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Abstract
This paper introduces new solvers for efficiently computing solutions to large-scale inverse problems
with group sparsity regularization, including both non-overlapping and overlapping groups. Group
sparsity regularization refers to a type of structured sparsity regularization, where the goal is to impose
additional structure in the regularization process by assigning variables to predefined groups thatmay
represent graph or network structures. Special cases of group sparsity regularization includeℓ1 and
isotropic total variation regularization. In this work, we develop hybrid projectionmethods based on
flexible Krylov subspaces, wherewe first recast the group sparsity regularization term as a sequence of
2-normpenalization terms using adaptive regularizationmatrices in an iterative reweighted norm
fashion. Thenwe exploitflexible preconditioning techniques to efficiently incorporate theweight
updates. Themain advantages of thesemethods are that they are computationally efficient (leveraging
the advantages offlexiblemethods), they are general (and therefore very easily adaptable to new
regularization term choices), and they are able to select the regularization parameters automatically
and adaptively (exploiting the advantages of hybridmethods). Extensions tomultiple regularization
terms and solution decomposition frameworks (e.g. for anomaly detection) are described, and a
variety of numerical examples demonstrate both the efficiency and accuracy of the proposed
approaches compared to existing solvers.

1. Introduction

Large-scale linear ill-posed inverse problems of the form

( )Ax e b, 1true + =

arise in the discretization of problems coming fromvarious scientific and engineering applications, such as
biomedical, atmospheric andmedical imaging [1, 2]. In this form, xtrue is the unknown solution, b is the
measured data affected by unknownGaussianwhite noise e, and A m nÎ ´ models the forwardmodel. Given b
andA, the goal of the inverse problem is to approximate xtrue, but computing solutions can be challenging
especially for large-scale and ill-posed problems.More specifically, we are interested in cases whereA is ill-
conditioned and has ill-determined rank,meaning that the singular values ofA decay and cluster at zerowithout
a clear gap to indicate numerical rank. Due to the presence of noise in themeasured data, the naive solutionA†b
(whereA† is theMoore-Penrose pseudoinverse ofA) can differ significantly from the desired true solution
A†(b− e). This is due to noise amplification, as described in [1]. To obtain ameaningful approximation of the
true solution, regularization is required. There aremany forms of regularization, but the general idea of
regularization is to include prior knowledge about the solution (e.g. smoothness assumptions, solution
structure, or hard constraints) in the solution process.

In this work, we are interested in group sparsity regularization, which is a type of structured sparsity
regularization, that promotes sparsity among pre-defined groups. Consider the general optimization framework
where the goal is to solve the following variational regularization problem,

{ } ( )Ax b xmin , 2x 2
2

2,1l Y- +   
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whereλ> 0 is a regularization parameter,Ψ is an invertiblematrix, and theℓ2,1 norm for a vector zwhose
elements belong to s different groups is defined as

( )z z , 3
i

s

g2,1
1

2iå=
=

   

with the vector z gi denoting all components in z belonging to the i-th group. The choice of groups promotes
structural patterns in the unknownparameters, and themethodology presented in this paper can handle both
non-overlapping and overlapping groups.

Group sparsity regularization has gained significant interest in the literature, due to recent applications to
machine learning (e.g. in training of deep neural networks [3] and spatio-temporal problems [4]) and new
theories (e.g. for strong group sparsity [5]). The benefits of using group sparsity regularization have been studied
and demonstrated on various problems; however, various computational challenges remain that have hindered
the use and extension of these group sparsity regularizers for large-scale problems. First, selecting an appropriate
choice of the regularization parameterλ can be a difficult task, andmost solution approaches require time-
consuming tuning of this parameter. Second, for problemswhere the forwardmodelmatrixA lacks an
exploitable structure andmay not even be explicitly constructed and stored, the only viable approach to solving
problem (1) is to employ iterativemethods.However, it is well-known that iterativemethods, when applied to
un-regularized ill-posed inverse problems, exhibit semiconvergence behavior, where solutions at later iterations
become dominated by errors, so a good stopping criteria is critical [1, 6]. Third, inmany scenarios, group
sparsity on its own is not enough, and further refinement is needed. For example, regularizers that combine a
group sparsity prior as well as anℓ1 (LASSO) regularizer [3, 7] result in problems of the form,

{ } ( )Ax b x xmin , 4
x

2
2

1 2,1l a- + +     

for someα> 0. One interpretation is that in addition to the nonzero components being clustered into groups,
the nonzero groups themselvesmay be sparse.

Anomaly detection presents another scenario that requires going beyond the standard group sparsity
problem (2). In this case, the solution can be represented as x= ξ+ s, where ξ captures background smoothness
and s represents anomalous events [8, 9]. Such problems arise in the context of atmospheric inversemodeling,
and these are often spatio-temporal problemswhere anomalies are consistent over time but sparse in terms of
spatial location. Thus, group sparsity regularization can be used for swith groups defined via time, while a
spatio-temporal Gaussian prior can be used for ξ, e.g. ( ) Q0, 1x a~ - , whereQ is a symmetric positive definite
(SPD)matrix. Assuming thatR is an SPDmatrix representing the noise covariancematrix, we are interested in
anomaly detection problems of the form,

{ ( ) } ( )A s b smin , 5
s R Q,

2 2
2,11 1x xa l+ - + +

x
- -     

where x x MxM
2 =  for a given SPDmatrixM.

For both (4) and (5), a further challenge is to estimate the additional regularization parameterα.Wewill
show in section 4.3 that theflexible Krylovmethods for group sparsity can be extended to solve anomaly
detection problems such as (5).

Contributions and overview
In this paper, we develop flexible Krylovmethods, including hybrid and iteratively reweighted variants, for

efficiently computing solutions to large-sale inverse problemswith group sparsity regularization. Although
Krylovmethods have been considered for for sparsity-promoting regularization terms [10–13], this work is the
first to useflexiblemethods to address group sparsity regularizers.We address particular challenges that come
with extensions to group sparsity regularizers, including handling overlapping groups, combiningmultiple
regularization terms, and extending solution decomposition frameworks for anomaly detection. The proposed
methods have the advantage of being general (and therefore very easily adaptable to new regularization term
choices), very efficient (leveraging the advantages offlexiblemethods), and allowing for automatic and adaptive
regularization parameter choices (exploiting the advantages of hybridmethods). The performance of this
framework is shown through a variety of numerical examples showcasing both the efficiency of the proposed
framework compared to existing solvers and showing novel applications of group sparsity.

The paper is organized as follows. In section 2we provide a some background on group sparsity. Then in
section 3we describe how iterative reweighted norm schemes can be used to handle a group sparsity
regularization term and describe various flexible hybrid projectionmethods, with particular focus on extensions
tomultiple regularization terms and to the solution decomposed problem. In section 4we provide various
examples from image deblurring, dynamic image deblurring and anomaly detection in atmospheric inverse
modeling. Conclusions are provided in section 5.
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2. Background on group sparsity

The group sparsity regularized problem (2) corresponds to a very general framework for regularization. In fact,
the choice of specific groups leads to standard regularization terms For example,ℓ1 regularization can be
obtained by considering n groups, with each group containing a single element, and 2-norm regularization can
be obtained by considering one group containing all parameters.

Moreover, isotropic total variation (TV) regularization in any dimension (e.g. in 2D, 3D, and considering a
temporal dimension) can be obtained by takingΨ to be a discrete derivative operator and grouping all
directional derivatives. Notice that a similar case to the combined regularized problem (4) is the elastic net
regularizer, which combines anℓ1 and anℓ2 regularizer [14]; hence, themethods proposed in this paper to solve
(4) can be straightforwardly adapted to solve the elastic net problem.

Amajor distinction of the group sparsity regularizer is the ability to select groups, where the choice of groups
promotes structural patterns in the unknown parameters. Formany problems, there is a natural choice for the
groups that comes from the structure of the problem. For example, in source localization and anomaly detection
where spatial-temporal images are desired, a natural grouping arises where each pixel at every time point
constitutes a group. This has been studied, e.g. for image-based biochemical assay [15], low-dimensional
nonlinear signalmodeling [16], and classification [17]. In other applications, groups are defined by networks
(e.g. deep neural networks) or bywavelet hierarchies [18].

The groups can be non-overlapping (e.g. (6)withΨ= I corresponds to group LASSO), where a partition of
the unknown vector ismade, and the regularizer promotes sparsity for the entire group.Or, the groups can be
overlapping, where a component of the unknown vector can belong tomore than one group simultaneously. If
the unknownparameters themselves do not lend themselves to natural grouping, an invertiblematrixΨ in (2)
can be used to arrange the groups. Notice that (2) can be expressed as

{ } ( )A z b z x zmin , for . 6
z

1
2
2

2,1
1lY Y- + =- -   

Anatural question is to how to interpret the group sparsity regularizer. Infigure 1, we provide a graphical
representation of non-overlapping group sparsity for a schematic 3D example, compared to standardℓ1 andℓ2
normsThe edges of the solid shapes infigures 1(a), (b) and (c), represent the different vectors

[ ]z z zz , ,1 2 3
3= Î  with ∥z∥1= 1, ∥z∥2,1= 1 and z 12

2 =  , respectively, where the groups for theℓ2,1 norm
have been taken to be [ ]zz g 11

= and [ ]z zz ,g 2 32
= . The geometry of the normball is directly related to the

solution of (6).
In particular, the positions of the singularities are different for each norm. For example, theℓ1 norm

promotes sparsity in the individual coefficients. To see this, imagine a plane corresponding to the set of solutions
with equal discrepancy (i.e. giving the same values for the fit-to-data term A z b1

2
2Y --  ). The intersection of

this planewith the octahedron infigure 1(a)willmost likely occur at a corner (i.e. denoted by the red dots in
figure 1(a)), which corresponds to a sparse solution.On the contrary, the differentiable-everywhere ℓ2-norm
which represents a sphere in 3 (see figure 1(c)) does not favor any particular direction (i.e. does not promote
sparsity in the solution). Theℓ2,1 norm is represented as a double-cone infigure 1(b), and it provides a natural
balance between theℓ1 andℓ2 norms Since the two cones are attached at their bases,ℓ2,1 regularization
promotes sparsity, but only at the group level, i.e. either z1 or both z2 and z3. Notice the absence of singularities at

Figure 1.Graphical illustration of theℓ2,1 regularizer (with predefined groups [ ]zz g 11
= and [ ]z zz ,g 2 32

= ) in (b) compared to theℓ1
andℓ2 norms in (a) and (c) respectively.
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standard unit vectors e2 and e3, such that the likely points of intersection (e.g. with a plane)would occur at the
points denoted in red.

For overlapping group sparsity, a graphical illustration is not as intuitive and depends on the choice of
overlappingweights. Nevertheless, overlapping group sparsity can be very useful in some applications (e.g. tree
structured groups, contiguous groups, and directed-acyclic-graph groups). It has been shown in [19] that
structured sparsity assumptions can improve computational efficiency and accuracy in the solution in an
analysis analogous to traditional compressive sensing for sparsity. This can be exploited, for example, when
using tree-based image representations, see e.g. [20] for a characterization using the block-DCT transform
associatedwith JPEG, or [18] for image representations usingwavelets. In this setting, sub-trees are formed by
grouping hierarchically different scale representations at the same location, so for natural images it is reasonable
to assume that the imagewould be zero at all resolutions in a given point; therefore, one can group parents and
children together in different ways. For example, this is exploited in [21], where an algorithmbased on
preconditioned conjugate gradient with restarts is presented, and [22], where group-wise soft thresholding is
used to deal with theℓ2,1 regularization term.

Many of the challenges to computing solutions to (2)mimic those in LASSO and compressive sensing (e.g. a
discontinuous first derivative at zero from the 1-norm, causing challenges for optimization algorithms). Various
methods have been proposed to solve such problems, ranging from convex relaxations (e.g. iteratively
reweighted schemes) and nonconvex optimizationmethods (e.g. ADMM). Amain caveat of all of thesemethods
is the need to select the regularization parameter a priori.More recently, flexible Krylovmethods have been
shown to be powerful alternatives to solveℓ1 regularization problems (see [11, 23]) compared to other classical
solvers such as suitable versions of FISTA [24] or SpaRSA [25], or using iteratively reweighted norms (maybe) in
combinationwithKrylovmethods (see, e.g. [26, 27]). Similarly, flexible Krylovmethods have been used for TV
regularization (see [13, 28]) and proved competitive against themost popular solvers for this problem such as
proximal gradientmethods [29], primal-dualmethods [30], split Bregmanmethods [31] ormethods based on
iteratively reweighted norms [32]. Another example ofmodified TVusing group sparsity can be found in [4],
where group sparsity is used to promote piece-wise constant structures in space and time, sparsity in gradient
images shared across time instances, but not among the group. This is solved using amajorization-minimization
approach based on a generalized Krylov subspace approach [33, 34]. For non-overlapping groups, accelerated
proximal gradientmethods have been consideredwith added non-negativity constraints to solve (2) in [15] and
alternating directionmethod ofmultipliers was used in [7].

It is beyond the scope of this paper to handle cases where the groups are not know a-priori. However, the
methodology presented in section 3 could be used in combinationwith a strategy to determine (ormodify)
groups on-the-fly once a new approximation of the solution is available, since theweights are iteration
dependent. Similarly, theflexible Krylovmethods can be easily generalised toℓ2,p by using suitably defined
weights.Moreover, ifmemory requirements are a problem, iteratively reweighted schemeswithfixed
preconditioning can be used in an inner-outer scheme.

3. Flexible Krylovmethods for group sparsity

In this section, we describe flexible Krylovmethods and hybrid variants for solving the group sparsity
regularized problem (2) for both overlapping and non-overlapping groups, andwe develop extensions to solve
(4) and (5).We begin in section 3.1with a description of the iteratively reweighted norm approach.

Then in section 3.2, we describe flexible Krylovmethods for efficiently generating a single solution basis for
approximately solving the re-weighted least-squares subproblems. Amethod for automatically selecting the
regularization parameter within the hybrid framework is described.

3.1. Iteratively reweighted norm schemes
Traditional iteratively reweighted (IRW) schemes aremajorization-minimizationmethods that involve
constructing a sequence of least-squares problems approximating a variational regularization problemof
interest, which are then solved at each iteration. Thesemethods intrinsically rely on the interpretation of a given
ℓp norm as a non-linear weightedℓ2 norm (for 0< p� 2), such that evaluating theweights at an available
approximation of the solution xk−1 can be used to obtain a quadratic tangentmajorant of the original problem
at xk−1. Recall that a quadratic tangentmajorant of a non-quadratic function at a point z̄ is a quadratic upper
bound of the original function constructed such that both the value of the function and the value of the
gradient of both functions coincide at z̄.More specifically, for ( ) ( )Wz z z z

p p
p

p
1 1

2
2F = =    , then ( )¯ zzF =

(¯) ( ) (¯) ¯W Wz z z z
p

1

2 2
2 1 1

2 2
2+ -    is a quadratic tangentmajorant ofΦ(z) at z̄. This can be explicitly checked as
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z̄F is quadratic, (¯) (¯)¯ z zzF = F , the gradients are equal at z̄, i.e. (¯) (¯)¯ z zzF = F , and ( )¯ zzF is an upper bound
ofΦ(z) for all z (see, e.g. [35]).

IRWnorm schemes can be used to solveminimization problems involvingℓ2,1 norm termsAssume the
components of z nÎ  belong to s different (possibly overlapping) groups and define z gi to be the vector
constructed by concatenating the components in z belonging to the i-th group. LetGj be the indexes of the
(possiblymultiple) groupswhere the component zj of z belongs to and, with a small notation abuse, let z zj giÎ
be the components of z that belong to the i-th group. Then, we can define a diagonal weightingmatrix (as a
function of z) as

( ) ( )W z
z
1

, 7j j
i G g

,
2j i

å=
Î  

such that theℓ2,1 normdefined in (3) can bewritten as a reweightedℓ2 norm:

⎛⎝⎜ ⎞⎠⎟ ⎛⎝⎜ ⎞⎠⎟( )

( )

z zW z z
z z

z

z
z z

1 1

. 8

j

n

i G g
j

i

s

z g
j

i

s
g

g i

s

g

z
2
2

1 2

2

1 2

2

1

2
2

2 1
2 2,1

j i j gi i

i

i

i

å å å å

å å

= =

= = =

= Î = Î

= =

 
   

 
 

   

The solution-dependent non-linear weights defined in (8), can be then used to re-write the original
regularization problem (6)with group sparsity regularization as

{ ( ) } ( )A z b W z z x zmin for . 9
z

1
2
2

2
2 1lY Y- + =- -   

Using an IRW scheme corresponds to evaluating (andfixing) theweights (7) at each (outer) iteration using the
available approximation of the solution coming from the previous problem in the sequence.However, this can
be numerically unstable due to divisions by zerowhen one has to evaluate theweights on a vector with groups
whose components are all 0 valued. This situation is in fact expected, as we are assuming sparsity in the groups,
and is caused by the lack of smoothness of the functional in (6) at such vectors with 0 valued components. Thus,
we consider a smooth approximation of the original problem, and the followingweights are considered instead
of the ones defined in (7):

( ) ( )W z
z

1
, 10j j

i G g

,

2
2 2

j i

å
t

=
+

~

Î  

so that ( ) ( )W W z W zk k k1 1= »~
- - . This yields the following sequence of least-squares problems approxi

mating (6):

{ } ( )A z b W z x zmin for . 11k
z

1
2
2

2
2 1lY Y- + =- -   

Note that thisminimization is equivalent tominimizing a sequence of quadratic tangentmajorants of a
smoothed version of (6), wheremultiplicative constants have been absorbed byλ and additive constants have
been disregarded.Moreover, note that one could transformproblem (11) to the following equivalent expression
using a solution-dependent right preconditioner (or, equivalently, a suitable change of variables):

{ } ( )A W s b s x z W smin for . 12k k
s

1 1
2
2

2
2 1 1 1lY Y Y- + = =- - - - -   

Expression (12)motivates the use of flexible Krylovmethodswhich allow for iteration-dependent precondition-
ing, see e.g. [11, 23] and references therein, andwill be explained in detail the following section.Note that
reweighting schemes can also be used to solve (5) using (8) and (10) to derive analogous expressions to (9), (11)
and (12), see [9].

Moreover, we can handle theminimization (4)withmultiple regularization terms by defining two solution-
dependent diagonal weightmatricesW1 andW2 such that (4) can bewritten as the following reweighted
problem:

{ ( ) ( ) } ( )Ax b W x x W x xmin 13
x

2
2

1 2
2

2 2
2l a- + +     

or, equivalently,

⎧⎨⎩ ⎡⎣⎢ ⎤⎦⎥ ⎫⎬⎭( )
( ) ( )Ax b W x

W x
xmin . 14

x
2
2 1

2
2

2
l
a

- + 

Formultiple regularization terms, a point of concern especially in the context of iterative projection
methods, is the estimation of regularization parameters. An alternative is to define a functional representation
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for the relationship between regularization parameters [36, 37]. For example, define 2a t l= l for some
constant τλ. Then, let ⎡⎣⎢ ⎤⎦⎥ ⎡⎣ ⎤⎦( )

( )
( )
( ) ( )L W x

W x
W x
W x

Q D 15L1

2

1

2

l
a

l
t

l= = =
l

be theQR factorization of L. Notice that since L is a concatenation of diagonalmatrices which are invertible (by
definition),L is guaranteed to have orthogonal columns and is full column rank. Thus, the diagonal elements of
D can be easily obtained by taking the norms of the columns of L. Next, notice thatD is a diagonalmatrix that
depends on x andQL contains orthonormal columns, sowe get the IRW regularized problem,

{ ( ) } ( )Ax b D x xmin . 16
x

2
2

2
2l- +   

Flexible hybridmethods can be used to solve (16), and extensions tomore than two regularization terms is
straightforward. Numerical results demonstrating this approach are provided in section 4.2.

3.2. Flexible Krylovmethods
Flexible Krylovmethods are a subclass of Krylovmethods that allow for iteration-dependent right
preconditioning. Themethodology presented here can be used generally for anyflexible Krylovmethod, and in
particular wewill present three differentmethods to showcase the use of these algorithms in different
applications.

One interpretation offlexible Krylovmethodswhere the preconditioning ismotivated by a reweighted norm
in the regularization term is that some information about the solution is embedded in the solution space [38].
Moreover, this is achieved efficiently by building a single solution space, thereby avoiding inner-outer schemes.

Since the projected space already contains information about the (variational) regularization term, one can
also setλ= 0 in (12) and obtain a suitably regularized solution equippedwith early stopping.Without
appropriate stopping, however, the solutionwill approach the naive solutionA†b. This is the original approach
followed inflexible Krylovmethods andwill be denotedwith the prefix (F). Another approach is to add
regularization in the projected problem in order to avoid semi-convergence.With a suitable regularization
parameter, which can be adaptively set at each iteration, thismethod delivers a good reconstruction.However,
note that the regularization parameter for the projected problemsmight not be suitable for the original problem
(6). This can be understood since, in the limit, the solution obtainedwith thismethodwill converge to the
solution of thefit-to-data term in (6)with addedTikhonov regularization. This is usually notedwith the prefix
(hybrid-F) andwill be the preferredmethod used throughout the paper. For amore detailed explanation, see
[23]. Lastly, problem (6) can be projected onto the flexible Krylov subspace. Assuming no break-down has
happened at ( )k m nmin ,= , one can extend the algorithm for ( )k m nmin ,> = by updating theweights in (6).
In this case, the solution provided by aflexiblemethod following this schemewill converge to the solution of the
(smoothed version of) (6). This comes at the cost of aQR factorization of a tall and skinnymatrix at each
iteration andwill be denotedwith the prefix (IRW-F). The convergence proof for this scheme can be found
in [23].

3.2.1. Hybrid-FGMRES
Given A n nÎ ´ , b nÎ  , iteration independent right preconditioner n n1Y Î- ´ and iteration dependent
right preconditioningmatrices Wk

n n1 Î- ´ , the flexible Arnoldimethod is a process that, at the kth iteration,
constructs vectors vk+1 and z W vk k k

1= - such that

( )A Z V H , 17k k k
1

1Y =-
+

where ( )Hk
k k1Î + ´ is upperHessenberg, [ ]Z z zk k

n k
1= ¼ Î ´ , and [ ] ( )V v vk k n k

1 1 1 1= ¼ Î+ + ´ +
has orthonormal columns.Here, we assume that x0= 0, so v1= b/∥b∥2. A detailed algorithm forflexible
Arnoldi can be found in e.g. [11].

Using hybridflexible GMRES (hybrid-FGMRES) to promote group sparsity regularization involves
projecting the least-squares problem Ax b 2

2-  onto amodified (flexible)Krylov subspace using the
decomposition in (17) and adding regularization. Then, the solution at each iteration k can be computed as

{ } ( )x z Z y y H y b e ywhere arg min , 18k k k k k k
y

1 1
2 1 2

2
2
2lY Y= = = - +- -      

where e k
1

1Î + is thefirst columnof the identitymatrix of order k+ 1 andwe have used the fact that
Vk+1∥b∥2e1= b. Note that the iteration dependent preconditioners are built using ( )W W Z yk k k1 1= =~

- -

( )W zk 1
~

- as defined in (10), which depend on the solution computed at the previous iteration.
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3.2.2. Hybrid-FLSQR
For rectangularmatrices A m nÎ ´ , we can use aflexible LSQR approach, where for b mÎ  , an iteration
independent right preconditioner n n1Y Î- ´ and iteration dependent right preconditioningmatrices
Wk

n n1 Î- ´ , the flexible Golub-Kahan decomposition computes at the kth iteration vectorsuk+1, vk and
z W vk k k

1= - such that

( ) A Z U M A U V Sand , 19k k k k k k
1

1 1 1 1Y Y= =-
+

-
+ + +

where, if x0= 0,u1= b/∥b∥2. Here ( )Mk
k k1Î + ´ is upperHessenberg, ( ) ( )Sk k k

1
1 1Î+

+ ´ + is upper
triangular and both ( )Vk n k

1
1Î+

´ + and ( )Uk
m k

1
1Î+

´ + contain orthonormal columns. Formore details see,
e.g. [39].

Using hybridflexible LSQR (hybrid-FLSQR) to promote group sparsity regularization involves projecting
the least-squares problem Ax b 2

2-  onto amodified (flexible)Krylov subspace using the decomposition in
(19) and adding regularization to the projected problem. Then, we can compute an approximation of the
solution at each iteration k as

{ } ( )x z Z y y M y b e ywhere arg min . 20k k k k k k
y

1 1
2 1 2

2
2
2lY Y= = = - +- -      

In particular, we are interested in the case where ( ) ( )W W Z y W zk k k k1 1 1= =~ ~
- - - and therefore it depends on the

solution computed at the previous iteration.

3.2.3. Hybrid-SD
With appropriately definedweights, both hybrid-GMRES and hybrid-FLSQR can be used to solve group sparsity
regularized problems (2) and (4), but a different projection approach is needed to handle the solution
decomposition problem (5) (e.g. for anomaly detection). In this work, we use the Flexible GeneralizedGolub-
Kahan (FGGK) approach described in [9] to generate a basis for the solution, where theweights are determined
from the group sparsity regularizer.

Given A m nÎ ´ , b mÎ  , SPDmatrices Q n nÎ ´ and R m mÎ ´ , and iteration-dependent right
preconditioningmatrices Wk

n n1 Î- ´ , the flexible, generalizedGolub-Kahan iterative process generates
vectors vk, z W v ,k k k

1= - anduk+1 such that at iteration k,

[ ] ( )AQ A Z U M A R U V Sand , 21k k k k k k1
1

1 1 1= =+
-

+ + +

where

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ( )Z
v v
z z

V
Z

...

... , 22k
k

k

k

k

1

1
= =

and u b b R1 1= -  and v1= AR−1u1 if x0= 0.Note that ( )Mk
k k1Î + ´ is upperHessenberg, Sk 1 Î+

( ) ( )k k1 1+ ´ + is upper triangular, and in exact arithmetic, the columns of ( )Uk
m k

1
1Î+

´ + and ( )Vk n k
1

1Î+
´ +

satisfy the orthogonality conditions,

( ) U R U I V QV I, . 23k k k k k k1
1

1 1 1 1 1= =+
-

+ + + + +

In order to use the FGGKprocess to solve (5), wefirst consider the sequence of reweighted least-squares
problems,

{ ( ) } ( )AQ As b W s smin , 24
s R Q
,

2 2
2
2

1y ya l+ - + +
y

-     

where ξ=Qψ andW is defined as in (7).Wefirst project the objective function
AQ As b

R Q
2 2

1y ya+ - +-    onto amodified (flexible)Krylov subspace using the decomposition in (21),
then add regularization to the projected problem, such that an approximation of the solution can be found at
each iteration k as:

( )x s QV y Z y where 25k k k k k k kx= + = +

{ } ( )y M y b e y R yarg min , 26k k k
y

R W1 2
2

2
2

, 2
21 a l= - + +-       

whereZk=QW,kRW,k is a thinQR factorization that can be computed via efficient updates [9]. Contrary to the
additional regularization terms added to (18) and (20), a non-standard Tikhonov regularizer is included here to
distinguish the contributions from the two solution components. Notice that a decomposition of the solution xk
is available, i.e. ξk is a reconstruction of the smooth component and sk is a reconstruction of the group-sparse
component (e.g. containing anomalies).Moreover, in this case, theweights depend only on a part of the
approximate solution at each iteration k, i.e. ( ) ( )W W s W Z yk k k k1 1 1= =~ ~

- - - . A detailed explanation of the
algorithmdeveloped to obtain (21), originally proposed under the name of solution decomposition hybrid
projection approach (sdHybr), can be found in [9].
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3.2.4. Regularization parameter choice criteria
One of themain advantages offlexible Krylovmethods is the ability to incorporate regularization on the
projected problem (IRW-F and hybrid-F), and hence to adaptively set the regularization parameter(s)λk at each
iteration.

Note that this is a very efficient approach. Differently to othermethods, where the use of regularization
parameter choice criteria requires the (full) solve of several regularized problems, here the regularization
parameters are chosen on-the-fly throughout the iterations, only using information available from the projected
problem andwithout requiring any extramatrix-vector products with the systemmatrix. This is also the
approached followed by themore general class of hybridmethods, see, e.g. the review [40].

In particular, we consider the use of the discrepancy principle (DP)[41] for the projected problem, i.e.
finding the regularization parametersλ� 0 such that

( ) ( ) ( )Ax b AZ y b e . 27k k k2 2 2l l h- = - =     

Note thatλ= λ for theminimization in (18) and (20), butλ= [λ,α] for the optimization in (26). The
approximate solution computed by any given algorithm at iteration k is given by xk(λ), with yk being the
corresponding coefficients in the projected space. Using theDP requires a good estimate of the noise level and
has been consideredwithin amulti-parameter regularization context, e.g. see [42–44]. Alternatively, other
methods can be used seamlessly, see, e.g. [40, 45].

4.Numerical examples

In this section three imaging examples are presented to demonstrate the performance offlexible Krylovmethods
for group sparsity regularization. In order to showcase the generality of the described approach, theflexible
schemes are used for different grouping strategies including both overlapping and non-overlapping groups and
in combinationwith different solvers.

The notation used to describe the solvers in this section can be found in table 1, where group sparsity
regularization is indicated by appending a ‘G’ suffix at the end of themethod. In the case wheremore than one
grouping strategy has been compared, different grouping strategies are denoted ‘G1’, ‘G2’, etc.Moreover, if both
ℓ1 andℓ2,1 are considered simultaneously, we use ‘C’ to denote the combined approach. If no group suffix is
appended for aflexiblemethod, then this corresponds toℓ1 regularization. Recall that the projection types are
explained in section 3.2. And note that hybrid solution decompose (SD) [9] and restarted conjugate gradient
(RCG) for group sparsity [21] are used as a comparisonwith previous works.

Thefirst experiment exploits group sparsity patterns inwavelet coefficients by considering the natural tree
structure of wavelet decompositions. Since non-leaf elements belong tomore than one branch, this example
showcases the use of the new scheme for regularizationwith overlapping groups. A deblurring problem is
considered and solved using different versions of the new scheme involving FLSQR, paying particular attention
to the different projection types and recalling the differences between themwhile showcasing their practical
performance.

The second experiment corresponds to a dynamic deblurring problem. Since this is a spatio-temporal
problemdisplaying a spatial sparsity pattern but smoothness in time, the groups are chosen to contain each pixel
across all time points, so this is an example of non-overlapping group sparsity. In particular, we focus on the
difference between enforcingℓ1 regularization andℓ2,1 regularization using hybridflexiblemethods, andwe
present results for the newmethod combining both regularization terms Since this is a symmetric problem, the
performance of bothmethods based on FLSQR and FGMRES is tested.

The third experiment concerns an anomaly detection problem in atmospheric inversemodeling. This
corresponds to a realistic example, and our aim is to show the potential of the new schemes in real-world
applications. Since this experiment also involves spatio-temporal images that are sparse in space but not time,
the groups are built analogously to the second experiment. Additionally, since the solution in this experiment is

Table 1.Notation for the solvers:projection -
ALGORITHM -GROUPS.

projection ALGORITHM GROUPS

none FLSQR none
hybrid FGMRES G
IRW SD G1,G2

RCG C
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modelled as the sumof a smooth (background) component and a group-sparse (anomalies) component, hybrid-
SD-G is used in this experiment.

For all the experiments, τ in (10) is taken to be 10−10. However, empirical observations demonstrate that the
algorithms are robust to this choice as long as τ is significantly smaller than the average pixel intensity and kept
abovemachine precision.Moreover, the regularization parameter for all hybrid and iteratively-reweighted
methods is chosen across the iterations using theDPdefined in (27).

4.1.Deblurring examplewithwavelet sparsity patterns
Natural images have been shown to bewell described bywavelet representations [46], Chapter 9.Moreover,
wavelets have a natural tree-structurewhere each non-leaf wavelet coefficient for a given orientation (diagonal,
vertical and horizontal) has four children coefficients corresponding to the same orientation at afiner scale. This
is explained in, e.g. [18]. There are of course different groupings than one could develop. For example, in this
paper, both 2-elements groups of each childrenwith their parent (G1) or 5-elements groups of each parent with
all their children (G2) are considered as suggested in [18]. Infigure 2 an upscaled example for awavelet
decompositionwith two levels is shown to illustrate a case of parent-child relationship in thewavelet domain.
Note that figure 2 is intended as an illustration, but in reality the tree structure is considered at the pixel scale, i.e.
where the red boxes infigure 2 correspond to individual pixels, tomatch thewavelet coefficients. Thus, at each
level, each given pixel in thewavelet representation corresponding to a non-leaf element in the tree is the parent
of 4 pixels in a finer level representing the same area of the original image (at that given orientation).

For this deblurring example,mediumGaussian blur is generatedwith IRTools [47]with addedGaussian noise
at noise level∥e∥/∥Axtrue∥= 0.05.Here the true solution xtrue 65,536Î  contains 256× 256pixels and
corresponds to the SATELLITE test image in IRTools and can beobserved infigure 3 alongwith the corresponding
blurred andnoisymeasurements.One canobserve that the true image contains regionswith details (and edges) at
different scales, while other areas of the image containmany zeroes andhence donot have information at any scale.
Therefore, group sparsity in thewavelet coefficients shouldprovide suitable regularization.

Exploiting group sparsity in thewavelet coefficients corresponds to choosingΨ in (2) to be anorthogonal
wavelet transformand choosing the groups according toG1orG2 as defined at the beginning of this subsection
(and illustrated infigure 2). Note that both grouping schemes correspond tooverlapping group sparsity
regularization.The results for these experiments canbe found infigure 4, whereweprovide relative reconstruction
errornorms, computed as‖ ‖ ‖ ‖x x xk true 2 true 2- where xk is the reconstruction at the kth iteration.

We provide a comparison against the algorithmpresented in [21] (following their original grouping
structureG1). Note that we have not included their proposed preconditioning, nor their starting guess (x0= 0 is
used instead ofAb), since those are highly problem-dependent choices and their approach is not suitable for
this example. The regularization parameter for the hybridflexible and IRW flexiblemethods is chosen at each
iteration using theDP (27)with safety parameter η= 1.01. For the RCG algorithm [21], the regularization
parameter is chosen to be the one computedwith the hybrid flexiblemethods at the end of the iterations. It is
worthmentioning that RCG is better suited to other forwardmodels (such asMRI), but flexible Krylovmethods
have a comparable performance and allow the (semi-automatic) computation of the regularization parameter
on-the-fly.

One can observed that flexible Krylovmethods display a fast convergence in comparison toRCG.Different
grouping strategies, displayed infigures 4(a) and (b) respectively, have similar performances (note that both

Figure 2. Illustrative example of the tree structure in thewavelet decomposition of the SATELLITE test image used for the deblurring
problem represented in figure 3 andHaarwavelets with 2 levels. Examples of groups using strategyG1 are {A,B}, {A,C}, {A,D},
{A,E}while an example of a group using strategyG2 is {A,B,C,D, E}.
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error normplots have the same scale for the axis).Moreover, one can observe thatflexible Krylovmethods
without regularization in the projected problem (FLSQR-G1 and FLSQR-G2) display semi-convergence, and
that the severity of it depends on the grouping strategy. To be able to use these algorithms in practice, one should
use appropriate early stopping. On the contrary,methodswith explicit regularization in the projected problem
(hybrid-FLSQR-G and IRW-FLSQR-G for both grouping strategies), using theDP as a parameter choice
criterion at each iteration, display a stabilization of the error norm throughout the iterations. It is worth noting
that the regularization parameter for hybrid and IRWmethods does not necessarily need to be the same as that
for the original problem, as explained in section 3.2. In fact, for the grouping strategyG1, very similar error
norms are achieved for the twomethods using very different regularization parameters. This can be observed in
figure 5. Recall that hybridmethods are cheaper per iteration than iteratively-reweightedmethods, but
iteratively-reweightedmethods are equippedwith theoretical guarantees of convergence. In practice, as can be
observed for this experiment, bothmethods typically display very similar behaviours in the error normplots.

4.2. Combined regularization for spatio-temporal image deblurring.
This experiment concerns a synthetic dynamic image deblurring problem,where the goal is to reconstruct a
sequence of images from the sequence of their corresponding blurred and noisy counterparts [48, 49]. The blur
matrix for this example isA= At⊗ AswhereAs represents a 2DGaussian point spread functionwith spread
parameterσ= 1 and bandwidth 4 andAt represents a 1DGaussian blurwith spread parameterσ= 1 and
bandwidth 3. Gaussianwhite noise has been added to themeasurements with noise level ∥e∥/∥Axtrue∥= 0.02.
The sequence of images forming xtrue is displayed in thefirst row offigure 6, while the sequence of their
corresponding blurred and noisy counterparts b can be found in the second row.Note that x and b are spatio-
temporal images of size 50× 50× 9 (i.e. 50× 50 pixels at 9 time points).

Figure 3. Image deblurring problem for usewith group sparsity in the wavelet coefficients.

Figure 4.Relative reconstruction error norms for themethods based on FLSQR for the deblurring example presented infigure 3with
wavelet group sparsity. The regularization parameter has been chosen at each iteration using theDP.
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In this example, some regions in all of the images in the sequence are always zerowhile other regions have
pixels of changing intensity. It is then appropriate to use group sparsity regularizationwhere each spatial
location, over all time points, constitutes a group.We compare the results forℓ2,ℓ1 andℓ2,1 regularization using
hybridflexiblemethods, andwe present results for the newmethod combining anℓ1 and anℓ2,1 regularization
term. Since the forwardmodelmatrixA is square,methods based on both LSQR andGMRES are tested. The
error normplots for allmethods can be found infigure 7. All of the presented approaches used theDP as defined
in (27) to select the regularization parameter, where xk in (27) corresponds to the approximated solution of (16)
computed at iteration k. Note that τλ in (15)must be set ahead of the iterations. In particular, τλ= 1.2 for
methods based on FLSQR and τλ= 0.8 formethods based on FGMRES.

It can be observed from the plot of relative reconstruction error norms, see figure 7, thatℓ1 regularization
(hybrid-FLSQR andhybrid-FGMRES) outperforms Tikhonov regularization (hybrid-LSQR and hybrid-
GMRES) for this problem.Moreover, the new algorithms enforcing group sparsity regularization (hybrid-
FLSQR-G and hybrid-FGMRES-G) produce significantly better reconstructions (i.e., smaller reconstruction
errors), with the combined approaches (hybrid-FLSQR-C and hybrid-FGMRES-C) performingmarginally
better than group sparsity regularization on its own.

One can also observe that for this example themethods based on FLSQR (Figure 7(a)) performbetter than
themethods based on FGMRES (figure 7(b)), at the computational cost of an extramatrix-vector-product with
the adjointA per iteration.Nevertheless, we provide results for both solvers to highlight the benefit of using
group sparsity (and a combination of sparsity and group sparsity)with respect to other regularizers, andwe
reiterate that this can be done using differentflexible Krylovmethods seamlessly. Reconstructed images
corresponding toℓ1 regularization (top row) and a combination ofℓ1 andℓ2,1 regularization (bottom row) are
presented formethods based on LSQR infigure 8 and formethods based onGMRES infigure 9. In particular, we
would like to draw attention to the cross in the bottom-right of the images at the later time points (images on the
far right). One can see that the reconstructions usingℓ1 regularization (top row) aremore blurred that the ones
using a combination ofℓ1 andℓ2,1 (bottom row), which appearmuch crisper and closer to the true solution in
figure 6 (top row) both formethods based on FLSQR and on FGMRES.

Figure 5.Regularization parameterλk for the deblurring example presented in figure 3, chosen at each iteration using theDP.

Figure 6.Dynamic image deblurring problem, where the true images are provided in the top row and the corresponding blurred
observations are provided on the bottom row. The first time point has been omitted for visualization ease.
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4.3. Anomaly detection in atmospheric inversemodeling
In this experiment, we are interested in the inverse problemof efficiently and accurately detecting anomalies from
observed data in atmospheric inversemodeling.This is relevant, for example, in large-scale anomalous emissions
of greenhouse gasses and air pollutiondetection. Amajor challenge for anomaly detection is that inversemodels
using standard priors are not able to capture both anomalies (e.g. natural gas blowouts) and smooth regions (e.g.
broad-scale emissions) simultaneously. Anew solutiondecomposition frameworkwas described in [9]where the
desired parameters are represented as a sumofdifferent stochastic components, and different priors are used for
each component. Inparticular, aGaussian priorwas used for the smooth component of the reconstruction and a
sparsity priorwas used for capturing anomalies.However, anomalies are typically sparsely distributed in space but
consistent over time, and theprevious framework cannot capture such phenomena. Thus,wehave extended the
solution decomposition framework for group sparsity regularization andpresent the results here.

In this example we consider a realistic linear atmospheric inversemodel, where the aim is to estimate CO2

fluxes acrossNorthAmerica at 3-hourly temporal resolution over 41 days (approximately 6weeks from late June

Figure 7.Relative error norms for themethods based on FLSQR and FGMRES for the deblurring example presented infigure 6. The
regularization parameterλkhas been chosen at each iteration using theDP.

Figure 8.Reconstructions withℓ1 regularization andwith a combination ofℓ1 andℓ2,1 regularization for the dynamic image
deblurring problem. Thesemethods are based on FLSQR, and thefirst time point has been omitted for visualization ease.

Figure 9.Reconstructions withℓ1 andwith a combination ofℓ1 andℓ2,1 regularization for the dynamic image deblurring problem.
Thesemethods are based on FGMRES, and thefirst time point has been omitted for visualization ease.
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through July 2015) and at 1°× 1° latitude-longitude spatial resolution. This setup corresponds to 3, 222
unknowns per 3-hour time interval. In particular, ·xtrue 328 3222Î  corresponds to theCO2 fluxes fromNOAA’s
CarbonTracker product (version 2019b). Synthetic satellite observations contained in b 19,156Î  are generated
as in (1) andmimic those fromNASA’sOCO-2 satellite, whereA simulates an atmospheric transportmodel and
e is addedGaussian noise to representmeasurement errors. The components of the noise e are considered to be
uncorrelated, so the covariancematrixR isσ2I, whereσ= 1.1267 has been chosen so that ehas a noise level of
σ∥e∥/∥Axtrue∥= 1.We remark that although these noise levels seemhigh for classic inverse problems settings,
they are realistic in real data inversemodeling studies usingOCO-2 data [50, 51].We refer the interested reader
to [52, 53] for additional detail on the specifics of the problem setup.

Although adecomposition of xtrue= s+ ξwhere ·s, 328 3222x Î  is not available, we observe that, similar to
actual atmosphericmodels, the truefluxes contain a combinationof large, sparselydistributed valueswhich
correspond to anomalies (e.g.fires, anthropogenic emissions, or anomalies inbiosphericfluxes) and smooth, broad
regions of surfacefluxeswith small-scale variability. For defining theprior forξ, we follow similar approaches
[52, 54] and consider prior covariancematrix,Q= λ−2Qt⊗QswhereQt represents the temporal covariance andQs

represents the spatial covariance in thefluxes. These covariancematrices are definedby kernel functions
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where dt is day difference between two unknowns, ds is spherical distance between two unknowns, and θt, θg are
kernel parameters. In this setting, we set θt= 9.854 and θs= 555.42, as in [52]. For the group sparsity regularizer
for s, we define 3222 groupswith each group corresponding to a spatial location. Thus, the groups are defined to
include 41 days of 3-hourly time intervals.

We compute spatio-temporal reconstructions using hybrid-SD-Gand compare the results to hybrid-SD
(referred to assdHybr in [9]), where the regularizationparametersλ andα are selectedusing theDP as defined in
(27). The temporal-averaged images of theflux reconstructions are presented infigure 10, alongwith the temporal
average of the true image.Weobserve that bothhybrid-SD-Gandhybrid-SD average reconstructions are able to
capture both sources and sinks present in the true average image,with thehybrid-SD-G reconstructionhaving a
slightly smaller relative reconstruction error for the average image. Themainbenefit of the solution decomposition
framework is the ability to obtain twocomponents of the solution. Infigure 11,weprovide the reconstructions of
the individual components ξ and s that form the solution for hybrid-SD (top row) andhybrid-SD-G (bottomrow).
It is clear that group sparsity regularization provides a smoother background and is able to distinguish persistent
anomalies (as opposed to spurious false positive anomalies)better than standard sparsity regularization.

The results of this case study demonstrate that hybrid-SD-G can yield accurate results for complex, spatio-
temporal atmospheric inversemodeling that are inherently different from the ones obtained using hybrid-SD.
Comparisons of hybrid-SD to existing reconstructionmethods can be found in [9].
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Figure 10.Anomaly detectionOCO-2 example.We provide the averaged true fluxes for reference alongwith the averaged computed
reconstruction of thefluxes (inμmolm−2s−1) for hybrid-SD and hybrid-SD-G. Relative reconstruction error norms for the averaged
spatio-temporal fluxes are provided in the titles, and all results correspond to using theDP selected regularization parameters.
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5. Conclusions and futurework

This paper presents a suite of numerical algorithms based onflexible Krylovmethods for solving linear inverse
problemswith group sparsity regularization. The idea of using group structure to achieve better sparse recovery
has receivedmuch attention, but automated and efficient approaches for practical implementation are still
lacking. This work addressed that gap by proposing new iterativemethods that are efficient, since they only
requirematrix-vector and possiblymatrix-transpose-vector products, and automatic, by selecting
regularization parameters on-the-fly.Moreover, these approaches exploit flexible preconditioning techniques
to avoid inner-outer schemes by building a single solution subspace fromwhich to compute solutions.

Additional regularization can be added to the projected problem to avoid semi-convergence or to guarantee
convergence of the proposedmethod (at a higher computational cost). This scheme allows for the regularization
parameter to be chosen adaptively using suitable parameter choice criteria. In particular, the results in this paper
are shown for hybrid-FGMRES, hybrid-FLSQR, IRW-FLSQR, and hybrid-SD, all with group sparsity
regularization and using theDP tofind appropriate regularization parameters.

Moreover, the scheme presented in this paper is highly general, since very different regularization terms can
bemodeled in the group sparsity framework. This is highlighted in the numerical examples, which show the
performance of themethod in different applications and for different group sparsitymodalities. In particular, an
example of overlapping group sparsity is shownusing the natural tree-structure of wavelet decompositions and
non-overlapping group sparsity is tested in solutions that have spatio-temporal components where the solution
is temporally persistent and sparse in space.

Futurework includes extensions to other applications and other constraints (e.g. nonnegativity). For
example, group sparsity regularization has been used for nonnegativematrix factorization [55] and for group-
based dictionaries in neuroimaging using fMRI [56].
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