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A B S T R A C T

Using the 10x Genomics Chromium single-cell RNA sequencing (scRNA-seq) platform, we discovered unexpected
heterogeneity in an established cell line developed from the midgut of the Fall armyworm, Spodoptera frugiperda,
a major global pest. We analyzed the sequences of 18,794 cells and identified ten unique cellular clusters,
including stem cells, enteroblasts, enterocytes and enteroendocrine cells, characterized by the expression of
specific marker genes. Additionally, these studies addressed an important knowledge gap by investigating the
expression of genes coding for respiratory and midgut membrane insecticide targets classified by the Insecticide
Resistance Action Committee. Dual-fluorescence tagging method, fluorescence microscopy and fluorescence-
activated cell sorting confirmed the expression of midgut cell type-specific genes. Stem cells were isolated
from the heterogeneous population of SfMG-0617 cells. Our results, validated by KEGG and Gene Ontology
analyses and supported by Monocle 3.0, advance the fields of midgut cellular biology and establish standards for
scRNA-seq studies in non-model organisms.

1. Introduction

The use of immortalized cell lines has exponentially increased over
the past half-century, as these cells serve as indispensable models for
many scientific inquiries. Using derivatives of diverse human organs and
pathophysiological states, these cell lines facilitate the elucidation of
organ-specific biological mechanisms and the pathogenesis of diseases.
Moreover, they are instrumental in the biosynthesis of immunoglobulins
and therapeutic proteins. For instance, an excess of 1270 lepidopteran
cell lines have been characterized and harnessed for the mass production
of bioinsecticides and recombinant proteins, as noted previously [1–3].
These cell lines are also employed in bioassays for insecticide discovery
and development4, as well as in investigations into virus-cell in-
teractions and intracellular signal transduction pathways [4–7]. Single-
cell RNA sequencing has revealed cellular heterogeneity within tissue-
derived populations, revealing promising avenues for RNA interfer-
ence screening and insecticide target identification. However, the
cellular composition of insect-derived cell lines remains a subject of
ongoing investigations.

Single-cell RNA sequencing (scRNA-seq) has recently emerged as a
transformative technology capable of elucidating global transcriptomic

profiles across thousands of isolated cells, thereby enabling the discov-
ery of novel cellular subtypes, their respective physiological states, and
their ontogenic origin [8]. The first cellular atlas of the adult Drosophila
melanogaster midgut, reported by Hung et al. [9], included 22 discrete
cell clusters representing intestinal stem cells (SC), enteroblasts (EB),
enterocytes (EC), and enteroendocrine cells (EE), each with distinct gene
expression signatures and marker genes.

The fall armyworm (FAW), Spodoptera frugiperda, is a polyphagous
pest that has caused significant agricultural devastation in sub-Saharan
Africa and South Asia since 2016 [10,11]. This species has remarkable
host-plant diversity and feeds on 76 plant families, including key agri-
cultural commodities [12]. Recently, the CT/BCIRL-SfMG1–0611-KZ
(SfMG-0611) and CT/BCIRL-SfMG-0617-KZ (SfMG-0617) cell lines were
established from the larval FAW midgut, augmenting the pool of re-
sources available for global research endeavors [6].

To ascertain the cellular subtypes and corresponding marker genes
within the SfMG-0617 midgut cell line, we employed the 10x Genomics-
based scRNA-seq approach. This high-throughput analysis revealed ten
distinct cell clusters within this established cell line. Subsequent gene
expression profiling within these clusters identified specific marker
genes. The promoters of these genes were used to drive the expression of
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the red fluorescent protein gene, facilitating the identification of cells
belonging to each cluster. These results help in the separation of het-
erogeneous cell lines into homogeneous populations for use in insecti-
cide discovery and production of recombinant proteins. This
comprehensive analysis underscores the utility and inherent limitations
of immortalized cell lines, further highlighting the invaluable role of
scRNA-seq in advancing our understanding and potential improvement
of these cellular resources.

2. Materials and methods

2.1. Cell culture maintenance and harvesting

The midgut cell line SfMG-0617 was used for scRNA-seq tran-
scriptome analysis. These cells were maintained in TNM-FH (Sigma-
Aldrich, USA) supplemented with 10% fetal bovine serum (FBS). The
cells from the near-confluent flasks were harvested and plated. On day 3,
when the cells reached ~75–90% confluency, they were detached from
the surface, resuspended in TNM-FHmedium, and centrifuged at 300 ×g
for 5 min. The cell pellet was washed and resuspended in 0.5% BSA
(Bovine serum albumin) containing PBS (Phosphate buffer saline). The
cells were then checked for viability using trypan blue, passed through a
40 μm filter, and subjected to single-cell experiments.

2.2. Preparation of single-cell libraries using 10× genomics chromium
technology

The cells were processed by the A&S Imaging Center at the Univer-
sity of Kentucky using microfluidic partitioning. Two independent
samples were loaded into the 10x Genomics Chromium Controller,
where cells were partitioned with barcoded GEMs into nanoliter emul-
sions. The cell loading was adjusted to target approximately 10,000 cells
for each replicate. Using the 10x Genomics 3’ Gene Expression Kit v3.1,
uniquely barcoded partitioned cells were processed to produce and
amplify cDNAs, from which libraries were prepared per the manufac-
turer's instructions (10x Genomics, Pleasanton, CA). The quality of the
libraries was evaluated using an Agilent Bioanalyzer.

2.3. Sequencing and analysis

Libraries were sequenced using the Illumina NovaSeq 6000 platform.
The gene expression libraries were sequenced to a target depth of >36-
42,000 read pairs per cell. The resulting sequence read files (fastq) were
analyzed using 10x Genomics Cell Ranger software (version 6.1.1 or
later; 10x Genomics, Pleasanton, CA, USA). In brief, Cell Ranger was
used for alignment, filtering, counting of barcodes and UMIs, cell call-
ing, and production of an output containing cell-by-gene matrix counts.
The raw data generated by Cell Ranger were subsequently imported into
the R toolkit Seurat (v5.0.3) to compare the scRNA-seq datasets [13].
The baseline threshold was set to remove sequences from cells that fall
below the registered threshold to ensure high-quality sequences. The
sum of the counts (log-transformed) within each cell was used as a re-
gressor for the linear regression model to control the cell number and
sequencing depth. The FindIntegrationAnchors function was used to
find anchors between the replicates. These anchors were used to inte-
grate the two datasets using the IntegrateData function. Principal
component (PC) analysis was used to reduce the dimensionality of the
data and produce the top K principal components. These selected top
PCs were clustered using the Louvain–Jaccard graph-based clustering
approach. For visualization of the results, the t-SNE (t-distributed Sto-
chastic Neighbor Embedding) and UMAP (Uniform Manifold Approxi-
mation and Projection) algorithms were used [14,15].

2.3.1. Data preprocessing and quality control
After obtaining single-cell RNA sequencing (scRNA-seq) datasets, the

Seurat package (v5.0.3) was used to import matrix files produced by Cell

Ranger. The data from two biological replicates were processed. Each
replicate was encapsulated in a Seurat object and subjected to normal-
ization. The normalized data from both replicates were then integrated
into a single Seurat object for comprehensive analysis. We incorporated
a sample identification column into the metadata and further parti-
tioned it into ‘Sampletype’ and ‘Barcode’. We also read a predefined list
of mitochondrial genes for downstream filtering. Quality control mea-
sures were implemented to filter out poor-quality sequences from cells
based on criteria such as the number of detected genes, the total number
of UMIs, and the percentage of mitochondrial reads (Table S1). The
resulting filtered Seurat objects retained cells that met stringent quality
control criteria.

2.3.2. Feature selection and dimensionality reduction
Variable genes were identified using the variance-stabilizing trans-

formation (VST) method, during which 2000 features were selected. The
dataset was scaled, and principal component analysis (PCA) was per-
formed. The significance of each principal component was determined
using the JackStraw method, which provides information on the di-
mensions used for downstream analysis (Supplementary file 1:
Fig. S1). Cells were clustered using the top 20 principal components
with a resolution setting of 0.5. This process resulted in a multidimen-
sional representation of cells in the UMAP (uniform manifold approxi-
mation and projection) space. The distribution of cells across clusters
was visualized using various plotting functions. The DoubletFinder
package (v2.0.4) was used to identify potential doublets in the data.
Parameters such as pN, pK, and nExp were carefully selected based on
the characteristics of the dataset [16]. After filtering, we retained only
those cells classified as “Singlets” for downstream analyses (Table S1).

2.4. Testing reproducibility

In the context of single-cell datasets, which provide high-resolution
insights into cellular heterogeneity and gene expression patterns,
testing reproducibility is crucial to validate the accuracy and consis-
tency of the data analysis pipelines used. One popular program used for
testing reproducibility in single-cell datasets is Harmony (v1.2.0) [17].
We utilized the RunHarmony function to synchronize the datasets,
ensuring that any systematic discrepancies across batches were mini-
mized. The integrated data were subsequently updated with batch-
corrected values. The batch-corrected datasets were visualized using
UMAP and a feature plot. The analysis included comparing the raw and
filtered data and downstream analysis using Seurat, and we observed
high reproducibility in the identified midgut cell types in two replicates.
Following batch effect correction, we performed SCT transformation on
the integrated dataset [18]. SCT transformation is a standard pre-
processing step in single-cell RNA-seq analysis, which accounts for
technical noise and normalizes gene expression levels across cells. We
have established a framework for reproducible analysis of cellular het-
erogeneity and gene expression patterns.

2.5. Analysis of gene expression signatures of midgut cell types

Following cluster identification, marker genes were determined for
each cluster by assessing gene expression levels. These markers were
utilized as features to predict cluster membership for individual cells.
Subsequently, fold changes in gene expression across clusters were
computed. To assign cell types, gene expression profiles within each
cluster were compared to known midgut cell types in D. melanogaster
and Aedes ageypti [9,19]. KOBAS (KEGG Orthology-Based Annotation
System) 3.0 was used to obtain the GO (Gene Ontology) terms for the
identified genes. The obtained GO terms were further analyzed using
clusterProfiler, an R package, to reduce redundancy, prioritize the
enriched/statistically significant terms, and display only their repre-
sentatives to ease data interpretation [20,21]. Kyoto Encyclopedia of
Genes and Genomes (KEGG) and GO enrichment analyses were
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conducted to identify prevalent pathways under various cellular con-
ditions. Enrichment scores were calculated based on gene proportions,
and significant terms were retained using adjusted p-values. Key path-
ways were selected for visualization, and a heatmapwas generated using
the Seaborn library to illustrate variance in enrichment scores across
conditions, providing a comprehensive view of KEGG and GO enrich-
ment outcomes.

2.6. Identification of ISC, EC-like, and EE cell type marker gene
promoters

To identify the promoter regions of the midgut cell type markers, we
selected intergenic sequences upstream of the transcription start site of
each marker gene. The promoter regions were amplified using gene-
specific primers, genomic DNA, and PrimeSTAR GXL DNA Polymerase
(TaKaRa, Japan). The promoter regions were subsequently cloned and
inserted into the pBac: hr5ie1-EGFP-SV40:tdTomato-SV40 vector to
produce the pBac:hr5ie1-EGFP-SV40:promoter-tdTomato-SV40 vector.
The promoter region and PuroRed-SV40 cassette were cloned and
inserted into the pBac: hr5ie1-EGFP-SV40 vector to generate the pBac:
hr5ie1-EGFP-SV40:promoter-PuroRed-SV40 vector. All the vectors
were constructed using Gibson assembly master mix (NEB, USA). The
maps and primer sequences of the constructs are shown in Supple-
mentary File 1.

2.7. Selection of SfMG-0617 cells expressing endogenous promoter
constructs

SfMG-0617 cells were seeded in 6-well culture plates at a density of
3.0 × 106 cells per well and incubated at 27 ◦C overnight. The cells were
transfected using 1 μg of promoter construct per well using Mirus-
Transit Pro-Kit (mirus BIO) transfection reagent according to the man-
ufacturer's instructions in 1000 μL of TNM-FH Insect medium. Subse-
quently, 1000 μL of TNM-FH Insect medium containing 10% FBS was
added at four hours post-transfection. Fluorescence-activated cell sort-
ing (FACS) was conducted at the Flow Cytometry and Immune Moni-
toring Core Facility, University of Kentucky, USA, employing a Sony
sy3200 sorter. Sorted cells expressing Red fluorescence were resus-
pended in the conditioned medium supplemented with 20-hydroxyecdy-
sone (20E) (20E, Catalog No: H5142, Sigma-Aldrich, St. Louis, MO) and
collected in 5 mL falcon tubes. The sorted cells were cultured in 6-well
plates to facilitate monitoring cell proliferation and differentiation. The
selection of cells based on the puromycin resistance marker gene was
also performed. A stock concentration of 10 mg/mL puromycin was
prepared. Transfected cells were treated with puromycin at various
concentrations (2 ng/μL, 5 ng/μL, 10 ng/μL, and 15 ng/μL), adminis-
tered every third day. The surviving cells were monitored, and the se-
lection continued until all surviving cells showed Red fluorescence.

3. Results

3.1. scRNA-seq of SfMG-0617 cell line

10× Genomics Chromium Technology was used to obtain sequences
from 10,334 and 8460 SfMG-0617 cells in two replicates. >350 million
sequence reads were obtained from each library, resulting in average
read depths>36 and 42 thousand read pairs per cell, respectively, in two
replicates. Nearly >15,000 protein-coding genes were represented in
each replicate. Both samples exhibited similar sequencing and mapping
metrics, as shown in Table 1. The mean reads per cell, valid barcodes,
valid UMIs, and other metrics were nearly identical. These analyses
confirm the high correlation and low variability between the two sam-
ples, supporting the robustness and reproducibility of our scRNA-seq
data. The combination of sequencing data with sequencing depth,
overall coverage, and the transcriptomemapping ratio demonstrated the
robustness of our scRNA-seq experiments, providing a reliable basis for

further analysis. The t-SNE projections of the cells were visualized based
on UMI counts (Supplementary File 1: Fig. S2).

3.2. scRNA-seq analysis identified ten cell clusters in the SfMG-0617
midgut cell line

The integrated analysis identified ten cell clusters visualized with
UMAP. The complete workflow profiles standardized for the SfMG-0617
single-cell RNA sequencing are shown in Fig. 1. These cell types, which
included stem cells (SCs), enteroblast cells (EBs), enteroendocrine cells
(EEs), enterocytes (ECs), and visceral muscles (VMs), were found to be
identical between the two replicates. The marker genes that were highly
expressed in each cluster were derived from the midgut cells of
D. melanogaster [9,19,22–26]. Cluster #8, accounting for 7% of the cells
in the SfMG-0617 cell line, was identified as SC based on the high
expression levels of SC cell marker genes, the neurogenic locus Notch
(gene-LOC118262320), the mushroom body large-type Kenyon cell-
specific protein-encoding gene (gene-LOC118270242) and the head-
case gene (gene-LOC118265494) (Fig. 2 and Supplementary File 1:
Fig. S3). Cluster #1, accounting for 16% of the cells, contained EBs
based on the high expression levels of the marker genes, the cdc42 ho-
molog (gene-LOC118267256), and the CCHC-type zinc finger nucleic
acid binding protein isoform X2 (gene-LOC118265866) (Fig. 2 and
Supplementary File 1: Fig. S3). The other clusters (#0, 4, 7 and 9)
sharing UMI coordinates with each other were identified as EC-like cells
based on the expression of the chitinase-like protein EN03 isoform X4
(gene-LOC118276216), epidermal growth factor receptor kinase protein
(gene-LOC126911560), the sugar transporter SWEET1 (gene-
LOC118267186), and aldehyde dehydrogenase (gene-LOC118268490)
genes. The cells in clusters #2 and #6were identified as EE 1 and EE-like
1 based on the high expression of the homeobox protein prospero (gene-
LOC118275652), tachykinins (gene-LOC118278153), dipeptidase 1
(gene-LOC118268421) and EE-like 1 because of the high expression of
the protein turtle (gene-LOC118264893), protein eiger (gene-
LOC118271688), and protein lethal (2) genes (gene-LOC118280771)
(Fig. 2 and Supplementary File 1: Fig. S3). Clusters #3 and #5, ac-
counting for 10% and 8%, respectively, of the cells were designated
visceral muscle 1 and 2 based on the high expression of the marker genes
kinesin-like protein (gene-LOC118278067), thymosin beta (gene-
LOC118276119), and protein Skeletor (gene-LOC118270244) (Fig. 2
and Supplementary File 1: Fig. S3).

Table 1
Sequencing Parameters Comparison: Comparison of sequencing parameters
between samples SfMG-0617 and SfMG-0617, detailing mean reads per cell,
total reads, valid barcodes percentage, valid UMIs percentage, and mapping
statistics across genomic regions.

Sequencing parameters SfMG-0617-1 SfMG-0617 -2

Sequencing
Mean Reads per cell 36,5590 42,326
Number of Reads 377,793,718 358,075,221
Valid Barcodes 97.7% 97.7%
Valid UMIs 100% 100%
Mapping
Reads Mapped to Genome 90.7% 90.2%
Reads Mapped Confidently to Genome 66.3% 69.7%
Reads Mapped Confidently to Intergenic Regions 2.0% 2.0%
Reads Mapped Confidently to Intronic Regions 4.5% 4.8%
Reads Mapped Confidently to Exonic Regions 59.8% 62.9%
Reads Mapped Confidently to Transcriptome 62.4% 65.7%%
Reads Mapped Antisense to Gene 1.6% 1.7%
Cells
Estimated Number of cells 10,334 8460
Median Genes per cell 2223 2513
Total genes detected 14,892 14,964
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3.3. Novel marker identification using the FindAllMarker function

To delineate markers indicative of specific cellular clusters, we
employed the ‘FindAllMarkers’ algorithm, which employs a statistical

methodology grounded in a negative binomial distribution. This test
mandated a minimum fold enrichment of 0.5 and a Bonferroni-adjusted
p-value <0.05 to designate a gene as statistically significant. Due to the
marginal variance in fold enrichment across divergent cellular clusters,

Fig. 1. Schematic representation of the standardized pipelines used for single-cell data analysis of the SfMG-0617 cells. 1) Initial single-cell profile of midgut
cells, displaying nFeature_RNA, nCount_RNA, and percent.mt metrics before applying Seurat filtration. 2) Cell profile post-filtration was achieved using the Seurat
“subset” function. 3) Subsequent normalization, scaling, and dimensionality reduction were performed on the filtered datasets, visualized via a jackstraw plot. 4)
Correlations between principal components and SDs were examined using an elbow plot. 5) The identification and clustering of neighboring cells were visualized
through a UMAP plot. 6) Clusters were then filtered to remove doublets or multiplets using the DoubletFinder function. 7&8) The remaining singlet cells were
subjected to batch correction and reproducibility assessment using the RunHarmony function.

Fig. 2. Visualization of cell types in clusters using UMAP.We identified 10 distinct clusters, each expressing marker genes indicative of specific midgut cell types.
These marker genes were identified based on the results from other insects, including Drosophila melanogaster and Aedes aegypti. EC, enterocytes; EE, enteroendocrine
cells; EB, enteroblasts; SCs, intestinal stem cells; and VM, visceral muscles. The percentage of cells in each cluster is indicated in parentheses.
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additional stratification was conducted based on the proportion of cells
expressing a given gene within an individual cluster (pc.t1) versus across
all analogous clusters (pc.t2). This augmented methodology facilitated
the identification of marker genes with robust specificity for each clus-
ter, thereby enhancing the precision of cellular categorization.

For stem cells, the most pertinent markers were identified as
neuroligin-4 (gene-LOC118262926), a large-type Kenyon cell-specific
protein in mushroom bodies (gene-LOC118270242), and a neurogenic
locus Notch protein (gene-LOC118262320). Additional markers
included a homeobox protein (gene-LOC118274815) and a headcase
protein (gene-LOC118265494) (See Supplementary Data 1 for a
comprehensive list). Among the enteroblast cells, the significant
markers were neuronal acetylcholine receptor (gene-LOC118269784),
endonuclease/exonuclease/phosphatase family protein (gene-
LOC118273121), polyadenylate-binding protein (gene-
LOC118279494), and eukaryotic translation initiation factor 5 A (gene-
LOC118271679). For enterocytes (ECs), the following markers were
used: chitinase-like protein (gene-LOC118276216), 3-oxoacyl-ACP
synthase (gene-LOC118264942), spondin-2 (gene-LOC118276122),
sugar transporter SWEET1-like (gene-LOC118267186), glutathione S-
transferase 1 (gene-LOC118269546), and aldehyde dehydrogenase
(gene-LOC118268490) (Fig. 3, Supplementary Data 1).

For enteroendocrine (EE) cells, the markers included proteoglycan 4
(gene-LOC118270259), dipeptidase 1 (gene-LOC118268421), tachyki-
nins (gene-LOC118278153), and the protein turtle (gene-
LOC118264893) (Supplementary Data 1). For Visceral Muscle Cells,
the significant markers included thymosin beta (gene-LOC118276119),
kinesin-like protein (gene-LOC118278067), protein Skeletor (gene-
LOC118270244), and myotrophin (gene-LOC118271705). A compre-
hensive enumeration of these marker genes is available in Supple-
mentary Data 1.

3.4. Gene expression signatures of identified cell types

The identified cell type-specific markers exhibiting an average nat-
ural logarithmic fold change (logFC) exceeding zero were utilized to
interrogate the transcriptomic landscapes of individual clusters using
KOBAS 3.0 and ClusterProfiler version 3.0 software [21,27]. The results
of these analyses are shown in Supplementary File 1, Fig. S4. KEGG
pathway enrichment analyses identified pathways, such as ribosomal
biogenesis, ubiquitin-dependent proteolysis, Wnt signaling, and TGF-
beta signaling, as markedly enriched in stem cell (SC) clusters (Fig. 4).
Subsequent Gene Ontology (GO) analyses revealed a plethora of
enriched biological processes, molecular functions, and cellular com-
ponents, encompassing proteolytic activities, chromatin rearrangement,
and protein–DNA complex assembly (Fig. 4). These GO terms are pivotal
for the homeostasis, proliferation, self-renewal, and lineage specifica-
tion of both intestinal and other stem cells, thereby corroborating that
the molecular fingerprints of the FAW midgut SC clusters align with
their anticipated functionalities.

In the EB cluster, the enriched KEGG pathways included ribosomal
biogenesis, endoplasmic reticulum-associated protein processing,
longevity-associated pathways, and mitophagy (Fig. 4). GO enrichment
analyses revealed cellular phenomena such as cytoplasmic protein
synthesis, cell cycle progression, and ribonucleoprotein complex subunit
organization, implicating their roles in the further differentiation of
enteroblast cells (Fig. 4). In the EE cell cluster, the enriched KEGG
pathways included oxidative phosphorylation, ATP-dependent chro-
matin modulation, and ubiquitin-dependent proteolysis (Fig. 4).
Comprehensive gene lists for these pathways are included in Supple-
mentary Data 2. GO enrichment revealed cellular morphogenesis,
neurite outgrowth, protein kinase enzymatic activities, and unfolded
protein interactions, confirming that enteroendocrine cells primarily

Fig. 3. Identification of cell-type specific markers in midgut cells using violin and feature plots. Both violin and feature plots were generated to visualize the
expression patterns of novel marker genes across different midgut cell types. These marker genes were identified using the ‘FindAllMarkers’ algorithm based on a
negative binomial distribution test requiring a minimum fold enrichment of 0.5 and a Bonferroni-adjusted p-value of <0.05. Further stratification considered the
proportion of cells expressing a gene in individual clusters (pc.t1) versus across analogous clusters (pc.t2) to ensure robust specificity.
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operate as secretory units (Fig. 4).
Utilizing uniform manifold approximation and projection (UMAP)

analyses, additional clusters, specifically clusters 0, 2, 7, and 9 (termed
EC-like 1), were found to be enriched in critical biological pathways,
including oxidative phosphorylation, glutathione biosynthesis, and py-
ruvate metabolism (Fig. 4). The associated GO terms pertained to
cytoplasmic protein synthesis, post-translational protein modification
via small protein conjugation, and modification-mediated protein
degradation (Fig. 4). These pathways are implicated in modulating ab-
sorption activities in midgut tissues.

Another distinct cluster, designated Visceral Muscles, demonstrated
enrichment in pathways involving motor proteins, Wnt signaling,

mitophagy, and ATP-dependent chromatin modification (Fig. 4). The
GO terms enriched within this cluster were related to aerobic cellular
respiration, proton transmembrane flux, and the respiratory electron
transport chain, among others (Fig. 4). These pathways are known to
modulate cellular activities in the midgut. A comprehensive inventory of
genes implicated in cell type-specific KEGG enrichment is shown in
Supplementary Data 2.

3.5. Constructing lineage trajectories

To investigate the relationships among distinct cellular clusters and
elucidate the mechanisms of cellular differentiation, we employed

Fig. 4. Heatmap showing KEGG and GO enrichment in different midgut cells. The results are divided into (1) KEGG pathway enrichment specific to midgut cell
types and (2) GO enrichment focused on biological processes. Enrichment scores are visually represented through color gradations. The data for each cellular
condition were subjected to individual processing to maintain data uniformity and subsequently amalgamated and sieved based on an adjusted p value for discerning
pivotal enriched terms. The derived ‘Enrichment Score’, which incorporates gene proportions from the sample and the background, elucidates variances in chosen
pathways spanning midgut cell types. This heatmap, constructed using the Seaborn library, epitomizes the differences in enrichment scores for pivotal pathways
among the detected clusters.
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Monocle 3.0, a computational framework designed to analyze single-cell
RNA sequencing data. This tool facilitates both differential gene
expression and pseudotemporal ordering analyses [28–30]. Monocle
implements generalized additive models to assess the association be-
tween gene expression levels and pseudotime, thereby allowing infer-
ence of developmental trajectories. For this lineage reconstruction, we
targeted cell populations identified as SCs, EBs, EEs, ECs, and VMs. Our
analysis revealed three distinct cellular differentiation pathways: 1) SC
→ EB, 2) EB → EE, and 3) EB → EC-like. These trajectories corroborate
existing biological paradigms, which predict that EBs differentiate from
SCs and that both EEs and ECs originate from EBs (Fig. 5).

These studies employed graph-based tests to identify genes differ-
entially expressed during pseudotemporal progression. This approach
validated marker gene expression specific to each cellular subtype,
confirming the veracity of the constructed developmental trajectories.
These insights are particularly pertinent given that the SfMG-0617 cell
line, the subject of our investigation, was developed from the midgut
that contains muscle cells. Consequently, this comprehensive analysis
substantiates the lineage relationships among these cellular types and
validates the robustness of Monocle in accurately mapping cellular dif-
ferentiation pathways (Fig. 5).

3.6. Expression of insecticide target genes in midgut cells

The expression of insecticide target genes within specific midgut cell
types is not known. We examined the expression patterns of insecticide
target genes, focusing on respiratory and midgut targets by analyzing
scRNA-seq data from the SfMG-0617 cells utilizing sequences of known
respiratory (e.g., ATP synthase subunit beta, cytochrome b-c1 complex,
NADH-ubiquinone oxidoreductase, acetyl-CoA carboxylase) and targets
of Bacillus thuringiensis toxin (e.g., aminopeptidase, alkaline phospha-
tase, cadherins, ABC transporters).

The results revealed distinct expression patterns of target genes in
midgut cell subtypes. Aminopeptidase was predominantly expressed in

EC-like cells, SCs, and VMs. ATP-binding cassette proteins exhibited
expression across all midgut cell types, except in enteroblasts, and the
same trend was observed for Cadherin proteins (Fig. 6 and Supple-
mentary File 1: Fig. S5). Moreover, the phospholipid-transporting
ATPase ABCA1 was predominantly expressed in EE-like and EC-like
cells. The respiratory target ATP synthase and the cytochrome b-c1
subunit were broadly expressed across all cell types except for differ-
entiating EB cells (Fig. S5). Similar expression trends were detected for
NADH-ubiquinone oxidoreductase and acetyl-CoA carboxylase.

3.7. Isolation and enrichment of distinct cell types in the SfMG-0617
midgut cell line

The presence of different types of cells in the SfMG-0617 midgut cell
line was confirmed using the marker genes identified. Promoters of
marker genes were cloned into RFP (Red fluorescent protein) reporter
vectors and transfected into SfMG-0617 cells. Notch and Forkhead
promoters were used to mark stem cells and enteroblasts. Prospero and
esterase promoters were employed to label enteroendocrine and enter-
ocyte cells. EGFP expression was used to monitor for transfection effi-
ciency (Supplementary File 1: Fig. S6). Cells transfected with
constructs containing the Notch and Forkhead promoters exhibited
more intense red fluorescence compared to cells transfected with con-
structs containing the Prospero and esterase promoters (Fig. 7). Notch
promoter construct was used to isolate SCs and EBs cells using
fluorescence-activated cell sorting (FACS) (Supplementary File1:
Figs. S7 and S8) and puromycin antibiotic selection (Fig. S7). The
FACS-sorted cells exhibited red fluorescence. After each round of pu-
romycin selection, surviving cells exhibiting red fluorescence and
morphological characteristics consistent with stem cells were identified
until 100% of cells were RFP positive. These cells were then transferred
to the conditioned medium supplemented with 20-hydroxyecdysone to
stimulate differentiation and proliferation (Supplementary File 1:
Fig. S9). Ongoing research aims to further characterize these cells in

Fig. 5. Lineage reconstruction of cellular differentiation pathways using Monocle 3.0. 1. Overview of the cellular differentiation trajectories of intestinal cell
populations, including stem cells (SC), enteroblasts (EB), enterocytes (EC), enteroendocrine (EE) and visceral muscle (VM) cells. Monocle 3.0 was utilized for single-
cell RNA-sequencing data analysis, and generalized additive models were used to associate the gene expression levels with pseudotime. Three distinct differentiation
pathways were identified: 1) SC → EB, 2) SC → EB → EE, and 3) EB → EC-like. These trajectories are consistent with existing biological paradigms, indicating that EB
differentiates from SC and serves as a precursor for both EEs and ECs. 2) The study also employed graph-based tests to identify genes differentially expressed during
pseudotemporal progression, enabling the validation of marker gene expression specific to each cellular subtype.
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terms of their proliferative and differentiative capacities, as well as to
identify additional factors that may modulate these processes.

4. Discussion

Cellular heterogeneity research is crucial for understanding the
unique functions and adaptations of non-model insects. These insects,
unlike well-studied model organisms, have specialized physiological
processes due to their distinct evolution. Studies on cellular heteroge-
neity could help understand their development, physiology, and re-
sponses to environmental challenges. Some results have been reported
from non-model organisms. For example, Vigneron et al. [31] used

single-cell RNA sequencing to analyze Trypanosoma brucei, a parasite
transmitted by tsetse flies. This study provided a detailed transcriptomic
profile of individual cells, revealing the process of metacyclogenesis,
which is crucial for understanding how the parasite becomes infectious.
This insight is essential for developing strategies to block disease
transmission. Cui and Franz (2020) [19] applied single-nucleus RNA
sequencing to the mosquito Aedes aegypti and identified 20 distinct
midgut cell types and significant changes in cell composition and gene
expression following blood meal ingestion. This cellular diversity is key
to efficient digestion and nutrient absorption. The scRNA-seq, was
employed to study hemocytes in Anopheles gambiae and Aedes aegypti
[32] and Marsupenaeus japonicus [33]. These studies highlighted the

Fig. 6. Localization expression of the gene coding for Bacillus thuringiensis toxin target proteins in midgut cells. This violin and feature plot illustrates the
expression patterns of three Bt targets: aminopeptidase, Cadherins, ATP binding Cassette, and phospholipid transporting ATPase ABCA1, in SfMG-0617 cell clusters.

Fig. 7. Photographs of midgut cells transfected with cell-type specific marker gene promoter constructs taken under a fluorescence microscope for red
and green fluorescent protein signals. The Notch gene (specifically labels stem cells, A), Forkhead gene (marks enterocytes or columnar cells, B), Prospero gene
(marks stem cells, C) and the Esterase gene (marks enteroendocrine cells, D) promoter constructs and IE1-GFP construct were transfected into SfMG-0617 cells. The
cells were photographed under a fluorescence microscope. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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complexity and specialization of immune cells. The scRNA-seq was used
to create a comprehensive cell atlas of the adult female midgut [34].
These studies identified cell types and showed how different regions of
the midgut interact with arboviruses, crucial for understanding the
mosquito's vector competence and immune response. These studies
underscore the value of cellular heterogeneity research. Advanced
techniques like scRNA-seq allow researchers to identify novel cell types
and understand their roles in development, immune response, and host-
pathogen interactions. This knowledge is essential for developing tar-
geted strategies to control vector-borne diseases, improve pest man-
agement, and enhance the ecological and agricultural benefits.

Insect cell lines have become indispensable tools in molecular
biology, virology, and bioprocessing research. The ability of these pep-
tides to express recombinant proteins makes them valuable assets for the
biopharmaceutical industry and beyond. However, understanding and
managing cellular heterogeneity within these cell lines is crucial for
maximizing their utility. Cellular heterogeneity in insect cell lines is
important in biology research and biotechnology applications. Recent
advances have introduced novel methods for examining cellular het-
erogeneity. Fluorescent reporter proteins have revolutionized our ability
to monitor gene expression driven by specific promoters in real-time
[35,36]. This approach allows non-invasive evaluation of the impact
of specific conditions on individual cells, providing opportunities for
engineering and precise isolation of particular cell populations. As the
field of cellular heterogeneity evolves, these innovative approaches
promise to revolutionize our understanding of cell behavior and expand
their applications beyond bioprocessing. In 2007, Stockholm et al. [37].
discussed phenotypic heterogeneity within clonal cell populations in
vitro, emphasizing the role of local stochastic interactions between
phenotypically identical cells in initiating phenotypic switches. The use
of live-cell imaging techniques allowed the identification of distinct
phenotypes within the population of baculovirus-infected Sf9 cells. It
allowed the classification of infected cells based on the timing and level
of gene expression, revealing the dynamic responses of insect cell cul-
tures to infection [38].

Recent technological advances have facilitated studies on cellular
heterogeneity. Methods such as microfluidic-based cell isolation, next-
generation sequencing, and innovative labeling strategies for prote-
omics enable the comprehensive characterization of DNA, RNA, and
proteins at single-cell resolution [39,40]. These single-cell omics
profiling strategies have far-reaching implications, including delin-
eating cellular diversity, tracing cell lineages, identifying new cell types,
and deciphering regulatory mechanisms between omics layers. Single-
cell analysis revealed heterogeneity among different cell types within
tissues and clonal cell populations. Our studies used 10× Genomics
Chromium technology to investigate the heterogeneity of the SfMG-
0617 cell line. Surprisingly, ten different midgut cell types were detec-
ted in a cell line that had been in culture for many years and had un-
dergone >50 passages. Notably, 23% of the sequenced SfMG-0617 cells
were identified as stem cells or enteroblasts, challenging the widely held
belief that foundational cells inevitably differentiate after multiple
passages in culture. The assumption that cells undergo “development” in
culture to transition between identities has been a fundamental premise
in cell culture research for decades.

Recent studies in cell biology and related areas have highlighted the
significance of heterogeneity within cell populations. For instance, in
studies on pancreatic β cells, large-scale CRISPR screens combined with
single-cell RNA sequencing (scRNA-seq) revealed genetic heterogeneity
in the MIN6 cell line. This pancreatic β-cell line increases with passage
number. This genetic heterogeneity led to distinct functional clusters,
including endocrine, basal, epithelial, and neuroendocrine cells, with a
unique lncRNA-enriched cluster showing differentially expressed insulin
transcription. These findings challenge the assumption of homogeneity
within cell lines and suggest that individual cells within a population can
exhibit diverse characteristics and behaviors [41]. Similarly, in the case
of human pluripotent stem cells (hPSCs), traditionally considered

homogeneous, recent advancements in single-cell technologies have
revealed a high degree of variability between individual cells within
hPSC populations. This variability can arise from genetic and epigenetic
abnormalities associated with long-term in vitro culture and somatic cell
reprogramming. Some of these variations can confer growth advantages
to specific cells, altering cellular phenotypes and posing concerns in
hPSC applications. On the other hand, intrinsic heterogeneity within
hPSCs, such as an asynchronous cell cycle and spatial asymmetry in cell
adhesion, has been found to produce multiple lineages during differ-
entiation, redefining the concept of pluripotency [42].

Moreover, in cancer research, it has become increasingly evident that
multilevel heterogeneity is a fundamental feature often overlooked or
underestimated. Cancer cell populations with high genomic instability
exhibit karyotype heterogeneity, which makes cloning cells challenging
and leads to growth heterogeneity, where outliers dominantly
contribute to population growth [43]. This complexity challenges the
accuracy of conventional methods and underscores the need for single-
cell analysis when cells are not genetically identical. Our studies on
SfMG-0617 cell line heterogeneity align with recent research across
various domains, highlighting the critical importance of acknowledging
and addressing heterogeneity within cell populations. These findings
emphasize that the assumption of uniform cell development in culture
may not hold true and underscore the need for more nuanced ap-
proaches to studying and manipulating cells, with potential implications
for insecticide discovery and development and broader insights into cell
biology, disease modeling, and cancer research.

We also report on the lineage trajectories shedding light on the
mechanisms of cellular differentiation. We employed Monocle 3.0
computational framework designed to analyze scRNA-seq data to ach-
ieve this goal. This tool allowed us to identify cell types and infer
developmental trajectories, a novel aspect that has yet to be extensively
explored in previous studies. Our lineage reconstruction analysis
revealed three distinct cellular differentiation pathways: 1) SC → EB, 2)
EB → EE, and 3) EB → EC-like. These trajectories align with existing
biological paradigms that predict the differentiation of EB from SC and
the subsequent development of both EE and EC from EB
[5,9,19,22,44–48].

The interpretation of these lineage trajectories assumes that cells
within our culture system are developing and transitioning in a manner
that mirrors natural development within the whole organism. Recent
studies across various fields have supported this assumption. For
instance, research in mouse embryonic stem (ES) cells [49] revealed
stochastic and reversible transitions along a linear chain of states. This
suggests that living cells transition between specific molecularly and
developmentally distinct states. Similarly, a microfluidic platform
enabling single-cell RNA–seq after lineage tracking [50] demonstrated
that cells within lineages exhibit greater intralineage transcriptional
similarity, highlighting the relevance of lineage-based analysis in un-
derstanding heterogeneous cell populations. Furthermore, the LIN-
NAEUS (lineage tracing by nuclease-activated editing of ubiquitous
sequences) strategy [51] allowed the simultaneous tracking of lineage
and transcriptome profiles in thousands of single cells, providing a
systematic approach for tracing the developmental origin of novel cell
types. Drawing parallels with these studies, we emphasize the relevance
of considering cell development in culture and lineage-based analysis in
elucidating complex cellular differentiation pathways. These data
contribute to the broader fields of cell and developmental biology. These
findings underscore the idea that cell cultures may faithfully recapitu-
late natural developmental processes, paving the way for more
comprehensive investigations into cell identity and lineage trajectories
across various biological systems.

We also employed graph-based tests to identify genes differentially
expressed along these pseudotemporal progression pathways. This
approach validated marker gene expression specific to each cellular
subtype, reinforcing the robustness of the constructed developmental
trajectories. In conjunction with our cell type identification, this
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advancement in lineage reconstruction provides a comprehensive un-
derstanding of the dynamic processes governing midgut cell differenti-
ation [44,45]. We report on examining the localization of insecticide
targets within specific midgut cells. Previous research has focused pri-
marily on identifying these target sites, but their expression within
distinct cell subtypes have largely been unexplored [52]. We analyzed
scRNA-seq data from the SfMG-0617 cell line to investigate the
expression patterns of target sites of insecticides. Distinct expression
patterns for these targets across midgut cell subtypes were detected. We
conducted statistical analyses to evaluate the significance of expression
patterns of genes coding for insecticide among the different cell types.
We employed the ‘FindAllMarkers’ algorithm, which is based on a
negative binomial distribution. A minimum fold enrichment of 0.5 and a
Bonferroni-adjusted p-value of <0.05 were used as criteria for statistical
significance. This analysis validated the observed distinct expression
patterns and provided evidence for the differential expression of insec-
ticide target genes in different cell types. For instance, aminopeptidase is
predominantly expressed in enterocyte-like cells, stem cells, and visceral
muscles, suggesting potential roles in digestion and muscle function.
Cadherin and ATP-binding cassette proteins exhibit ubiquitous expres-
sion patterns across most midgut cell types, implicating their involve-
ment in diverse cellular processes. Regarding respiratory targets, genes
such as ATP synthase beta and the cytochrome b-c1 subunit exhibited
broad expression across various cell types, highlighting their funda-
mental roles in cellular energy production. This in-depth analysis ad-
vances our understanding of the distribution of insecticide targets within
the midgut and has significant implications for developing targeted in-
secticides and resistance management strategies.

Our studies employed innovative methods for isolating distinct cells
from the heterogeneous midgut cell population. We designed plasmid
constructs to express fluorescent proteins under the control of specific
promoters in stem cells, enteroblasts, enteroendocrine cells, and enter-
ocytes. This approach allowed us to evaluate the activity of promoter
regions for these genes and led to the selection of the notch promoter for
controlling the expression of a puromycin resistance cassette. Subse-
quent puromycin selection and fluorescence-activated cell sorting
(FACS) enabled the isolation of stem cells. This approach facilitated the
isolation and characterization of specific midgut cell types and opened
avenues for further research into the factors that modulate their
differentiation.

To further investigate the stability and differentiation trajectories of
cell-like subtypes, we are currently exploring the effect of 20-Hydrox-
yecdysone (20E) on isolated stem cells. The 20E has previously been
reported by many researchers and has demonstrated its effectiveness in
inducing significant morphological changes and promoting differentia-
tion in insect cells. Early foundational studies provided the basis for our
experimental design. In 1981, research on the Manduca sexta cell line
(MRRL-CH1) showed that 20E induced elongation and clumping re-
sponses, highlighting the importance of the cytoskeleton in mediating
these effects [53]. This work laid the groundwork for understanding
how 20E influences cellular morphology. Further studies in Spodoptera
frugiperda and Plodia interpunctella cell lines demonstrated that 20E fa-
cilitates differentiation into specialized cell types [54]. This study hel-
ped illustrate the broader applicability of 20E across different insect cell
lines. The 20E induced cell clumping, elongation, and differentiation,
leading to increased cellular complexity and functional specialization
[55]. 20E could trigger morphogenetic and secretory processes, as
shown in the Indian meal-moth cell line (IAL-PID2) [56]. The cells
formed pseudo-epithelial aggregates and synthesized glycoproteins
essential for cellular expansion and membrane integrity, further sup-
porting 20E role in cellular differentiation. Studies on the Spodoptera
frugiperda (Sf21) cell line combined 20E with insulin, producing a
neuronal phenotype and enhancing the differentiation process. This
synergistic effect provided a robust model for high-throughput insecti-
cide screening and reinforced the importance of 20E in differentiation
[55]. The latest research confirmed the role of 20E in inducing

significant morphological changes, such as cell aggregation, elongation,
and the formation of axon-like processes, indicating neuronal differen-
tiation and functional specialization [55]. By building on this founda-
tional research, we aimed to further elucidate the role of 20E in
maintaining and inducing specific cell states in cultured insect cells.

5. Challenges and study limitations

While our study represents a significant advancement in under-
standing cellular heterogeneity in non-model insects, several challenges
remain. One limitation is the reliance on scRNA-seq data, which,
although comprehensive, may not capture all aspects of cellular het-
erogeneity due to technical limitations such as dropout events and
sequencing depth. Future studies could integrate other omics data, such
as proteomics and metabolomics, to provide a more holistic view of
cellular functions. Understanding cellular heterogeneity in non-model
insects has broad implications for pest management and vector con-
trol. Insights gained from these studies can inform the development of
targeted insecticides, strategies for managing insecticide resistance, and
novel biotechnological applications, such as recombinant protein
production.

6. Relevance and future applications

Our findings provide insights into basic biology and have implica-
tions for targeted interventions in pest management, especially in
dealing with the economic and ecological impact of the Fall armyworm.
Understanding the cellular landscape of the midgut can be crucial for
developing new strategies to control this global pest. This study high-
lights the power of advanced single-cell RNA sequencing methods and
bioinformatics approaches for revealing cellular heterogeneity and
functionality. These findings validate the existing biological paradigms
and pave the way for in-depth investigations into the functional geno-
mics of this important cell line.

7. Conclusions

In conclusion, research into cellular heterogeneity in non-model in-
sects is essential for unraveling the complexities of their biology. The
insights gained from such studies not only advance our fundamental
understanding of insect physiology but also have practical applications
in disease control, agriculture, and biotechnology. By exploring the
cellular diversity and function in these organisms, we can develop
innovative solutions to global challenges related to health and envi-
ronmental sustainability.
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