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ABSTRACT

This study investigates the process of hazard identification in
complex manufacturing environments during the design phase,
emphasizing the significance of the design process in developing
designs that effectively mitigate hazards in contexts with numer-
ous variables, such as a variety of machines, sensors, actuators,
and agents. Through a mixed-methods approach, the objective
of this work is to understand how the evolution of design out-
comes across various stages might influence a designer’s ability
to recognize both standard and novel hazards. To achieve this un-
derstanding, an experimental design task was conducted with six
designers from a national lab specializing in manufacturing tech-
nologies. This approach combined qualitative and quantitative
data analysis from a one-hour virtual session with participants.
Findings suggest that the complexity of identifying hazards in a
high-dimensional design space is challenging within a limited
time frame and that the identification of hazards is significantly
influenced by the stage of the design task and the initial design de-
cisions, indicating the need for extended time and strategic initial
planning in the design process to enhance hazard identification.

Keywords: Advanced Manufacturing, Remote Monitoring
Systems, Cyber-Physical Systems, Hazard Identification,
Design Methods, Design Processes

1. INTRODUCTION

The manufacturing sector is undergoing a transformative shift
towards more dynamic, interconnected ecosystems, primarily
driven by the rapid advancements in Industry 4.0 and 5.0 tech-
nologies [1]. This primarily includes the integration of cyber-
physical systems (CPS) and Internet of Things (IoT) technologies
[2]. These technologies promise to enhance operational effi-
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ciency and adaptability, enabling manufacturers to respond more
swiftly to market changes and customer demands, which in turn,
is reshaping the traditional manufacturing landscape.

In an overview of the future of advanced manufacturing,
Arinez et al. emphasize the adoption of strategies for adaptive
planning, scheduling, and control mechanisms that are not only
responsive but also predictive, capable of anticipating changes
and adjusting in real-time [3]. This responsiveness can be directed
at machines or the manufacturing environment itself. In the latter,
a dynamic manufacturing factory is created, where the role of
CPS and IoT cannot be overstated. These technologies provide
the backbone for real-time data capture, analysis, and feedback,
essential for adaptive planning and control.

Amidst these technological advancements, Operator 4.0 and
Management 4.0 concepts have gained prominence, emphasizing
the critical integration of human factors into the manufactur-
ing equation. Operator 4.0 embodies the vision of empowering
factory workers with digital tools and augmented capabilities,
facilitating human-machine collaboration that enhances produc-
tivity and safety[4]. For example, Romero et al. developed a
typology of eight main descriptors for the empowered operator
of the future: augmented, virtual, healthy, analytical, collabora-
tive, smarter, social, and super-strength [5]. Similarly oriented
towards manufacturing efficiency, Management 4.0 focuses on
leveraging smart technologies to improve process control, reduce
human error, and enable rapid, data-driven decision-making [6].
Together, these approaches foster a manufacturing environment
where human intelligence and creativity are augmented by dig-
ital capabilities, leading to improved system performance and
worker satisfaction. However, the journey towards fully adap-
tive and human-centric manufacturing ecosystems is not without
challenges. Manufacturers face issues related to demand vari-
ability, complex supply chain dynamics, and the need for rapid,
accurate decision-making. Adaptive strategies that address the
inherent complexities in the design of these future manufacturing
environments are needed.
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2. BACKGROUND

2.1 Manufacturing Remote Monitoring Systems

Remote Monitoring Systems (RMS) have emerged as piv-
otal tools, transforming how factories operate and manage their
resources. At the heart of RMS is the ability to provide real-time,
continuous insights into various aspects of manufacturing opera-
tions, from production lines to machine tool status. This real-time
data acquisition and analysis capability is not just about moni-
toring; it’s about enabling a proactive approach to manufacturing
management, where decisions are data-driven, and optimizations
are made in real time to enhance efficiency and productivity.
There are several ways, detailed below, in which the combination
of RMS with technology such as IoT can transform manufacturing
processes.

Production Lines. IoT has significantly propelled the ca-
pabilities of RMS forward, allowing for an unprecedented level
of connectivity and data exchange across manufacturing systems.
Huang, motivated by the demand for remote monitoring of pro-
duction lines, develops an IoT platform focused on optimized
data fusion and mitigating redundant sensor data [7]. IoT devices
embedded within manufacturing equipment and production lines
serve as RMS’s sensory input, feeding a constant stream of op-
erational data into the system. Theoretically, this integration
facilitates a granular view of manufacturing processes, identify-
ing bottlenecks, inefficiencies, and potential failures before they
escalate into major issues.

Machine Tool Status. In terms of machine tool status
monitoring, RMS equipped with IoT technology offers a real-
time window into the operational health of critical manufactur-
ing equipment [8]. This capability is crucial for maintaining the
continuity of production processes, as it allows for the early de-
tection of wear, tear, or malfunction in machine tools. One of the
primary benefits is enabling predictive maintenance strategies,
compared to to traditional reactive or scheduled maintenance ap-
proaches. By leveraging real-time data from RMS, manufacturers
can predict equipment failures before they occur, facilitate greater
operational transparency and control, and enable manufacturers
to monitor production processes precisely. This not only prevents
costly downtime but also extends the lifespan of manufacturing
equipment, contributing to long-term operational sustainability.
To highlight the business value of RMS and machine tool status,
Momeni et al. studied six engineering firms to show that along-
side the standard preventative maintenance benefits, customers
benefit from ease of knowledge access and data validity when
physical distance to machines would otherwise be a barrier [9].

Supply Chain. The adoption of RMS and IoT technolo-
gies also has profound implications for supply chain manage-
ment within manufacturing. The real-time visibility and control
afforded by RMS extend beyond the confines of individual man-
ufacturing facilities, encompassing the entire supply chain. This
enhanced visibility enables more effective coordination of supply
chain activities, reducing lead times, and optimizing inventory
levels. Moreover, the data-driven insights generated by RMS
can inform strategic supply chain decisions, from supplier selec-
tion to logistics optimization, thereby improving overall supply
chain resilience and responsiveness. Similarly, cloud platforms

can facilitate the implementation of sophisticated RMS solutions
that can adapt to evolving manufacturing needs through scal-
able, accessible, and secure data storage and analysis. This is
shown by Hao et al., who sought to integrate cloud and IoT for
OEMs (original equipment manufacturers) to have remote ma-
chine access and monitoring [10]. Cloud platforms also enable
seamless integration of RMS data with other enterprise systems,
such as Enterprise Resource Planning (ERP) and Supply Chain
Management (SCM) systems, fostering a holistic approach to
manufacturing management.

Service Value. Beyond the immediate operational benefits,
the integration of RMS and IoT heralds a transformation in the
service dimension of manufacturing, particularly through servi-
tization [11]. Servitization refers to the evolution of manufactur-
ing firms from purely product-centric to service-oriented business
models, where value is increasingly derived from the provision of
comprehensive service offerings alongside traditional products.
RMS and IoT technologies are pivotal in enabling this shift, as
they provide the necessary infrastructure for delivering advanced
services such as remote diagnostics, usage-based pricing models,
and performance-based contracts. This shift not only opens up
new revenue streams but also aligns manufacturers more closely
with the evolving needs and success factors of their clients.

2.2 Hazards in (Dynamic) Manufacturing Environments

Manufacturing environments, characterized by their fast-
paced and interconnected nature, are fraught with a myriad of
hazards that could compromise human operators’ safety and the
integrity of manufacturing processes and infrastructure. The ad-
vent of Industry 4.0 technologies, while heralding unprecedented
efficiency and adaptability, also introduces new dimensions of
risk created by dynamic or ambient intelligent manufacturing
environments that must be meticulously managed. Efforts to mit-
igate the hazards found in ambient intelligent environments in the
engineering design literature [12] are built upon in this work in
the context of manufacturing environments. This section outlines
the various categories of hazards inherent in such environments
and underscores the criticality of robust hazard identification and
risk management strategies.

At the forefront are physical hazards, which directly threaten
the bodily safety and health of individuals involved in manufac-
turing operations. These hazards range from immediate dangers
like machinery-related injuries to long-term health risks such as
exposure to hazardous materials or ergonomic issues stemming
from repetitive tasks [13]. Environmental hazards pertain to
the impact of manufacturing activities on the natural environment,
including pollution, resource depletion, and waste management
challenges. Khezri et al. provide an example of design for
environmental hazards, where they focus on reconfigurable man-
ufacturing systems, which can be reconfigured based on evolving
environmental needs [14].

The digitalization of manufacturing processes brings about
digital hazards, primarily related to data integrity and cyberse-
curity. As manufacturing systems become increasingly reliant on
data-driven decision-making and interconnected networks, the
risk of data breaches, unauthorized access, and system disrup-
tions escalates [15]. Legal hazards encompass the potential
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for litigation arising from non-compliance with industry regu-
lations, safety standards, or intellectual property infringements.
With their complex supply chains and international operations,
dynamic manufacturing environments must navigate a labyrinth
of legal requirements, making compliance an ongoing challenge.
Prior research exists in understanding how manufacturing envi-
ronments might comply with regulations within the country of
production [16]. Additionally, prior work from Sharma et al.
showed legal implications as one of several barriers to imple-
menting the newest manufacturing technologies [17].

The social implications of manufacturing practices, particu-
larly in terms of their impact on workplace relationships, com-
munity interactions, and social perceptions, constitute social haz-
ards. Issues such as labor disputes, community backlash against
environmental practices, or the social ramifications of automation
and job displacement fall under this category. Addressing social
hazards requires a commitment to ethical practices, community
engagement, and transparent communication. Frameworks for
socially responsible and ethical considerations in manufacturing
have been forwarded in the literature [18, 19].

Lastly, emotional hazards refer to the psychological well-
being of individuals within the manufacturing environment, en-
compassing stress, anxiety, and the potential for burnout. The
high-stress nature of dynamic manufacturing operations, coupled
with the demands of adaptability and continuous learning, can
exert significant emotional strain on workers. Some studies have
found correlations between burnout and exhaustion in manufac-
turing sectors due to more emotional human factors. Macias et al.
found relationships between burnout and co-worker or supervisor
support, while Zhou et al. studied burnout in female manufac-
turing workers in relation to factors like emotional exhaustion,
over-commitment, job strain, and de-personalization [20, 21].

The complexity of dynamic manufacturing environments
demands a holistic approach to hazard identification and risk
management, encompassing a wide range of potential risks from
physical to environmental. Developing comprehensive strategies
that are anticipatory, adaptive, and inclusive of human factors is
paramount to safeguarding both human operators and manufactur-
ing processes, thereby ensuring the resilience and sustainability
of manufacturing operations in the face of evolving challenges.

2.3 Research Gap

There are two main research gaps to be addressed in this
study in relation to RMS and hazard identification. First, there is
a need to address the efficacy of design processes for identifying
hazards within manufacturing environments. The complexity and
dynamism of modern manufacturing operations, characterized
by the integration of cyber-physical systems and sophisticated
production technologies, demand design processes capable of
foreseeing and mitigating potential risks. However, questions
linger regarding the current capability of design methodologies
to systematically and effectively identify the spectrum of hazards
that these new technologies introduce.

The second research gap lies in the integration of human
factors within the design processes for RMS. As manufacturing
systems become increasingly automated and reliant on RMS and
cyber-physical systems, the role of the human operator evolves.

This evolution necessitates design processes that not only account
for technological and operational hazards but also prioritize the
overall well-being, safety, and adaptability of human operators
within these complex systems. The extent to which current de-
sign methodologies embed human factors into the development
and implementation of manufacturing technologies remains un-
explored.

In response to the identified research gaps, this study aims to
enhance the knowledge base in manufacturing design, focusing
on the development of cyber-physical systems that support RMS
and are safe, efficient, and human-centered. The core question of
this research explores how designers conceive of cyber-physical
systems for RMS, particularly with an eye towards identifying
and mitigating potential hazards. To conceive these systems,
participants interact with an array of asset types: manufacturing
equipment, sensors, actuators, processors, and operating agents.
This investigation is structured around three specific research
questions to understand participant interaction with these assets,
and thereby shed light on design processes for cyber-physical
manufacturing systems that support RMS.

RQ1: What does the distribution, variability and prioritization
of asset types indicate about design strategies for remote
manufacturing monitoring systems?

RQ2: How might the quantity and variety of assets used reflect
on cognitive load and strategic design focus?

RQ3: How might the types and severity of hazards identified over
time reflect the intuition and perception of manufacturing
hazards and design responsibility?

The research questions will be addressed using data collected
from a design procedure conducted with participants from a man-
ufacturing demonstration facility (MDF). Manufacturing Demon-
stration Facilities (MDFs) play a critical role in fostering innova-
tive design processes that are central to the development of next-
generation manufacturing technologies. These facilities provide
the infrastructure and resources necessary for experimenting with
new design paradigms, such as additive manufacturing, digital
fabrication, and sustainable manufacturing practices [22]. In this
way, MDFs not only contribute to the advancement of manu-
facturing technology but also to the evolution of design thinking
and methodologies within the manufacturing sector. Specifically,
one of the primary functions of MDFs is to serve as testbeds
for the practical application and validation of research findings.
MDFs enable the real-world implementation of these technolo-
gies and methodologies, allowing for the assessment of their
impact on manufacturing efficiency, hazard mitigation, and sys-
tem resilience in a controlled yet realistic setting. For this reason,
the research questions provided would benefit from testing in an
MDF environment.

3. METHOD

This study employed a structured, remote design procedure to
explore the design processes and hazard identification capabilities
of professionals in a cyber-physical manufacturing environment.
Utilizing a mix of digital tools for real-time collaboration and
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Visualize your idea

Design a cyber-physical system to allow both local
monitoring and remote control of machines, facilitating

pr remote op {0 while ively
mitigating associated risks.

° Grab sensor, actuator, processor, agent, and/or
machine stickers from the dock

° Drag and drop them on the canvas

° Connect them with arrows to show how they interact

° Use at least 10 stickers and 1+ machines

The design brief and your initial idea are on the right pLCs

Your design does not need to be the same as your
idea from earlier

Remote Human Operator

\ ()] Al-Driven Control

Haas VF-5/40 «— Switches

(@ Motion Sensor

Alarm

(\, Light Sensor
/ rtory s
Logi Cllmate Actuator & - Climate Sensor

FIGURE 1: GRAPHICAL USER INTERFACE FOR TASK 2 (PARTICIPANT 2’S DESIGN SHOWN)

design visualization, the procedure was divided into five (5) key
tasks, each aimed at progressively unfolding the participants’
approach to conceptualizing, designing, and evaluating a cyber-
physical system of their own design. This approach aimed to
capture a comprehensive understanding of design strategies and
risk assessment in complex manufacturing settings.

3.1 Procedure

Six (6) participants were engaged through convenience sam-
pling, facilitated by a colleague at Oak Ridge National Labo-
ratory’s Manufacturing Demonstration Facility (ORNL’s MDF).
The sampling intentionally aimed to include participants who
could provide a wide range of expert perspectives on the design
tasks at hand. The participants were provided an optional 25-
dollar Amazon gift card for their time and efforts volunteered.
The cohort comprised a diverse mix of professionals, includ-
ing three Mechanical Engineers and three Research Staff, with a
broad age range of 21 to 50 years and varying levels of experi-
ence from 2 to 15 years. Educational backgrounds include two
Bachelor’s, three Master’s, and one Doctorate degrees, with core
backgrounds in Mechanical Engineering and Electrical Engineer-
ing. There were four male and two female participants.

The study was conducted remotely, utilizing Zoom for com-
munication and screen/audio capture. A custom graphical user
interface (GUI) was developed for the experiment in Figma. Each
session was roughly one (1) hour, and various data types were
collected. Demographic information was collected via Google
Forms. Design rationale and think-aloud comments were col-
lected through audio recordings, and written responses and digital
diagrams were created and collected using the GUI.

Participants were guided through the conceptualization and
visualization of a cyber-physical system for long-duration ma-
chining in a manufacturing environment, focusing on remote
monitoring and control to mitigate associated risks. The proce-
dural component of the study was structured into five (5) distinct

tasks, each designed to simulate various stages of conceptualiz-
ing and designing a cyber-physical system within a manufacturing
context. Before the first task, participants were primed with the
following design brief:

“Your mission is to design a cyber-physical system for
a manufacturing environment that does long-duration
machining. Your solution should offer insights into
machine operations and facilitate remote control that
can mitigate risks associated with non-human attended
long-duration machining. Production continuity with
remote human-in-the-loop control should be possible.
Your system should be designed to address the risks
inherent to machine operation, including control ac-
cess, materials, part production (manufacturing), ma-
chinery itself, adjacent machinery, personnel, and the
manufacturing environment itself.”

Task 1 (Ideation, 5 minutes): This initial phase, facilitated
through the GUI, tasked participants with conceptualizing a
cyber-physical system optimized for long-duration machining
tasks. The design brief emphasized the integration of real-time
monitoring and remote control functionalities to proactively man-
age and mitigate operational hazards. Participants were encour-
aged to consider system responsiveness across diverse operational
scenarios, mandating the inclusion of at least one primary long-
duration machine alongside optional auxiliary machinery. The
ideation outcomes were written by the participants within the
GUI, providing a textual foundation for the subsequent design
visualization task. This approach ensured that participants artic-
ulated a vision for their system.

Task 2 (Design Visualization, 20 minutes): With further in-
structions provided within the GUI, participants translated their
ideations into visual designs. They were provided with an array
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of digital stickers representing five (5) processor options (Router,
Microcontroller, PLC, Network Switch, IoT Hub), five (5) actua-
tor options (Alarm, Motor, Solenoid, Climate Actuator, Switch),
eight (8) sensor options (Button, Auditory, Motion, Pressure,
Camera/Vision, Climate, Scanning/Tracking), three (3) machine
options (Tormach 1100MX, Haas VF-5/40, Okuma MU-8000V),
and four (4) agent options (Local Human Operator, Remote Hu-
man Operator, Predefined Automation, Al-Driven Control) [23—
25]. Hovering over stickers revealed a description of the asset:
e.g., “Network Switches: connect devices, establishing a local
communication network,” “Alarms: visually or audibly alert re-
mote or local operators of undesirable conditions, such as buzzers
or LEDs,” etc.. Participants were instructed to illustrate their sys-
tem’s architecture, focusing on component interconnectivity and
overall system coherence. This visualization phase required a
minimum of ten (10) stickers and one (1) or more machines, all
connected by directional arrows encouraging a detailed portrayal
of the system’s functional and operational dynamics.

Task 3 (Hazard Identification — Un-Timed): Building on the
visual designs, participants were prompted to identify and anno-
tate potential hazards using a specific “hazard sticker” within the
GUI . This phase was aimed at evaluating the participants’ proac-
tive risk assessment mentality. By pinpointing and documenting
perceived risks, participants highlight the potential safety, secu-
rity, and operational vulnerabilities inherent to their proposed
systems.

Task 4 (Hazard Typology — Un-Timed): With hazards iden-
tified, participants engaged in a classification exercise, mapping
each identified risk to one of six predefined hazard categories.
This structured approach to hazard analysis was aimed at facil-
itating a comprehensive risk assessment. The six hazard types
participants could choose from were:

Physical: Bodily harm or injury to individuals (incl.,
respiratory, auditory, and ergonomic).

Digital: Compromise of data integrity and security
(incl., data loss and breaches).

Legal: Exposure to litigation (incl., compliance and
regulatory issues).

Social: Threats to social connections (incl., commu-
nity and workplace relationships).

Emotional: Psychological distress or trauma experi-
enced by individuals (incl., stress and anxiety).

Environmental: Impacts on manufacturing environ-
ment (incl., wastewater, toxic emissions, scrap
disposal).

Task 5 (Hazard Severity Rating): The concluding task in-
volved assessing the severity of each identified hazard using a 5-
point Likert scale within the GUI. This step allowed participants
to prioritize risks based on their potential impact, reflecting cur-
rent engineering practices where risk severity assessment plays a
crucial role in shaping system design and safety measures.

Sensors

30

Processors

Machines

Agents

Actuators

[4] 5 10 15 20 25 30

Number of Assets Used

FIGURE 2: TOTAL NUMBER OF ASSETS USED BY ALL PARTICI-
PANTS SORTED BY ASSET TYPE

IRB and Informed Consent: Ethical compliance was ensured
through IRB approval, with participants undergoing a thorough
informed consent process detailing the study’s nature, their rights,
and confidentiality measures. All data were anonymized to main-
tain participant privacy, using alphanumeric identifiers for data
attribution.

4. RESULTS AND ANALYSIS

This section presents the mostly quantitative results from
tasks 1-5. However, when there were questions about the data,
we turned to the transcript data to provide additional qualitative
insights about the findings. Findings are presented across three
key areas informed by the three RQs: the utilization of various
design assets, the impact of initial design decisions, and the evo-
lution of hazard identification over the course of the design tasks.
An examination of these aspects aim to provide insights into
the designers’ strategies and challenges in recognizing potential
hazards within the design environment.

4.1 Asset Utilization

Through examining the utilization of assets throughout the
design tasks, this study aimed to understand how participants
distributed and prioritized various assets, thereby revealing their
strategies and approaches to navigating the complex design envi-
ronment. The specific research question guiding this examination
of asset utilization was:

RQ1: What does the distribution and prioritization of asset types
indicate about design strategies for remote manufacturing
monitoring systems?

The initial examination of asset distribution and usage high-
lighted a predominant preference for sensor assets, with a total of
30 instances of use, averaging 5 instances per participant (see Fig.
2). This was closely followed by processors, which were utilized
19 times in total, with an average of 3.17 uses per participant (see
Fig. 2). Agents and actuators were equally favored, each used 17
times in total, averaging 2.8 instances per participant (see Fig. 2).
Machines were the least utilized asset type, with only 6 instances
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Light—1

Button— 4

Motion —9
Auditory —9
Pressure — 20
Camera/Vision — 20
Scanning/Tracking — 20
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Sensors

Total — 52
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Router —9
Network Switch —9
Microcontroller —9
PLC—20

Processors

Total — 52

Tormach 1100 MX — 4
Okuma MU8OOV — 5
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Machines
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Alarm — 10
Switch —13

Agents

Total — 50
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FIGURE 3: TOTAL NUMBER OF TIMES ASSETS WERE CON-
NECTED TO BY ALL PARTICIPANTS

of use, averaging 1 instance per participant (see Fig. 2). This dis-
tribution suggests a focus on sensing and processing capabilities
in the initial design stages, potentially indicating a prioritization
of information gathering and processing in managing the design
complexity.

The variability in asset usage among participants, suggests
diverse approaches to the design task. This diversity may re-
flect individual differences in tackling the design challenge, with
some participants possibly emphasizing information gathering
and analysis (as indicated by the higher use of sensors and pro-
cessors), while others may focus on action and interaction within
the design environment (as reflected in the use of agents and
actuators) (see Fig. 2 and 3).

When looking at initial asset choices, as measured by the first
three asset types used by participants—machines (10x), sensors
(5x), actuators (3x), processors (1x), and agents (0x)—a similar
preference for sensors emerges. This finding suggests that de-
signers a focus on manufacturing technologies (machines) and
situational awareness (sensors) in early design stages. Whereas,
across the entire design process, their focus centers of situational
awareness (sensors) and data processing/transfer (processors).
This choice might indicate participants’ attempts to mitigate un-
certainty in the complex design space by prioritizing assets that
provide information (sensors) and feedback (sensors and actua-
tors) about the environment and the system’s state.

The findings from the asset utilization analysis set the base-
line for understanding participants’ initial design decisions and
strategies in navigating the complex design task. The focus on
sensors and processors suggests an initial strategy oriented to-

wards information gathering and analysis, potentially shaping
subsequent design decisions and approaches to hazard identifica-
tion.

4.2 Initial Design Strategies and Task Load Management

Through examining design decisions across the discrete tasks
and thus temporally, we aimed to understand how participants
managed their design choices of a complex system under limited
time. The following research question guided this analysis of the
quantity and variation of assets data:

RQ2: How do the quantity and variety of assets used reflect on
participant cognitive load and strategic design focus?

The data revealed a notable trend towards simplification in
machine selection across participants, despite the availability of
multiple machine options. For instance, Participant 1 initially
considered a more complex setup with three (3) machines in
their written ideation, “Automated robotic cell that works with
multiple additional manufacturing cells (additive, subtractive,
etc).” During the visualization task they started by including
all three machines, but decided to simplify to a single machine
(Tormach 1100MX), remarking, “I am going to simplify. I think
I bit off more than I can chew.” This sentiment of scaling back
due to perceived complexity or time constraints was mirrored in
the choices of other participants, who all chose a single machine
in their design visualization (task 2). Participants 2, 3, 4, and 6
each used only one machine, aligning with their initial ideation,
while Participant 5, as described above, briefly considered two
machines before also reverting to a single machine choice.

This uniform trend towards single machine use suggests a
strategic prioritization of simplicity and manageability in the de-
sign process. Participants appeared to weigh the benefits of a
more complex, potentially capable setup against the risks of over-
complication and the cognitive load of managing multiple ma-
chines. This decision-making process reflects an inherent balance
between aspiration and pragmatism in design under constraints,
highlighting the importance of manageability and feasibility in
initial design decisions.

The reduction in machine variety also points to an underly-
ing strategy of focusing on core functionalities and minimizing
potential points of failure or complexity in the design. By con-
centrating on a single machine, participants could devote more
attention to optimizing and integrating this core element into their
design, rather than dividing their focus among multiple machines.

The implications of these initial design decisions due to de-
sign complexity are significant, suggesting that designers in com-
plex manufacturing environments may benefit from strategies
that allow for flexibility and iterative refinement. The tendency
to simplify under pressure underscores the need for design pro-
cesses that support gradual complexity management, enabling
designers to adapt their strategies as the design evolves and more
information becomes available.

4.3 Hazard ldentification.

The exploration of temporal shifts in hazard identification
aimed to uncover how participants’ identification of hazards
evolved throughout the design process, particularly in response
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FIGURE 4: HAZARD IDENTIFICATION ACROSS TASKS (SORTED BY PARTICIPANT AND TASK)

to prompts and the progression of the design task. The following
research questions guided this aspect of the analysis:

RQ3: How might the types and severity of hazards identified over
time reflect participant intuition and perception of manufac-
turing hazards and design responsibility?

Hazards Identification Over Time. A key finding from this
investigation was the notable increase in hazard identification fol-
lowing specific prompts within the design task. Most participants
(4) added additional hazards in task 4 after being encouraged to
label hazards in task 3, indicating that the hazard identification
process is responsive to external cues or the depth of engagement
with the design task (see Fig. 4). However, not all participants
labeled additional hazards. This suggests that hazard identifica-
tion is not merely a function of initial design analysis but evolves
dynamically as designers engage more deeply with the task and
are prompted to consider potential risks. These temporal shifts
in hazard identification highlight the dynamic nature of risk as-
sessment in design tasks, emphasizing the role of iterative review
and external prompts in uncovering a broader range of potential
hazards. It also underscores the need for design processes that
incorporate regular reassessment and allow for the gradual refine-
ment of hazard awareness, ensuring a comprehensive approach
to risk management in complex manufacturing environments.

The types and severities of hazards identified also varied con-
siderably, with a total of 87 hazards being flagged across all partic-
ipants, averaging 14.5 per participant. The distribution of hazard
types—Digital (25), Property (21), Physical (20), Environmental
(7), Legal (5), Emotional (5), and Social (4)—highlights a broad
spectrum of concerns ranging from tangible risks like Physical
and Property damage to more abstract concerns such as Digital
and Social implications (see Fig. 4). This diversity in hazard
identification reflects the multifaceted nature of risks in complex
manufacturing environments and underscores the importance of
a comprehensive approach to hazard assessment.

Intuition vs. Exploration. In exploring hazard identifi-
cation within the design process, a notable dichotomy emerged
between intuitive and exploratory approaches, as evidenced by the
participants’ engagement with the task. Figures 4 and 5 shed light
on this distinction, illustrating the number of hazards identified
by participants both before and after specific prompts within the
design task. Interestingly, those participants who perceived their

initial hazard identification as comprehensive (P2 and P3) (see
Fig. 4)—without the need for subsequent additions—exhibited
a distribution of hazard severities that approached a normal dis-
tribution (see Fig. ??). This contrasts with participants who
adopted a more iterative approach, adding additional hazards and
revisiting their hazard assessments from task 3 during task 4.
These participants (P1, P4-6) also had severity ratings that were
more akin to an inverted bell curve distribution, suggesting that
they considered severity differently from P2 and P3 (see Fig. 5)
This preliminary observation suggests a nuanced dynamic be-
tween the depth of initial hazard identification and the perception
of hazard severity, hinting at a possible correlation between a de-
signer’s confidence in their initial assessment and their sensitivity
to potential risks.

This intuitive versus exploratory dichotomy raises intrigu-
ing questions about the cognitive processes underlying design
decision-making, particularly in complex environments where
the scope and nature of potential hazards can be vast and varied.
The iterative approach, characterized by refinement and reassess-
ment, may foster a more nuanced understanding of the design
space, potentially leading to a more comprehensive identification
of hazards. Conversely, an intuitive approach, relying on initial
assessments, may reflect a designer’s confidence in their ability
to foresee and account for potential risks from the outset. How-
ever, this confidence might also lead to oversight of less apparent
hazards, underscoring the importance of balance and flexibility
in design strategies.

Participant 2’s remark, “I guess if the alarms fail or the
switches fail, if anything fails — oooph! I'm just gonna litter vul-
nerabilities all over this thing,” encapsulates the growing aware-
ness of potential hazards as the design process unfolds. This
evolution in hazard awareness points to the significant impact of
iterative review and external prompts in uncovering latent hazards
that may not be apparent in initial design assessments.

Severity of Hazard Types. The analysis of hazard types and
their perceived severities (see Fig. 5) unveils intriguing patterns in
how different hazards are recognized and prioritized by designers.
The mean severity across all participants is 3.25, and the standard
deviation is 1.26. In this way, we see that participants tend to
gravitate away from the tails of severity (not severe at all or the
most severe).

Additionally, the data reveals that participants more read-
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FIGURE 5: HAZARD SEVERITY DISTRIBUTION (SORTED BY PARTICIPANT)

ily identified Digital, Physical, and Property hazards were also
often deemed to carry higher severity (see Fig. 5). This ten-
dency suggests that hazards with more tangible or immediate
implications on system functionality and safety are more likely
to capture the designers’ attention during the design process. In
contrast, hazards classified under the Social, Legal, Emotional,
and Environmental categories were less frequently recognized,
potentially indicating a gap in the holistic assessment of risks
that encompasses both technical, environmental, and/or socio-
emotional dimensions (see Fig. 5).

Participant 6’s insights from Task 1 resonate within this con-
text. Their emphasis on simplicity— “Too many sensors over
complicate systems and make it difficult to service and keep run-
ning. Simple single purpose sensors that are resilient to failure
are the backbone of the system I will design....Closing Thoughts:
Simplicity is very important. When a system is too complicated
operator complacency can increase and make for a dangerous
environment.”—echoes the critical balance between system com-
plexity and safety. This perspective not only acknowledges the
inherent risks associated with ’overcomplication’ but also signi-
fies an early awareness of hazard implications that can manifest
from the very inception of the design process.

This disparity in hazard recognition and severity assessment
underscores the complexity of the design decision-making pro-
cess, where subjective interpretations and personal experiences
significantly influence risk perception. For instance, Participant
5’s reflection on predefined automation—“predefined automation
has social and emotional distress... that stress lives with you for-
ever”—underscores the emotional and psychological dimensions
of hazard identification. This insight highlights the personal and
subjective aspects of design decision-making, where designers
not only consider technical and functional risks but also grapple
with the personal and social implications of their design deci-
sions.

5. DISCUSSION

The intricate dynamics of hazard detection and identification un-
derscore the iterative nature of hazard identification, participants’
subjective perceptions of risk, and the challenge of managing
high dimensional systems design and their high volume of safety
needs. These themes highlight the nuanced interplay between
design complexity, safety considerations, and the cognitive load

on designers, offering insights that could inform future design
methodologies and tools in manufacturing and beyond.

Hazard Detection and Identification. Hazard identifica-
tion emerged as a highly dynamic aspect of the design process,
influenced significantly by the progression of the design task and
specific prompts. While the task was imagined with one hazard
identification stage (task 3), participants demonstrated an iter-
ative approach to identifying hazards, with their awareness of
potential risks seemingly evolving as they encountered tasks 4
and 5. This additive outcome suggests that hazard identification
is not a one-time activity but a continuous process that benefits
from regular reassessment and additional prompting.

The complexity of adding multiple systems to a design was
a recurring theme, highlighting the cognitive load and potential
for overcomplication faced by designers. This complexity under-
scores the need for design strategies that balance comprehensive
hazard identification with manageable system integration.

Such reflections illuminate the nuanced and multifaceted na-
ture of hazard identification, where designers must navigate the
delicate interplay between ensuring system robustness and avoid-
ing unnecessary complexity that could inadvertently elevate the
risk of hazards. Simplicity and clarity should be foundational
principles embedded into the design process, promoting designs
that are both functionally effective and inherently safer, thereby
aligning with the principles of human-centered design in complex
manufacturing environments.

Attitude Towards Hazards. A nuanced subjective percep-
tion of risk and severity characterized participants’ attitudes to-
ward hazards. The severity assessment of different types of
hazards—digital, physical, social, etc.—revealed varied levels
of recognition and concern among participants. Notably, tangi-
ble hazards such as physical and digital risks were more readily
identified and deemed of higher severity, suggesting a possible
prioritization of immediate, functional risks over more abstract
concerns. This discrepancy in hazard recognition underscores the
fact that not everyone comes with the same frame for what risks
are nor what the impact of any given risk is. This itself begs us
to consider the importance of research-based approaches to haz-
ard assessment, ones that strive to encompass the full spectrum
of potential risks, including those that may not be immediately
apparent, as well as ground truths on the severity of any given
risk.
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Overload of Safety Needs. The volume of safety needs
and the associated complexity of addressing them were signifi-
cant challenges for participants, particularly when considering the
integration of multiple systems. The desire to add various mech-
anisms was often tempered by realizing the inherent complexity
such additions would entail and, thus, the implicit expanded risk
surface area. This finding points to a critical tension in design
decision-making: the need to ensure comprehensive safety cover-
age while maintaining a feasible and manageable design. Design-
ers must navigate this tension, making strategic decisions about
which safety needs to be prioritized and how to integrate them
effectively without overwhelming the design or the designer.

Surprisingly, qualitative insights also demonstrated that par-
ticipants considered risk not only as an outcome that could be
experienced by the system or its users but also by the designers
responsible for the ensuing design. This finding reminds us that
the design process itself—not just the ensuing design—is riddled
with risk, and designers themselves are aware of this fact.

Implications for Design Processes. The insights gleaned
from this study have implications for design processes for com-
plex systems, especially for manufacturing environments. To
manage design complexity and enhance hazard awareness, de-
signers could benefit from iterative design strategies that allow
for regular reassessment of hazards. Furthermore, developing
design tools that support complex decision-making and provide
enhanced visualization of hazards could significantly aid design-
ers in managing the volume of safety needs and system intercon-
nectedness.

6. CONCLUSION

In conclusion, this study illuminates the intricate process of
hazard identification within the design phase of complex man-

ufacturing environments, highlighting the pivotal role of initial
design decisions and the design stage in recognizing potential
hazards. The findings emphasize the necessity of extended, it-
erative design processes and strategic planning from the outset
to improve hazard identification capabilities. Future research
should aim to expand the scope to include various machine types
and refine research methodologies to capture the nuances of
multi-system interactions, thereby enriching our understanding
of design strategies and their impact on safety in manufacturing
settings. Enlarging the sample size and diversifying participant
demographics will further enhance the robustness of these in-
sights, contributing to the development of more effective design
support tools and safer manufacturing practices.
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