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Abstract

This paper introduces new solvers for efficiently computing solutions to large-scale inverse problems
with group sparsity regularization, including both non-overlapping and overlapping groups. Group
sparsity regularization refers to a type of structured sparsity regularization, where the goal is to impose
additional structure in the regularization process by assigning variables to predefined groups that may
represent graph or network structures. Special cases of group sparsity regularization include ¢; and
isotropic total variation regularization. In this work, we develop hybrid projection methods based on
flexible Krylov subspaces, where we first recast the group sparsity regularization term as a sequence of
2-norm penalization terms using adaptive regularization matrices in an iterative reweighted norm
fashion. Then we exploit flexible preconditioning techniques to efficiently incorporate the weight
updates. The main advantages of these methods are that they are computationally efficient (leveraging
the advantages of flexible methods), they are general (and therefore very easily adaptable to new
regularization term choices), and they are able to select the regularization parameters automatically
and adaptively (exploiting the advantages of hybrid methods). Extensions to multiple regularization
terms and solution decomposition frameworks (e.g. for anomaly detection) are described, and a
variety of numerical examples demonstrate both the efficiency and accuracy of the proposed
approaches compared to existing solvers.

1. Introduction

Large-scale linear ill-posed inverse problems of the form
AXyrye + € = b, (1)

arise in the discretization of problems coming from various scientific and engineering applications, such as
biomedical, atmospheric and medical imaging [1, 2]. In this form, X, is the unknown solution, b is the
measured data affected by unknown Gaussian white noise e, and A € R™*" models the forward model. Given b
and A, the goal of the inverse problem is to approximate Xi,,,e, but computing solutions can be challenging
especially for large-scale and ill-posed problems. More specifically, we are interested in cases where A is ill-
conditioned and has ill-determined rank, meaning that the singular values of A decay and cluster at zero without
a clear gap to indicate numerical rank. Due to the presence of noise in the measured data, the naive solution A'b
(where AT is the Moore-Penrose pseudoinverse of A) can differ significantly from the desired true solution
A'(b — e). This s due to noise amplification, as described in [1]. To obtain a meaningful approximation of the
true solution, regularization is required. There are many forms of regularization, but the general idea of
regularization is to include prior knowledge about the solution (e.g. smoothness assumptions, solution
structure, or hard constraints) in the solution process.

In this work, we are interested in group sparsity regularization, which is a type of structured sparsity
regularization, that promotes sparsity among pre-defined groups. Consider the general optimization framework
where the goal is to solve the following variational regularization problem,

ming{||Ax — bl + N[ ®x[,}, @
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where A > 0is a regularization parameter, ¥ is an invertible matrix, and the £, ; norm for a vector z whose
elements belong to s different groups is defined as

s
lzllx =3 llzg 2 (&)
i=1

with the vector z, denoting all components in z belonging to the i-th group. The choice of groups promotes
structural patterns in the unknown parameters, and the methodology presented in this paper can handle both
non-overlapping and overlapping groups.

Group sparsity regularization has gained significant interest in the literature, due to recent applications to
machine learning (e.g. in training of deep neural networks [3] and spatio-temporal problems [4]) and new
theories (e.g. for strong group sparsity [5]). The benefits of using group sparsity regularization have been studied
and demonstrated on various problems; however, various computational challenges remain that have hindered
the use and extension of these group sparsity regularizers for large-scale problems. First, selecting an appropriate
choice of the regularization parameter \ can be a difficult task, and most solution approaches require time-
consuming tuning of this parameter. Second, for problems where the forward model matrix A lacks an
exploitable structure and may not even be explicitly constructed and stored, the only viable approach to solving
problem (1) is to employ iterative methods. However, it is well-known that iterative methods, when applied to
un-regularized ill-posed inverse problems, exhibit semiconvergence behavior, where solutions at later iterations
become dominated by errors, so a good stopping criteria is critical [1, 6]. Third, in many scenarios, group
sparsity on its own is not enough, and further refinement is needed. For example, regularizers that combine a
group sparsity prior as well as an #; (LASSO) regularizer [3, 7] result in problems of the form,

min{[|Ax — bl + Alx|h + olxl1}, 4)

for some o > 0. One interpretation is that in addition to the nonzero components being clustered into groups,
the nonzero groups themselves may be sparse.

Anomaly detection presents another scenario that requires going beyond the standard group sparsity
problem (2). In this case, the solution can be represented as x = € + s, where & captures background smoothness
and s represents anomalous events [8, 9]. Such problems arise in the context of atmospheric inverse modeling,
and these are often spatio-temporal problems where anomalies are consistent over time but sparse in terms of
spatial location. Thus, group sparsity regularization can be used for s with groups defined via time, while a
spatio-temporal Gaussian prior can be used for £, e.g. £ ~ N(0, a~'Q), where Q is a symmetric positive definite
(SPD) matrix. Assuming that Ris an SPD matrix representing the noise covariance matrix, we are interested in
anomaly detection problems of the form,

ngisn{HA(ﬁ +8) = bl + i€l + Allslla} ®)

where ||x|}; = x"Mx for a given SPD matrix M.

For both (4) and (5), a further challenge is to estimate the additional regularization parameter cv. We will
show in section 4.3 that the flexible Krylov methods for group sparsity can be extended to solve anomaly
detection problems such as (5).

Contributions and overview

In this paper, we develop flexible Krylov methods, including hybrid and iteratively reweighted variants, for
efficiently computing solutions to large-sale inverse problems with group sparsity regularization. Although
Krylov methods have been considered for for sparsity-promoting regularization terms [10—13], this work is the
first to use flexible methods to address group sparsity regularizers. We address particular challenges that come
with extensions to group sparsity regularizers, including handling overlapping groups, combining multiple
regularization terms, and extending solution decomposition frameworks for anomaly detection. The proposed
methods have the advantage of being general (and therefore very easily adaptable to new regularization term
choices), very efficient (leveraging the advantages of flexible methods), and allowing for automatic and adaptive
regularization parameter choices (exploiting the advantages of hybrid methods). The performance of this
framework is shown through a variety of numerical examples showcasing both the efficiency of the proposed
framework compared to existing solvers and showing novel applications of group sparsity.

The paper is organized as follows. In section 2 we provide a some background on group sparsity. Then in
section 3 we describe how iterative reweighted norm schemes can be used to handle a group sparsity
regularization term and describe various flexible hybrid projection methods, with particular focus on extensions
to multiple regularization terms and to the solution decomposed problem. In section 4 we provide various
examples from image deblurring, dynamic image deblurring and anomaly detection in atmospheric inverse
modeling. Conclusions are provided in section 5.
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(a) €1 regularization (b) #2,1 regularization (c) f2 regularization

Figure 1. Graphical illustration of the £, regularizer (with predefined groups z;, = [z]and zg, = [z, 23]) in (b) compared to the £,
and #, norms in (a) and (c) respectively.

2. Background on group sparsity

The group sparsity regularized problem (2) corresponds to a very general framework for regularization. In fact,
the choice of specific groups leads to standard regularization terms For example, £, regularization can be
obtained by considering # groups, with each group containing a single element, and 2-norm regularization can
be obtained by considering one group containing all parameters.

Moreover, isotropic total variation (TV) regularization in any dimension (e.g. in 2D, 3D, and considering a
temporal dimension) can be obtained by taking ¥ to be a discrete derivative operator and grouping all
directional derivatives. Notice that a similar case to the combined regularized problem (4) is the elastic net
regularizer, which combines an #; and an £, regularizer [14]; hence, the methods proposed in this paper to solve
(4) can be straightforwardly adapted to solve the elastic net problem.

A major distinction of the group sparsity regularizer is the ability to select groups, where the choice of groups
promotes structural patterns in the unknown parameters. For many problems, there is a natural choice for the
groups that comes from the structure of the problem. For example, in source localization and anomaly detection
where spatial-temporal images are desired, a natural grouping arises where each pixel at every time point
constitutes a group. This has been studied, e.g. for image-based biochemical assay [15], low-dimensional
nonlinear signal modeling [16], and classification [17]. In other applications, groups are defined by networks
(e.g. deep neural networks) or by wavelet hierarchies [18].

The groups can be non-overlapping (e.g. (6) with ¥ = I corresponds to group LASSO), where a partition of
the unknown vector is made, and the regularizer promotes sparsity for the entire group. Or, the groups can be
overlapping, where a component of the unknown vector can belong to more than one group simultaneously. If
the unknown parameters themselves do not lend themselves to natural grouping, an invertible matrix ¥in (2)
can be used to arrange the groups. Notice that (2) can be expressed as

min{[|[AT~'z — b|3 + A|zll1}, for x =T 'z ©)

A natural question is to how to interpret the group sparsity regularizer. In figure 1, we provide a graphical
representation of non-overlapping group sparsity for a schematic 3D example, compared to standard £, and ¢,
norms The edges of the solid shapes in figures 1(a), (b) and (c), represent the different vectors
z = [z, 23, 23] € RP¥with ||z||; = 1,]|z||,; = 1and ||z|}} = 1, respectively, where the groups for the £, ; norm
havebeen takentobe z; = [z]and z,, = [z;, z3]. The geometry of the norm ball is directly related to the
solution of (6).

In particular, the positions of the singularities are different for each norm. For example, the £; norm
promotes sparsity in the individual coefficients. To see this, imagine a plane corresponding to the set of solutions
with equal discrepancy (i.e. giving the same values for the fit-to-data term || A®~'z — b|[3). The intersection of
this plane with the octahedron in figure 1(a) will most likely occur at a corner (i.e. denoted by the red dots in
figure 1(a)), which corresponds to a sparse solution. On the contrary, the differentiable-everywhere #,-norm
which represents a sphere in R? (see figure 1(c)) does not favor any particular direction (i.e. does not promote
sparsity in the solution). The £, ; norm is represented as a double-cone in figure 1(b), and it provides a natural
balance between the #; and ¢, norms Since the two cones are attached at their bases, £, | regularization
promotes sparsity, but only at the group level, i.e. either z; or both z, and z;. Notice the absence of singularities at
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standard unit vectors e, and es, such that the likely points of intersection (e.g. with a plane) would occur at the
points denoted in red.

For overlapping group sparsity, a graphical illustration is not as intuitive and depends on the choice of
overlapping weights. Nevertheless, overlapping group sparsity can be very useful in some applications (e.g. tree
structured groups, contiguous groups, and directed-acyclic-graph groups). It has been shown in [19] that
structured sparsity assumptions can improve computational efficiency and accuracy in the solution in an
analysis analogous to traditional compressive sensing for sparsity. This can be exploited, for example, when
using tree-based image representations, see e.g. [20] for a characterization using the block-DCT transform
associated with JPEG, or [18] for image representations using wavelets. In this setting, sub-trees are formed by
grouping hierarchically different scale representations at the same location, so for natural images it is reasonable
to assume that the image would be zero at all resolutions in a given point; therefore, one can group parents and
children together in different ways. For example, this is exploited in [21], where an algorithm based on
preconditioned conjugate gradient with restarts is presented, and [22], where group-wise soft thresholding is
used to deal with the £, ; regularization term.

Many of the challenges to computing solutions to (2) mimic those in LASSO and compressive sensing (e.g. a
discontinuous first derivative at zero from the 1-norm, causing challenges for optimization algorithms). Various
methods have been proposed to solve such problems, ranging from convex relaxations (e.g. iteratively
reweighted schemes) and nonconvex optimization methods (e.g. ADMM). A main caveat of all of these methods
is the need to select the regularization parameter a priori. More recently, flexible Krylov methods have been
shown to be powerful alternatives to solve ¢, regularization problems (see [11, 23]) compared to other classical
solvers such as suitable versions of FISTA [24] or SpaRSA [25], or using iteratively reweighted norms (maybe) in
combination with Krylov methods (see, e.g. [26, 27]). Similarly, flexible Krylov methods have been used for TV
regularization (see [13, 28]) and proved competitive against the most popular solvers for this problem such as
proximal gradient methods [29], primal-dual methods [30], split Bregman methods [31] or methods based on
iteratively reweighted norms [32]. Another example of modified TV using group sparsity can be found in [4],
where group sparsity is used to promote piece-wise constant structures in space and time, sparsity in gradient
images shared across time instances, but not among the group. This is solved using a majorization-minimization
approach based on a generalized Krylov subspace approach [33, 34]. For non-overlapping groups, accelerated
proximal gradient methods have been considered with added non-negativity constraints to solve (2) in [15] and
alternating direction method of multipliers was used in [7].

It is beyond the scope of this paper to handle cases where the groups are not know a-priori. However, the
methodology presented in section 3 could be used in combination with a strategy to determine (or modify)
groups on-the-fly once a new approximation of the solution is available, since the weights are iteration
dependent. Similarly, the flexible Krylov methods can be easily generalised to £, , by using suitably defined
weights. Moreover, if memory requirements are a problem, iteratively reweighted schemes with fixed
preconditioning can be used in an inner-outer scheme.

3. Flexible Krylov methods for group sparsity

In this section, we describe flexible Krylov methods and hybrid variants for solving the group sparsity
regularized problem (2) for both overlapping and non-overlapping groups, and we develop extensions to solve
(4)and (5). We begin in section 3.1 with a description of the iteratively reweighted norm approach.

Then in section 3.2, we describe flexible Krylov methods for efficiently generating a single solution basis for
approximately solving the re-weighted least-squares subproblems. A method for automatically selecting the
regularization parameter within the hybrid framework is described.

3.1. Iteratively reweighted norm schemes

Traditional iteratively reweighted (IRW) schemes are majorization-minimization methods that involve
constructing a sequence of least-squares problems approximating a variational regularization problem of
interest, which are then solved at each iteration. These methods intrinsically rely on the interpretation of a given
£pnorm as a non-linear weighted £, norm (for 0 < p < 2), such that evaluating the weights at an available
approximation of the solution x_; can be used to obtain a quadratic tangent majorant of the original problem
atx;_;. Recall that a quadratic tangent majorant of a non-quadratic function ata point Z is a quadratic upper
bound of the original function constructed such that both the value of the function and the value of the

gradient of both functions coincide at z. More specifically, for ®(z) = %||z||‘1’7 = %H W (2)z|f3, then &% (z) =

%H W@zl + (% - %) ||W (z)Z|3 is a quadratic tangent majorant of ®(z) at Z. This can be explicitly checked as
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®? is quadratic, *(z) = P(Z), the gradients are equal at Z, i.e. V®?(Z) = V®(Z), and ®?(z) is an upper bound
of &(z) for all z (see, e.g. [35]).

IRW norm schemes can be used to solve minimization problems involving ¢, ; norm terms Assume the
components of z € R” belong to s different (possibly overlapping) groups and define z, to be the vector
constructed by concatenating the components in z belonging to the i-th group. Let G;be the indexes of the
(possibly multiple) groups where the component z; of z belongs to and, with a small notation abuse, let z; € z,
be the components of z that belong to the i-th group. Then, we can define a diagonal weighting matrix (asa
function of z) as

W= |5 L, @

icg; lzg 2

such that the £, ; norm defined in (3) can be written as a reweighted £, norm:

||w<z>z%:i(2 ! z%]=i[2 ! J)

i=1\ieG; llzgll2 i=1\ zi€zy, llzg,ll2
lzgli &
=3 52 =S gl = Izl ®)
i=1 ”Zg,»HZ i=1

The solution-dependent non-linear weights defined in (8), can be then used to re-write the original
regularization problem (6) with group sparsity regularization as

min{[|[AT "'z — b|} + A\|W@)z|3} for x=T 'z ©)

Using an IRW scheme corresponds to evaluating (and fixing) the weights (7) at each (outer) iteration using the
available approximation of the solution coming from the previous problem in the sequence. However, this can
be numerically unstable due to divisions by zero when one has to evaluate the weights on a vector with groups
whose components are all 0 valued. This situation is in fact expected, as we are assuming sparsity in the groups,
and is caused by the lack of smoothness of the functional in (6) at such vectors with 0 valued components. Thus,
we consider a smooth approximation of the original problem, and the following weights are considered instead
ofthe ones defined in (7):

o 1

W) = [ ———, (10)

< lzglf + 72

so that W, = W(zk, ) &~ W(z;_). This yields the following sequence of least-squares problems approxi
mating (6):

min{||[A¥~'z — b|} + A [Wiz|}} for x =Pz (11)
z

Note that this minimization is equivalent to minimizing a sequence of quadratic tangent majorants of a
smoothed version of (6), where multiplicative constants have been absorbed by A and additive constants have
been disregarded. Moreover, note that one could transform problem (11) to the following equivalent expression
using a solution-dependent right preconditioner (or, equivalently, a suitable change of variables):

min{[|[AT'Wi's — bl + A|ls|3} for x =¥ 'z =T W,'s. (12)

Expression (12) motivates the use of flexible Krylov methods which allow for iteration-dependent precondition-
ing, see e.g. [11, 23] and references therein, and will be explained in detail the following section. Note that
reweighting schemes can also be used to solve (5) using (8) and (10) to derive analogous expressions to (9), (11)
and (12), see [9].

Moreover, we can handle the minimization (4) with multiple regularization terms by defining two solution-
dependent diagonal weight matrices W, and W, such that (4) can be written as the following reweighted
problem:

min{[|Ax — b[} + A[Wiex[; + o [[Wa0)x]3} (13)
or, equivalently,
min { |Ax — b|} + J_W‘(X) (14)
b'S —J_Wz(x)

For multiple regularization terms, a point of concern especially in the context of iterative projection
methods, is the estimation of regularization parameters. An alternative is to define a functional representation
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for the relationship between regularization parameters [36, 37]. For example, define o = 73 \ for some
constant 7). Then, let

_ |V wiw | _ [Wx) ], L
L= [«/EWZ(X) =V T\ Wa(x) = /A Q' {15)

be the QR factorization of L. Notice that since L is a concatenation of diagonal matrices which are invertible (by
definition), Lis guaranteed to have orthogonal columns and is full column rank. Thus, the diagonal elements of
D can be easily obtained by taking the norms of the columns of L. Next, notice that D is a diagonal matrix that
depends onxand QL contains orthonormal columns, so we get the IRW regularized problem,

min{[[Ax — b[; + A [DGx|3}. (16)

Flexible hybrid methods can be used to solve (16), and extensions to more than two regularization terms is
straightforward. Numerical results demonstrating this approach are provided in section 4.2.

3.2. Flexible Krylov methods
Flexible Krylov methods are a subclass of Krylov methods that allow for iteration-dependent right
preconditioning. The methodology presented here can be used generally for any flexible Krylov method, and in
particular we will present three different methods to showcase the use of these algorithms in different
applications.

One interpretation of flexible Krylov methods where the preconditioning is motivated by a reweighted norm
in the regularization term is that some information about the solution is embedded in the solution space [38].
Moreover, this is achieved efficiently by building a single solution space, thereby avoiding inner-outer schemes.

Since the projected space already contains information about the (variational) regularization term, one can
also set A = 01in (12) and obtain a suitably regularized solution equipped with early stopping. Without
appropriate stopping, however, the solution will approach the naive solution A™b. This is the original approach
followed in flexible Krylov methods and will be denoted with the prefix (F). Another approach is to add
regularization in the projected problem in order to avoid semi-convergence. With a suitable regularization
parameter, which can be adaptively set at each iteration, this method delivers a good reconstruction. However,
note that the regularization parameter for the projected problems might not be suitable for the original problem
(6). This can be understood since, in the limit, the solution obtained with this method will converge to the
solution of the fit-to-data term in (6) with added Tikhonov regularization. This is usually noted with the prefix
(hybrid-F) and will be the preferred method used throughout the paper. For a more detailed explanation, see
[23]. Lastly, problem (6) can be projected onto the flexible Krylov subspace. Assuming no break-down has
happened at k = min(m, n), one can extend the algorithm for k > =min(m, n) by updating the weights in (6).
In this case, the solution provided by a flexible method following this scheme will converge to the solution of the
(smoothed version of) (6). This comes at the cost of a QR factorization of a tall and skinny matrix at each
iteration and will be denoted with the prefix (IRW-F). The convergence proof for this scheme can be found
in[23].

3.2.1. Hybrid-FGMRES

Given A € R"™ ", b € R", iteration independent right preconditioner ¥~! € R"*" and iteration dependent
right preconditioning matrices Wy ' € R"*", the flexible Arnoldi method is a process that, at the kth iteration,
constructs vectors v and z; = W 'vi such that

AP 'Z; = Vi Hy, (17)

where Hy € R&+Dxkisupper Hessenberg, Zx = [z --- 2] € R™K,and Vi = [V --- Vir1] € RXEED
has orthonormal columns. Here, we assume that x, = 0, so v; = b/||b||,. A detailed algorithm for flexible
Arnoldi canbe foundine.g. [11].

Using hybrid flexible GMRES (hybrid-FGMRES) to promote group sparsity regularization involves
projecting the least-squares problem || Ax — b|[3 onto a modified (flexible) Krylov subspace using the
decomposition in (17) and adding regularization. Then, the solution at each iteration k can be computed as

xp= U lz = U 'Zy, where y, = argmin{|Hy — IIbledl? + Ayl ) (18)
y

where e; € R¥+!is the first column of the identity matrix of order k + 1 and we have used the fact that
Vit1llbll2e; = b. Note that the iteration dependent preconditioners are built using Wy = W(Z;_yy,_) =
W(zk, 1 as defined in (10), which depend on the solution computed at the previous iteration.
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3.2.2. Hybrid-FLSQR

For rectangular matrices A € R™*", we can use a flexible LSQR approach, where for b € R™, an iteration
independent right preconditioner ¥~! € R"*"and iteration dependent right preconditioning matrices
W1 € R**", the flexible Golub-Kahan decomposition computes at the kth iteration vectors uy , v and
2z = Wy 'vg such that

AUZ, = Uy My and O TAUi ) = Vi iSier 1 (19)

where, ifXo = 0, u; = b/||b||,. Here My € R&+Dxkisupper Hessenberg, Sy € R&+Dx*+D jsypper
triangular and both Vi, ; € R"**+Dand Uy, € R"**+D contain orthonormal columns. For more details see,
e.g.[39].

Using hybrid flexible LSQR (hybrid-FLSQR) to promote group sparsity regularization involves projecting
the least-squares problem ||Ax — b|J3 onto a modified (flexible) Krylov subspace using the decomposition in
(19) and adding regularization to the projected problem. Then, we can compute an approximation of the
solution at each iteration k as

xi = Wz = U'Zy, where y, = arg min{[Mey — [[blLe + Myl 20)
Y

In particular, we are interested in the case where Wy, = W(Zk, W) = W(zk, 1) and therefore it depends on the
solution computed at the previous iteration.

3.2.3. Hybrid-SD
With appropriately defined weights, both hybrid-GMRES and hybrid-FLSQR can be used to solve group sparsity
regularized problems (2) and (4), but a different projection approach is needed to handle the solution
decomposition problem (5) (e.g. for anomaly detection). In this work, we use the Flexible Generalized Golub-
Kahan (FGGK) approach described in [9] to generate a basis for the solution, where the weights are determined
from the group sparsity regularizer.

Given A € R™*" b € R™, SPD matrices Q € R"*"and R € R"*", and iteration-dependent right
preconditioning matrices Wy ! € R**", the flexible, generalized Golub-Kahan iterative process generates
vectors vi, zy = Wi 'vy, and u ; such that at iteration k,

[AQ A]Z( = UMy and AR Wiyt = Vi 1, 21
where
5 _[vi o ] _ | Wk
Z = [21 zk] - I:ijl) (22)

and u; = b/||b||g1and v; = ATR'u, if xo = 0. Note that M € R&+Dxkjsupper Hessenberg, Sy 1 €
REFD >+ js ypper triangular, and in exact arithmetic, the columns of Uy, ; € R™**+Dand Vi | € Rrxk+D
satisfy the orthogonality conditions,

UL R Ui =L Vi QVi = L (23)

In order to use the FGGK process to solve (5), we first consider the sequence of reweighted least-squares
problems,

rflpin{llAQw +As = bl + allyl§ + AIW)s3), (24)

where £ = Qi) and W is defined as in (7). We first project the objective function

[AQy + As — b|:. + «|9|[§ ontoa modified (flexible) Krylov subspace using the decomposition in (21),
then add regularization to the projected problem, such that an approximation of the solution can be found at
each iteration k as:

Xp = £k + s = QVkYk + ZkYk where (25)

¥ = arg min{[Myy — [[bllrredf; + allyl; + X [Rwayl3}, (26)
y

where Z;, = Qw «Rw «is a thin QR factorization that can be computed via efficient updates [9]. Contrary to the
additional regularization terms added to (18) and (20), a non-standard Tikhonov regularizer is included here to
distinguish the contributions from the two solution components. Notice that a decomposition of the solution x;
isavailable, i.e. & is a reconstruction of the smooth component and sy is a reconstruction of the group-sparse
component (e.g. containing anomalies). Moreover, in this case, the weights depend only on a part of the
approximate solution at each iteration k, i.e. Wy, = W(sk, D= W(Zk, 1¥;_ - A detailed explanation of the
algorithm developed to obtain (21), originally proposed under the name of solution decomposition hybrid
projection approach (sdHybr), can be found in [9].
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Table 1. Notation for the solvers: projection -
ALGORITHM - GROUPS.

projection ALGORITHM GROUPS

none FLSQR none

hybrid FGMRES G

IRW SD G1,G2
RCG C

3.2.4. Regularization parameter choice criteria

One of the main advantages of flexible Krylov methods is the ability to incorporate regularization on the
projected problem (IRW-F and hybrid-F), and hence to adaptively set the regularization parameter(s) A, at each
iteration.

Note that this is a very efficient approach. Differently to other methods, where the use of regularization
parameter choice criteria requires the (full) solve of several regularized problems, here the regularization
parameters are chosen on-the-fly throughout the iterations, only using information available from the projected
problem and without requiring any extra matrix-vector products with the system matrix. This is also the
approached followed by the more general class of hybrid methods, see, e.g. the review [40].

In particular, we consider the use of the discrepancy principle (DP)[41] for the projected problem, i.e.
finding the regularization parameters A > 0 such that

l[Axk(A) — blly = [|AZyy,(A) — bl = 7 [le]l,. (27)

Note that A = X for the minimization in (18) and (20), but A = [\, a] for the optimization in (26). The
approximate solution computed by any given algorithm at iteration k is given by x;(X), with y; being the
corresponding coefficients in the projected space. Using the DP requires a good estimate of the noise level and
has been considered within a multi-parameter regularization context, e.g. see [42—44]. Alternatively, other
methods can be used seamlessly, see, e.g. [40, 45].

4. Numerical examples

In this section three imaging examples are presented to demonstrate the performance of flexible Krylov methods
for group sparsity regularization. In order to showcase the generality of the described approach, the flexible
schemes are used for different grouping strategies including both overlapping and non-overlapping groups and
in combination with different solvers.

The notation used to describe the solvers in this section can be found in table 1, where group sparsity
regularization is indicated by appending a ‘G’ suffix at the end of the method. In the case where more than one
grouping strategy has been compared, different grouping strategies are denoted ‘G1’, ‘G2’, etc. Moreover, if both
¢1and ¢, are considered simultaneously, we use ‘C’ to denote the combined approach. If no group suffix is
appended for a flexible method, then this corresponds to £ regularization. Recall that the projection types are
explained in section 3.2. And note that hybrid solution decompose (SD) [9] and restarted conjugate gradient
(RCG) for group sparsity [21] are used as a comparison with previous works.

The first experiment exploits group sparsity patterns in wavelet coefficients by considering the natural tree
structure of wavelet decompositions. Since non-leaf elements belong to more than one branch, this example
showcases the use of the new scheme for regularization with overlapping groups. A deblurring problem is
considered and solved using different versions of the new scheme involving FLSQR, paying particular attention
to the different projection types and recalling the differences between them while showcasing their practical
performance.

The second experiment corresponds to a dynamic deblurring problem. Since this is a spatio-temporal
problem displaying a spatial sparsity pattern but smoothness in time, the groups are chosen to contain each pixel
across all time points, so this is an example of non-overlapping group sparsity. In particular, we focus on the
difference between enforcing #; regularization and ¢, ; regularization using hybrid flexible methods, and we
present results for the new method combining both regularization terms Since this is a symmetric problem, the
performance of both methods based on FLSQR and FGMRES is tested.

The third experiment concerns an anomaly detection problem in atmospheric inverse modeling. This
corresponds to a realistic example, and our aim is to show the potential of the new schemes in real-world
applications. Since this experiment also involves spatio-temporal images that are sparse in space but not time,
the groups are built analogously to the second experiment. Additionally, since the solution in this experiment is
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(a) 2 level Haar Wavelet representation (b) Tree structure for the example in (a)

Figure 2. [llustrative example of the tree structure in the wavelet decomposition of the SATELLITE test image used for the deblurring
problem represented in figure 3 and Haar wavelets with 2 levels. Examples of groups using strategy G1 are {A, B}, {A, C}, {A, D},
{A, E} while an example of a group using strategy G2 is {A, B, C, D, E}.

modelled as the sum of a smooth (background) component and a group-sparse (anomalies) component, hybrid-
SD-G s used in this experiment.

For all the experiments, 7in (10) is taken to be 10~ 19 However, empirical observations demonstrate that the
algorithms are robust to this choice as long as 7 is significantly smaller than the average pixel intensity and kept
above machine precision. Moreover, the regularization parameter for all hybrid and iteratively-reweighted
methods is chosen across the iterations using the DP defined in (27).

4.1. Deblurring example with wavelet sparsity patterns

Natural images have been shown to be well described by wavelet representations [46], Chapter 9. Moreover,
wavelets have a natural tree-structure where each non-leaf wavelet coefficient for a given orientation (diagonal,
vertical and horizontal) has four children coefficients corresponding to the same orientation at a finer scale. This
is explained in, e.g. [18]. There are of course different groupings than one could develop. For example, in this
paper, both 2-elements groups of each children with their parent (G1) or 5-elements groups of each parent with
all their children (G2) are considered as suggested in [ 18]. In figure 2 an upscaled example for a wavelet
decomposition with two levels is shown to illustrate a case of parent-child relationship in the wavelet domain.
Note that figure 2 is intended as an illustration, but in reality the tree structure is considered at the pixel scale, i.e.
where the red boxes in figure 2 correspond to individual pixels, to match the wavelet coefficients. Thus, at each
level, each given pixel in the wavelet representation corresponding to a non-leaf element in the tree is the parent
of 4 pixels in a finer level representing the same area of the original image (at that given orientation).

For this deblurring example, medium Gaussian blur is generated with IR Tools [47] with added Gaussian noise
atnoise level ||e]| /|| AX;rue|| = 0.05. Here the true solution X, € R®>>3 contains 256 x 256 pixels and
corresponds to the SATELLITE test image in IR Tools and can be observed in figure 3 along with the corresponding
blurred and noisy measurements. One can observe that the true image contains regions with details (and edges) at
different scales, while other areas of the image contain many zeroes and hence do not have information at any scale.
Therefore, group sparsity in the wavelet coefficients should provide suitable regularization.

Exploiting group sparsity in the wavelet coefficients corresponds to choosing ¥ in (2) to be an orthogonal
wavelet transform and choosing the groups according to G1 or G2 as defined at the beginning of this subsection
(and illustrated in figure 2). Note that both grouping schemes correspond to overlapping group sparsity
regularization. The results for these experiments can be found in figure 4, where we provide relative reconstruction
error norms, computed as || Xy — Xeruell2 /|| Xtrue [l2 Where x; is the reconstruction at the kth iteration.

We provide a comparison against the algorithm presented in [21] (following their original grouping
structure G1). Note that we have not included their proposed preconditioning, nor their starting guess (x, = 0 is
used instead of A 'b), since those are highly problem-dependent choices and their approach is not suitable for
this example. The regularization parameter for the hybrid flexible and IRW flexible methods is chosen at each
iteration using the DP (27) with safety parameter ) = 1.01. For the RCG algorithm [21], the regularization
parameter is chosen to be the one computed with the hybrid flexible methods at the end of the iterations. Itis
worth mentioning that RCG is better suited to other forward models (such as MRI), but flexible Krylov methods
have a comparable performance and allow the (semi-automatic) computation of the regularization parameter
on-the-fly.

One can observed that flexible Krylov methods display a fast convergence in comparison to RCG. Different
grouping strategies, displayed in figures 4(a) and (b) respectively, have similar performances (note that both
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Figure 3. Image deblurring problem for use with group sparsity in the wavelet coefficients.
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Figure 4. Relative reconstruction error norms for the methods based on FLSQR for the deblurring example presented in figure 3 with
wavelet group sparsity. The regularization parameter has been chosen at each iteration using the DP.

error norm plots have the same scale for the axis). Moreover, one can observe that flexible Krylov methods
without regularization in the projected problem (FLSQR-G1 and FLSQR-G2) display semi-convergence, and
that the severity of it depends on the grouping strategy. To be able to use these algorithms in practice, one should
use appropriate early stopping. On the contrary, methods with explicit regularization in the projected problem
(hybrid-FLSQR-G and IRW-FLSQR-G for both grouping strategies), using the DP as a parameter choice
criterion at each iteration, display a stabilization of the error norm throughout the iterations. It is worth noting
that the regularization parameter for hybrid and IRW methods does not necessarily need to be the same as that
for the original problem, as explained in section 3.2. In fact, for the grouping strategy G1, very similar error
norms are achieved for the two methods using very different regularization parameters. This can be observed in
figure 5. Recall that hybrid methods are cheaper per iteration than iteratively-reweighted methods, but
iteratively-reweighted methods are equipped with theoretical guarantees of convergence. In practice, as can be
observed for this experiment, both methods typically display very similar behaviours in the error norm plots.

4.2. Combined regularization for spatio-temporal image deblurring.

This experiment concerns a synthetic dynamic image deblurring problem, where the goal is to reconstruct a
sequence of images from the sequence of their corresponding blurred and noisy counterparts [48, 49]. The blur
matrix for this example is A = A, ® A, where A represents a 2D Gaussian point spread function with spread
parameter o = 1 and bandwidth 4 and A, represents a 1D Gaussian blur with spread parameter o = 1 and
bandwidth 3. Gaussian white noise has been added to the measurements with noise level ||e|| /|| AXgue|| = 0.02
The sequence of images forming X, is displayed in the first row of figure 6, while the sequence of their

corresponding blurred and noisy counterparts b can be found in the second row. Note that x and b are spatio-
temporal images of size 50 X 50 x 9 (i.e. 50 x 50 pixels at9 time points).

10
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Figure 5. Regularization parameter )\, for the deblurring example presented in figure 3, chosen at each iteration using the DP.

SRR

Figure 6. Dynamic image deblurring problem, where the true images are provided in the top row and the corresponding blurred
observations are provided on the bottom row. The first time point has been omitted for visualization ease.

In this example, some regions in all of the images in the sequence are always zero while other regions have
pixels of changing intensity. It is then appropriate to use group sparsity regularization where each spatial
location, over all time points, constitutes a group. We compare the results for ¢,, £, and ¢, ; regularization using
hybrid flexible methods, and we present results for the new method combining an #; and an ¢, ; regularization
term. Since the forward model matrix A is square, methods based on both LSQR and GMRES are tested. The
error norm plots for all methods can be found in figure 7. All of the presented approaches used the DP as defined
in (27) to select the regularization parameter, where x; in (27) corresponds to the approximated solution of (16)
computed at iteration k. Note that 7 in (15) must be set ahead of the iterations. In particular, 7, = 1.2 for
methods based on FLSQR and 7y, = 0.8 for methods based on FGMRES.

It can be observed from the plot of relative reconstruction error norms, see figure 7, that £, regularization
(hybrid-FLSQR and hybrid-FGMRES) outperforms Tikhonov regularization (hybrid-LSQR and hybrid-
GMRES) for this problem. Moreover, the new algorithms enforcing group sparsity regularization (hybrid-
FLSQR-G and hybrid-FGMRES-G) produce significantly better reconstructions (i.e., smaller reconstruction
errors), with the combined approaches (hybrid-FLSQR-C and hybrid-FGMRES-C) performing marginally
better than group sparsity regularization on its own.

One can also observe that for this example the methods based on FLSQR (Figure 7(a)) perform better than
the methods based on FGMRES (figure 7(b)), at the computational cost of an extra matrix-vector-product with
theadjoint A" per iteration. Nevertheless, we provide results for both solvers to highlight the benefit of using
group sparsity (and a combination of sparsity and group sparsity) with respect to other regularizers, and we
reiterate that this can be done using different flexible Krylov methods seamlessly. Reconstructed images
corresponding to £, regularization (top row) and a combination of £, and ¢, ; regularization (bottom row) are
presented for methods based on LSQR in figure 8 and for methods based on GMRES in figure 9. In particular, we
would like to draw attention to the cross in the bottom-right of the images at the later time points (images on the
far right). One can see that the reconstructions using ¢ regularization (top row) are more blurred that the ones
using a combination of #; and £, ; (bottom row), which appear much crisper and closer to the true solution in
figure 6 (top row) both for methods based on FLSQR and on FGMRES.
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Figure 7. Relative error norms for the methods based on FLSQR and FGMRES for the deblurring example presented in figure 6. The
regularization parameter A has been chosen at each iteration using the DP.

Figure 8. Reconstructions with #; regularization and with a combination of ¢, and £, ; regularization for the dynamic image
deblurring problem. These methods are based on FLSQR, and the first time point has been omitted for visualization ease.

hybrid

hybrid
FGMRES-C FGMRES

Figure 9. Reconstructions with £, and with a combination of #, and ¢,  regularization for the dynamic image deblurring problem.
These methods are based on FGMRES, and the first time point has been omitted for visualization ease.

4.3. Anomaly detection in atmospheric inverse modeling
In this experiment, we are interested in the inverse problem of efficiently and accurately detecting anomalies from
observed data in atmospheric inverse modeling. This is relevant, for example, in large-scale anomalous emissions
of greenhouse gasses and air pollution detection. A major challenge for anomaly detection is that inverse models
using standard priors are not able to capture both anomalies (e.g. natural gas blowouts) and smooth regions (e.g.
broad-scale emissions) simultaneously. A new solution decomposition framework was described in [9] where the
desired parameters are represented as a sum of different stochastic components, and different priors are used for
each component. In particular, a Gaussian prior was used for the smooth component of the reconstruction and a
sparsity prior was used for capturing anomalies. However, anomalies are typically sparsely distributed in space but
consistent over time, and the previous framework cannot capture such phenomena. Thus, we have extended the
solution decomposition framework for group sparsity regularization and present the results here.

In this example we consider a realistic linear atmospheric inverse model, where the aim is to estimate CO,
fluxes across North America at 3-hourly temporal resolution over 41 days (approximately 6 weeks from late June
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Figure 10. Anomaly detection OCO-2 example. We provide the averaged true fluxes for reference along with the averaged computed
reconstruction of the fluxes (in ;2 mol 25~ ') for hybrid-SD and hybrid-SD-G. Relative reconstruction error norms for the averaged
spatio-temporal fluxes are provided in the titles, and all results correspond to using the DP selected regularization parameters.

through July 2015) and at 1° x 1° latitude-longitude spatial resolution. This setup corresponds to 3,222
unknowns per 3-hour time interval. In particular, X, € R3?83222 corresponds to the CO, fluxes from NOAA’s
CarbonTracker product (version 2019b). Synthetic satellite observations contained in b € R!®15¢ are generated
asin (1) and mimic those from NASA’s OCO-2 satellite, where A simulates an atmospheric transport model and
eisadded Gaussian noise to represent measurement errors. The components of the noise e are considered to be
uncorrelated, so the covariance matrix R is °I, where o = 1.1267 has been chosen so that e has a noise level of
ollell /|| AXrell = 1. We remark that although these noise levels seem high for classic inverse problems settings,
they are realistic in real data inverse modeling studies using OCO-2 data [50, 51]. We refer the interested reader
to [52, 53] for additional detail on the specifics of the problem setup.

Although a decomposition of X, = s + € where s, £ € R¥283222 s not available, we observe that, similar to
actual atmospheric models, the true fluxes contain a combination of large, sparsely distributed values which
correspond to anomalies (e.g. fires, anthropogenic emissions, or anomalies in biospheric fluxes) and smooth, broad
regions of surface fluxes with small-scale variability. For defining the prior for &, we follow similar approaches
[52, 54] and consider prior covariance matrix, Q = A°Q, ® Q, where Q, represents the temporal covariance and Q;
represents the spatial covariance in the fluxes. These covariance matrices are defined by kernel functions

3(d) 1(d\ .
1—=]— — = fd, <0,
ki(ds 0,) = 2(9;)+ Z(Qt) wdy t (28)
0 ifd, > 0,
P Y AY <o
k(ds 0) = 2\ 6, 2\ 6 T (29)
0 ifds > 6,

where d, is day difference between two unknowns, d, is spherical distance between two unknowns, and 6,, 0, are
kernel parameters. In this setting, we set 6, = 9.854 and 6, = 555.42, as in [52]. For the group sparsity regularizer
for s, we define 3222 groups with each group corresponding to a spatial location. Thus, the groups are defined to
include 41 days of 3-hourly time intervals.

We compute spatio-temporal reconstructions using hybrid-SD-G and compare the results to hybrid-SD
(referred to as sdHybr in [9]), where the regularization parameters A and « are selected using the DP as defined in
(27). The temporal-averaged images of the flux reconstructions are presented in figure 10, along with the temporal
average of the true image. We observe that both hybrid-SD-G and hybrid-SD average reconstructions are able to
capture both sources and sinks present in the true average image, with the hybrid-SD-G reconstruction having a
slightly smaller relative reconstruction error for the average image. The main benefit of the solution decomposition
framework is the ability to obtain two components of the solution. In figure 11, we provide the reconstructions of
the individual components £ and s that form the solution for hybrid-SD (top row) and hybrid-SD-G (bottom row).
Itis clear that group sparsity regularization provides a smoother background and is able to distinguish persistent
anomalies (as opposed to spurious false positive anomalies) better than standard sparsity regularization.

The results of this case study demonstrate that hybrid-SD-G can yield accurate results for complex, spatio-
temporal atmospheric inverse modeling that are inherently different from the ones obtained using hybrid-SD.
Comparisons of hybrid-SD to existing reconstruction methods can be found in [9].
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Figure 11. OCO-2 example. Reconstructed £ and s images for the atmospheric inverse problem using hybrid-SD (top row) and with
group sparsity hybrid-SD-G (bottom row).

5. Conclusions and future work

This paper presents a suite of numerical algorithms based on flexible Krylov methods for solving linear inverse
problems with group sparsity regularization. The idea of using group structure to achieve better sparse recovery
has received much attention, but automated and efficient approaches for practical implementation are still
lacking. This work addressed that gap by proposing new iterative methods that are efficient, since they only
require matrix-vector and possibly matrix-transpose-vector products, and automatic, by selecting
regularization parameters on-the-fly. Moreover, these approaches exploit flexible preconditioning techniques
to avoid inner-outer schemes by building a single solution subspace from which to compute solutions.

Additional regularization can be added to the projected problem to avoid semi-convergence or to guarantee
convergence of the proposed method (at a higher computational cost). This scheme allows for the regularization
parameter to be chosen adaptively using suitable parameter choice criteria. In particular, the results in this paper
are shown for hybrid-FGMRES, hybrid-FLSQR, IRW-FLSQR, and hybrid-SD, all with group sparsity
regularization and using the DP to find appropriate regularization parameters.

Moreover, the scheme presented in this paper is highly general, since very different regularization terms can
be modeled in the group sparsity framework. This is highlighted in the numerical examples, which show the
performance of the method in different applications and for different group sparsity modalities. In particular, an
example of overlapping group sparsity is shown using the natural tree-structure of wavelet decompositions and
non-overlapping group sparsity is tested in solutions that have spatio-temporal components where the solution
is temporally persistent and sparse in space.

Future work includes extensions to other applications and other constraints (e.g. nonnegativity). For
example, group sparsity regularization has been used for nonnegative matrix factorization [55] and for group-
based dictionaries in neuroimaging using fMRI [56].
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