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Abstract 
Processing information in the optical domain promises advantages in both speed and energy 
efficiency over existing digital hardware for a variety of emerging applications in artificial 
intelligence and machine learning. A typical approach to photonic processing is to multiply a 
rapidly changing optical input vector with a matrix of fixed optical weights. However, encoding 
these weights on-chip using an array of photonic memory cells is currently limited by a wide range 
of material-level and device-level issues, such as the programming speed, extinction ratio, and 
endurance among others. Here, we propose a new approach to encoding optical weights for in-
memory photonic computing using magneto-optic memory cells comprised of heterogeneously 
integrated cerium-substituted yttrium iron garnet (Ce:YIG) on silicon micro-ring resonators. We 
show that leveraging the non-reciprocal phase shift in such magneto-optic materials offers several 
key advantages over existing architectures, providing a fast (1 ns), efficient (143 fJ per bit), and 
robust (2.4 billion programming cycles) platform for on-chip optical processing. 
 

Introduction 
The growing divide between the demand for computing resources and the performance of digital 
hardware necessitates the development of post-CMOS architectures that can achieve ultra-high 
computational throughput at ultra-low energies. An extreme example of this comes from the field 
of deep learning, where the computation required to train state-of-the-art deep neural networks 
grew by over 300,000× between 2015 and 2020, doubling every 3.4 months 1,2. Over the same 
period, the computing performance of CMOS microprocessors has started to reach saturation, 
encountering the limitation of the maximum power dissipated per unit area 3,4, while the efficiency 
of graphics processing units (GPUs) has grown by only 300× 5. Additionally, for emerging 
applications, such as high-speed qubit classification, plasma control in fusion reactors, real-time 
signal processing, and autonomous navigation, processing data with ultra-low latencies is highly 
challenging using conventional digital approaches that rely on sequential arithmetic operations 6. 
Although analog in-memory computing offers a solution to the problem of sequential operations 
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for matrix multiplication 7, its latency increases with the memory array size due to the capacitance 
of metal interconnects 8. 

Processing information with light offers a compelling alternative to conventional computing 
because optical interconnects, such as fibers and waveguides, lack capacitance. This absence of 
capacitance eliminates the energy-bandwidth tradeoff that restricts the data transfer rate of 
electrical interconnects and enables exceptionally high bandwidth density when combined with 
wavelength division multiplexing. Additionally, by breaking free from the confines of binary logic 
and encoding, linear operations (e.g., convolutions, matrix multiplications, Fourier transforms, 
random projections, etc.) can be reduced to a single optical transmission measurement with 
extremely low energy consumption—even less than one photon per multiply-accumulate operation 
9,10. These combined advantages of analog computing in the optical domain enable the dramatic 
scaling necessary for continued innovations in artificial intelligence (AI) and machine learning—
both in terms of compute density (operations per chip area) and energy efficiency (operations per 
watt). 

Many distinct photonic architectures have been proposed and demonstrated that attempt to address 
the major bottleneck facing the field of AI and computing, namely matrix-vector multiplication 
(MVM). The vast majority of these approaches can be classified as “weight-stationary” photonic 
processors 11 where a matrix of programmable optical weights—typically encoded in a 2D array 
of nonvolatile memory elements or optical modulators 12–19—is used to perform a linear 
transformation on a vector of optical inputs. This design approach has the benefit of performing 
computation in the memory array itself, not unlike analog computing in the electrical domain using 
crossbar arrays of resistive random access memory (RRAM) 20, which can significantly reduce 
data movement and latency, while improving energy efficiency. 

However, a crucial (yet seldom mentioned) limitation of these weight-stationary approaches is the 
time and energy required to update the fixed weights of the matrix to implement useful computing 
algorithms. Unlike electronic crossbar arrays which aim to fully map the entire neural network into 
analog weight banks to minimize reprogramming of the array, optical weight banks have much 
lower storage density (e.g., ~0.01 bits/μm2 21) and can only store a tiny fraction of the necessary 
parameters on-chip (e.g., a 16×16 phase-change memory array 22 or 64×64 Mach-Zehnder 
interferometer array 12). Thus, to accommodate the large number of parameters required by real-
world applications, the photonic weight bank must be reprogrammed many times for each matrix 
operation that exceeds the dimensions of the weight bank. This requires photonic memory cells 
which can be deterministically programmed quickly, efficiently, and with high endurance or they 
will dramatically reduce throughput and energy efficiency of the entire system 11,23,24. 

To address these challenges, we propose a resonance-based photonic architecture (inspired by the 
“broadcast and weight” design 13) which leverages the non-reciprocal phase shift in magneto-
optical materials to implement photonic in-memory computing. In this architecture (Figure 1a), a 
y-splitter excites both the clockwise (CW) and counterclockwise (CCW) propagating modes of a 
microring resonator (MRR) with a magneto-optic cladding layer (Cerium-substituted Yttrium Iron 
Garnet or “Ce:YIG”). The interaction of the optical mode with Ce:YIG causes a non-reciprocal 
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phase shift for the two counterpropagating modes which is visible as a split resonance shift with 
opposite signs. The direction of the non-reciprocal phase shift is dependent on the sign of an 
applied external magnetic field which allows both positive and negative weights to be encoded 
(Figure 1e). A circulator is used to prevent feedback to the optical source for the case of an add-
drop MRR or, in the case of an all-pass MRR, a pair of circulators are used (see Figure 1d). When 

 

Figure 1: Non-reciprocal photonic in-memory computing. a) Our vision for a non-reciprocal photonic 
computing platform which leverages high-speed magneto-optic memory arrays to enable fast weight 
updates. A single row from our proposed architecture is illustrated below which leverages non-reciprocal 
memory cells to compute a dot-product optically. b) Speed versus energy comparison of state-of-the-art 
nonvolatile photonic memory technologies which have been demonstrated on chip. c) Cross section of non-
reciprocal magneto-optic memory. Either wafer bonding and chemical mechanical polishing (left) or 
growth and patterning of amorphous silicon on Ce:YIG substrates (right) can be used to heterogeneously 
integrate Ce:YIG with silicon waveguides. In both cases, high-quality Ce:YIG is guaranteed by growing 
the garnet on a native substrate of substituted gadolinium gallium garnet (SGGG). d) Illustration of two 
implementations used to demonstrate magneto-optic memory cells where both counter-propagating modes 
are excited in the MRR. e) Positive and negative weights are encoded by switching the magnetization 
direction and amplitude, which results in opposite resonance shifts for the clockwise (CW) and 
counterclockwise (CCW) counter-propagating modes.  
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scaled to an entire array of add-drop MRRs, only one broadband isolator at the input is necessary. 
While in the experimental characterization of the memory cells we used fiber optic circulators, the 
proposed magneto-optic platform offers the distinct advantage of seamlessly integrating 
broadband optical isolators on chip 25–28 in parallel with the non-reciprocal memory array. 

This approach has several benefits. First, by using the non-reciprocal effect in magneto-optic 
materials, we can efficiently achieve ~1 GHz programming speeds, nonvolatility, and multi-level 
encoding as we demonstrate in this work (see Figure 1b and Table 1 for a comparision with state-
of-the-art). Secondly, the cycling endurance of magnetic-based memory is known to be orders of 
magnitude greater than competing technologies 29, an outstanding challenge for many nonvolatile 
optical memories 30. Finally, unlike the case of add-drop MRR weights based on reciprocal optical 
effects 13 (e.g., thermo-optic or plasma-dispersion effects), the differential signal is measured from 
the through port transmission for both the CW and CCW modes, improving the symmetry and 
extinction ratio for both positive and negative weighting.  

Device Design 
Integration of the Ce:YIG layer with the photonic circuit can be achieved either through wafer 
bonding and polishing 31 or by deposition and patterning of an amorphous silicon layer 32 as 
illustrated in Figure 1c. Programming the state of the memory cell requires a radial in-plane 
magnetic field which is supplied by an integrated Au electromagnet. To maintain a nonvolatile 
state without dissipating power, a ferromagnetic thin-film (CoFeB) patterned into an array of bar 
magnets can be integrated with the electromagnet on-chip 32,33. Figure 1e shows example spectra 
from a non-reciprocal memory cell under a negative (left) and positive (right) radial applied 
magnetic field. In the case of positive magnetization (𝑀! > 0), the forward propagating CCW 
mode (i.e., same propagation direction as current flow in the electromagnet) red shifts while the 
CW mode blue shifts. If the optical probe is red detuned from resonance when 𝑀! = 0, the 
resulting differential transmission encodes a negative weight. The opposite is true for negative 
magnetization (𝑀! < 0 ). For a critically coupled MRR, this approach can achieve high 
transmission contrast, limited by the extinction ratio of the CW and CCW modes. 

The functionality of our non-reciprocal memory cell can be extended beyond the single dot-
product shown in Figure 1a to MVM operations. In Figure 2 we compare two broadcast and 
weight architecture designs featuring non-reciprocal (Figure 2a) and reciprocal (Figure 2b) MRR-
based weights. Here, the matrix operation 𝑾𝑥⃑ = 𝑏*⃑  is achieved through fan-out of the optical input 
vector to each row of 𝑾 . This input vector is then multiplied by the wavelength-dependent 
transmission of each resonator in the row before being summed through incoherently combining 
the transmitted power at each row’s pair of output waveguides as originally proposed by Tait et al. 
13. An important distinction between the two approaches can be visualized in the transmission 
spectra of the bus waveguides. While the differential photocurrent compares the CW and CCW 
through ports in Figure 2a, the differential transmission of the through and drop ports is used to 
compute 𝑏*⃑  in Figure 2b. This is an important distinction since the drop port of the reciprocal MRR 
weight reaches its maximum extinction ratio at a phase shift of 𝜋 when the optical probe is centered 
at resonance. Thus, to achieve high optical contrast between the through and drop ports (i.e., to 
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improve bit-precision of the weight), a much larger phase shift is required in the case of a reciprocal 
MRR compared to a non-reciprocal MRR. While this may not be a limiting factor for a single 
memory cell, reducing the phase shift required to achieve the full range of positive and negative 
weight values in the array reduces the optical crosstalk between neighboring resonances 34 and 
alleviates the challenge of achieving strong optical modulation on-chip. 

This distinction is highlighted in Figure 2c-f where we simulate the differential transmission of 
both reciprocal and non-reciprocal optical memory with the same quality factor (Q = 10,000). In 
Figure 2c, we see that the differential transmission for both positive and negative values is an anti-
symmetric function centered at 𝜑 = 0. This function is shown in Figure 2d for three different 
optical probe wavelengths: 0.5×, 1.0×, and 1.5× full-width half maximum (FWHM) linewidths red 

 

Figure 2: Reciprocity in photonic computing. a) Non-reciprocal photonic computing platform leveraging 
an integrated magneto-optic memory array. Matrix-vector multiplication is achieved by taking the 
differential transmission between the clockwise (CW) and counter-clockwise (CCW) propagating modes. 
b) Reciprocal “Broadcast and weight” architecture which uses the difference between the through and drop 
ports of an add-drop microring resonator to encode the values of matrix W. c) Simulated map of differential 
through-port transmission for a non-reciprocal memory cell with Q = 10,000. d) Encoded weight value of 
non-reciprocal memory cell for an optical probe spaced 0.5, 1.0, and 1.5 FWHM away from resonance 
(dashed lines in d). Notably, the encoded value is an anti-symmetric function centered at zero phase-shift. 
e) Simulated map of the difference between the through and drop ports of a reciprocal memory cell with Q 
= 10,000. f) Encoded weight value of reciprocal memory cell when the optical probe is held at resonance 
(white dashed line in e). A larger phase shift is needed to achieve symmetric weighting compared to the 
non-reciprocal case. 
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detuned from resonance when 𝜑 = 0. As the detuning of the probe increases, the maximum and 
minimum weight values increase in magnitude, while the linearity of the weighting function near 
𝜑 = 0 decreases. The differential transmission for the case of a reciprocal memory cell is shown 
in Figure 2e. The reciprocal weighting function is symmetric and centered at 𝜑 = 0, requiring a 
resonance shift of ~0.5×FWHM to reach negative values when the probe is centered at resonance 
(Figure 2f). Thus, to achieve an equal range of positive and negative weights (i.e., minimal power 
penalty 34), a phase shift of ∆𝜑 = 0.17𝜋 is required for an ideal reciprocal MRR with the same 
quality factor of Q = 10,000. 

Modelling and Experimental Results 
The transmission spectra of magneto-optic memory cell is modeled using the transfer matrix 
method 35 where the effective index of the CW and CCW modes is computed using a finite element 
method 36. The resonance of the MRR is controlled by the current in the integrated electromagnet, 
giving rise to a magnetic field and a Joule heating effect. The magneto-optic and thermo-optic 
effect alter the effective index of the modes, and their impact is described using a perturbative 
approach. A comprehensive description of the model employed is provided in Section 1 of the 
Supplementary Material. 

The modeling results of Figure 2 were experimentally verified for a MRR with Ce:YIG (Q ≈ 
10,000) and a gold integrated electromagnet. For this demonstration, the ring radius is 35 µm and 
the waveguide cross-section is a 600 nm × 220 nm silicon ridge with a 400 nm thick top-cladding 
of Ce:YIG. A 10 nm thin silicon oxide layer separate the Silicon from the Ce:YIG layer (see 
Supplementary Materials for more details). Figure 3a shows the optical transmission spectra for 
the fundamental transverse magnetic (TM) CW and CCW propagating modes as a function of 
applied current. The resonance position of the spectra shows both a linear and quadratic 
dependence on the applied current corresponding to the magneto-optic and thermo-optic effects, 
respectively. In Figure 3b-c, we separate the resonance shifts of the CW and CCW modes into 
their non-reciprocal (magneto-optic) and reciprocal (thermo-optic) components. While the thermo-
optic effect red-shifts both CW and CCW spectra, the magneto-optic effect induces shifts in 
opposite directions for the two modes. For a set current, the thermo-optic shift is estimated as the 
average shift of the two spectra compared to the case of no current. The magnitude of the magneto-
optic shift is half of the measured resonance split between the CW and CCW modes. In Figure 
3b-c, we overlay the mathematical model with the measurement results, showing an excellent 
agreement between theory and experiments. Figure 3d plots the FWHM linewidth of the resonator 
for the CW and CCW modes, showing a similar quality factor for both modes. By varying the 
applied current in the electromagnet, we observe slight changes in the extinction ratio in Figure 
3a and linewidth in Figure 3d. These variations are caused by the non-reciprocal loss in the 
Ce:YIG, where the optical loss changes depending on the direction of light propagation and the 
transverse magnetic field 36–38. For more details, please refer to Section 1 of the Supplementary 
Materials. 

In Figure 3e, we plot the differential optical transmission of the CW and CCW modes for three 
different optical probe wavelength positions: 0.5×, 1.0×, and 1.5× FWHM linewidths red detuned 
from resonance when 𝜑 = 0 (i.e., no magnetic field). As expected, there is good overlap between 
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the experimental results and the simulated weighting functions for the case of an ideal resonator 
with similar quality factor (Figure 2d). Again, we see that increasing the red detuning of the optical 
probe increases the dynamic range of the weight function due to reduced insertion loss while also 
decreasing the linearity between the maximum and minimum weight values. More details on the 
modelling of the weight function is reported in Section 1 of the Supplementary Material. At larger 
current values, we observe a deviation from the expected weight value. We attribute this to the fact 
that for large detuning, the two modes have different FWHM, resulting in a distinct weighting for 
the two directions. This is due to the minor wavelength dependence for the coupling between the 
resonator and bus waveguide, which can be mitigated by designing adiabatic couplers or reducing 
the detuning of the probe wavelength from resonance. 

Having characterized the steady-state response of our non-reciprocal optical memory, we next 
demonstrate high-speed weight updates through characterization of the memory cell’s dynamic 
response. For high-speed characterization beyond ~1 MHz, the magneto-optic response dominates 
while the dynamic thermo-optic response becomes negligible. This can be seen in Figure 4a where 
the dynamic optical transmission of a CW probe for two current pulses can be observed at different 
time scales (1 ms versus 10 ns pulse width). In the case of a slow 1 ms current pulse, the optical 
transmission includes both a blue shift (increase in transmission) from the fast magneto-optic 
response and a red shift (decrease in transmission) from the slow thermo-optic response. For the 
case of a fast 10 ns current pulse and red detuned probe, the slow decay from the thermal response  

 
Figure 3: Experimental characterization of non-reciprocal optical memory. a) Spectral response of a 
non-reciprocal magneto-optic memory cell for different fixed currents (Q ≈ 10,000). Both linear and 
quadratic resonance shifts are observed due to the magneto-optic and thermo-optic effects, respectively. b) 
Magneto-optic spectral shift for the CW and CCW modes. Dashed lines correspond to our analytical model 
of the expected magneto-optic phase shift excluding thermal effects. c) Thermo-optic phase shift extracted 
from a) due to heating of the electromagnet while a constant current is applied. d) Extracted resonance 
linewidth as a function of applied current for the CW and CCW modes. Slight changes in the non-reciprocal 
loss for different propagation directions change the quality factor of the MRR. e) Encoded weight for a 
probe wavelength red detuned 0.5×, 1.0×, and 1.5× FWHM away from the central resonance when no 
magnetic field is applied. Experimental weight values are in good agreement with the modeled results in 
Figure 2d. 
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of the ring disappears (rise time ~50 μs and fall time 92 μs), and we only observe the fast magneto-
optic response with a rise and fall time of less than 1 ns, and a ferromagnetic resonance of 0.55 
GHz. Since the estimated time response of the integrated electromagnet circuit is 6 ps, the ringing 
observed in the optical response is attributed to magneto-optic response of the Ce:YIG, resulting 
in a rise/fall time of 0.95 ns. More details are reported in Section 3 of the Supplementary Material. 

Due to the high-speed magneto-optic response and the soft in-plane magnetic axis of the Ce:YIG, 
the memory cell can be programmed with low energy. Figure 4b-c show an open eye diagram 
measured for both the CW and CCW optical probe for 500 Mbps and 1 Gbps modulation speeds 
(see Section 2 and Figure S5 of the Supplementary Material for details of the measurement setup). 
From Figure 4b, we see that for a weight update rate of 500 Mbps (i.e., 2 ns pulse width), we can 

 
Figure 4: Dynamic response of non-reciprocal optical memory. a) Comparison of dynamic response of 
thermo-optic and magneto-optic effects demonstrating five orders of magnitude difference in response time 
(red detuned CW probe used for both measurements). From the thermo-optic response, the fall time is 92 µs 
while the rise time is 50 µs. For high-speed modulation above ~1 MHz, the thermo-optic effect is negligible 
provided the average power dissipated remains constant. The magneto-optic response can be fit with a 
second order response with a natural angular frequency of 3.6 Grad/s and a dimensionless damping factor 
equal to 0.29. From these results, we estimate a rise/fall time of 0.95 ns and a ferromagnetic resonance of 
0.55 GHz (see Supplementary Material for more details). b-c) Eye diagrams for clockwise and 
counterclockwise propagating modes for pseudorandom binary sequence (PRBS) modulation at b) 500 
Mbps and c) 1 Gbps speeds. d) Simultaneous measurement of CW and CCW transmission for PAM4 
modulation at 500 Mbps. e) Plot of differential optical power between CW and CCW signals demonstrating 
the ability to rapidly update non-reciprocal multi-bit optical weights. f) Simultaneous measurement of CW 
and CCW transmission for binary modulation (On-Off Keying) at 1 Gbps. g) Differential optical power 
between CW and CCW signals demonstrating programming speeds up to 1 ns. 
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achieve an open eye diagram with an extinction ratio as high as 8.3 dB for a programming energy 
as low as 2.28 pJ. Reducing the pulse width to 1 ns and amplitude by 0.5×, reduces the 
programming energy to a mere 298 fJ as shown in Figure 4c. This corresponds to a ~8× 
improvement in energy efficiency since 𝐸" = 𝐼#𝑅 ∙ ∆𝑡 + 𝐿𝐼#/2 , where 𝐼  is the programming 
current, 𝑅 is the resistance of the electromagnet (~1.43 Ω), 𝐿 is the inductance (0.3 nH), and ∆𝑡 is 
the duration of the programming pulse. It is also worth noting that for our non-reciprocal memory 
cell, we achieve significant modulation of the optical signal with a peak voltage as low as ±21.5 
mV for ±13.8 mA current pulses, representing an extremely low programming voltage which is 
compatible with the most advanced CMOS nodes. 

In Figure 4d-e, we demonstrate multi-level optical weighting using a 4-level (2-bit) pulse 
amplitude modulation (PAM4) programming signal with maximum current amplitude of 
±13.8 mA, corresponding to a record low programming energy of 143 fJ per bit. In these 
experiments, we capture the transmission of the CW and CCW modes simultaneously using the 
experimental setup described in Supplementary Figure S6. The differential transmitted power 
between the CW and CCW modes is shown in Figure 4e where we clearly observe four distinct 
transmission levels, allowing us to achieve to two positive and two negative optical weights given 
our 2-bit electrical input. Using the high-speed magneto-optic effect, we can achieve optical weight 
updates as fast as 1 ns as shown in Figure 4f-g. In our case, the maximum programming speed is 
limited by the ferromagnetic resonance of the Ce:YIG. Although in this device the maximum time 
response is 1 GHz, a much faster programming speed can be reached using other magneto-optic 
material system that can support modulation rate of tens of gigahertz 39,40. 

In a final demonstration, we show the nonvolatile response of our non-reciprocal memory cell 
when integrated with a switchable ferromagnetic layer. In this experiment, patterned CoFeB 
magnetic stripes are integrated in the cladding above the MRR which provides a programmable, 
nonvolatile magnetic field. The shape anisotropy and orientation of the micron sized CoFeB bar 
magnets provides the static radial magnetic field needed to induce a non-reciprocal optical phase 
shift in the memory cell 32. In this demonstration, the silicon MRR has a cross-section of a 1000 
nm × 220 nm with a radius of 50 µm. Our measurement setup and device cross section are shown 
in Figure 5a. To program the state of the memory cell, current is applied to the integrated 
electromagnet which encodes the magnetic field strength in the CoFeB magnetic domains. After 
the current is removed, the laser is swept to obtain the nonvolatile MRR spectral shift of the CW 
mode (spectra shown in Figure 5c-e). For an optical probe positioned at the resonance dip of the 
MRR (dashed line in Figure 5c-d), we observe the hysteretic behavior in the optical transmission 
shown in Figure 5b. When the programming current is increased from negative to positive values, 
we observe an increase in optical transmission for currents greater than 0 mA (red points in Figure 
5b). The transmission eventually saturates above 200 mA and remains constant due to saturation 
of the CoFeB magnetic layer (see illustration in Figure 5a). As we change the direction of the 
applied current from positive to negative values, the transmission remains constant until the 
negative current values, highlighting the nonvolatile response of the memory cell. The results in 
Figure 5b show at least 11 distinct optical transmission levels corresponding to a nonvolatile 
memory cell capable of storing ~3.5 bits. However, this value is limited by our experimental setup 
rather than the device itself. In Section 4 of the Supplementary Materials, we provide a theoretical 



 10 

analysis of the magnetic, thermal, and optical noise and expect the maximum bit precision of our 
device to exceed 13 bits. 

The intermediate spectra obtained for a sweep from negative to positive current values is shown 
in Figure 5c while the spectra for the reverse sweep from positive to negative values is shown in 
Figure 5d. The dashed line in Figure 5c-d shows the position of the optical probe used to plot the 
hysteresis of the through port transmission (Figure 5b). At this probe wavelength, we observe a 
maximum extinction ratio of 16.2 dB between the minimum and maximum nonvolatile states. To 
better visualize the spectral dependence on programming current, we sequentially plot the optical 

 

Figure 5: Nonvolatile magneto-optic storage. a) Experimental setup for nonvolatile weight encoding. 
The magnetic field from the Au electromagnet aligns the magnetic domains of the CoFeB ferromagnetic 
layer according to the amplitude and polarity of the applied current. b) Hysteresis of optical transmission 
for a non-reciprocal memory cell with CoFeB bar magnets integrated on-chip. For these transmission 
measurements, the probe wavelength was fixed (black dashed lines in c and d). c) Negative to positive 
programming current sweep showing a blue shift for positive currents. d) Positive to negative current sweep 
showing a return back to the original resonance position. e) Waterfall plot of transmission spectra for 
sequential programming currents sweeping first in the positive and then in the negative directions. f) 
Demonstrated cycling endurance for over 2.4 billion write and erase cycles. Time domain measurements in 
g) show the operation of the memory cell without observing any degradation. Variation in the observed 
extinction ratio is attributed to thermal drift of the unpackaged device over the 3-day measurement. 
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transmission spectra for the full current sweep as a waterfall graph in Figure 5e. As the current 
increases from negative to positive values, the MRR resonance blue shifts until saturation. 
Reversing the current from positive to negative values causes a red shift back to the original 
resonance position. 

To demonstrate the ultra-high cycling endurance of our non-reciprocal memory cell, we 
programmed an arbitrary function generator to cycle between write and erase pulses at a rate of 10 
kHz, with an amplitude of ±5V, and a pulse width of  500 ns. The optical transmission was captured 
manually during the 3-day experiment and is shown in Figure 5f (see Supplementary Materials 
for more experimental details). After 2.4 billion write and erase cycles, the device continued to 
function without any sign of degradation (Figure 5g). This is more than three orders of magnitude 
improvement over prior photonic memory technologies, highlighting the benefit of using optically-
coupled magnetic media for non-volatile data storage. While we do see a variation in the extinction 
ratio of the device in Figure 5f-g, we attribute this to slight thermal and mechanical drift of the 
unpackaged device during the 3-day experiment. To confirm the long-term nonvolatile stability of 
our device, we also compared the nonreciprocal spectral shift of the CW and CCW modes after 
programming and see data retention over a 4-day measurement (see Section 2.2 of the 
Supplementary Materials). Opto-electronic packaging with active thermal control is expected to 
counter drift of the MRR resonance peak which would address this observed variation in extinction 
ratio. 

Conclusion 
We have demonstrated the first instance of a nonvolatile magneto-optical memory cell that features 
non-reciprocity for in-memory computing in the optical domain. This unique combination of fast, 
fatigue-free programmability with nonvolatile weights addresses current limitations of existing 
integrated approaches to optical memory which have yet to combine (1) nonvolatility, (2) multi-
bit storage, (3) high switching speed, (4) low switching energy, and (5) high endurance in a single 
platform. Additionally, leveraging the inherent non-reciprocity of the magneto-optic effect in 
Ce:YIG enables symmetric and high contrast encoding of both positive and negative optical 
weights, alleviating the constraints of amplitude-only weight encoding. 

In Table 1 we compare state-of-the-art demonstrations of various nonvolatile photonic memory 
technologies capable of being integrated on-chip. It is worth noting that while some recent 
demonstrations of waveguide-integrated electronic memristors (termed “memresonators”) have 
shown great promise for fast and efficient nonvolatile switching between two or three states 41,42, 
the maximum cycling endurance of such devices has not been demonstrated beyond 1,000 write-
erase cycles. These devices are also not well suited for photonic computing applications where 
multi-level, nonvolatile storage is necessary. While phase-change memory has shown great 
promise for optical computing platforms due to its compact footprint, multi-level storage, and ease 
of integration 19,43–45, the limited cycling endurance, high switching energies and limited switching 
speeds remain outstanding challenges. Other nonvolatile photonic memory cells leveraging charge 
trapping, MEMS, or ferroelectric materials have sub-MHz programming speeds which are not yet 
practical for computing applications due to significant write latencies. 
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Memory 
Technology 

Switching 
Speed 

Switching 
Energy 
(J/bit) 

Bit 
Precision 

Footprint 
(μm2) 

ERb (dB) IL   
(dB) 

Switching 
Cycles 

Ref. 

Trapped 
charge 0.6 s Set: 11.4 pJ 

Reset: 17.2 pJ 4-bits 314 13 2 >30 46 

MEMS 10 μs 500 fJ 1-bit 9,650 37 0.13 100 47 
Ferroelectric 
(HZO) >1 s(a) --(a) 1-bit ~2,000,000 40 2.75 -- 48 

Ferroelectric 
(BTO) 1 μs(b) 30 pJ 3.5-bits >20,000 12 >0.07 300 49 

PCM 408 ns 
220 μs 

Am: 5.55 nJ 
Cry: 1.15 μJ 3.5-bits 4.73 ~3 ~1 1,500 50 

PCM 50 ns 
200 ns 

Am: 8.8 nJ 
Cry: 6.9 nJ 4-bits 25 4.13 1.78 100 44 

Memristor 1 μs 13 fJ 1-bit 2 9.2 25 1000 51 

Memristor 100 ns Set: 1.3 pJ 
Reset: 400 fJ 1-bit 314 ~12 ~5 800 42 

Memristor 0.3 ns 
0.9 ns 

Set: 150 fJ 
Reset: 360 fJ 1.5-bit 314 ~14 ~2 1,000 41 

Magneto-
optic 1 ns 143 fJ 3.5-bits 4900 16.2 1.8 2.4 billion This 

work 

Table 1: Comparison of electrically programmable, nonvolatile memory technologies which have been 
experimentally demonstrated on an integrated photonic platform. (a)Switching speed and energy not 
reported. (b)Ferroelectric BTO requires a 0.7 s initialization proceedure prior to writing the final state.  
Compared to these competing photonic memory technologies, our non-reciprocal magneto-optic 
memory cell offers an efficient nonvolatile storage solution which could provide unlimited 
read/write endurance at sub-ns programming speeds. Our initial results used integrated 
electromagnets to switch a nonvolatile ferromagnetic layer, however, we expect future 
implementations employing spin-orbit-torque (SOT) or spin-torque-transfer (STT) effects could 
further improve the switching efficiency of our magneto-optic memory cells and provide a direct 
optical interface to emerging magnetic and spintronic memory technologies. While bonding 
Ce:YIG on silicon-on-insulator wafer and depositing amorphous silicon on Ce:YIG are currently 
the best fabrication techniques for integrating high-quality Ce:YIG in silicon photonics, recent 
strides in the monolithic integration of magneto-optic garnet on silicon and silicon nitride 
substrates offer a pathway to further enhancements in the near future 52. By precisely depositing 
magneto-optic materials on specific areas, we can further reduce the insertion loss and achieve 
higher integration density for nonreciprocal photonic computing. 

Methods 
A 500-nm-thick single-crystalline Ce:YIG (CeY2Fe5O12) was epitaxially grown on a wafer of 
(111)-oriented (Ca, Mg, Zr)-substituted gadolinium gallium garnet (SGGG) using an RF sputtering 
method at 750 °C. This magneto-optic garnet has a large Faraday rotation of 4800 deg/cm at 1550 
nm and was used for all the devices presented in this work. 

Devices characterized in Figure 3 and Figure 4 were fabricated by bonding a Ce:YIG/SGGG on a 
220 nm-thick silicon-on-insulator (SOI) wafer with 2 μm buried oxide. The SOI wafer is patterned 
using a 248 nm ASML 5500 deep-ultraviolet stepper, and dry etched using a Bosch process 
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(Plasma-Therm 770) to form the waveguides and resonators. Patterned SOI and Ce:YIG/SGGG 
samples are rigorously cleaned, and activated with O2 plasma (EVG 810). Ce:YIG is directly 
bonded onto the SOI wafer using a flip-chip bonder (Finetech) and then annealed at 200 °C for 6 h 
under 3 MPa pressure to strengthen the bond. The required alignment accuracy is fairly tolerant 
(~200 μm). After bonding, a 1 μm layer of SiO2 is sputtered everywhere on the chip as an upper 
cladding. Next, the SGGG substrate is thinned by mounting the sample against a flat chuck and 
polishing (Allied Technologies) using a series of increasingly fine lapping films. The thickness of 
SGGG is monitored using a micrometer and confirmed to be ~5 μm with a separate Dektak 
profilometry measurement. Variation of thickness across the sample is roughly ±1.5 μm due to 
imperfect levelling of the chuck. The patterns for gold coils and contacts are defined on the 
backside of the SGGG with a 365 nm GCA i-line wafer stepper. Then, 22 nm Ti is deposited as an 
underlayer, followed by 1.5 μm Au using electron-beam evaporation, and the metal coils and 
contacts are released with a lift-off procedure. Finally, the sample is diced and the facets are 
polished. 

Nonvolatile magneto-optic memory cell characterized in Figure 5 is fabricated growing amorphous 
silicon (a-Si) on a Ce:YIG/SGGG wafer. A 10-nm-thick SiO2 buffer layer is deposited on a 
Ce:YIG/SGGG wafer via plasma-enhanced chemical vapor deposition (PE-CVD). Next, a 220-
nm-thick a-Si:H guiding layer is deposited via PE-CVD with a gas mixture of SiH4 at 300 °C. 
Subsequently, a 200-nm-thick SiO2 layer is deposited as a hard mask to protect the a-Si:H layer, 
and a 300-nm-thick positive resist (ZEP-520A) as well as a charge-dissipating agent (ESPACER) 
is coated onto the substrate. Waveguide patterns are exposed to the resist using an electron beam 
lithography (EBL) system. The waveguide patterns are transferred to a SiO2 hard mask via reactive 
ion etching using CF4 and a-Si:H waveguides are formed using SF6. A 750-nm-thick SiO2 layer is 
deposited on the top of the waveguide core to isolate the guided mode from the integrated thin-
film magnet to avoid optical absorption. EBL is performed to transfer the magnet patterns of an 
array of 20 µm × 5 µm stripes. A 10-nm-thick Ru buffer layer followed by a 300-nm-thick CoFeB 
thin-film magnet are deposited using an RF facing target sputtering method at room temperature 
with Ar. Next, the stripe array of thin-film magnets is formed using the lift-off process. The longer 
side of each stripe, which is the easy magnetization axis of CoFeB, is aligned perpendicular to the 
waveguide. Finally, after the deposition of an 80-nm-thick SiO2 layer using PE-CVD, a 25-µm-
wide and 700-nm-thick Cr/Au electromagnet for magnetizing integrated magnets was formed via 
electron beam vapor deposition. 

Data Availability 
Data sets generated during the current study are available from the corresponding author on 
reasonable request. 

Code Availability 
The complete simulation code and all simulation files required to reproduce the results presented 
in Figure 2 is available at https://nonreciprocalringresonators.github.io 
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