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ABSTRACT Electronic Health Records (EHRs), which include demographic information, clinical notes,
vital signs, laboratory test results, and others, provide rich information for clinical outcome prediction. In this
work, we propose a novel attention embedded residual long short-termmemory (LSTM) fully Convolutional
Network (FCN) to perform the clinical predictions of inpatients’ length of stay (LoS) and mortality. The
proposed model is uniquely composed of a convolutional neural network (CNN) layer, three residual
blocks, an LSTM unit, an FCN module, and a self-attention module. This innovative architecture allows
for comprehensive feature extraction, where the CNN and residual blocks enhance clinical data features, the
FCN and LSTM separately extract spatial and temporal features, and the self-attention mechanism focuses
on pertinent information while filtering out noise. By optimizing the loss function to address class imbalance
and overfitting, our model ensures robust and accurate predictions. Experimental results demonstrate that the
proposed model outperforms state-of-the-art methods, validating its effectiveness and feasibility in inpatient
length of stay and mortality prediction.

INDEX TERMS Convolutional neural network, Long short-term memory, Self-attention mechanism,
Electronic Health Records, Length of stay.

I. INTRODUCTION

HEALTHCARE is one of the most exciting frontiers in
data mining and machine learning (ML) [1]. Owing

to the widespread adoption of Internet and mobile tech-
nologies by hospitals and health insurance companies, Elec-
tronic Health Records (EHRs) have skyrocketed over the past
decade [2]. EHRs contain rich text, visual and time series
information, such as patients’ diagnostic and medical history,
demographic information, and laboratory test results, which
are the primary source of patients’ health status administra-
tion. In the past, EHR data were mainly used for managing
the health status of patients. Nevertheless, finding suitable
mathematical models among these measurements has the
potential for accurate and early predictions of future clinical
events. This can help clinicians make more effective medical
decisions and promote the economic allocation of hospital
resources. So, in recent years, there has been an increased
interest in predictive analysis with EHRs.

Data-driven and ML methods have been employed for
healthcare data analysis, such as mining signatures from
event sequences [3], risk prediction with EHR [4], length
of stay (LoS), and mortality predictions for inpatients [5],

[6]. Naturally, LoS and mortality predictions are performed
primarily with an interest in predicting possible outcomes,
which are how long a patient can stay in the intensive care
unit (ICU), and whether the patient will die or survive. Using
a support vector machine (SVM) as a classifier, Cheng et
al. [7] developed a data-driven model to predict the LoS of
appendectomy patients and a five-day threshold is applied in
their scheme, i.e., either within target when a patient’s LoS
is inclusively within five days or exceeding the target oth-
erwise. Despite their impressive performance, their method
performed the LoS prediction as a dichotomous classifica-
tion task, and two classes were categorized. Alsinglawi et
al. [8] proposed a new regressor architecture called staking
regressor to predict LoS for patients diagnosed with heart
failure, and their experimental findings indicated that their
proposed staking regressor outperformed other methods, even
deep learning (DL)-based regressors in their experiments.
Nonetheless, their proposed staking regressor is an ensemble
learning (EL) approach comprised of multiple regressors,
which consumes more computational overhead than a single
model. In another research, Bao et al. [9] trained seven ML
models, including SVM, decision tree, random forest (RF),
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gradients boosting, multiple layer perception, XGBoost, and
light Gradient Boosting, to predict mortality or survival of
patients during hospitalization. The light Gradient Boosting
algorithm showed the best accuracy in their comparative
experiments. Likewise, using three ML models, including
artificial neural network (ANN), SVM, and RF, Lin et al.
[10] performed mortality prediction for acute kidney injury
patients in the ICU. Their experimental results indicated the
superiority of the RF model compared to other well-known
methods. Despite reasonably good findings reported in the
literature, traditional ML methods suffer from some bottle-
necks, such as reliance on manually designed features, risk of
overfitting, lack of robustness, and low accuracy.

More recently, DL techniques, especially convolutional
neural networks (CNN), which become preferred methods
due to the automatic feature extraction capabilities and com-
petitive performance, have been widely applied for tasks
related to inpatients’ LoS and mortality prediction [11], [12].
For example, Zolbanin et al. [11] trained four different DL ar-
chitectures to predict patients’ LoS in hospitals, and they con-
firmed that the CNN outperformed other comparison candi-
dates. Ali et al. [12] proposed a multimodal multitasking DL
model to predict both LoS and readmission for patients, and
their model outperformed ensemble learning methods such as
RF. By training a CNNmodel named ISeeU2, Caicedo-Torres
et al. [13] performed the mortality prediction of patients in-
side the ICU. Their proposed approach outperformed the tra-
ditional baselines while providing enhanced interpretability
compared to similar DL methods. More than that, the CNN-
based DL method has also proved effective in references
[14]–[18]. These research findings indicate the significance
of associating DL methods in predicting LoS and mortality
of patients in hospitals. Besides, Thakur et al. [19] proposed
a fused convolutional neural network long short-term mem-
ory (CNN-LSTM) architecture for hemiplegic gait prediction
with smart-phone sensor. Similarly, reference [20] leverages
the attention mechanism with multihead convolutional neural
networks and LSTM for online activity monitoring. Despite
impressive performance obtained by these methods, the tradi-
tional CNNs they used encounter some bottlenecks, such as
redundant network parameters, gradient vanishing risk, and
weak generalization ability. In addition, these methods focus
on human activity recognition and hemiplegia gait monitoring
with complexmodel designs, reliance on smartphone sensors,
and high computational resource requirements, which is im-
practical for LoS and mortality time-series prediction tasks.
In the paper, we propose a novel attention embedded residual
long short-term memory (LSTM) Fully Convolutional Net-
work (FCN), termed as ARLF, to perform the clinical time
series analysis tasks including the inpatients’ LoS andmortal-
ity predictions. Concretely, the ARLF is primarily composed
of a CNN layer, three residual blocks, an LSTM unit, a FCN
module, and a self-attention module, where the CNN layer
contains a 1 × 5 convolution layer, a 1 × 3 convolutional
layer, and two pooling layers. Each residual block consists of
two 1× 3 convolutional layers, two batch normalization (BN)

layers, and one shortcut connection. The convolution kernels
in these three residual blocks are 32, 32, and 16, respectively.
The clinical data features are extracted by the CNN layer and
enhanced by the three residual blocks. Then, the data features
are fed into the FCN layer for spatial feature extraction and
the LSTM layer for extracting temporal features, respectively.
After that, the extracted spatial features and temporal features
are concatenated and a self-attention mechanism is embedded
into the network to emphasize the features to focus on the final
prediction. In brief, the key contributions of this study can be
recapitulated below.

• An efficient attention embedded residual LSTM FCN
model, which we termed ARLF, is proposed to perform
the clinical time series analysis tasks, including the LoS
and mortality predictions for patients in hospitals.

• After extracting the clinical data features from the CNN
layer and residual blocks, we used the FCN and LSTM
to extract spatial and temporal features separately. Then,
a self-attention mechanism was embedded into the net-
work to highlight the useful information while ignoring
unwanted noises.

• We enhanced the traditional focal loss function to substi-
tute for the cross-entropy (CE) loss function to address
the class-imbalance issue, and an adaptive parameter op-
timization scheme was developed to determine weights
automatically for multiple loss functions.

The rest of this paper is organized as follows. Section II
summarizes the relevant work. Section III primarily discusses
themethodology for the clinical time series LoS andmortality
prediction. Later in Section IV, experiments for investigating
the efficiency of the proposed method are presented, and a
series of experiments are implemented along with the com-
parative analysis. Finally, Section V concludes the paper and
suggests future work.

II. RELATED WORK
A. FEATURE ENGINEERING
For the clinical time series data, the past studies utilized the

sub-timeframe and subsequence-based feature engineering
methods such as the logistic regression [21]–[23], since the
input samplematrix is very sparse caused by commonmissing
observations. In the literature [1], six different sample statis-
tic features including mean, standard deviation, maximum,
minimum, skew, and number of measurements are calculated
for any given time series (TS) sample data on seven different
subsequences, including the full TS, first 50% of TS, first
25% of TS, first 10% of TS, last 50% of the full TS, last
25% of the full TS, and last 10% of the full TS. By this
means, 7 × 6 features will be generated for each single time
series sample. Despite reasonably good results, this approach
primarily captures the statistical attributes of the data rather
than the sequence dependencies. Its accuracy is consistently
outperformed by DL methods such as Recurrent Neural Net-
work (RNN). Motivated by the filters in convolutional neural
networks, reference [2] recommended a filter-based feature
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(a) The residual network (b) The basic structural unit of LSTM

FIGURE 1. The residual network and LSTM unit.

engineering (FBFE) approach to apply convolution operation
with an M × N filter matrix on the input sample and re-
shape the output matrix into a one-dimensional feature vec-
tor. Their experimental findings indicate that this approach
can generate more fine-grained features faster. Nevertheless,
their proposed approach is primarily used on the tree boost
algorithms such as XGBoost and LightGBM, and it has not
been effectively promoted. In addition, there is still room for
improvement in the accuracy of the model.

B. RESIDUAL NETWORK

To improve the capabilities of deep neural networks
(DNN), the most direct way is to increase the depth or width
of the network. However, with the increase of depth and
width, the network contains too many parameters and is hard
to train. For this reason, the residual network was first intro-
duced in the ResNet architecture by K. He et al. [24] to alle-
viate the problem of vanishing gradient and overfitting risk.
The basic idea of a residual network is that residual mapping
is more straightforward than learning a direct mapping, since
the residual error is smaller than the direct learning error. This
study proposes a residual network using 3 layers of residual
blocks to predict inpatients’ LoS and mortality, where the
residual block is formed by a shortcut connection that skips
the blocks of convolutional layers. The shortcut (residual)
connection gives the network a better ability to remember
historical information, which weights and fuses the input x
into the output H (x) of the residual block to gain the final
output o, written as

o = Activation[x + H (x)] (1)

where Activation acts for a function. In this research, the three
output features of the residual blocks are designed in our
networks, and the formulas are defined as follows,

f1 = x + H1 (x) (2)

f2 = f1 + H2 (f1) = x + H1 (x) + H2(x + H1 (x)) (3)

f3 = f2 + H3 (f2) = H3 (x + H1 (x) + H2(x + H1 (x)))

+x + H1 (x) + H2(x + H1 (x))
(4)

Among them, x is the input feature, and f1, f2, and f3 indicate
the output features. H1, H2, and H3 represent a transforma-
tion operation such as convolution. Fig.1(a) depicts a 3-layer
residual network architecture.

C. LONG SHORT-TERM MEMORY (LSTM)

LSTM is a variant of RNN that deals with time series prob-
lems in diverse fields [25], [26]. It overcomes the demerits of
the gradient disappearance and the short-term memory fea-
ture of RNN, thereby realizing adequate storage and updating
the information via an added internal gating mechanism. The
basic structural unit of the LSTM model can be shown in
Fig. 1(b), where ft , it , ct , and ot denote the forgetting gate,
cell state, input gate, and output gate, respectively. W and b
represent the corresponding weight and bias matrices. tanh
and σ separately indicate the hyperbolic tangent and sigmoid
activation functions. The function of the forgetting gate is to
determine which information to ignore and which to retain.
The formula of forgetting gate output is expressed by

ft = σ (Wf ∗ [ht−1, xt ] + bf ) (5)

where xt and ht−1 denote the input of time t and the output
of the hidden layer at time t − 1. After the selection of the
forgetting gate, the information enters the input gate, and the
function of the input gate is to decide which parameters need
to be updated and how to update them. The output of the input
gate is formulated in Eqs. (6-8).

it = σ (Wi ∗ [ht−1, xt ] + bi) (6)

C̃t = tanh (Wc ∗ [ht−1, xt ] + bc) (7)

Ct = ft ⊙ Ct−1+it ⊙ C̃t (8)

where Ct implies the value of the current cell state, and
⊙ symbolizes the inner product of two vectors. After the
screening of input and forgetting gates, the information enters
the output gate, and the function of the output gate is to
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determine which information to output. The formula of the
output gate can be written in Eqs. (9, 10).

Ot = σ (Wo ∗ [ht−1, xt ] + bo) (9)

ht = Ot ⊙ tanh(Ct) (10)

where ht is the output value of the current unit at time t ,
Wo and bo denote the weight and bias of the output gate,
respectively. LSTMmodels can infer temporal dependencies.
However, inferring the long-term dependencies of long se-
quences is a challenging task for using LSTM models, and
thus some recent studies have proposed using a hybrid at-
tention mechanism to learn the long-term dependencies [27],
[28].

D. SELF-ATTENTION MECHANISM
Note that the temporal features and spatial features are

extracted by the LSTM and FCN modules, respectively. The
next challenge is to identify which extracted features require
more attention in understanding the feature weights for the
final class prediction tasks. For this purpose, the proposed
ARLF integrates an attention mechanism based on a scaled
dot-product attention scheme. The attention mechanism is
essentially a neural network within a neural network that
learns to weigh portions of a sequence for relative feature im-
portance [29]–[31]. In the model presented here, attention is
a multiplicative self-attention mechanism and can be written
in the following equation:

Atten(X , Y ) = softmax(
QK T

√
dK

) = softmax(
XY T

√
dK

) (11)

where the temporal feature extracted by the LSTM module is
denoted asX ∈ RT×H , and the spatial feature of FCN’s output
is Y ∈ RW×C . Here, T , H , W , and C represent the LSTM
timestep (data point), hidden units, width of features, and
channels, respectively. Primarily, we define X as the query
(Q), and Y as the key (K ) and value (V ). Thus, the attention
scores can be extracted by dividing the dot product ofQ andK
by the square root of the K ’s dimension (dK ) to get a matrix,
as shown in the above Eq. (11). Once the matrix is obtained,
it can be passed to the softmax layer to extract the distribution
of attention scores, or attention map, as expressed by:

X̃ = Atten(X , Y ) · V (12)

In Eq. (12), using the dot product of attention map
Atten(X , Y ) and matrix V , we can obtain a wider global
attention map X̃ , which is a matrix that contains attention
values related to the number of timesteps used in the model.

Ỹ = X̃ + Q (13)

Ultimately, as in Eq. (13), by adding the X̃ and Q, we can
obtain a self-attention feature map via residual connections.
Through this process, the detailed knowledge on what global
features are crucial can be obtained through the self-attention
mechanism.

III. PROPOSED APPROACH
This section presents the proposed multi-view feature inte-

gration method of learning multivariate EHR time series for
inpatient LoS and mortality predictions. The overall architec-
ture is shown in Fig. 2.

A. DATA REPRESENTATION
For each subject n, we denote a set of D-dimensional mul-

tivariate time series as X (n) = [x(n)t1 , · · · , x(n)tj , · · · , x(n)tTn ]
T ∈

RTn×D where Tn indicates the length of time series in t(n) =
[t1, · · · , tj, · · · , tTn ] time points, and x(n)tj ∈ RD means the ob-
servation (also known as measurements) of all variables at the
tj-th time point. x(n)tj contains D features x(n)tj,1, x

(n)
tj,2, · · · , x

(n)
tj,D

and x(n)tj,d denotes the observation of the d-th variable of x(n)tj .

Let s(n)tj be the time-stamp of observation x(n)tj , and we assume
that the first observation is at the time point t = 0, i.e., s1 = 0.
Owing to irregular sampling, the time intervals between dif-
ferent timestamps may not be the same. To effectively denote
the missing values in x(n)tj , we introduce a masking vector

l(n)tj,d ∈ {0, 1}, which forms the time series L(n), to represent
whether the variable is missing at time step t .

l(n)tj,d =

{
0, If x(n)tj,d is not observed
1, Otherwise

(14)

In most cases, some features are continuously missing over
a period of time, and the trend is very evident. We follow
the fact: when the data lacks subsequent observations, the
impact of the last observation is bigwhile the impact of distant
observations is small [32]. Therefore, for the missing value
of a certain variable, we use the last observation value and
normal value (e.g., normal body temperature 37℃) to impute
the missing m(n)

tj,d , which forms the imputation sequence of
M (n). Mathematically, the missing value is imputed by

m(n)
tj,d =


x(n)tj−1,d , tj > 1, l(n)tj−1,d = 0

N (n)
d , tj = 1, l(n)tj−1,d = 0

0, others

(15)

where x(n)tj−1,d andN
(n)
d represent the last observation value and

normal value, respectively.
In this study, we frame the LoS prediction task as a classi-

fication problem with 10 classes/buckets, which are one for
ICU stays shorter than a day, seven day-long classes for each
day of the first week, one for stays of over one week but less
than two, and one for stays of over two weeks, respectively
[1]. Besides, referring to Y. Hu et al. (2020) work [2], a
filter-based feature engineering approach inspired by filters
in CNNs is used in our scheme. We take the time series
samples after one-hot encoding and normalization processing
as input. Then, the convolution operation with an M × N
filter matrix is applied to the input samples, and the output
matrix is reshaped into a one-dimensional feature vector. In
this manner, more fine-grained features are generated at a
faster speed and input to the proposed ARLF model for the
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FIGURE 2. Architecture of the proposed ARLF model.

TABLE 1. The major parameters of the proposed model.

Module (layer) Input shape Filter no. Kernel size Output shape Total Params Repeat times

InputLayer (None, None, 76) - - (None, None, 76) - 1
Masking (None, None, 76) - - (None, None, 76) - 1
Bid-LSTM (None, None, 76) - - (None, None, 16) 18,240 9
Conv1D (None, None, 16) - - (None, None, 16) 34,000 3
BN layer (None, None, 16) - - (None, None, 16) 832 3
Add (shortcut conn) [(None, None, 16)]×2 - - (None, None, 16) - 1
Conv1D (None, None, 16) - - (None, None, 32 6,240 3
Add (shortcut conn) [(None, None, 32)]×2 - - (None, None, 32) 0 1
Activation (None, None, 32) - - (None, None, 32) - 1
Conv1D (None, None, 32) - - (None, None, 64) 24,768 3
Add (shortcut conn) [(None, None, 64)]×2 - - (None, None, 64) 0 1
Activation (None, None, 64) - - (None, None, 64) - 1
Conv1D (None, None, 64) - - (None, None, 32) 15,456 3
Add (shortcut conn) [(None, None, 32)]×2 - - (None, None, 32) 0 1
Activation (None, None, 32) - - (None, None, 32) - 1
Conv1D (None, None, 32) - - (None, None, 128) 295,424 3
BN layer (None, None, 128) - - (None, None, 128) 2,048 3
LSTM (None, None, 32) - - (None, 16) 3,136 1
Activation (None, None, 128) - - (None, None, 128) 1
Dropout (None, 16) - - (None, 16) 0 1
GAP1D (None, 128) - - (None, 128)
Concatenate [(None, 16),(None, 128)] - - (None, 144) 0 1
Attention layer (None, 144) - - (None, 144) 20,880 1
Softmax (None, 144) - - (None, 144) 0 1
Lambda [(None, 144)]×2 - - (None, 144) 0 1
Dense (None, 144) - - (None, 10) 1,450 1

LoS and mortality predictions of patients in hospitals. B. ARLF MODEL

As indicated previously, the DNN’s training becomes more
complex with the increase of network depth due to the van-
ishing gradients and degradation problems. The solutions to
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both these problems can be solved by using Resnet blocks
[24]. From this perspective, the paper proposes the ARLF,
an attention embedded residual LSTM FCN, to predict the
in-hospital LoS for patients. The ARLF model with fused
residual blocks is shown in Fig. 2, which primarily consists
of a CNN layer, three residual blocks, an LSTM unit, an FCN
module, and a self-attention module. The CNN layer contains
a 1 × 5 convolution layer, a 1 × 3 convolutional layer, and
two pooling layers, and each residual block contains two
1 × 3 convolutional layers, two batch normalization (BN)
layers, and one shortcut connection. The convolution kernels
in these three residual blocks are 32, 32, and 16, respectively.
The clinical data features are extracted by the CNN layer
and enhanced by the three residual blocks. Then, the data
feature matrices are separately input to the FCN layer for
spatial feature extraction and input to the LSTM layer for
extracting temporal features. After that, the extracted spa-
tial features along with temporal features are concatenated.
A self-attention mechanism is embedded into the network
to highlight the useful features while suppressing unwanted
noises for the final classification prediction tasks of inpa-
tients’ LoS and mortality.

More specifically, the FCN block of the proposed ARLF
comprises a one-dimensional kernel convolutional layer, fol-
lowed by a BN layer and a ReLU activation layer. Three of
these blocks are included in the ARLFmodel, and the number
of convolutional kernels (filters) is 128, 256, and 128 without
striding, and the filter sizes of 8, 5 and 3, respectively. There is
no pooling operation to prevent over-fitting, and the BN layer
is employed to accelerate the convergence speed and enhance
the model’s generalization ability. After being processed by
the FCN block, the extracted features are fed into a global
average pooling (GAP) [33] layer to create one feature map
for each category and take the average of each feature map.
Usually, the extracted features are input into a completely
linked layer. By using a GAP layer, the model’s parameters
can be reduced significantly. Subsequently, the spatial fea-
tures extracted by FCN and temporal features extracted by
LSTM are concatenated and input into a self-attention layer to
perform adaptive feature recalibration. As mentioned earlier,
the attentionmechanism is essentially a neural networkwithin
a neural network that learns the importance of features. Cor-
respondingly, the self-attention mechanism used in this study
is modeled as a feed forward neural network such that

eij = tanh (θhhij + bh) , eij ∈ [−1, 1] (16)

where hij refers to the output of the hidden layer, θ terms
denote the weight matrices, and b terms denote the bias
vectors. Then, the relative importance of each hidden state
or attention weight λij is scaled in a [0, 1] interval using
the softmax function, which produces a vector “alignment
score” weighting the importance of the individual parts of the

batched input sequences, expressed as

λij = softmax(eij) =
exp(eij)∑t
j=1 exp(eij)

,
t∑

j=1

λij = 1 (17)

Finally, the context vector ci can be computed as the weighted
sum of the hidden states with the calculated attention weights:

ci =
t∑

j=1

λijhij (18)

which can be seen as a high-level representation of the input
sequence. In this manner, the concatenated spatial and tem-
poral (spatio-temporal) features are weighted and input into
the densely-connected (DC) layer with the Softmax activation
function to get the final class prediction results. Fig. 2 por-
trays a structural schematic diagram of the proposed ARLF
model, and the major parameters are summarized in Table 1.

C. OPTIMIZATION OF THE ARLF

To alleviate the class imbalance problem, Lin et al. [34]
introduced a focal loss (FL) function that assigns different
weights to negative and positive samples. The formula of the
FL function is expressed by

LFL = −αK (1− p (k |x ))φlog(p (k |x )) (19)

where αK and φ separately denote the hyper-parameters of
weighting and modulating factors, K indexes the number of
classes, and p (k |x ) implies the probability that a specific
sample x is predicted to belong to class k . The classical FL
function is designed to address binary classification issues
in the object detection field. However, as previously stated,
the in-hospital LoS prediction for patients belongs to a multi-
class problem. To overcome this challenge, the traditional FL
function is improved in our scheme to make it suitable for
the multi-class problem. The enhanced FL (EFL) function is
formularized by

LEFL = −
K∑
k=1

αK (1− p(k |x ))φq(k |x )log(p(k |x )) (20)

αK = count(x)/count(x ∈ k) (21)

q(k |x ) =
{

0, k ̸= y
1, k = y

(22)

where x means the sample, and y indicates the ground-truth
class. Additionally, considering the overfitting to noisy labels
in multi-class problems, a Symmetric Cross-Entropy (SCE)
loss function that uses a noise-robust counterpart Reverse
Cross-Entropy (RCE) boosts Cross-Entropy (CE) symmet-
rically is proposed by [35] to suppress the overfitting or
underfitting risk on some classes. The SCE loss function is
written as

LRCE = −
K∑
k=1

p (k |x ) logq (k |x ) (23)
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(a) Short LoS sample by vital sign measures (b) Long LoS sample by vital sign measures

FIGURE 3. Time series data sample from the MIMIC III v1.4 database.

LSCE = LCE + LRCE = −
K∑
k=1

q (k |x ) logp (k |x )−

K∑
k=1

p (k |x ) logq (k |x )

(24)

where LCE and LRCE represent the CE and the RCE losses,
respectively. Referring to the above analysis, we propose an
integrated loss function that leverages the merits of the EFL
and SCE functions to optimize the proposed network. Consid-
ering that only the result of one loss function can be updated
during backpropagation, the two different loss functions are
fused into a joint loss function, and the most-used weighted
sum approach is employed in our scheme. The weighted total
loss function can be defined by

L(s)
ES =

∑
j=1

λ
(s)
j L(s)

j = λ
(s)
1 L

(s)
EFL + λ

(s)
2 L

(s)
SCE (25)

where s indicates the s-th epoch of training, and λ is the
weight hyperparameter that controls the ratio between two
losses. The training performance of the model heavily re-
lies on the assigned weights between losses, while manu-
ally tuning these weights is undoubtedly a challenging task
and consumes significant costs. Therefore, we included the
loss weights in the definition of the loss function itself and
developed a self adaptive way to update the loss weights,
thereby managing changes internally. The formula of loss
weight update is written by

λ
(s+1)
j ← λ

(s)
j − γ∇λjLgrad (26)

In Eq. (26),Lgrad represents the gradient loss, which is used to
describe the loss caused by the loss weight λj; γ is a constant
hyperparameter. The gradient loss Lgrad can be calculated by

Lgrad
(
s, λ(s)

j

)
=

∑
j

∣∣∣G(s)
j − G(s) ×

[
µ
(s)
j

]α∣∣∣
1

(27)

G(s)
j =

∥∥∥∇θλ
(s)
j L

(s)
j

∥∥∥
2
, µ

(s)
j =

L(s)
j /L(0)

j

Etask
[
L(s)
j /L(0)

j

] (28)

Among them, G(s)
j represents the gradient normalization

value of the j-th loss function in the s-th epoch of training,
which is computed by the L2 norm of the weighted loss gradi-
ent;G(s) is the average gradient normalization of all the losses
in the s-th epoch of training; µ(s)

j denotes the relative training
speed of the j-th loss function in the s-th epoch of training. In
brief, the loss weight is used as an optimization parameter in
this scheme and theLgrad of loss weights is established at each
epoch of the update. The initial weight parameters of theLEFL
and LSCE are both set to 0.5 in the networks, and the update
of Lgrad is implemented at each epoch of training. Algorithm
1 summarizes the detailed training procedure of the proposed
method.

IV. EXPERIMENTS
In this section, numeric experiments are conducted on

the benchmarking MIMIC-III v1.4 dataset to investigate the
performance of the proposed approach. The detailed data
transformation and preprocessing of the MIMIC-III v1.4

VOLUME 11, 2023 7



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 1: The detailed training procedure of the
proposed method.

Input: The training samples T = {s1, s2, ..., sn}
where i = 1, 2, ..., n, s ∈ Rn

Output: Obtain the best model parameters θbest .
Randomly initialize the model parameters θ ∈ Rd ;
while not done do

Generate the predictions using T sample set;
Evaluate the loss LEFL(θ) and ∇θLEFL(θ); //
LEFL(θ) refers to Eq.(20);
Evaluate the loss LSCE(θ) and ∇θLSCE(θ); //
LSCE(θ) refers to Eq.(24);
Calculate the total loss LES(θ); //LES refers to
Eq.(25), and initial λj is set to 0.5;
Evaluate the gradient loss Lgrad(λj) and
∇λjLgrad(λj) using T samples; // refer to
Eq.(27);
Calculate adapted parameters using gradient
descent;
Continuously update the model parameters
θ ← θ − η∇θLES(θ) using T sample set. // η is
the learning rate

end while

dataset are introduced in Section IV.A. Then, we evaluate the
accuracy of the proposed ARLF compared to state-of-the-
art (SOTA) methods. Subsequently, we assess the efficacy of
fused modules and optimized loss function for the proposed
approach via ablation study.

A. DATASET DESCRIPTION AND PREPROCESSING
MIMIC, short for the Medical Information Mart for In-

tensive Care, is a large database of clinical records for pa-
tients admitted to the Beth Israel Deaconess Medical Cen-
ter (BIDMC). All the data are de-identified, where patient
identifiers are removed according to the Health Insurance
Portability and Accountability Act (HIPAA) Safe Harbor pro-
vision. The MIMIC database contains a wide range of patient
records, such as patients’ demographic information, labora-
tory test results, medication orders, free-text notes authored
by clinicians, procedures and diagnoses, etc. In this study, we
used the MIMIC-III v1.4 [36], released in September 2016.
This database contains a cohort of 46,520 unique patients
with 58,976 admissions. We followed [1] to extract clinical
time series. Each sample includes the LoS (stay hours) and
17 vital sign indicators such as diastolic blood pressure (nor-
mal 60-90mmHg), Eye opening (Glascow coma scale, GCS),
Scale total (GCS total, score), Verbal response (normal 5,
no response 1), Glucose (normal <100 mg/dL), heart rate
(normal 60-100 times/minute), mean blood pressure (nor-
mal 70-105mmHg), oxygen saturation (normal 95%-100%),
respiratory rate (normal 12-20 times/minute), systolic blood
pressure (normal 90-140mmHg), temperature, among others.
Our training dataset includes 2,000 samples, the validation

dataset includes 1,000 samples, and the testing dataset in-
cludes 508 samples for the LoS prediction. Fig. 3 portrays
the time series distribution of vital sign measurement sample
data, where Fig. 3(a) shows a time series trend of vital signs
for a patient with short LoS (shorter than a day, class 1), and
Fig. 3(b) depicts a time series trend of vital signs for a patient
with long LoS (over one week, class 8).
As seen in Fig. 3, though the vital sign measure indicators

can reflect the length of stay for inpatients to a certain extent,
the characteristics are not very significant when observing
these indicators directly from the original data. Therefore,
after data transformation and preprocessing, the proposed
method is used to perform the class prediction of LoS for
inpatients on the MIMIC-III v1.4 dataset, and the influential
SOTA methods are selected to compare models. To scien-
tifically and objectively evaluate the models, the standard
measure metrics are utilized to investigate the performance
of the LoS and mortality predictions using different methods.
The detailed contents are described in subsequent sections.

B. EXPERIMENTAL SETUP AND EVALUATION METRICS
All methods involved in this paper are developed using

Python 3.6 deep learning framework, where the commonly-
used ML libraries including Keras, Scikit-learn, Matplotlib,
and TensorFlow are utilized and sped up by a graphics pro-
cessing unit (GPU). The experiments are performed on a
server with an AMD EPYC 7502P 32-Core Central Process-
ing Unit (CPU) @ 2.50 GHz, 32 GB memory, and RTX
A6000 GPU.
To investigate the performance of the model for LoS and

mortality predictions, i.e., multi-label and binary classifi-
cation tasks, we use the area under the receiver operating
characteristic (ROC) curve (ROC-AUC) and area under the
precision–recall curve (PR-AUC) as the evaluation metrics.
Besides that, well-known metrics such as Accuracy (Acc),
Precision (Pre), Recall (Rec), and F1-Score (F1) are also
utilized to measure the performance of the models for the LoS
and mortality predictions, which can be computed using the
following equations:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(29)

Precision =
TP

(TP+ FP)
(30)

Recall =
TP

(TP+ FN )
(31)

F1 =
(2× Precision× Recall)
(Precision+ Recall)

(32)

where true positive (TP) and true negative (TN ) refer to the
positive data label and negative data label that are predicted
correctly. False positive (FP) and false negative (FN ) refer
to the negative data label and positive data label that are
predicted incorrectly. Tables III-VIII present the results.
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TABLE 2. The LoS prediction performance on the training and validation sets.

No. Methods
Training set Validation set
ROC-
AUC

PR-
AUC

Acc Pre Rec F1
ROC-
AUC

PR-
AUC

Acc Pre Rec F1

1 XGBoost 0.989 0.929 0.926 0.926 0.926 0.927 0.822 0.434 0.378 0.421 0.378 0.398
2 LightGBM 0.970 0.856 0.827 0.843 0.827 0.834 0.817 0.434 0.366 0.427 0.366 0.394
3 LSTM 0.859 0.456 0.489 0.471 0.489 0.479 0.711 0.337 0.305 0.302 0.305 0.303
4 GRU 0.872 0.405 0.465 0.407 0.465 0.434 0.733 0.346 0.315 0.323 0.315 0.318
5 ClinicNet 0.868 0.458 0.523 0.505 0.523 0.514 0.696 0.298 0.276 0.336 0.276 0.303
6 Transformer 0.815 0.416 0.413 0.435 0.413 0.424 0.793 0.392 0.392 0.310 0.392 0.346
7 Proposed ARLF 0.862 0.567 0.565 0.565 0.565 0.556 0.801 0.402 0.401 0.421 0.401 0.411

TABLE 3. The test results of different methods for LoS prediction, (.) denote the ranking.

No. Methods
Testing set Average

rank
Time (s)

ROC-AUC PR-AUC Acc Pre Rec F1

1 XGBoost 0.813 (3) 0.329 (4) 0.307 (4) 0.329 (4) 0.307 (4) 0.317 (4) 3.833 121.146
2 LightGBM 0.829 (2) 0.355 (2) 0.338 (3) 0.358 (3) 0.338 (3) 0.347 (2) 2.500 151.887
3 LSTM 0.753 (6) 0.247 (6) 0.195 (7) 0.224 (6) 0.195 (7) 0.208 (7) 6.500 79.167
4 GRU 0.776 (5) 0.255 (5) 0.220 (5) 0.209 (7) 0.220 (5) 0.214 (6) 5.500 73.793
5 ClinicNet 0.729 (7) 0.245(7) 0.211 (6) 0.257 (5) 0.211 (6) 0.231 (5) 6.000 75.727
6 Transformer 0.806 (4) 0.352 (3) 0.363 (2) 0.376 (2) 0.363 (2) 0.322 (3) 2.667 119.135
7 Proposed ARLF 0.936 (1) 0.417 (1) 0.572 (1) 0.507 (1) 0.572 (1) 0.538 (1) 1.000 89.038

C. RESULTS AND DISCUSSION

To demonstrate the robustness of the proposed approach,
six popular methods, including extreme gradient boosting
(XGBoost), light gradient boosting machine (lightGBM),
LSTM, Gate Recurrent Unit (GRU), ClinicNet [37], and
Transformer [38] are selected for comparative analysis. These
methods are widely used in various fields, such as time
series prediction tasks, and they have shown SOTA perfor-
mance in inpatients’ LoS and mortality prediction [39]. To
ensure fairness in comparison, the core hyperparameters of
the compared models are set to the same as that of the pro-
posed approach. Concretely, the adaptive moment estimation
(Adam) [40] is utilized as a training optimizer of the models,
with a mini-batch size of 16, a learning rate of 1 × 10−3,
and 100 epochs of training. The dataset is randomly split
into the training, validation, and testing sets in a 4:2:1 ratio.
Table 2 summarizes the LoS prediction performance of the
different methods on the training and validation sets, and
the test results of different methods are presented in Table
3. Fig. 4(a) and Fig. 5 portray the training performance of
the proposed approach and the tested confusion matrices of
different methods, respectively.

Table 2 shows that the proposed ARLF has attained a
competitive training and validation performance compared to
other methods. After training for 100 epochs, the proposed
method has achieved a validation accuracy and F1-Score of
0.401 and 0.411, respectively, which are superior to that of
other compared methods. Besides, the ROC-AUC and PR-

AUC of the proposedmethod also reach the best values except
that of the tree algorithms like XGBoost and LightGBM.
Nevertheless, these tree algorithms are ensemble learning
models comprising multiple decision trees, which can easily
lead to overfitting risks. Tables 2 and 3 show that the training
performance of the tree algorithms is good, but it drops
significantly on the validation and testing sets. By contrast,
the proposed method shows robustness and effectiveness,
and it has realized the best prediction results compared to
other SOTAmethods on the testing dataset, e.g., the proposed
ARLF achieves the highest score with ROC-AUC of 0.936. In
addition, the proposed ARLF has a relatively small volume
(around 0.42M, see Table 1) and the running time for LoS
prediction is 89.038 seconds, which is a competitive time,
compared with other methods, as shown in Table 3.
Moreover, to validate the superiority of the proposed

model, we performed the statistical test to give a detailed
analysis of diverse algorithms. We have used the Friedman
statistical test to compare the average ranking of different
methods. Let Rji be the sorting of the j-th method on the i-th
metrics, and the average ranking can be computed by

R̄j =
1

N

∑
i

Rji (33)

where N indicates the number of measurement metrics. The
null hypothesis of Friedman’s test is that there is no difference
among these methods, i.e., the performance differences of
these comparative methods are not significant. Mathemati-
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(a) ROC-AUC on the training set (b) ROC curve on the testing set

FIGURE 4. ROC-AUC and ROC curves of the proposed method for LoS prediction.

FIGURE 5. The LoS test confusion matrices of different methods.
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cally, the Friedman’s test statistic can be expressed by

FF =
(N − 1)x2F

N (k − 1)− x2F
(34)

Here k denotes the number of methods, FF follows the F-
distribution with the freedom degree of k-1 and (k-1)(N -1),
and x2F is computed by

x2F =
12N

k(k + 1)

∑
j

R̄2
j −

k(k + 1)2

4

 (35)

In the experiments of LoS prediction, there are 7 methods
evaluated by 6 different measurement metrics, and thus the
k and N are separately assigned as 7 and 6. Referring to Eqs.
(34, 35), the x2F and FF are calculated as 32.86 and 52.25,
respectively. Whilst, referring to the probability distribution
table, the critical value of F(k-1,(k-1)(N -1)) is obtained as
F(6,30) = 2.42. Since the observedFF = 52.25 is much larger
than 2.42, the null hypothesis of Friedman’s test is rejected,
indicating that there are significant statistical differences
among the algorithms. Therefore, based on the statistical
comparative analysis, it can be concluded that the proposed
approach has outperformed other SOTA methods and shows
significant advantages for LoS prediction. Besides, it can
be visualized from Fig. 4(b) that the proposed method has
exhibited superior performance with the ROC curves of all
classes close to the top-left corner of this figure, which is also
reflected in the confusion matrix of Fig. 5(f). The proposed
method has successfully predicted the LoS categories of most
test samples in different lengths of stay.

Other than that, we have investigated the model perfor-
mance of the proposed method for the inpatients’ mortality
prediction. Similarly, the dataset is split into the training and
validation sets with a ratio of 2:1, and more test samples
including 2,720 survival and 330 mortality samples, a total
of 3,050 samples are drawn from the original time series data
as the testing set to evaluate themodels. Tables 4 and 5 present
the training and test performance of mortality prediction for
different methods. Fig. 6 depicts the area under the ROC
Curve (ROC-AUC) and ROC Curve of the proposed method
for model training and test, and the test confusion matrices
of different methods are portrayed in Fig. 7. From Table 5
it can be seen that the proposed approach has realized a test
Accuracy of 90.30%, and the test Precision, Recall, and F1-
Score also attain no less than 88.70%, 90.30%, and 89.10%,
respectively. According to the results reported in Table 5, the
x2F and FF of different methods for mortality prediction are
computed as 21.08 and 7.07, respectively. Since the computed
FF = 7.07 is larger than the critical value F(6,30) of 2.42
referring to the probability distribution table (test size α
= 0.05), the null hypothesis of Friedman’s test is rejected
suggesting a statistically significant difference between the
algorithms. Therefore, the statistical comparative analysis
demonstrates the competitive advantages of the proposed
approach for predicting patients’ mortality in hospitals. Also,
from Fig. 6(a) it can be visualized that the training ROC-

AUC is close to 100% and the validation ROC-AUC exceeds
80%, which exhibits the outstanding performance of the pro-
posed method. Besides, as shown in Fig. 6(b), the proposed
method has revealed superior operating characteristics, with
the ROC curves close to the top-left corner of this figure.
This positioning signifies the effectiveness and feasibility of
the proposed approach for mortality prediction. Additionally,
from the confusion matrices of Fig. 7, it can be observed
that the ARLF has properly recognized most of the samples.
177 mortality samples and 2,468 survival samples have been
correctly recognized by the proposed approach.
Moreover, we have implemented a performance investi-

gation of the proposed approach compared to the results
presented in previous literature concerning the predictions of
both LoS and mortality, as shown in Table 6. From Table 6 it
can be seen that the proposed approach has delivered a com-
petitive result and outperformedmost of the existingmethods.
To sum up, the comparative analysis results demonstrate the
superiority and effectiveness of the proposed approach for
the predictions of inpatients’ LoS and mortality. The key
explanation for the substantial performance of the proposed
approach is that the fully-connected residual convolutional
networks coupled with LSTM unit are incorporated into the
model, whichmaximizes information transfer and extracts the
spatial and temporal features for the class prediction tasks.
Besides, a self-attention mechanism is embedded into the
networks to highlight favorable information while filtering
out unnecessary noises, thereby improving the accuracy of
the model. Moreover, the customized LES loss function used
in the network also alleviates the imbalanced sample problem.
By comparison, the other methods are single network struc-
tures or frequently-used EL methods. Since only unimodal
feature such as temporal feature or spatial feature is extracted,
these methods do not achieve the optimal performance. Con-
sequently, the proposed approach attained a competitive per-
formance in comparative experiments.

D. ABLATION STUDY
We perform the ablation study on our model, where we

analyze the behavior of the residual block, self-attention
mechanism, and the customized loss function on the MIMIC-
III v1.4 dataset for the LoS and mortality predictions. First,
we separately remove the residual block and the module of
the self-attention mechanism in the network to investigate the
performance. Then, we evaluate the effect of the optimized
loss function by substituting the customized loss function
with the traditional CE loss function. Table 7 summarizes the
comparison results of ablation experiments. From Table 7,
we note an evident decreased performance in the results of
the ablated models. The ROC-AUC of removing the resid-
ual block and self-attention mechanism for LoS prediction
drops to 0.820 (decrease by 0.116) and 0.891 (decrease by
0.045). Also, the ROC-AUC for mortality prediction drops
to 0.755 (decrease by 0.077) and 0.759 (decrease by 0.073),
respectively. These ablation experiments indicate that both
the residual block and self-attention mechanism contribute to
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(a) ROC-AUC on the training set (b) ROC curve on the testing set

FIGURE 6. ROC-AUC and ROC curve of the proposed method for mortality prediction.

FIGURE 7. The test confusion matrices of different methods.
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TABLE 4. The mortality prediction performance on training and validation sets.

No. Methods
Training set Validation set

ROC-
AUC

PR-
AUC

Acc Pre Rec F1
ROC-
AUC

PR-
AUC

Acc Pre Rec F1

1 XGBoost 0.889 0.903 0.970 0.971 0.970 0.969 0.679 0.723 0.910 0.919 0.910 0.891
2 LightGBM 0.960 0.859 0.932 0.934 0.932 0.923 0.856 0.688 0.891 0.878 0.891 0.875
3 LSTM 0.970 0.859 0.941 0.939 0.941 0.937 0.824 0.541 0.891 0.882 0.891 0.868
4 GRU 0.921 0.680 0.909 0.901 0.909 0.900 0.820 0.640 0.891 0.877 0.891 0.875
5 ClinicNet 0.985 0.934 0.963 0.962 0.963 0.962 0.865 0.541 0.881 0.864 0.881 0.867
6 Transformer 0.877 0.873 0.796 0.818 0.841 0.829 0.769 0.521 0.782 0.945 0.793 0.862
7 Proposed ARLF 0.937 0.942 0.933 0.936 0.933 0.933 0.759 0.533 0.881 0.864 0.881 0.867

TABLE 5. The test results of different methods for mortality prediction, (.) denote the ranking.

No. Methods
Testing set Average

rank
Time (s)

ROC-AUC PR-AUC Acc Pre Rec F1

1 XGBoost 0.640 (7) 0.511 (2) 0.907 (2) 0.891 (3) 0.906 (2) 0.891 (2.5) 3.083 498.961
2 LightGBM 0.868 (1) 0.525 (1) 0.912 (1) 0.899 (2) 0.912 (1) 0.897 (1) 1.167 493.879
3 LSTM 0.828 (4) 0.433 (7) 0.894 (5) 0.876 (7) 0.894 (5) 0.882 (6) 5.667 82.737
4 GRU 0.838 (2) 0.477 (5) 0.896 (4) 0.883 (5) 0.896 (4) 0.888 (4) 4.000 77.179
5 ClinicNet 0.825 (5) 0.451 (6) 0.890 (6) 0.878 (6) 0.890 (6) 0.883 (5) 5.667 97.373
6 Transformer 0.784 (6) 0.504 (3) 0.663 (7) 0.949 (1) 0.786 (7) 0.859 (7) 5.167 157.286
7 Proposed ARLF 0.832 (3) 0.492 (4) 0.903 (3) 0.887 (4) 0.903 (3) 0.891 (2.5) 3.250 133.561

TABLE 6. Comparison with previous literature.

ID References Year Description ROC-AUC (LoS) ROC-AUC (mortality)

1 Harutyunyan et al. [1] 2019 LSTM 0.840 0.870
2 Rajkomar et al. [41] 2020 ConCare 0.860 0.770
3 Hu et al. [2] 2020 LightGBM (2x2 filter) - 0.850
4 Catling et al. [42] 2020 TCN 0.895 0.795
5 Harerimana et al. [43] 2022 MHT 0.908 0.867
6 This study 2023 ARLF 0.936 0.832

the performance gains of the proposed method. Furthermore,
we replace the customized loss function with the CE loss
function to evaluate the effect of the model optimization.

We also note a significant decrease, where the ROC-AUC
and PR-AUC of LoS prediction separately drops to 0.838
(decrease by 0.098) and 0.382 (decrease by 0.035). The ROC-

TABLE 7. The results of ablation experiments.

Ablation approach
Test accuracy of LoS prediction Test accuracy of mortality prediction Time for

LoS task (s)ROC-
AUC

PR-AUC
ROC-
AUC

PR-AUC

Delete residual block 0.820 0.372 0.755 0.522 42.632
Delete self-attention 0.891 0.415 0.759 0.527 76.267
Replace the customized loss
function with CE

0.838 0.382 0.763 0.540 57.357

This study 0.936 0.417 0.832 0.492 89.038
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AUC of mortality prediction also drops to 0.763 (decrease
by 0.069). The fundamental explanation for the effect of the
loss function is that the CE loss function does not consider
the class imbalance problem, resulting in decreased accuracy.
This ablation experiment demonstrates that the optimized loss
function delivers better performance than that of the CE loss
function used in our model for inpatients’ LoS and mortality
predictions.

V. CONCLUSION
Enhancing the excellence of patient care and predicting

future outcomes is the most crucial goal in intensive care
research. Meanwhile, LoS and mortality predictions are crit-
ical topics for predicting possible outcomes. In this paper, by
deploying clinical time series data obtained from the EHR
database MIMIC-III v1.4, we develop an efficient attention
embedded residual LSTM FCN model to perform the LoS
and mortality predictions for patients using clinical time
series data. The proposed ARLF is primarily composed of
a CNN layer, three residual blocks, an LSTM unit, a FCN
module, and a self-attention module. After the CNN layer and
residual blocks extract the clinical data, the FCN and LSTM
are used to extract the spatial and temporal features. Then
a self-attention mechanism is embedded into the network to
highlight favorable information while suppressing needless
noises. Finally, the weighted features are input into a DC
layer with the Softmax activation function for the final pre-
diction. In experiments, the best performance of the proposed
ARLF is proved by comparison with other SOTA methods.
Ablation studies are then conducted to verify the performance
gains of the residual block, self-attention mechanism, and
the optimized loss function. The experimental findings reveal
that the proposed ARLF architecture outperforms compared
methods, or the ablation models that remove the relevant
modules, demonstrating the validity and feasibility of the
proposed approach. The novel integration of these techniques
showcases significant advancements in predictive modeling,
providing a powerful tool for improving patient care. How-
ever, it exhibits several potential limitations. Firstly, the com-
putational complexity inherent in the integration of CNN,
residual blocks, LSTM, FCN, and self-attention mechanisms
may pose challenges in terms of training time and resource
requirements. To mitigate this, model pruning algorithms can
be added to simplify the model in the future work. Secondly,
despite promising performance, treating LoS prediction as a
classification problem still needs more investigation on the
issue of LoS data skewness. A potential solution is to treat
LoS prediction as a regression rather than a classification
problem. In future work, we will apply the proposed model
in more clinical tasks such as phenotype classification, risk
assessment, patient flow prediction, and mining signatures
from event sequences.
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