map represents the position of GBs or precipitates in each 
case. Note that the color scale is logarithmic 

 

GND structures in the vicinity of precipitates, shown in a typical region in Fig. 10, might 

be explained by the precipitates acting as barriers to dislocation glide, resulting in pileups. Also, 

as observed by Orowan, incoherency between precipitates and the matrix causes dislocation 

entanglement which upon further straining nucleates and increases dislocation density [52]. Many 

examples of GND accumulation at precipitates can be seen, along with shear bands that often pass 
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through strings of precipitates. These observations are vital for guiding the development of the 

SG-CPFE model, in order for it to reflect the correct roles of GBs and precipitates in the evolution 

of GNDs and associated backstress. Currently, the model does not include precipitates; the 

experimental observation indicates that these will need to be included in order to reflect an 

important source of strain gradients and internal stress in AA6016-T4. 

 
Figure 10 HREBSD map of the biaxial pre-strained specimen subjected to a subsequent uniaxial tension. 

  

The direction of slip associated with local strain gradients, and associated GND 

accumulations, can be visualized by plotting the net Burgers vector (NBV) for both the 

experimental and simulated GND fields. In the case of the experimental data arising from 

HREBSD, the Nye tensor encapsulates all information regarding GNDs that is available from the 

surface measurements taken during an EBSD scan. While there are likely to be many dislocation 

types present in a given pixel on the EBSD map, the Nye tensor can be thought of as being 

associated with a single aggregated dislocation, and its related NBV. John Wheeler et al. proposed 
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that the direction of this Burgers vector could be determined from the right-hand column of the 

Nye tensor, for which all components are completely defined by the surface measurements taken 

by HREBSD [53]. This vector was termed the weighted Burgers vector (WBV). More recently, 

Ruggles et al. suggested a more accurate estimate of the NBV could be achieved by incorporating 

other measured components of the Nye tensor (rather than simply the third column) [54]. The 

improved estimate of the NBV, determined for each pixel in the HREBSD map, is the approach 

taken in the current study. 

Figures 11 (a) vs (b) compare the GND and NBV maps at the surface and ~21.76 µm deep 

into the SVE, correspondingly, for the simulated and experimental samples (left and right, 

respectively). While full 3D slip information is available for the simulated GND fields, only the 

same components of the Nye tensor that are available from the experimental data are used to 

calculate the NBV, in order to make the comparison fair. The simulated maps show that the SG-

CPFE model predicts development of strain gradient fields at the grain boundaries, and associated 

GNDs, while the experimental data indicates higher GND density in the regions of precipitates. 

The experimental observations of NBVs general alignment in <110> direction within shear bands 

generally lines up with the predictions from the SG-CPFE model. However, the experimental 

observation indicates a much wider range of active slip systems, when compared with the 

simulation (Fig. 11 a). This may be due to precipitates blocking directions with higher Schmid 

Factors and requiring dislocations to take alternative routes. As mentioned, precipitates are 

currently not included in the SG-CPFE model. Nevertheless, the model predicts the correct order 

of magnitude of GNDs.  
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(a)      

      
(b)                

Figure 11 Comparisons between the WBVs plotted for the experimentally calculated HREBSD-GNDs (right) against 
the SG-EVPSC mode (left)l calculated GNDs. (a) compares GNDs from the surface layer, and (b) compare GNDs at 
~21.76 μm milled depth into biaxial pre-strain specimen with 5.86% subsequent uniaxial strain. The larger images 
are all 150 µm square. The load is applied in the x-direction (left to right). 

5. Conclusions 

AA6016-T4 specimens pre-strained under biaxial tension were subsequently deformed under 

uniaxial tension. A combination of HREBSD, XRD/CMWP, and HRDIC revealed the nature of 

the formation of GNDs, total DD, and strain gradients across the deformed samples. An SG-CPFE 
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model was developed for multi-strain path forming, with microstructure reflecting an 

experimentally collected 3D SVE of a deformed specimen. The following observations were made: 

1) Comparison between simulation and experimental data indicates a successful 3D 

implementation of Gurtin’s gradient theory, with slip-level determination of GND content, 

for strain path changes in AA6016-T4. Calculation of the GND content at the slip level gives 

effectively equivalent GND evolution as the tradition Nye tensor method, but provides the 

significant advantage of knowing unambiguously the contribution on each slip system.  

2) The model correctly predicts the shape of the dislocation vs strain curve, and also 

accurately predicts the rapid accumulation of dislocations following a strain path change; 

it does, however, over-predict the ratio of GND-to-total dislocation densities, potentially 

due to error in the initial assumed ratio. 

3) A detailed 2-point statistics and BSE micrograph analysis revealed that GND development 

in AA6016-T4 was dominated by precipitates, and GBs did not appear to have an important 

role in the evolution of strain gradient fields for biaxial tension pre-strained specimens. In 

the absence of precipitates in the current implementation, the SG-CPFE model predicted 

that GNDs would mainly accumulate at GBs, highlighting the need for inclusion of 

precipitates in the model. The net Burgers vector predictions from the model were in 

general alignment with observed  NBVs. 

4) Total DD and GND followed a 𝜀*.D curve with GND trends almost lying flat which was 

similar for all three pre-strain cases. Therefore, an increase in total DD for later applied 

strains must be associated with SSD increase which is in agreement with Ashby’s theory 

(Ashby 1970). 

5) A strain path change demonstrated a significant increase in dislocation activity in 

comparison to single strain path deformation for a final 20% effective strain. However, 
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biaxial-to-uniaxial samples had lower yield stresses and 5% and 2% higher strain-to-

failure, respectively, in comparison to uniaxial tension; i.e. the higher dislocation content 

did not result in lower ductility. The observations indicate the significantly lower level of 

latent hardening of other slip systems, compared to self-hardening on the active slip 

systems, during the initial pre-strain. Subsequent strain path change leads to relatively 

easier slip and lower yield stresses in comparison to uniaxial-to-uniaxial deformation, but 

rapid accumulation of dislocation density on the newly active systems – for both total and 

GND densities. 

6) Maps of the NBV, indicating the net local direction of slip, showed similar trends for both 

the experimental and simulated data, with a wide range of scatter in directionality. 

Qualitative inspection of experimental NBV maps revealed slip to be better aligned in 

<110> directions in regions of high strain gradient fields, but more random in other areas.  
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