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Dear Editor,

Maize (Zea mays) is a major crop worldwide for food, feed and energy.
Its ears develop from inflorescence meristems (IM), which give rise a
stereotypical series of spikelet pair, spikelet, and floral meristems
that form kernels. IM size is associated with kernel row number
and kernel number per row, affecting the total kernel number per
ear (KNE; Bommert et al. 2013a; Ning et al. 2021). IM activity is orch-
estrated by the classical CLAVATA (CLV)-WUSCHEL (WUS) regula-
tory pathway (Wu et al. 2018). In maize, the CLV receptors and
ligands include the leucine-rich repeat (LRR) kinase THICK-TASSEL
DWAREF 1 (TD1) (Bommert et al. 2005) and LRR protein FASCIATED
EAR 2 (FEA2) (Taguchi-Shiobara et al. 2001), as well as the two
CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) pepti-
des, ZMCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) (Je et al.
2016; Rodriguez-Leal et al. 2019). In addition, the G protein a subunit
COMPACT PLANT 2 (CT2) (Bommert et al. 2013b) and B subunit G
(ZmGB1) (Wu et al. 2020), as well as the pseudokinase CORYNE
(ZmCRN) act as downstream signaling components of FEA2
(Je et al. 2018). Mutations in CLV-related genes cause overprolifer-
ated IMs, fasciated ears with extreme kernel row number, disorgan-
ized kernels, and shorter cobs, ultimately diminishing yield.
Manipulating these genes, either by mutations in protein coding or
cis-regulatory regions can fine-tune IM activity to increase kernel
row number while maintaining normal ear architecture offering
possibilities to improve yield (Bommert et al. 2013a; Je et al. 2016;
Liuetal. 2021;Lietal. 2022). However, the potential of the null alleles
of these genes has been largely overlooked, leading us to ask if they
could be used in a dosage specific manner to enhance yield traitsina
heterozygous state.

In this study, we scored the kernel row number in heterozygotes
of six fea mutants, fea2, td1, ct2, Zmcle7, Zmcrm, and Zmgb1, to inves-
tigate whether they have a quantitative impact. These mutants
have fasciated earsin B73 inbred, except for Zmgb1, which is not via-
ble in B73, and develops fasciated ears when the lethality is sup-
pressed in CML103 (Supplementary Fig. S1; Wu et al. 2020). To
control for genetic background effects, each heterozygous fea

mutant (fea/+) was crossed with B73 wild type (WT) and KRN was
assessed for heterozygotes and WT siblings in F1. We also scored
segregated heterozygotes and WT controls in different hybrids
from crosses between heterozygotes in B73 and other backgrounds
(Mo17, W22, A619, RP125, KN5585, C7-2, and Z58). Mature ears het-
erozygous for different mutations in inbred and hybrids had normal
ear architecture and kernel row organization similar to WT siblings
(Fig. 1A and C, Supplementary Fig. S2A). Strikingly, Zmcm heterozy-
gotes (Zmcrn/+) had ~0.5 to 1.4 more rows than the WT control in
B73 inbred and hybrids with data from Sanya (18°N, 108°E; Fig. 1B)
and Qingdao (36°N, 120°E; Supplementary Fig. S3A). We also found
that Zmcle7 heterozygotes had increased KRN relative to the con-
trols in B73 inbred and hybrids (Fig. 1D, Supplementary Fig. S3B).
In contrast, no significant increase in KRN was observed for td1,
gbl, ct2, or fea2 heterozygotes relative to their WT controls in either
inbred or hybrids, except a small increase in ct2(B73)/W22 hybrid
(Supplementary Fig. S2, B to E). Taken together, our data revealed
that Zmem and Zmcle7 heterozygotes can quantitatively enhance
KRN in both inbred and hybrids, highlighting their potential for en-
hancing grain yield.

To further evaluate the impact of Zmcrn heterozygosity on grain
production, we scored additional yield related traits including
grain yield per ear (GYE), ear weight (EW), KNE, ear diameter
(ED), kernel depth (KD), ear length (EL), kernel numbers per row
(KNR), and hundred-kernel weight (HKW) in different hybrids.
Remarkably, Zmcmn heterozygotes increased GYE by 4% to 9%
in three hybrids: Zmem (B73)/C7-2, Zmcrn (B73)/W22, and
Zmern  (B73)/RP125, with data from two seasons (Fig. 2A,
Supplementary Fig. S4A). Zmcrn heterozygotes also had increases
in EW in these three hybrids (Fig. 2B, Supplementary Fig. S4B). The
rest traits including KNE, ED, KD, EL, KNR, and HKW were either
increased or unaffected (Fig. 2C-H, Supplementary Fig. S4C-, S to
H). In four other hybrids: Zmcrn (B73)/KN5585, Zmcrn (B73)/Mo17,
Zmern (B73)/258,and Zmcern (B73)/A619, there wasnosignificantin-
crease in GYE and EW (Supplementary Fig. S5A and B) and no sig-
nificant effect or minor effect on the other traits (Supplementary
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Figure 1. Heterozygosity at Zmcrm and Zmcle7 improve KRN in inbred and hybrid maize lines. A) Representative mature ears of WT and Zmcrn
heterozygotes in B73 inbred and the indicated hybrids, showing lack of ear fasciation. WT, wild type; Zmcrn/+, Zmerm heterozygotes. Scale bar: 10 cm.
B) Zmcm heterozygosity significantly increased KRN compared to WT sib controls in B73 inbred and the indicated hybrids. KRN was scored at Sanya in
2020 (20SY). C) Representative mature ears of WT and Zmcle7 heterozygotes in B73 inbred and the indicated hybrids, showing lack of ear fasciation. WT,
wild type; Zmcle7/+, Zmcle7 heterozygotes. Scale bar: 10 cm. D) Zmcle7 heterozygosity significantly increased KRN compared to WT sib controls in B73
inbred and the indicated hybrids. KRN was scored at Qingdao in 2021 (21QD). For B) and D), data are presented as box plots with two-tailed Student’s
t-test. * P-value <0.05, ™ P-value <0.01, ™ P-value <0.001. *** P-value <0.0001. The box indicates the first or third quartile with a median, whiskers
further extend by +1.5 times the interquartile range from the limits of each box, and the white diamond represents the mean. The mean values and the
number of plants (n) used for the statistical analysis are listed. The source data can be found in Supplementary Tables S1 and S2.

Fig. S5C and H). Our data suggest that ZmCRN is a promising locus
for improving yield traits, though its performance varies across
different genetic backgrounds, likely due to complex traitinterac-
tions and variations in heterosis. In addition, a candidate gene as-
sociation study in a maize panel of 507 inbred lines found that
ZmCRN is significantly associated with KRN (Supplementary Fig.

S6). Lines with the favorable haplotype had higher KRN
(Supplementary Fig. S6B) and this haplotype was positively se-
lected during domestication (Supplementary Fig. S6C). Taken to-
gether, our data revealed that natural variation in ZmCRN is
associated with KRN, and ZmCRN is a promising locus for breeding
high-yielding varieties.
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Figure 2. Heterozygosity at Zmcrn improves GYE and EW in hybrid maize lines and weak alleles of Zmcrn enhance KRN. A-H) Scoring of eight yield traits
including GYE A), EW B), KNE C), ED D), KD E), EL F), kernel number per row G) and HKW H) for segregated Zmcrn/+ and WT in B73/W22, B73/RP125, and
B73/C7-2 hybrids. All yield-related trait scoring were performed at Sanya in 2020 (20SY). Data are presented as mean values + SE, * P-value <0.05,

** P-value £0.01, ™ P-value <0.001, *** P-value <0.0001, with two-tailed Student’s t-test. ns indicates nonsignificant. Yellow bars: WT. Blue bars:
Zmern/+. The source data can be found in Supplementary Table S4. I) Microscopy images showing representative ear primordia of WT and Zmcrn/+.
IM width and height are indicated by white lines. IM: Inflorescence meristem. Scale bar: 500 pm. The scale bar applies to both WT and Zmcrn/+.

J) and K) IM diameters of WT and Zmcrn/+ revealed wider IMs in Zmcrn/+ compared to the control, while IM heights of WT and Zmcrn/+ show no
significant difference. Data are presented by box blots with two-tailed Student’s t-test. ** P-value <0.001. The box indicates the first or third quartile
with a median, whiskers further extend by +1.5 times the interquartile range from the limits of each box, and the white diamond represents the mean.

The source data can be found in Supplementary Table S5. L) Representative mature ears of WT and Zmcrmn

R311K showing nonfasciated ears. Scale bar:

10 cm. The scale bar applies to both WT and Zmcrn®***¥, M) Zmem®***¥ increased KRN relative to the WT siblings with data collected from at Sanya in
2021, 2022, and 2023 (21SY, 22SY, and 23SY). Data analysis and P-value calculation were performed as described in Fig. 1B. Box plots are defined as inJ)

and K). The source data can be found in Supplementary Table Sé.

To better understand the underlying cause of the increase in
KRN in Zmcrn heterozygotes, we measured IMs in the B73 inbred
(Fig. 2I). We found that Zmcmn heterozygotes had significantly
wider IMs compared to their WT siblings but unaffected IM height
(Fig. 2J and K). Our results suggest that Zmcrn heterozygotes have
higher meristem activity, leading to the increase in KRN.

To mine additional ZmCRN alleles for potential grain improve-
ment, we scored 14 nonsynonymous Zmcmn alleles from an EMS mu-
tantlibrary (Supplementary Fig. S7A; Lu et al. 2018). Unlike the Zmcm
null mutants, none of these alleles had fasciated ears (Fig. 2L,
Supplementary Fig. S7B). Three alleles (Zmcm5?*%F, Zmern®*1’¥ and
Zmcrn5**°Y increased KRN with normal ear architectures, indicating
they are weak alleles potentially useful for yield improvement
(Fig. 2M, Supplementary Fig. S7C). One allele (Zmem™°%) decreased
KRN, suggesting it was a hypermorph (Supplementary Fig. S7C). No
significant difference in KRN was detected for the other EMS alleles.
ZmCRN was previously characterized as pseudokinase lacking the

conserved feature of a typical kinase (Nimchuk et al. 2011).
Interestingly, all four alleles causing a difference in KRN were lo-
cated within its pseudokinase domain, indicating a crucial nonki-
nase function. These variations were not found in the maize
association panel of 507 inbred lines, which is in line with the fact
thatnonatural variations at coding region of ZmCRN were identified
in the association analysis. Our results suggest that induced varia-
tions through EMS mutagenesis or CRISPR base editing could en-
hance yield traits with more variations than found in nature.
Studies on CLV-related mutants in maize have advanced our
fundamental understanding on meristem development. However,
null alleles of these genes often have severe phenotypes that affect
yield. The fasciated ear phenotype appeared to be a recessive trait,
as heterozygotes for the six null mutants have normal ear architec-
ture, both in inbred or hybrids. However, we found that Zmcm and
Zmcle7 heterozygotes had quantitative effects on increasing KRN
in inbred and hybrids. In contrast, heterozygotes for the other
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four mutants showed no obvious effects on KRN. In all heterozygous
fea mutants, the normal transcript levels were reduced to approxi-
mately half of that in WT siblings (Supplementary Fig. S8), but only
Zmem and Zmcle7 heterozygotes significantly increase KRN. This
suggests that ZmCRN and ZmCLE7 are more sensitive to dosage
change than other FEA genes, and are more promising targets for
gene manipulation to improve yield traits such as KRN. Future
large-scale yield tests with commercial planting conditions and ad-
ditional environments will better reflect the effects of Zmcm and
Zmcle7 heterozygotes on improving yield traits (Khaipho-Burch
etal. 2023). ZmCRN and ZmCLE7 have the lowest levels in developing
ear primordia among the fea genes (Supplementary Fig. S9), which
provides a possible explanation why these two genes are more sen-
sitive to dosage change. Besides, the haplotype variation associated
with KRN laying in the 3'UTR region of ZmCRN likely impacts tran-
script levels, as polymorphisms in 3'UTR regions can cause varia-
tion in gene expression levels or mRNA stability (Wang et al. 2021,
2024), which is also in line with the fact that ZmCRN is sensitive to
dosage. Our results reveal that classical null mutants with qualita-
tive phenotypes can have quantitative effects on important traits.
Such effects have typically been observed in alleles with variations
in cis-regulatory elements.
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