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Abstract— The rapid growth of electric vehicles (EVs) is
driving the expansion of charging infrastructure globally. As
charging stations become ubiquitous, their substantial electric-
ity consumption can influence grid operation and electricity
pricing. Naturally, some groups of charging stations, which
could be jointly operated by a company, may coordinate to
decide their charging profile. While coordination among all
charging stations is ideal, it is unclear if coordination of
some charging stations is better than no coordination. In this
paper, we analyze this intermediate regime between no and
full coordination of charging stations. We model EV charging
as a non-cooperative aggregative game, where each station’s
cost is determined by both monetary payments tied to reactive
electricity prices on the grid and its sensitivity to deviations
from a desired charging profile. We consider a solution concept
that we call C-Nash equilibrium, which is tied to a coalition C of
charging stations coordinating to reduce their costs. We provide
sufficient conditions, in terms of the demand and sensitivity
of charging stations, to determine when independent (aka
uncoordinated) operation of charging stations could result in
lower overall costs to charging stations, coalition and charging
stations outside the coalition. Somewhat counter to common
intuition, we show numerical instances where allowing charging
stations to operate independently is better than coordinating a
subset of stations as a coalition. Jointly, these results provide
operators of charging stations insights into how to coordinate
their charging behavior, and open several research directions.

I. INTRODUCTION

The proliferation of electric vehicles (EVs) has brought
major changes to road transportation. EVs could play a
significant role in the transition to a sustainable energy-
based future and are projected to surpass traditional internal
combustion engine-based vehicles in the coming decades [1].
The growth in EVs has led to the genesis of a new industry
around building faster and more accessible charging infras-
tructure [2], comprising several electric vehicles charging
companies (EVCCs) such as Tesla, EVgo, and Chargepoint.
One major challenge associated with the design of charg-
ing infrastructure is that charging stations, especially fast-
charging stations, draw a considerable amount of electricity
when in operation [3]–[6] and may adversely impact the grid
infrastructure [7]–[9]. The ideal solution to this challenge
is to coordinate the demands from all charging stations to
distribute the load on the grid [7], [10]. However, this is
hard to implement in practice due to the high communication
and computational costs of such centralized approaches, and
concerns about privacy of the information shared by EV
charging stations [2]. Since coordination between all EV
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Fig. 1: A schematic depiction of charging stations located
in different areas (e.g. residential, downtown, highway) and
owned by different EVCCs. Charging stations that are con-
tained in the same red box are owned by same company
(i.e. form a coalition). Each charging station demands charge
from the grid, which determines the prices.

charging stations is impractical in most cases, we consider
the scenario where only some of these stations coordinate and
form a coalition (refer to Figure 1 for a schematic). While
it might intuitively seem that some coordination is always
better than no coordination, we give a counter-example to
show this is not necessarily true. Particularly, we study the
following question in this paper:

Q: Could coordination between a few potentially
heterogeneous charging stations lead to undesir-
able consequences?

To answer this question, we model the interaction between
charging station as a non-cooperative aggregative game.
Charging stations are strategic agents that draw power from
the grid over a finite time window, and have different
location-specific charging demands and different sensitivities
to deviations from a desired operating demand profile. Each
charging station aims to minimize its cost comprising of (i)
a payment for power demanded from the grid, and (ii) the
deviations from their desired operating charging profile. In
our model, we consider that the price per unit of power
depends on the total power demanded by all charging stations
(resulting in a game theoretic interaction between charging
stations). Therefore, in our model charging stations act as
“price-makers”, rather than “price-takers” [11]–[14]. Finally,
some charging stations enter into a coalition (e.g. those
owned by a single EVCC) to coordinate their total demand
in order to minimize their total cost.

We compare the outcome of the game-theoretic interaction
in two scenarios: (a) when some charging stations form
a coalition, and (b) when each charging station operates
independently without any coordination. We differentiate the
equilibrium in these two scenarios as C→Nash and Nash
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equilibrium respectively, and characterize them analytically
in Theorem 4.1 and Corollary 4.5 respectively. In general,
we observe that the equilibrium decomposes into two com-
ponents: a charging profile uniformly distributed across time
and a correction term to account for the coalition of charging
stations (Theorem 4.1). We assess the scenarios (a)-(b) in
terms of three metrics depending on the overall cost expe-
rienced by: (i) all charging stations (aka societal cost); (ii)
all charging stations within a coalition, and (iii) all charging
stations outside of coalition. We identify sufficient conditions
on the game parameters under which the formation of a
coalition will be worse than the independent operation of
charging stations in terms of all three metrics (i) → (iii),
as presented in Theorem 4.7 and 4.11. Furthermore, we
present numerical examples that satisfy these conditions,
demonstrating that coalitions can lead to worse outcomes
for society, the coalition, and non-coalition charging stations
alike. Notably, we find that these outcomes persist even
when we relax the assumptions in our theoretical results,
highlighting scenarios where the conventional intuition about
coordinating charging stations does not hold.

II. RELATED WORKS

Aggregative games and EV charging. Several works
have proposed EV charging as a non-cooperative game [11]–
[14]. These works mainly study existence, uniqueness, and
computation of Nash equilibria of the EV charging game,
and analyze these equilibria via measures such as the price
of anarchy (PoA) [13]. Our key differentiation from this line
of literature is to understand the impact of the formation of
a coalition of a subset of EV stations.

Coalitions and equilibria. Strong Nash equilibrium is
an outcome wherein no coalition of agents can collectively
deviate from their strategy to improve their utilities, and
was first introduced as a concept in [15]. Since this seminal
paper, numerous studies have delved into necessary and
sufficient conditions for its existence [16], computational
properties [17], and its performance across various game
classes, often measured by the k-strong price of anarchy
[18]–[23]. This metric quantifies the worst-case welfare loss
at strong equilibrium compared to optimal welfare. Unlike
strong Nash equilibrium, our notion of C→Nash equilibrium
(Definition 3.3) is a relaxation and only requires stability
with respect to a specific coalition C and not all possible
coalitions. Strong Nash equilibrium may not always exist
in our setting but we provide an explicit characterization of
C-Nash equilibrium (Theorem 4.1).

Users as price-takers. Several studies have delved into
the potential detrimental effects of uncoordinated Electric
Vehicle (EV) charging on the power grid [24], [25]. In
response, efforts such as those outlined in [7], [10], [26] have
tackled the challenge of devising incentive mechanisms to
coordinate small users, often categorized as “price-takers,”
to shift their charging windows and mitigate grid impacts.
However, in contrast to these approaches, our work concep-
tualizes charging stations, which serve many EVs and thus

can aggregate demand, as “price-makers” within electricity
markets.

III. MODEL
Notations: For any positive integer m, we define [m] :=

{1, 2, ...,m}. Consider two matrices A = (aij)i→[m],j→[n] ↑
Rm↑n, B ↑ Rp↑q . We define A ↓ B ↑ Rpm↑qn to be the
Kronecker product of matrices A and B. For any finite set
X , we define 1X ↑ R|X| to be a vector with all entries to
be 1. For any vector x ↑ Rm and p ↔ [m], we use the
notation xp ↑ R|p| to denote the components of vector x
corresponding to p. Additionally, we denote x↓p ↑ Rm↓|p|

to denote the components of vector x corresponding to all
entries that are not in p.

a) Charging stations as strategic entities: Consider a
game comprising of N charging stations, each operating as
a strategic entity making decisions on their charging levels
throughout a charging period spanning T units of time. Each
station i ↑ [N ] is characterized by a nominal charging profile
(x̄t

i)t→[T ], where the total charge demanded is di. That is,∑
t→[T ] x̄

t
i = di. The variation of charge demanded between

stations reflect differences in the number of vehicles typically
utilizing each charging facility.

The actual charging profile of any station may differ from
the nominal charging profile due to externality imposed
by other stations through electricity prices (to be defined
shortly). We denote xt

i to be the charge demanded by station
i during hour t. Define Xi = {xi ↑ RT :

∑
t→[T ] x

t
i = di}

to be the set of feasible charging profiles for station i 1.
With a slight abuse of notation, we define xt ↑ RN as a
vector of charging profile of all stations at time step t ↑ [T ],
and x = (xt

i)t→T,i→N to be the joint charging profile of all
stations.

In our model, we consider reactive prices where the price
of electricity depends on the total charge demanded. More
formally, the cost of incurred by any station i under a joint
strategy x is represented as:

ci(x) =
∑

t→[T ]

pt(x)xt
i +

µi

2
↗xi → x̄i↗2, (1)

where (a) µi > 0 is the sensitivity parameter of station i;
(b) for every t ↑ [T ], pt(x) denotes the price per unit of
electricity when the joint charging profile of all stations is
x. It is through this price signal that the charging profiles of
other charging stations impose externality on any station. In
what follows we assume that the price function is linear, i.e.
pt(x) = at + bt1↔

Nxt for some at, bt > 0 ( [13], [14], [28]).
The parameters at represents the price fluctuations due to
non-EV demand on the grid. In this paper, we assume that
for all time t ↑ [T ], bt = b for some positive scalar b ↑ R.

1We do not impose non-negativity constraints on the charging profile.
This modeling decision is justified, as charging stations have the capability
not only to draw power from the grid but also to inject power into the grid
when necessary [27]. Correspondingly, we also do not impose upper bounds
on the charging profiles; we assume that there is always enough charge
available to meet the charging demand for a given problem instance. It is
an interesting direction of future research to impose additional constraints
on the set X which align more closely with real-world conditions.
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Remark 3.1: The heterogeneity in sensitivity parameters
µi between different stations can be ascribed to the ge-
ographic location (cf. Figure 1). For instance, a station
positioned in downtown can exhibit heightened sensitivity in
meeting its demand requirements compared to one situated
within a residential neighborhood.

Nash equilibrium, defined below, is widely used to charac-
terize the interaction in these kinds of charging games [11]–
[14].

Definition 3.2: A joint charge profile x↗ is a Nash equilib-
rium if ci(x↗

i , x
↗
↓i) ↘ ci(xi, x↗

↓i) for every i ↑ [N ], xi ↑ Xi.
b) Coalition between charging stations: Coalitions be-

tween charging stations can be easily facilitated by the
emerging electric vehicle charging companies (EVCCs)
(such as Chargepoint, Tesla etc.) who operate multiple charg-
ing stations. We model that every coalition jointly decides
their charging profiles. For ease of exposition, we consider
only single coalition2. The goal of the coalition is to choose
xC ↑

∏
i→C Xi that minimizes the coalition’s cumulative

cost function cC(x) =
∑

i→C ci(x). Next, we introduce a
natural extension of Definition 3.2 to examine the outcomes
of interactions in the presence of a coalition.

Definition 3.3: A joint charge profile x† ↑ X is a C-Nash
equilibrium if (i)

∑
i→C ci(x

†) ↘
∑

i→C ci(x
↘
C , x

†
↓C) for every

x↘
C ↑

∏
j→C Xj , and (ii) ci(x†) ↘ ci(x↘

i, x
†
↓i) for every x↘

i ↑
Xi, i ≃↑ C.
When |C| = 1, Definition 3.2 and 3.3 are equivalent. For
the rest of the article, we shall denote C→Nash equilibrium
by x† and Nash equilibrium when charging stations act
autonomously by x↗.

IV. RESULTS
In Section IV-A, we analytically characterize the C→Nash

equilibrium in terms of game parameters. Next, in Section
IV-B, we derive sufficient conditions when Nash equilibrium
is preferred over C→Nash equilibrium, in terms of overall
cost experienced by all charging stations, by charging sta-
tions within the coalition, and the charging stations outside
the coalition. Finally, in Section IV-C,we provide numerical
instances where coalition is worse than Nash equilibrium.

A. Analytical Characterization of C→Nash equilibrium
Theorem 4.1: For any arbitrary coalition C ⇐ [N ], when

b > 0 and µi > 0 ⇒i ↑ N , the C→Nash equilibrium exists,
is unique, and takes the following form

x†t =
d

T
+

∑

t→→[T ]

T ωtt
→ → 1

T

(
b(1N1↔

N + C) + µ
)↓1 ·

·
(
µx̄t→ → at

→
1N

)
,

(2)

where ωtt
→

is the Kronecker delta function (ωtt
→
= 1 when

t = t↘ and is 0 otherwise), µ = diag([µ1, · · · , µN ]) and

C =

(
1C1↔

C 0
0 IN\C

)
.

2All results presented in this article can be extended to encompass
scenarios involving multiple coalitions.

Proof: Before presenting the proof, we define some
useful notation. Define A = [a1, a2, ..., aT ]↔ and
the concatenated vector of charging profiles x† :=
[x1†

1 , · · · , x1†

N , · · · · · · , xt†
1 , · · · , xt†

N ]↔.
First, we show that for any coalition C ⇐ [N ], the

resulting game is a strongly monotone game. To ensure this
it is sufficient to verify that (i) the strategy set is convex,
and (ii) the game Jacobian is positive definite [29]. The
convexity of strategy sets hold because the strategy sets Xi

are simplices. Next, to compute the game Jacobian, we define
Gi(x) =

ωcC(x)
ωxi

if i ↑ C, and Gi(x) =
ωci(x)
ωxi

if i ≃↑ C.
It can be verified that the game Jacobian, J(x), is J(x) =

⇑G(x) = !, where ! := IT ↓
(
b(1N1↔

N + C) + µ
)
, which

is guaranteed to be a positive definite matrix by Lemma 4.2.
Thus, for any C, the game is strongly monotone, and the
equilibrium is unique.

We now introduce two optimization problems:

PC(x
†
↓C) : min

xC→XC

∑

j→C
cj(xC , x

†
↓C)

s.t.
∑

t→→[T ]

xt→

j = dj ⇒j ↑ C,

⇒ i ↑ [N ]\C, Pi(x
†
↓i) : min

xi→Xi

ci(xi, x
†
↓i)

s.t.
∑

t→→[T ]

xt→

i = di.

By definition of C→Nash equilibrium, charging stations
within C jointly solve the optimization problem PC(x

†
↓C)

when the charging profiles of other stations x†
↓C is known.

Similarly, each player i ↑ [N ]\C solves the optimization
problem Pi(x

†
↓i) when the charging profile of other players

x†
↓i is known. Note that each of the optimization prob-

lems has linear constraints, and hence Karush–Kuhn–Tucker
(KKT) conditions are necessary for optimality. We solve the
KKT conditions of all these problems simultaneously to get
a unique solution. Since we established that the equilibrium
is unique, this unique solution to the KKT conditions is the
C→Nash equilibrium.

The KKT conditions can be written in a compact form as
in (3), where ε = (εi)i→[N ] are the Lagrange multipliers as-
sociated with the linear constraint of every charging station.

!x† = (IT ↓ µ)x̄→ (IT ↓ 1N )A→ (1T ↓ IN )ε (3a)
(1↔

T ↓ IN )x† = d, (3b)

where ” := (1↔
T ↓ IN )!↓1(1T ↓ IN ). We prove in Lemma

4.2 that ” and ! are invertible. Using this fact and solving
(3) by eliminating ε, we obtain a closed-form expression for
the C→Nash equilibrium in (4).

x† =#1(”,!) ((IT ↓ µ)x̄→ (IT ↓ 1N )A) +#2(”,!)d,
(4)

with #1(”,!) =
(
INT →!↓1(1T ↓ IN )”↓1(1↔

T ↓ IN )
)
!↓1

and #2(”,!) = !↓1(1T ↓ IN )”↓1. Expanding the terms
using the time index, it can be checked that equation (4) is
equivalent to (2), completing the proof.
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Next, we present a technical result that is used to prove
Theorem 4.1. The proof of Lemma 4.2 is deferred to online
version of this article [30].

Lemma 4.2: When b > 0 and µi > 0 ⇒i ↑ N , ! and ”
are positive definite and hence invertible.

Some remarks about Theorem 4.1 are in order.
Remark 4.3: The closed-form equilibrium solution in (2)

is composed of a fixed term and a correction term. The fixed
term represents a charging profile uniform across time. The
second term is the correction to account for the aggregate
effects of the coalition, demand and charging preferences of
the charging stations, and exogenous non-EV demand. As
expected, when the time-dependent factors at

→
and x̄t→ are

constant across time, the correction term is zero and charging
stations charge uniformly across time.

Remark 4.4: The result in Theorem 4.1 extends to the
setting of multiple (non-overlapping) collusions C1, C2, ...CK
by simply using

C =





1C11
↔
C1

0 · · · 0
0 1C21

↔
C2

· · · 0
...

...
. . .

...
...

... 1CK1↔
CK

...
0 0 0 I[N ]\≃K

i=1Ci




.

All results in this article extend directly extended to the
multiple coalition case by using the above matrix C. For
the sake of clear presentation, we shall always work with
K = 1 in the following text.
We conclude this section by stating the following specializa-
tion of Theorem 4.1 that characterizes Nash equilibrium.

Corollary 4.5: The Nash equilibrium x↗ can be obtained
by setting C = 1 in Theorem 4.1 as x↗t = d

T +
∑

t→→[T ]
Tεtt

→
↓1

T

(
b(1N1↔

N + IN ) + µ
)↓1 ·

(
µx̄t→ → at

→
1N

)
,

where IN ↑ RN↑N is the identity matrix.

B. When is C→Nash equilibrium beneficial?
In this subsection, we study conditions under which

C→Nash equilibrium will be preferred over Nash equilibrium
and vice-versa. For a charging profile x, define the total cost
incurred by a group of charging stations in S ↔ [N ] as

cS(x) :=
∑

i→S
ci(x), ⇒ x ↑ X. (5)

In order to compare the outcome under Nash equilibrium
and C→Nash equilibrium, we use the following metrics:

c[N ](x
↗)

c[N ](x†)
  
:=M[N]

,
cC(x↗)

cC(x†)  
:=MC

,
c[N ]\C(x

↗)

c[N ]\C(x†)
  
:=M[N]\C

, (Eval-Metric)

where, recall, x↗ is the Nash equilibrium when there is no
coalition, and x† is the C-Nash equilibrium. These metrics
are the ratio of the total cost experienced by different groups
of players at Nash equilibrium and at C→Nash equilibrium. In
particular, M[N ] is this ratio for all players, MC is this ratio for
players within coalition C, and M[N ]\C is this ratio of players

outside of the coalition. For any S ↑ {[N ], C, [N ]\C},
if MS < 1 then Nash equilibrium is preferred, otherwise
C→Nash equilibrium is preferred by the coalition S . Next,
we theoretically characterize these metrics in two cases:

1) Case A: Exogeneous price fluctuations at are uniform
across time: Here, we study the case when at = a ⇒t ↑
[T ] for some a ↑ R. This can happen when the price is
influenced by a constant non-EV demand throughout the day.
Under this setting, the equilibria x† and x↗ are represented
below

Proposition 4.6: Suppose at = at
→

for all t, t↘ ↑ [T ]. Then
for every t ↑ [T ],

x↗t =
d

T
+

∑

t→→[T ]

T ωtt
→ → 1

T

(
b(1N1↔

N + IN ) + µ
)↓1

µx̄t→ ,

x†t =
d

T
+

∑

t→→[T ]

T ωtt
→ → 1

T

(
b(1N1↔

N + C) + µ
)↓1

µx̄t→ .

Further, consider the scenario when all the charging sta-
tions prepare for similar peak and low demand hours, and
use charging rate recommendations from EV manufacturers
to predict their demand requirements. That is, they desire
similar demand profiles (up to a constant factor) across the
day. This scenario is captured in Assumption 4.1.

Assumption 4.1: The desired demand of each charging
station i ↑ [N ] at time step t ↑ [T ] is x̄t

i = diϑt, where∑
t→[T ] ϑ

t = 1 and ϑt ⇓ 0 for all t ↑ [T ].
Next, we delineate conditions under which the formation

of a coalition is worse than the independent operation of
charging stations in terms of verifiable conditions on game
parameters.

Theorem 4.7: Suppose Assumption 4.1 holds and at = at
→

for all t, t↘ ↑ [T ]. Any group S ↔ [N ] incurs a lower cost in
Nash equilibrium compared to C→Nash equilibrium iff

∑

i→S
f†
i (µ, b, d)→ f↗

i (µ, b, d) ⇓ 0, (6)

where for every i ↑ [N ], f†
i (µ, b, d) :=

$†$†
i +

µi(!
†
i↓di)

2

2b , f↗
i (µ, b, d) := $↗$↗

i +
µi(!

↑
i ↓di)

2

2b ,$†
i :=

(
(b(1N1↔N + C) + µ)↓1µd

)
i
, and

$↗
i :=

(
(b(1N1↔N + IN ) + µ)↓1µd

)
i
. Additionally,

$† :=
∑

i→[N ] $
†
i and $↗ :=

∑
i→[N ] $

↗
i .

Proof: For a subset S of charging stations, the total cost
under Nash equilibrium is lower than C→Nash equilibrium
if and only if

∑

i→S
ci(x

↗) ↘
∑

i→S
ci(x

†). (7)

In the rest of the proof, we calculate these costs in
terms of the game parameters. For every t ↑ [T ], define
F t := Tϑt→

∑
t→→[T ] ϑ

t→ . Since
∑

t→[T ] ϑ
t = 1, it holds that

F t = Tϑt → 1 and
∑

t→[T ] F
t = 0. Using Assumption 4.1

along with Proposition 4.6, we get the following for C→Nash
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equilibrium:

x†t
i =

di
T

+
F t

T
$†

i , 1↔
Nx†t =

D

T
+

F t

T
$†

x†t
i → x̄t

i =
F t

T
($†

i → di),

(8)

where D =
∑

i→[N ] di. Using (1) and (8) and
∑

t→[T ] F
t =

0, the cost of station i at C→Nash equilibrium is:

ci(x
†) = adi +



b
∑

t→[T ]

(1↔Nxt†)xt†
i



+
µi

2
↗x†

i → x̄i↗2

= adi +
b

T 2



TDdi +
∑

t→[T ]

(F t)2$†$†
i





+
µi

2T 2

∑

t→[T ]

(F t)2($↗
i → di)

2.

Consequently, the total cost of charging stations in S is:
∑

i→S
ci(x

†) =

(
aDS +

bDDS
T

)

+
F
T 2


∑

i→S
b$†$†

i +
µi

2
($†

i → di)
2


,

where DS :=
∑

i→S di, F :=
∑

t→[T ](F
t)2. Analogously,

we can also compute the total cost at Nash equilibrium.
Using these results, we conclude (7) is equivalent to

aDS +
bDDS
T

+
F
T 2


∑

i→S
b$†$†

i +
µi

2
($†

i → di)
2



⇓ aDS +
bDDS
T

+
F
T 2


∑

i→S
b$↗$↗

i +
µi

2
($↗

i → di)
2



⇔↖
∑

i→S
f†
i (µ, b, d)→ f↗

i (µ, b, d) ⇓ 0.

Remark 4.8: Interestingly, the condition (6) in Theorem
4.7 is independent of T,ϑt, a and depends only on µ and d.

Corollary 4.9: When ci(x†), ci(x↗) ⇓ 0 ⇒i ↑ [N ], Theo-
rem 4.7 can be used to analyze (Eval-Metric) as follows.
For any S ↑ {[N ], C, [N ]\C}, MS ↘ 1 if and only if∑

i→S f†
i (µ, b, d)→ f↗

i (µ, b, d) ⇓ 0.
2) Case B: The desired demand x̄t is uniform across time:

In this subsection, we analyze the setting when x̄t is uniform
in t. This denotes a uniform spread of desired demand by
the stations. This resembles the nominal charging profile
when the EV adoption will reach a critical mass when each
charging station observes a constant flow of EV such that
when averaged over any time window the nominal charge is
uniformly spread.

Proposition 4.10: If x̄t = d/T, ⇒ t ↑ [T ] then

x↗t =
d

T
→

∑

t→→[T ]

T ωtt
→ → 1

T

(
b(1N1↔

N + IN ) + µ
)↓1

1Nat
→
,

x†t =
d

T
→

∑

t→→[T ]

T ωtt
→ → 1

T

(
b(1N1↔

N + C) + µ
)↓1

1Nat
→
.

Theorem 4.11: Suppose x̄t = d/T, for every t ↑ [T ]. Any
group S ↔ [N ] incurs a lower cost in Nash equilibrium when
compared to C→Nash equilibrium if and only ifg†S(µ, b) →
g↗S(µ, b) ⇓ (”† → ”↗)h(A), where for every i ↑ [N ],

g†S(µ, b) :=
b

T

∑

i→S
”†”†

i +
µi

2T
(”†

i )
2

g↗S(µ, b) :=
b

T

∑

i→S
”↗”↗

i +
µi

2T
(”↗

i )
2

h(A) :=

∑
t,t→→[T ] a

tat
→
(
T ωtt

→ → 1
)

∑
t→[T ]

(∑
t→→[T ] a

t→ (T ωtt→ → 1)
)2 ,

”↗
i :=

(
(b(1N1↔N + IN ) + µ)↓11N

)
i
,

”†
i :=

((
b(1N1↔

N + C) + µ
)↓1

1N

)

i
.

Additionally, ”↗ :=
∑

i→[N ] ”
↗
i and ”† :=

∑
i→[N ] ”

†
i .

Proof: The proof is similar to Theorem 4.7 and can be
found in the online version of this article [30].

Remark 4.12: The condition in Theorem 4.11 does not
depend on the heterogeneity of demand of charging stations
d.

Corollary 4.13: When ci(x†), ci(x↗) ⇓ 0 ⇒i ↑ [N ],
Theorem 4.11 can be used to analyze (Eval-Metric) as
follows.

MS ↘ 1 ⇔↖ g†S(µ, b)→ g↗S(µ, b) ⇓ (”† → ”↗)h(A)

⇒S ↑ {[N ], C, [N ]\C}.

C. Coalitions may not be always beneficial.

In this subsection, we construct instances where the for-
mation of a coalition is not beneficial, which satisfy the setup
discussed in Section IV-B. We set N = 5, T = 10, b = 0.5
and consider that each station can be of two types: Type

H or Type L. For the purpose of this example, we consider
that all stations in a coalition are of Type L and all stations
outside the coalition are of Type H. A station i ↑ [N ]
is said to be Type H if di = 5 and µi = 1, and of
Type L if di = 1 and µi = 0.1. Additionally, we set
ϑt = ϖ1 for t ↘ T/2, and ϖ2 otherwise. Furthermore, we set
at = 0.5+ ωϱt where ϱt ↙ Unif([0, 1]). We study the impact
of the size of the coalition on various metrics presented in
(Eval-Metric). Particularly, in Figure 2, we study the case
of ϖ1 = 0.4/T, ϖ2 = 1.6/T and ω = 0, which is aligned
with the setup considered in Theorem 4.7. Meanwhile, in
Figure 3, we study the case by setting ϖ1 = 1/T, ϖ2 = 1/T
and ω = 0.4, which is aligned with the setup considered in
Theorem 4.11. From these figures we conclude that there
exist coalitions, where from the coalition’s perspective (i.e.
MC) the outcome under Nash equilibrium is preferred to the
outcome under coordination. Furthermore, in Figure 2, we
find that there exist instances when the C→Nash equilibrium
is not preferred under every evaluation metric. Moreover, in
Figure 3, we find that the formation of coalition not only
adversely impacts the coalition but also provides advantage
to stations outside coalitions.
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Fig. 2: Setting ϖ1 = 0.4/T, ϖ2 = 1.6/T and ω = 0

Fig. 3: Setting ϖ1 = 1/T, ϖ2 = 1/T and ω = 0.4

V. DISCUSSION

In this section we expand on the experimental results from
Section IV-C3 by relaxing the conditions imposed on game
parameters.

a) Impact of simultaneous variations in at and ϑt: In
Figure 4, we study the impact of the size of the coalition
in terms of (Eval-Metric). In contrast to Section IV-C, we
consider both at and ϑt to be non-uniform and randomly
assign stations to be of Type H with probability 0.2 if they
are within the coalition. All stations outside of the coalition
are assigned to be Type L. We find that if the size of coalition
is small then Nash equilibrium turns out to be favorable along
all metrics (Eval-Metric). However, as the size of coalition
increases then it may be beneficial to form a coalition.

b) Impact of the composition of coalitions: Here we
show that not only the size of the coalition, but also the
composition of the coalition, plays an important role in
deciding whether the coalition is beneficial. To illustrate this
point, we examine an example with N = 3, T = 10, b = 1
and at = 10 for all t ↑ [T ]. We posit a scenario where the
first two stations form a coalition. Each station is one of two
types, namely Type H or Type L. We call a station i ↑ [N ]
to be of Type H if di = 5 and µi = 5, and of Type L if
di = 1 and µi = 1. In Figure 5, we present a comparative

3The code to generate all figures in this section is available at
https://github.com/kkulk/coalition-ev

Fig. 4: Comparison between Nash equilibrium and C→Nash
equilibrium with respect to (Eval-Metric) under different size
of coalition.

analysis, evaluating how different coalitions perform in terms
of metric presented in (Eval-Metric). We find under some
circumstances MS > 1 for all S ↑ {[N ], C, [N ]\[C]}. For
instance, this is the case when the coalition is comprised of
atleast one Type H station and the station outside coalition
is of TypeH. On the contrary, perhaps surprisingly, there are
also instances when MS < 1 for all S ↑ {[N ], C, [N ]\[C]}.
For instance, this is the case when the stations within a
coalition are of Type H and the station outside the coalition
is of Type L.

VI. CONCLUSION
In this work, we initiate a study to understand the impact

of coalitions between charging stations as charging infras-
tructure continues to grow in coming years. As charging
stations draw a substantial amount of electricity from the
grid, they will be “price-makers” on the electricity grid.
More often than not, multiple charging stations are operated
by same electric vehicle charging company (EVCC), which
could facilitate coordination between charging stations. In
this work, we analytically characterize the equilibrium out-
come in the presence of coalitions. Our analysis hints at
potential losses encountered by EVCCs if they coordinate
all charging stations owned by them in the presence of
heterogeneity in charging demand and user preferences.

There are several interesting questions for future research
in understanding the impact of coalitions between charging
stations. In the current model we assume the overall demand
of a charging station is fixed, but this demand could be
affected by electricity prices [8], [9], [31]. We also assume
the price functions are linear; future work may extend this to
generic nonlinear functions. Furthermore, there are additional
operational constraints such as limited capacity of the energy
infrastructure and bounds on charging rates of EVs that could
be accounted for while computing the equilibrium.
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(a) The phrase “Coalition better” (resp.
“Nash better”) implies M[N ] > 1 (resp.
M[N ] < 1).

(b) The phrase “Coalition better” (resp.
“Nash better”) implies MC > 1 (resp.
MC < 1).

(c) The phrase “Coalition better” (resp.
“Nash better”) implies M[N ]\C > 1 (resp.
M[N ]\C < 1).

Fig. 5: Comparison of societal (overall) cost, coalitional cost,
and the cost of the station outside the coalition in the three
station game.
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