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% Check for updates Recent advancements in wearable sensor technologies have enabled real-time

monitoring of physiological and biochemical signals, opening new opportu-
nities for personalized healthcare applications. However, conventional wear-
able devices often depend on rigid electronics components for signal
transduction, processing, and wireless communications, leading to compro-
mised signal quality due to the mechanical mismatches with the soft, flexible
nature of human skin. Additionally, current computing technologies face
substantial challenges in efficiently processing these vast datasets, with lim-
itations in scalability, high power consumption, and a heavy reliance on
external internet resources, which also poses security risks. To address these
challenges, we have developed a miniaturized, standalone, chip-less wearable
neuromorphic system capable of simultaneously monitoring, processing, and
analyzing multimodal physicochemical biomarker data (i.e., metabolites, car-
diac activities, and core body temperature). By leveraging scalable printing
technology, we fabricated artificial synapses that function as both sensors and
analog processing units, integrating them alongside printed synaptic nodes
into a compact wearable system embedded with a medical diagnostic algo-
rithm for multimodal data processing and decision making. The feasibility of
this flexible wearable neuromorphic system was demonstrated in sepsis
diagnosis and patient data classification, highlighting the potential of this
wearable technology for real-time medical diagnostics.

The rapid advancement of wearable sensors has revolutionized bio-
medical data collection, enabling the generation of large-scale,
unstructured data for personalized healthcare applications such as
human activity monitoring, biosignal analysis, and disease progression
tracking'”’. These devices have the potential to transform healthcare
by facilitating continuous, non-invasive monitoring of physiological
parameters including heart rate (HR), core body temperature (CBT),

and even biomolecular markers, which allows for early detection,
prevention, and management of diseases®™. Despite these advance-
ments, current wearable devices often rely on rigid electronic com-
ponents, which create critical mechanical mismatches with the soft,
flexible nature of human skin. These mismatches compromise com-
fort, signal quality, and long-term usability’°. In addition, these
devices predominantly focus on single-functionality sensing and
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isolated data stream collection, without the capability to integrate and
analyze the dynamic interactions of multimodal physiological signals,
limiting their potential for delivering comprehensive health
insights™ >,

The increasing complexity and volume of biomedical data also
present substantial challenges. Traditional computing technologies
struggle with the scalability needed to process these vast datasets
efficiently, often requiring high power consumption and dependence
on external internet resources. This reliance introduces risks related to
data security and privacy, especially when sensitive biomedical infor-
mation is transmitted to remote servers®. Furthermore, the use of
rigid, silicon-based computing components exacerbates issues of
mechanical compatibility, further reducing wearability and limiting
long-term user comfort*>?,

Brain-inspired computing technologies, such as neuromorphic
systems, offer an exciting avenue for addressing these limitations. By
emulating the brain’s complex neural architecture, neuromorphic
systems enable efficient, large-scale data processing with reduced
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Fig. 1| All-printed chip-less wearable sensor-processor integrated neuro-
morphic system (CSPINS) for multimodal health monitoring. a Schematic
illustrations of the wearable CSPINS, designed to collect, process, and analyze
multimodal physicochemical data for real-time medical decision-making. b Layered
architecture of CSPINS, consisting of a multimodal physical sensing layer, a com-
plementary circuit amplifier layer, and a synaptic sensing and neuromorphic pro-
cessing layer. ¢ Data flow within CSPINS, detailing the stages of signal transduction
and processing of synaptic biochemical sensors (i), core body temperature sensor
(i), heart rate sensor (iii), as well as computing and decision-making operations (iv).

—@ .

power consumption®2, However, their application in wearable tech-
nologies has been hindered by substantial resource demands, high
fabrication costs, and the complexities of integrating flexible materials
and multifunctional  devices with advanced computing
architectures®**,

These gaps underscore the strong need for next-generation
wearable systems that seamlessly integrate multimodal sensing with
advanced cascading data processing capabilities to deliver persona-
lized, real-time healthcare insights. Such systems must overcome
current limitations in scalability, power consumption, and mechanical
compatibility while providing secure, on-body computing solutions
for continuous monitoring and medical decision-making.

In this study, we introduce a chip-less wearable sensor-processor
integrated neuromorphic system (CSPINS) that can simultaneously
collect, process, and analyze multimodal physicochemical biomarker
data in real time for personalized healthcare applications (Fig. 1a).
CSPINS features a neuromorphic processing layer composed of arrays
of artificial synapses and nodes, forming a lightweight, skin-conformal
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IN, input; OUT, output; GND, ground; Vpp, positive supply voltage; V), drain vol-
tage; Vi, weight-control voltage. d Scalable fabrication of the wearable neuro-
morphic device using inkjet printing with a variety of organic and inorganic
nanomaterial inks. PI, polyimide; PET, polyethylene terephthalate; MWCNTS, multi-
walled carbon nanotubes; SWCNTs, single-walled nanotubes; P3HT, poly(3-hex-
ylthiophene). e Optical image of the wearable neuromorphic processor attached on
skin. Scale bar, 1 cm. f Optical image of the fully assembled CSPINS, featuring
integrated physicochemical health sensors and processing units. Scale bar, 1cm.
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Fig. 2 | Design and characterization of the synaptic biochemical sensors.

a Schematic design of the enzymatic synaptic biosensors. RE, reference electrode.
b Redox reaction mechanism of the synaptic biosensors: oxidases catalyze the
oxidation of target molecules, producing H,O,. This is subsequently catalyzed by Pt
or Prussian blue (PB) nanoparticles, resulting in the formation of oxygen or
hydroxide radicals, respectively. These reactions facilitate electron donation or
withdrawal from Au electrodes, generating synaptic currents. ¢ Optical microscopy
image of the synaptic biochemical sensor. d Scanning electron microscopy (SEM)
image of a PB nanoparticle-coated Au electrode. Similar morphological features are
observed at more than five locations in each of the three independently prepared
samples. Scale bar, 400 nm. e, fResponses of the lactate (e) and glucose (f) synaptic
sensors in target analyte solutions. Redlines in (e and f) indicate a linear fit. The
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measure of center is represented as the mean, and the error bars indicate the
standard deviation (s.d.) from three sensors. g, h Excitatory postsynaptic current
(EPSC) response of the lactate (g) and glucose (h) synaptic sensors under varied
target analyte concentrations. i, j Long-term potentiation/depression (LTP/D)
response of the lactate (i) and glucose (j) synaptic sensors under varied target
analyte concentrations. k EPSC response of lactate synaptic sensor in the presence
of lactate (Lac) and biochemical interferences, including ascorbic acid (AA)

(60 uM), uric acid (UA) (0.3 mM), urea (5 mM), and glucose (Glu) (4 mM). 1 EPSC
response of the synaptic glucose sensor in the presence of glucose and biochemical
interferences, including ascorbic acid (AA) (60 uM), uric acid (UA) (0.3 mM), urea
(5 mM), and lactate (4 mM).

platform that enables on-body data collection, processing, and deci-
sion making without reliance on external computing resources
(Fig. 1b). By seamlessly integrating multimodal sensing—including HR,
CBT, and biochemical analytes—with on-body neuromorphic proces-
sing, CSPINS provides autonomous, efficient, and real-time healthcare
monitoring and analysis.

Results and discussion

To achieve efficient analog computation in a miniaturized form,
CSPINS employs various signal transduction, processing, and com-
puting strategies (Fig. 1c). The system incorporates synaptic bio-
chemical sensors that directly convert molecular signals into analog
currents (synaptic currents), eliminating the need for complex digital
circuits and ensuring high-accuracy biochemical detection. A synaptic
processor coupled with a dual-sensor design simultaneously measures
both skin and device surface temperatures, enabling accurate calcu-
lation of CBT using a single-heat flux model®. In addition, an on-body
HR encoding system converts the mechanical pulse from the skin into
analog synaptic currents, providing a robust means for real-time car-
diovascular monitoring. The accumulated analog signals from these
multimodal sensors are processed through a synaptic node circuit that
performs decision-making based on optimized threshold levels and
biologically inspired connections. These design features collectively
make CSPINS a versatile, autonomous tool for continuous and inte-
grated health monitoring.

The components of CSPINS—including all artificial synapses,
memristors, resistors, and capacitors required for the node circuit—are
fabricated using scalable inkjet printing technology on thin, flexible
polymeric substrates, leveraging customized organic and inorganic ink
formulations (Fig. 1d, Supplementary Table 1, and Supplementary
Figs. 1and 2). The fully assembled system, comprising printed synaptic
molecular sensors, neuromorphic processors, amplifiers, and 3D-
printed physical sensors, is mechanically flexible and adheres well to
the skin (Fig. 1e, f and Supplementary Fig. 3). To demonstrate the
functionality and transformative potential of CSPINS, we successfully
applied it to the diagnosis and classification of sepsis by analyzing
clinical data from healthy participants and patients with varying stages
of sepsis, highlighting its ability to enable real-time healthcare diag-
nostics and personalized medical interventions.

Artificial synapse for biomolecular data collection
and processing

A key component of the CSPINS is synaptic biochemical sensors, which
directly convert biomolecular marker levels into computable analog
signals (Fig. 2a). These sensors utilize a transistor-type synapse that
modulates gate potential to induce substantial changes in channel
current, generating an analog signal due to the inherent latency
between channel and gate?®°*¢, By functionalizing the gate electrode
of a synapse with an enzymatic signal transduction layer, we achieve
real-time conversion of biocatalytic reactions into synaptic currents.
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The artificial synapse-based sensor employs Prussian blue nano-
particles (PBNPs) or platinum nanoparticles (PtNPs) as the mediator to
catalyze the redox reaction of hydrogen peroxide generated in the
oxidase-catalyzed reactions (Fig. 2b). PB reduces H,0, to hydroxide
ions, while Pt oxidizes H,0, to produce oxygen. These reactions gen-
erate opposite electron flows between the mediator layer and the Au
electrode, causing chemically induced potential changes that effec-
tively modulate the synaptic current.

To fabricate the synaptic biochemical sensor, inkjet-printed Au
and Ag electrodes, along with interconnects, were patterned on a
polyimide (PI) substrate (Supplementary Fig. 4). The synaptic channel,
composed of a p-type material combining single-walled carbon
nanotube (SWCNT) and poly(3-hexylthiophene) (P3HT), was printed
and precisely separated from the gate electrode by plasma etching to
remove any unintended residues (Supplementary Fig. 5). The PB or Pt
mediator layer and a chitosan/enzyme film were immobilized onto the
Au electrode, followed by the printing of a photo cross-linkable ion gel
as the gate dielectric (Fig. 2c and Supplementary Fig. 6). Scanning
electron microscopy (SEM) confirmed the uniform coverage of PBNPs
or PtNPs on the Au surface (Fig. 2d and Supplementary Fig. 7).

The electrical transistor characteristics and synaptic plasticity of
the device were validated by applying voltage pulses to the gate
terminal (Supplementary Fig. 8). The SWCNT/P3HT heterostructure
exhibited stable current characteristics above 0.1 uA at a neutral vol-
tage of O V, owing to the high conductivity of SWCNTSs. In addition, the
inherent ion-permeability of P3HT enabled synaptic properties such as
excitatory/inhibitory postsynaptic currents (EPSC/IPSC) and long-term
potentiation/depression (LTP/D) under voltage pulses.

Lactate oxidase (LOx) and glucose oxidase (GOx) were functio-
nalized on the sensor to target key molecular biomarkers lactic acid
and glucose, respectively. To evaluate sensor performance,
phosphate-buffered saline (PBS) solutions with varying target con-
centrations (0-8 mM) were applied to the functionalized gate while
operation pulses were applied (Fig. 2e, f and Supplementary
Figs. 9 and 10). The synaptic biosensors showed linear relationships
between baseline current and target concentrations at V=0V
(Fig. 2g, h). In addition, synaptic current changes in response to target
concentrations were recorded, demonstrating that LTP/D character-
istics vary proportionally with analyte levels (Fig. 2i, j). Enzymatic
reaction-induced potential changes substantially impacted peak and
retention currents, proving that the synaptic biochemical sensor can
successfully convert and amplify analyte concentrations into analog
signals. Furthermore, the sensor showed high selectivity for the target
molecule even in the presence of potential biochemical interferences,
such as ascorbic acid, uric acid, and urea (Fig. 2k, | and Supplementary
Fig. 11), and demonstrated high repeatability and long-term stability
through extended testing (Supplementary Fig. 12).

The thickness of the PB layer plays a critical role in determining
sensing performance, with thinner PB layers yielding higher sensitivity
(Supplementary Fig. 13). In addition, replacing PBNPs with PtNPs and
employing n-type semiconductor channel (In,O;) reversed the elec-
tron flow, resulting in an opposite potential change while preserving
the positive relation between target concentration and device current.
This approach enables the development of high-performance n-type
transistor biosensors (Supplementary Fig. 14). These findings demon-
strate the versatility of the system, as a wide range of biochemical
signals can be targeted and converted into current variations suitable
for use in diverse analog processing applications.

Wearable analog processor for core body
temperature monitoring

CBT is a critical physiological parameter that reflects the body’s
internal thermal state. It plays a fundamental role in maintaining
homeostasis and provides valuable insights into physiological pro-
cesses, overall health status, and potential disease conditions®*",

However, accurate CBT measurement remains highly challenging for
conventional wearable devices due to the variability of skin tempera-
ture, which can be substantially lower than CBT and is easily influenced
by environmental factors® . In CSPINS, we addressed this challenge
by implementing a CBT mining strategy leverages the analog compu-
tational capabilities of artificial synapses (Fig. 3a). CBT is determined
using a single-heat flux model®* that accounts for the temperature
gradient between the skin and the surface of the wearable device:
CBT= Tskin + (Tskin - TAI) X skin/Rdeuicer where Tskin and TAI represent the
interfacial temperatures of the skin-device interface and the device-
ambient interface, respectively, and Ry, and R ze ice denote the thermal
resistances of the skin and the device. To implement this model, we
developed a wearable device that integrates two temperature sensors
with a synaptic calculator (Fig. 3b).

The temperature sensors were fabricated using inkjet-printed wavy
MXene lines, which exhibited substantial resistance changes in response
to temperature variations (Fig. 3¢, d and Supplementary Fig. 15). These
sensors convert temperature into a voltage signal via a voltage divider
circuit with thin and long Au lines reference resistors. Two identical
temperature sensors, separated by a 2-mm PDMS thermal resistor, were
used to measure T, and T4. The thermal resistance ratio between the
skin and the device in the system was measured to be 1.2 (Supplementary
Table 2), consistent with known thermal properties of PDMS and skin.
For CBT calculation, we employed an inkjet-printed multi-gate ion-gel
synapse capable of dynamic weight updates at each gate terminal by
modulating the effective gate area (Supplementary Fig. 16).

The MXene line resistance decreased linearly from 8.8kQ to
4.4 kQ as the temperature increased from 20 °C to 50 °C, whereas the
Au reference resistor remained stable (Fig. 3e). This resistance varia-
tion produced a corresponding voltage output ranging from 3.1V to
3.9V (Fig. 3f), which was fed to the gate terminal of the ion-gel synapse
to generate an analog thermal signal (Supplementary Fig. 17). Given the
narrow temperature range for CBT (30-40 °C), the analog signal was
amplified and precisely processed for improved accuracy. The LTP/D
curves of the synapse under potentiation and depression pulses
(Fig. 3g) achieved up to fivefold amplification through multiple pulses.
The relationship between temperature, voltage, and synaptic current
was further analyzed under varying pulse conditions, confirming a
consistent, linear response (Fig. 3h and Supplementary Fig. 18).

The synapses performed arithmetic operations on synaptic cur-
rents by utilizing separate gate electrodes for positively and negatively
charged ion movements (Fig. 3i). Additive currents were generated
with simultaneous potentiation pulses, while subtractive currents were
achieved by combining potentiation and inhibitory pulses. CBT mining
was executed by connecting the Ty, and T, nodes to a multi-gate
synapse, which implemented the calculation through sequential bio-
signal input (Fig. 3j). The process involved three initial pulse input to
encode the term (Tsxin = Tar) X Rskin/Raevice followed by three additional
updates to add T;,. The computed CBT values showed high con-
sistency across various indoor or outdoor conditions and different
body locations. The system used three pulses to achieve sufficient
synaptic current changes greater than 10 pA.

The CBT mining device maintained reliable performance during
dynamic activities, including transitions between indoor and cold
outdoor environments and during light or high-intensity exercises
(Fig. 3k). The accuracy of CBT measured from the wearable analog
processor showed strong agreement with both mathematically calcu-
lated CBT values and medical-grade armpit thermometer readings,
confirming the device’s robustness and practical utility.

Wearable analog processor for heart rate encoding
Cardiovascular signals, such as HR, are vital for real-time assessment of
heart and circulatory system health, playing a crucial role in the early
detection of and response to physiological abnormalities*®. While
many wearable sensors can collect cardiovascular signals, accurately
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resistances of the skin and the device, respectively. Inset, optical image highlighting
key components including Au reference lines and temperature-sensitive MXene
lines. Similar morphological features are observed at more than five locations in
each of the three independently prepared samples. Scale bar, 200 pm. b Detailed
schematic of the wearable CBT monitoring system with operational details. Input
voltages are set at Vi, =—7.5V and V,4,=7.5V. Voyr« and Vgyr. represent the
synaptic inputs corresponding to Tg;, and T,. ¢ SEM images of the inkjet-printed
MXene line surface. Scale bars, 200 pm (Left) and 1 pm (Right). d Thermal and
optical (inset) images of the wearable CBT monitor attached to human skin. Scale
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the mean from 5 synaptic transistors. i Additive and subtractive characteristics of
the synaptic calculator with two biosignal input terminals. j Real-time biosignal
input plots obtained from attaching CBT sensors to various body parts in different
environments. k Dynamic temperature plots recorded over a 2 h period, including
Tsxin, Ta, mathematically calculated CBT based on sensor readings (T,4), and
synaptic CBT output (7gnqpse), and CBT values measured using a medical-grade
armpit thermometer (7).

translating their frequency-based information into usable electrical
signals without relying on conventional rigid, complex, and high-
power-consuming circuits remains highly challenging'?. To address
this, we developed a wearable analog processor that amplifies elec-
trical signals generated by pressure-sensitive materials and processes
them as synaptic current signals using neuromorphic devices (Fig. 4a).

The periodic oscillations generated by the heartbeats cause
resistance changes in the conductive sponge, which are converted into
voltage pulses via a voltage divider circuit. These resulting voltage
pulses are amplified by complementary circuitry printed on a flexible
substrate and subsequently converted into PSCs by an ion-gel-gated
synapse. The synapse mimics the millisecond-scale operation of
human synapses by inducing rapid ion accumulation or dissociation at
the channel and gate electrodes in response to voltage pulses. The
measured PSC changes increase proportionally with higher input pulse
frequencies (Supplementary Fig. 19).

Heartbeat signals were detected using a 3D-printed conductive
sponge-based pressure sensor made from a multi-walled carbon
nanotubes/PDMS composite (MWCNT/PDMS) (Fig. 4b, ¢ and Supple-
mentary Fig. 20)*. The porous sponge structure exhibits high sensi-
tivity to pressure changes (Fig. 4d and Supplementary Fig. 21), allowing
it to convert minor skin deformations from the expansion and con-
traction of blood vessels into a~5% resistance change (Fig. 4e). To

validate the sensor’s accuracy, we simultaneously attached a com-
mercial HR sensor and the conductive sponge to a human subject. The
sponge successfully converted heartbeats into resistance and voltage
signals corresponding to 80-160 beats per minute (BPM) (Fig. 4f and
Supplementary Fig. 22), showing strong agreement with the readings
from the commercial HR monitor (Fig. 4g).

A voltage divider circuit, designed with inkjet-printed MWCNTs
reference resistors (Supplementary Fig. 23), converted the resistance
change into voltage pulses. Optimized with a supply voltage of —-10V
and a reference resistance of 12 kQ, the circuit ensured compatibility
with the sponge’s resistance change. A multi-stage amplifier circuit
further increased the voltage signal amplitude, enabling reliable PSC
generation (Supplementary Figs. 24 and 25). The overall system
effectively transformed cardiovascular signals (Fig. 4e) into voltage
pulses (Fig. 4f), which were then processed by the synapse (Fig. 4h).

The HR signal processing unit operated on a 10-second data input
cycle and a 0.5-second reset period. As HR increased, more pulse sig-
nals were delivered to the synapse during the biosignal input window,
resulting in higher PSC values (Fig. 4i). A linear relationship between
PSC changes and HR was observed across a range of 55-160 BPM
(Fig. 4j). To assess real-time performance, the system was tested
alongside a commercial HR monitor during rest and intense exercise
over a 2-hour period (Fig. 4k). The synaptic PSC changes closely
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Fig. 4 | Design and characterization of the wearable processor for heart rate
(HR) monitoring. a Schematic illustration of the wearable HR monitoring system,
which translates cardiovascular signals into synaptic currents. b Schematics of the
HR processing module components, comprising the receptor (pressure-sensitive
sensor) and processor (synaptic device). ¢ Optical images of a wearable HR pro-
cessing module, showing the integration of skin-attached receptors and pro-
cessors. Scale bar, 1 cm. d Calibration plot of the conductive sponge-based pressure
sensor under varying pressure levels. I and I, represent the current responses under
applied pressure load and baseline (no pressure load), respectively. Error bars
represent s.d. of the mean from 5 different samples. V=1V, I, ~ 26 pA. e Resistance
variations of the conductive sponge under different body conditions. R and Rq
represent the resistance under exercise and at rest, respectively. Ry - 38 kQ. BPM,

beats per min. f Voltage signal output after processing the resistance changes
through the amplifier circuit. g Calibration curve correlating the frequency of the
amplified voltage pulses with a commercial HR monitor. h Characterization of the
PSC changes during HR module operation, with readings taken after 3 s of biosignal
input, followed by a reset. i Real-time PSC changes updated under varying body
conditions. Inset numbers were collected using a commercial HR monitor.

j Calibration curve comparing PSC changes from the synaptic HR processor with
readings from the commercial HR monitor. Error bars represent s.d. of the mean
from 5 repeated measurements. k Continuous 2 h HR monitoring with a commer-
cial HR monitor (black) and the wearable synaptic HR processor (red) during var-
ious activities performed by the subject.

tracked HR variations, demonstrating the wearable analog processor’s
ability for real-time cardiovascular signal processing and monitoring.

Wearable synaptic node for neuromorphic signal
processing

Analog signals inherently carry extensive information, yet to enable
computation with these signals, devices capable of making binary
decisions (e.g., ‘0" and ‘") are essential**. In biological systems, the
human neural network processes analog signals accumulated in
synapses through neurons based on threshold firing properties
(Fig. 5a). Mimicking this behavior, the development of the synaptic
node is a critical step toward precise data processing of accumulated
analog signals and enabling neuromorphic computing.

Here, we present a wearable synaptic node circuit that generates a
decision signal when accumulated synaptic currents surpass a
threshold, achieved via the on/off switching behavior of a memristor
(Fig. 5b). The node circuit, including its memristor, resistors (Ro and
R;), and capacitors, was fabricated on a thin PI film via inkjet printing
(Supplementary Fig. 26). The memristor, a central component, fea-
tures a vertical crossbar structure of Au/Nafion/Ag, leveraging Nafion
for its excellent mechanical flexibility and compatibility with scalable
solution-based printing processing (Supplementary Fig. 27). When the
voltage between Au and Ag exceeds the memristor’s switching voltage,
Ag ions migrate through the proton-conducting Nafion layer, forming

conductive filaments that transition the device from a high-resistance
state (HRS) to a low-resistance state (LRS) (Fig. 5c). When the voltage
decreases, the filaments dissolve, returning the memristor to HRS.

To ensure optimal charging and discharging behavior of the node
circuit, the resistances of inkjet-printed MWCNTSs resistors Ry and R;
were tuned to 30 kQ and 200 kQ, respectively (Fig. 5d). The memris-
tor’s switching voltage was fine-tuned between 0.1 and 16 V by opti-
mizing the Nafion thickness and Ag line width (Fig. 5e, f and
Supplementary Figs. 28, 29). The circuit’s performance was evaluated
by applying 10 Hz input pulses with increasing amplitude (0-20 V) and
measuring the output signal (Fig. 5g, h). As the capacitor accumulated
charge, the voltage increased until the memristor’s switching thresh-
old was reached, at which point the memristor transitions to LRS,
causing a rapid voltage to increase at the output terminal (Supple-
mentary Fig. 30). The threshold voltage of synaptic node closely
matched the memristor’s switching voltage, showing a voltage
increase exceeding 10 x upon activation.

To demonstrate analog computing capabilities, we integrated the
synaptic device with node circuits set to have distinct threshold levels.
A set of read voltages (1V) and potentiation/depression voltage pulses
(+2.5V) were applied to the synapse’s gate electrode (Fig. 5i). The
synapse conductance varied between 0.2 to 27.1 mS, with the thresh-
old levels of low-set node and high-set node estimated at 2.3 and
3.1 mS, respectively (Fig. 5j). The corresponding output signals of the
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different threshold voltages. Memristor switching voltages were set to 2V (e) and
0.3V (f), respectively, by adjusting Nafion thickness and Ag line width. g, h Input vs.
output voltage plots of the node circuits incorporating memristors with switching
voltages of 2V (g) and 0.3V (h). i Configuration of input pulse signals applied to
the weight-control terminal (black) and read terminal (red) of the synapse-node
integrated device. j Real-time conductance change in the synaptic channel and
threshold levels of two node circuits with distinct threshold settings. k, I Real-time
node output recorded from a high-threshold node (k) and a low-threshold node (I).

high-set and low-set nodes are shown in Fig. 5k, . When the synapse
conductance was below the threshold, the node output remained
negligible at sub-mV levels. However, once the threshold was excee-
ded, the output generated a distinct output pulse of 0.15V.
Importantly, the synapse-node integrated circuit demonstrated
excellent mechanical flexibility and electrical durability, ensuring reli-
able performance in wearable environments (Supplementary
Figs. 31 and 32). Our synaptic nodes function as threshold-based pro-
cessors, offering greater adaptability and suitability for wearable
devices compared to conventional complementary metal-oxide semi-
conductor (CMOS) circuits. This design enables for the seamless
integration of diagnostic algorithms, representing a key advancement
in developing hardware neural networks capable of analog signal
processing for wearable neuromorphic computing applications.

Wearable neuromorphic system for sepsis diag-
nosis and monitoring

The development of CSPINS integrates advancements in sensor tech-
nology, processing units, and neural networks outlined in the pre-
ceding sections, resulting in a compact and wearable system tailored
for medical applications such as sepsis diagnosis and monitoring.
Sepsis, a life-threatening condition caused by bacterial infections, is
classified based on symptoms including fever, elevated HR, and the
bacteria infection in the bloodstream (reflected by elevated lactate
levels) (Fig. 6a)***. Prompt diagnosis and continuous monitoring are
critical for effective management and differentiation from other con-
ditions with similar symptoms. To demonstrate its clinical utility,

CSPINS has been engineered for sepsis diagnosis and monitoring,
enabling multiplexed sensing of lactate, CBT, and HR, and processing
this multimodal data through synaptic circuits and neuron-like deci-
sion units for real-time clinical decision-making.

To validate the use of CSPINS for sepsis diagnosis, we obtained
data from 10 human subjects involving healthy participants and
patients**” with diagnosed systemic inflammatory response syn-
drome (SIRS), sepsis, and septic shock (Fig. 6b-d and Supplementary
Table 3). Clinically, sepsis is typically diagnosed when SIRS, defined as
afever of 37.5 °C or higher and a HR of 90 BPM or greater, results from
a microbial infection (reflected by lactate level higher than 2 mM)**4,
In addition, a lactate concentration higher than 4 mM is used as a
prognostic diagnostic factor for septic shock***. Using this informa-
tion, we implemented a simplified medical algorithm for sepsis diag-
nosis based on HR, CBT, and lactate concentration (Fig. 6e). This
algorithm is implemented using a hardware neural network consisting
of four synapses and five synaptic nodes. All sensors, amplifiers, and
neuromorphic processing circuits are printed and integrated into a
single wearable CSPINS device (Supplementary Figs. 33 and 34). The
biocompatibility of the CSPINS components was further confirmed
through a cell-growing cytotoxicity test (Supplementary Fig. 35).

For validation, biomarker data (HR, CBT, and lactate) from the
healthy and patient participants were simulated as voltage signals and
input into the synaptic circuits of CSPINS. The synaptic currents and
thresholds of nodes were defined based on validated data (threshold
APSC: nodes 1, 2, and 5—17 pA; node 4—10 pA). The pulse signal required
to operate both the sensor, and the processing circuits share the same
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diagnosis algorithm implemented in CSPINS, supported by a synapse-node network
circuit design for real-time decision-making. f Signal outputs from four terminals in

response to input data from healthy participants and patient cases, showing distinct
responses for different conditions. g Evaluation results of the wearable CSPINS system
after validation test, demonstrating its diagnostic performance for sepsis classification.

frequency (2 Hz), ensuring that the synaptic currents remain synchro-
nized within 1-20 pA level. The PSC values and output signals of each
synapse and node are demonstrated in Fig. 6f, g, and Supplementary
Table 4. The neural network’s decision-making process relied on nodes 3
through 5, which were responsible for identifying SIRS, sepsis, and septic
shock, respectively. Healthy cases showed no output activation, SIRS
cases activated node 3, sepsis cases triggered nodes 3 and 4, and septic
shock cases activated all three synaptic nodes. The CSPINS demon-
strated accurate diagnostic capabilities (Fig. 6g), leveraging its hardware
neural network to efficiently process large volumes of biomarker data in
real time. In addition, after incorporating 11 common non-inflammatory
cases, such as hypertension and diabetes, we conducted a diagnostic
simulation (Supplementary Tables 5 and 6). The results confirmed an
overall accuracy of 84.4%, as evidenced by the confusion matrix (Sup-
plementary Fig. 36). Finally, the estimated power consumption of
CSPINS was comprehensively evaluated in Supplementary Fig. 37 and
Supplementary Tables 7 and 8. The power required for processing a
single case was 37.6 pW for synaptic operations and 5.3 mW when con-
sidering the entire system, demonstrating higher power efficiency
compared to conventional medical diagnostic systems**%. Notably, even
a small communication module in commercial wearable devices requires
power in the mW range, further emphasizing the energy efficiency of
CSPINS. These findings reinforce the feasibility of CSPINS for con-
tinuous, low-power health monitoring. It is important to note that while
our current system relies on fixed threshold values, future iterations
could incorporate adaptive threshold tuning via electrical control,
enabling dynamic response adjustments over time. In addition, inte-
grating motion recognition and temporal information processing could
further enhance diagnostic accuracy, ensuring robust and reliable clas-
sification even in real-world, ambulatory settings.

In this work, we have developed a fully integrated, chip-less
wearable neuromorphic system that combines advanced sensor
technologies, analog processors, and hardware neural networks to
enable real-time biomedical signal processing and clinical decision-
making. By leveraging scalable inkjet printing fabrication techniques,
we designed and manufactured flexible and skin-conformal devices
capable of continuous multimodal sensing and on-device computing.
CSPINS demonstrates the ability to collect and process diverse multi-
modal physiological data—including molecular biomarker levels, CBT,
and HR—through a network of artificial synapses and neuron-inspired
circuits, providing a robust platform for wearable healthcare applica-
tions. Furthermore, the integration of synaptic processors within
wearable systems offers new possibilities for real-time, energy-effi-
cient, and secure biomedical computing. We successfully validated
CSPINS for sepsis diagnosis and monitoring, showcasing its capability
to integrate diverse biomarkers into a simplified medical algorithm
implemented via a neuromorphic processor. By overcoming key
challenges such as mechanical flexibility, signal variability, and scal-
ability limitations, CSPINS offers a transformative solution for real-
time, accessible, and low-cost diagnostic tools. This scalable, low-cost
approach not only enhances usability but also opens pathways for
addressing other complex medical conditions, positioning CSPINS as a
versatile platform for advancing wearable healthcare technologies.

Methods

Materials

To fabricate the electrodes of each sensor and processor circuit,
commercial gold ink (Drycure Au-J 0410B) and silver ink (Metalon® JS-
A102A) were purchased from C-INK Co. Poly(3-hexylthiophene-2,5-
diyl) regioregular (P3HT), Nafion solution, chitosan, poly(ethylene
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glycol) diacrylate (PEGDA), 2-hydroxy-2-methylpropiophenone
(HOMPP), indium nitride hydrate and poly(4-vinyl phenol) (PVP),
poly(melamine-co-formaldehyde) (PMF), and propylene glycol methyl
ether acetate (PGMEA) were purchased from Sigma Aldrich Inc.
Semiconductive single-walled carbon nanotubes (SWCNTs) and
metallic multi-walled carbon nanotube (MWCNTSs) were sourced from
Nanolntegris co. 1-2 dichlorobenzene, 1-cyclohexyl-2-pyrrolidinone
(CHP), SU-8 2000 solution, 2-methoxyethanol (2MeOH) and bis(tri-
fluoromethylsulfonyl)azanide;1-ethyl-3-methylimidazol-3-ium [EMIM]
[TFSI] ionic liquid (IL) were purchased from Fisher Scientific Co.
Flexible substrates including polyimide (PI) and polyethylene ter-
ephthalate (PET) films were purchased from Kapton®. To print our
electronic devices, an inkjet printer of Dimatix Materials Printer DMP-
2850 equipped with SAMBA cartridges was employed.

Preparation of artificial synapse

Before printing the Au electrodes, the PI substrate was cleaned with
oxygen plasma for 15min. The commercially available Au ink was
printed precisely at a plate temperature of 45°C. Next, SWCNT ink
(0.05 mg ml* concentration in CHP) was patterned, and the substrate
was dried at 180 °C for 30 min. P3HT ink with 7 mg ml* concentration
in 1-2 dichlorobenzene was subsequently printed and dried under a
nitrogen-purged acryl box for 12h at room temperature. Residual
SWCNTs were removed using 15 min of oxygen plasma treatment.
Finally, the ion-gel ink (ratio of IL:PEGDA:HOMPP = 22:2:1 and added 10
w% of isopropyl alcohol to control the viscosity) was printed at 50 °C
and cured under ultra-violet light exposure for 10 s.

Fabrication and characterizations of synaptic biochemical
sensors

An electrochemical workstation (CHI 760E, CH Instruments) was used
to functionalize the gate electrode of the P3HT synaptic transistors
and the In,05 transistors. Prussian blue nanoparticles (PBNPs) were
deposited onto the gold gate electrode of P3HT synaptic transistors by
applying potential steps cycles (- 0.2 V versus Ag/AgCl for 1s, 0.3V for
15,10 cycles) in a solution containing 2.5 mM FeCl;, 2.5 mM K;Fe(CN),,
100 mM KCl and 100 mM HCI. Pt nanoparticles (PtNPs) were deposited
onto the gold gate electrode of In,0; transistors through chemical
reduction in a solution of 2.5mM H,PtClg and 1.5mM formic acid
(-0.1V versus Ag/AgCl for 700 s) to form the PtNPs-coated gold gate
electrodes. Before enzyme deposition, the electrodes were dried, and
2l of glucose or lactate enzyme cocktail (40 mg enzyme dissolved in
1ml PBS) was drop-cast onto each functionalized gate electrode sur-
face. The electrodes were dried overnight at 4 °C. The Ag/AgCl refer-
ence electrode was prepared by drop-casting 0.5 pl of 0.1 M FeCl; onto
the silver surface for 40 s, followed by rinsing with deionized water.

Preparation of amplifiers

The amplifiers were patterned through sequentially printing of gold,
SWCNT, cross-linked PVP, MWCNTSs, and an additional gold layer using
a DMP-2850 printer. The gold substrate was first printed to form the
connections and transistor channels, followed by annealing in an oven
at 180 °C for 30 min. Next, the SWCNT layer was printed and annealed
on a hotplate at 180 °C for 30 min. Dielectric layers were fabricated by
printing PVP ink (doped with 1.25% v/v polymer ion liquid) layer by
layer. After printing each layer, the patch underwent soft baking in an
oven at 180°C for 30s. Upon completion of all layers, the PVP
dielectric was cross-linked and annealed on a hotplate at 180 °C for
40 min. Subsequently, the MWCNTSs were patterned in specific regions
to form the resistors. Finally, an additional gold layer was printed on
top of the cPVP dielectric layer to complete the amplifier structure.

Preparation of synaptic node circuit
A Nafion ink, composed of Nafion, ethanol, and ethylene glycol in a
1:1:2 ratio, was printed onto pre-patterned Au electrodes. A total of 12

layers of Nafion ink were printed in three cycles, with the water content
of the memristive channels controlled by drying at 120 °C for 10 min
between each printing cycle. For samples requiring interconnections
with other circuits, SU-8 insulating layers were printed at the antici-
pated electrode intersection points to prevent short circuits. The
samples were then dried at 180 °C for 30 min.

Subsequently, the dried samples underwent oxygen plasma
treatment for 15 min to equalize surface energy. MWCNT ink was then
printed under optimized conditions to achieve the desired resistance
level. Finally, silver patterns were printed onto the dried Nafion layer,
and the entire sample was dried again at 180 °C for 30 min to complete
the fabrication process.

Cytocompatibility test of CSPINS

Normal Adult human dermal fibroblasts (HDFs) cells (Lonza) were
cultured under 37 °C and 5% CO, and subcultured at 70% confluence.
Cells at passages 4 to 6 were used. The CSPINS patch was washed with
70% ethanol and transferred to 24-well cell culture inserts. HDFs were
seeded at a density of 1x10° cells per well, and the inserts were then
placed in cell-seeded wells. The cells were then treated with fibroblast
basal medium supplemented with fibroblast growth kit components
(ATCC) and incubated at 37 °C and under 5% CO, during the study.
Inserts without CSPINS served as controls. Cell viability and metabolic
activity were evaluated using a LIVE/DEAD™ Viability/Cytotoxicity Kit
(Invitrogen) and PrestoBlue assays (Thermo Fisher Scientific), respec-
tively. For the live/dead assay, live cells were stained green (calcein-
AM) and dead cells red (ethidium homodimer-1) and imaged with a
ZEISS Axio Observer inverted microscope. In the PrestoBlue assay,
500 ul of medium with 10% v/v PrestoBlue reagent was added per well,
incubated for 45 min at 37 °C, and transferred to a 96-well plate for
fluorescence measurement (ex 540 nm/em 590 nm) using a BioTek
plate reader.

Evaluation of the CSPINS in human subjects

The evaluation of CSPINS was conducted in human subjects strictly
adheres to established ethical guidelines as delineated in protocols
approved by the Institutional Review Board (IRB) at the California
Institute of Technology (Caltech) (#IR22-1280). The participants were
recruited from both the Caltech campus and nearby communities
around Los Angeles, California. All study participants provided written
informed consent prior to their involvement in the research.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.
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