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Abstract— Satellite images provide an effective way to ob-
serve the earth surface on a large scale. 3D landscape models
can provide critical structural information, such as forestry and
crop growth. However, there has been very limited research to
estimate the depth and the 3D models of the earth based on
satellite images. LIDAR measurements on satellites are usually
quite sparse. RGB images have higher resolution than LiDAR,
but there has been little research on 3D surface measurements
based on satellite RGB images. In comparison with in-situ
sensing, satellite RGB images are usually low resolution. In
this research, we explore the method that can enhance the
satellite image resolution to generate super-resolution images
and then conduct depth estimation and 3D reconstruction
based on higher-resolution satellite images. Leveraging the
strong generation capability of diffusion models, we developed
a simultaneous diffusion model learning framework that can
train diffusion models for both super-resolution images and
depth estimation. With the super-resolution images and the
corresponding depth maps, 3D surface reconstruction models
with detailed landscape information can be generated. We eval-
uated the proposed methodology on multiple satellite datasets
for both super-resolution and depth estimation tasks, which
have demonstrated the effectiveness of our methodology.

I. INTRODUCTION

In the current era of satellite Earth observation, a multitude
of missions are operational, with their numbers continuing
to rise [30]. Satellite remote sensing enables the rapid and
efficient collection of global-scale geospatial data, establish-
ing itself as a vital tool for accessing and understanding
geographic information. Utilizing satellite imagery for large-
scale 3D reconstruction of the Earth’s surface provides
precise digital models crucial for urban planning, ecologi-
cal monitoring, disaster response, and other domains. This
capability enhances spatial understanding and cognition of
complex environments, highlighting its significant research
and practical value.

However, satellite images are constrained by imaging
conditions, storage, and transmission bandwidth, making
it challenging to acquire high spatial resolution images.
As remote sensing imagery finds increasingly diverse ap-
plications, the use of lower quality images significantly
reduces the accuracy of key parameter estimates, severely
limiting the research and application of satellite image data.
Therefore, developing super-resolution methods for low-
resolution (LR) image data to enhance spatial resolution is
crucial for enabling more detailed analysis and applications
of satellite imagery. In the actual satellite remote sensing
image acquisition process, due to the long distance of the
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satellite orbit and the limitation of the volume and stability
of the imaging system, the resolution of the remote sensing
image data obtained after acquisition is often low. In order
to obtain high-resolution remote sensing images, a direct
way is to improve the imaging resolution from the hardware
perspective, which can be very expensive and out of control
for common users. Satellite images with higher resolutions
can provide more details of the ground information.

The applications of 3D reconstruction technology have
become widespread across various domains. It serves as a
vital tool for modern geospatial analysis and urban planning,
enabling the detailed reconstruction of natural landscapes
and man-made structures. By integrating remote sensing
data, aerial imagery, and ground-based surveys, detailed
three-dimensional models of diverse landscape elements
can now be created. 3D models based on satellite images
can support the understanding of landscape, such as the
growth of forestry and crops. However, 3D reconstruction
techniques specifically tailored for satellite imagery remain
scarce. Recently, diffusion models have garnered increasing
attention for their powerful image generation capabilities
across various computer vision tasks. In contrast to GANSs,
diffusion models can train to generate more diverse and
complex images. Using the same training dataset, diffusion
models mitigate the convergence issues often faced in GAN
training. The algorithmic foundation of diffusion models
involves training parameterized Markov chains through vari-
ational inference, demonstrating superior performance over
other generative models like GANs in numerous tasks. As
a conditional model dependent on priors, diffusion models
can generate target data samples from noise sampled from a
simple distribution. This involves both forward and inverse
processes, where random noise is injected into data (forward
process) and desired data samples are sampled from it
(inverse process). In this paper, we develop diffusion methods
specifically targeting satellite images, which can increase
the resolution of the satellite images and build 3D models
based on the enhanced satellite images. The significant
contributions of this work are outlined as follows: 1) we have
created a pipeline that can create the 3D models from the
satellite images. 2) In dealing with the low-resolution issues,
we have developed diffusion models that can create super-
resolution images, which can leverage the low-resolution
image to interpolate the pixels accurately. 3) We also have
developed a diffusion model that can output the depth maps,
which is one of the first methods targeting satellite images.
The super-resolution and depth estimation tasks are learned
simultaneously to further enhance each other. The entire



framework is shown in Fig. 1.
ITI. RELATED WORK

Satellites capture images of objects from great distances,
resulting in low-resolution images from satellite remote
sensing devices. Traditional methods to enhance resolution,
such as nearest neighbor interpolation, bilinear interpolation,
and bicubic interpolation, rely solely on information provided
by the low-resolution image itself. These techniques often
struggle to accurately reconstruct high-resolution details,
leading to mismatches when increasing resolution.

With the advancement of deep learning, Convolutional
Neural Network (CNN)-based approaches have become
prominent in the field of super-resolution. These strategies
frequently employ techniques like residual learning [21],
[20], [1], [22] or recursive learning [18]to develop net-
work architectures, significantly improving super-resolution
models. However, CNN-based methods may not effectively
capture residual features and often fail to fully utilize hier-
archical features in low-resolution images. Moreover, these
networks have limited capacity for feature extraction within
residual blocks, thereby restricting the learning capability of
super-resolution networks.

To overcome these limitations, researchers have introduced
Transformer-based networks. Networks such as Hrformer
[28] and Restormer[29] leverage the Transformer’s ability
to model long-range dependencies and are pre-trained on
large-scale datasets like ImageNet [4] and COCO[10] By
employing the Vision Transformer [5], these approaches aim
to achieve superior results in super-resolution tasks.

Diffusion models have recently gained significant attention
in the field of super-resolution due to their robust gener-
ative capabilities and iterative refinement processes. Initial
advancements, such as SRDiff (SISR diffusion probabilistic
model) [9], demonstrated the effectiveness of using a forward
process to progressively add noise to images and a reverse
process to iteratively remove this noise, resulting in high-
quality image reconstruction. This fundamental framework
has been adapted and extended to tackle super-resolution
challenges specifically.

Super-Resolution via Repeated Refinement (SR3) [16]
exemplifies the application of diffusion models to enhance
image resolution. SR3 employs a denoising diffusion pro-
cess that iteratively refines low-resolution inputs into high-
resolution outputs, achieving superior performance compared
to traditional convolutional neural networks (CNNs). The
SR3 framework demonstrates that diffusion models can
effectively address the limitations of CNN-based methods,
such as inadequate feature extraction and limited utilization
of hierarchical information. Further advancements in the
field have introduced Latent Diffusion Models (LDMs) [15],
which operate within a lower-dimensional latent space. This
approach significantly reduces computational costs while
maintaining high fidelity in the reconstructed images. By
focusing on the latent space, LDMs enable efficient pro-
cessing of high-resolution image data, making them par-
ticularly suitable for real-time applications and large-scale
deployments. In addition to these foundational works, recent

research has explored the integration of cross-attention mech-
anisms and hybrid architectures that combine the strengths of
diffusion models and transformers. For example, reference-
based super-resolution (RefSR) [8] leverages cross-attention
to incorporate contextual information from high-resolution
reference images, further improving the quality and consis-
tency of the super-resolved outputs. These hybrid approaches
highlight the potential for combining diffusion models with
other advanced machine learning techniques to push the
boundaries of image enhancement. Overall, the integration of
diffusion models into super-resolution frameworks represents
a promising direction for future research and development.
By leveraging their iterative refinement capabilities and
ability to model long-range dependencies, diffusion models
provide a powerful tool for overcoming the limitations of
traditional and CNN-based methods in the quest for high-
quality, high-resolution image reconstruction

3D reconstruction is pivotal in robotics and automation,
leveraging both traditional and deep learning approaches.
Traditional methods like Structure from Motion (SfM)[17]
and Multi-View Stereo (MVS)[26] reconstruct 3D geometry
from images, but these can be computationally intensive and
sensitive to environmental conditions. Recent advancements
in deep learning have transformed this field. Convolutional
Neural Networks (CNNs) have shown efficacy in single-
view depth estimation[27]and volumetric reconstruction[23].
For example, methods such as DeepMVS[2] combine deep
learning with MVS for enhanced accuracy. Additionally,
Neural Radiance Fields (NeRF)[13] and Transformer-based
architectures[25] offer innovative solutions by modeling 3D
scenes with photorealistic details and effectively capturing
global context. Hybrid approaches that integrate geometric
constraints with neural networks are also gaining traction.
Techniques like differentiable rendering[11] enhance the
accuracy and robustness of 3D reconstructions. These ad-
vancements indicate a promising future for 3D reconstruction
in robotics and automation, focusing on scalability, accuracy,
and real-time capabilities.

Diffusion models have recently emerged as a promising
approach in the field of 3D reconstruction, leveraging their
generative capabilities to produce high-quality 3D models
through iterative refinement processes. Early works, such
as Denoising Diffusion Probabilistic Models (DDPM) [6],
demonstrated the effectiveness of diffusion processes in gen-
erating detailed structures by progressively refining noisy in-
puts.Recent advancements have extended diffusion models to
3D reconstruction tasks. The Diffusion Probabilistic Model
for Point Cloud Generation [12] has shown how diffusion
processes can be adapted to generate 3D point clouds from
initial noisy distributions. This model iteratively refines the
point cloud representation, resulting in high-fidelity recon-
structions. Similarly, the application of diffusion models to
voxel grids and mesh generation has been explored, offering
new avenues for high-resolution 3D reconstructions with
fine-grained details [12]. Hybrid approaches that integrate
diffusion models with other deep learning techniques have
also been investigated. For example, integrating diffusion
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The framework for our simultaneous super-resolution and depth estimation algorithm targeting satellite images. Gaussian noise is added to the

low-resolution satellite images and the depth images. The noisy images are input to the latent encoder to learn the latent features. A fixed stable diffusion
model followed by task-specific denoising U-net learns the noise distribution. As both tasks interpolate super-resolution images and depth maps based on
the same image inputs and latent features, the super-resolution and depth estimation diffusion models share the same diffusion desnoising U-net encoder.
With the shared encoded features, each task has its own diffusion desnoising decoder to output the noise, which we build the consistency constraint with
the input noise. The denoised latent features are input to the latent decoder to output the estimated super-resolution images and depth maps, which are

utilized to build consistency constraints with the original ground truth.

processes with convolutional neural networks (CNNs) and
Transformer-based architectures has proven effective in cap-
turing both local and global features essential for accurate 3D
reconstructions [14]. These methods benefit from the iterative
nature of diffusion models, which allows for progressive
enhancement of 3D structures, resulting in more accurate and
detailed reconstructions. Moreover, diffusion models have
been applied to multi-view 3D reconstruction tasks, where
they are used to integrate information from multiple 2D
images to generate a coherent 3D model [19]. This approach
leverages the ability of diffusion models to handle complex
data distributions, enabling the reconstruction of 3D models
with high precision from sparse and noisy input data.

III. METHODOLOGY

Our network explores simultaneous super-resolution and
depth estimation through the diffusion model. Training im-
ages will be input to the image latent encoder to obtain
features for the diffusion model. As both super-resolution and
depth estimation interpret the original images to either high
resolution images or depth maps, the Diffusion U-net will
share the same encoder for both tasks while each task has
its own diffusion decoder. The Diffusion U-net output will
be forwarded to super-resolution latent decoder and depth
estimation latent decoder for super-resolution images and
depth maps.

A. Super-resolution Diffusion

Our approach harnesses the diffusion prior for the task of
super-resolution (SR). Drawing inspiration from the genera-
tive power of Stable Diffusion [15] and [24], we incorporate
it as the foundation for our diffusion prior, leading to the
development of our super-resolution diffusion model. We
degrade the high-resolution images into low resolution. Low

resolution serves as the input while high resolution is the
ground truth. The core of our method revolves around a
time-sensitive encoder, which is trained alongside a pre-
existing, unmodified Stable Diffusion model. This allows for
adaptive conditioning based on the input image. We refor-
mulate super-resolution as a conditional denoising diffusion
problem. The model is trained to capture the conditional
distribution D(s | z) over the super-resolved image s €
RW>H conditioned on an RGB image = € RW *H*3,

In the forward process, starting from the initial high-
resolution image sy := s, Gaussian noise is progressively
added at each timestep ¢ € {1,...,T}, resulting in noisy
super-resolved images s, according to the following equa-
tion:

sy = Vasg + V1 — e, (D

where ¢ ~ N(0,I) and @ = [[._,(1 — Bs), with
{B1,...,Pr} representing the variance schedule. In the
reverse process, the denoising model ¢y (-), parameterized by
6, is used to progressively reduce the noise in s; and recover
s¢—1. The goal is to reconstruct the initial super-resolved
image sg from the noisy images by iteratively applying the
denoising model.

The model parameters 6 are optimized during training
by adding Gaussian noise to pairs of low-resolution RGB
images z and their corresponding super-resolved images s
from the training set. The noise € is randomly sampled at a
timestep ¢, and the model estimates the noise € = €g(s¢, 2, ),
minimizing the following objective:

2)

At inference, starting with a noisy super-resolved image
st, the final super-resolved image sy is reconstructed by

L =Es, cuno,0)0~v) € — €ll3-



iteratively applying the learned denoiser €y(s;, x,t) to reduce
the noise step by step.

To efficiently train the model, we leverage a pretrained
Latent Diffusion Model (LDM), such as Stable Diffusion
v2 [15], which already encodes strong image priors. The
architecture is adapted for super-resolution, conditioned on
input low-resolution RGB images. The pretrained VAE from
Stable Diffusion is used to encode both the low-resolution
RGB image and the super-resolved image into a latent space.

Diffusion models sometimes exhibit color shifts, as noted
in previous studies [3] and [24]. To counteract this issue,
we perform color normalization on the generated image,
aligning its mean and variance with those of the LR input.
Specifically, if = denotes the LR input and y represents
the generated HR image, the color-corrected output, y, is
computed as follows:

0. — ud
yc:%'Uf‘fﬂuf 3)
Oc

where ¢ € {r,g,b} indicates the color channel, and p? and
o (or p* and o%) are the mean and standard deviation
estimated from the c-th channel of § (or x), respectively.
Although pixel-level color correction using channel matching
improves color fidelity, we note that this method may have
limited correction ability due to the lack of pixel-wise
control. The primary reason is that it only introduces global
statistics, i.e., channel-wise mean and variance, for color
correction, ignoring pixel-level semantics. To enhance the
visual performance, especially in some cases, we propose
a wavelet-based color correction approach. This technique
directly introduces the low-frequency part from the input, as
color information belongs to the low-frequency components,
while most degradations affect high-frequency components.
This approach improves the color fidelity of the results
without significantly altering the generated quality. Given an
image I, we extract its high-frequency component H; and
low-frequency component L; at the i-th scale via wavelet
decomposition, as follows:

Li = Ci(Li—1,k), H;= L1 —L; 4

where Ly = I, C; denotes the convolution operator with a
dilation of 2°, and k is the convolutional kernel defined as:

1/16 1/8 1/16
k=|1/8 1/4 1/8 (5)
1/16 1/8 1/16

By denoting the [-th low-frequency and high-frequency
components of = (or §) as LY and H}® (or L} and H}), the
desired HR output y is formulated as:

y=H+L? (6)

Low-frequency component Lf of g is replaced with L7 to
correct the color bias. By default, we use pixel-domain color
correction for simplicity. Although the results produced by
our method are visually appealing, they may deviate from

the ground truth due to the inherent stochastic nature of
the diffusion model. We introduce a Controllable Feature
Wrapping (CFW) module as in CodeFormer [31] that enables
flexible management of the trade-off between realism and
fidelity. Since Stable Diffusion operates in the latent space
of an autoencoder, it is natural to utilize the encoder features
of the autoencoder to modulate the corresponding decoder
features for further fidelity enhancement. Let F, and Fy
represent the encoder and decoder features, respectively. We
introduce an adjustable coefficient w € [0, 1] to control the
degree of modulation:

F771,:Fd+C(F€7Fd;0)Xw (7)

where C(-;0) denotes convolutional layers with trainable
parameters 6. In this design, a small w leverages the genera-
tive capability of Stable Diffusion, resulting in outputs with
high realism under severe degradations. Conversely, a large
w allows stronger structural guidance from the LR image,
enhancing fidelity.

The attention layers in Stable Diffusion are highly sensi-
tive to image resolution, often producing suboptimal outputs
for resolutions that differ from the model’s training settings.
This limitation restricts the practical applicability. We split
the larger image into several overlapping smaller patches
and processed each one individually, therefore enhancing the
images with any resolution.

B. Depth Estimation Diffusion

Similarly, we reformulate depth estimation as a conditional
denoising diffusion problem as [7]. Our proposed model
is trained to capture the conditional distribution D(d | x)
over depth d € RW*# conditioned on an RGB image
= RWXH ><3_

In the forward process, starting from the initial depth dy :=
d, Gaussian noise is gradually introduced at each timestep
t € {1,...,T}, leading to noisy depth maps d; as follows:

dy = Vaydo + V1 — e, (®)
where € ~ N(0,1), @ = [['_,(1—8s), and {1, ..., Br}

represent the variance schedule. In the reverse process, the
denoising model €4(-), parameterized by 6, progressively
reduces the noise in d; to recover d;_.

During training, the model parameters 6 are optimized
by taking pairs of RGB images = and depth maps d from
the training dataset, adding noise to d using a randomly
sampled € at a random timestep ¢, and estimating the noise
€ = €g(ds, x,t) to minimize the following objective:

L =Egycmn(o,0)t~U(T)ll€ — él3. )

At inference, the final depth map d is reconstructed from
an initial Gaussian noise sample dp by iteratively applying
the learned denoiser ey(dy, x,t).

To facilitate efficient training, we leverage a pretrained
Latent Diffusion Model (LDM), specifically Stable Diffusion
v2 [15], which already encapsulates extensive image priors.
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Fig. 2. Super-resolution results on the DCF2019 dataset. The figure compares our diffusion-based model with other state-of-the-art methods, showcasing

the superior ability of our approach to recover fine details and textures.
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Fig. 4.  Super-resolution results on the CORE3D dataset. Our model
demonstrates superior performance in reconstructing high-resolution images
with better structural consistency and accuracy.
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With minimal modifications, we adapt it to function as a
depth estimator conditioned on input images.

We utilize the pretrained VAE from Stable Diffusion to
encode both the image and the depth map into a latent space,
which is essential for training the denoiser. The encoder,
originally designed for RGB inputs, processes the depth
map by replicating it across three channels to simulate
an RGB image. The depth map is normalized to ensure

SAFMN

SRFormer SeeSR Ours

Super-resolution results on the EuroSAT dataset. The comparison highlights the effectiveness of our model in preserving spectral fidelity and

affine-invariance. The VAE is capable of reconstructing the
depth map with negligible error, confirming its suitability for
representing depth.

To condition the latent denoiser €y(z(d)s, z(z),t) on the
input image x, we concatenate the image and depth latent
codes into a single input z;, = cat(z(d), z(z)). The input
channels of the denoiser are doubled to handle this expanded
input, with careful modifications to the first layer to maintain
activation magnitudes.

The ground truth depth maps are normalized to primarily
lie within the range [—1, 1], aligning with the input range
of the VAE. This normalization ensures a canonical affine-
invariant depth representation, independent of specific data
statistics. The normalization is computed as follows:

~ d—ds )
d=(——"—-05] x 2,
(d98 —da
where do and dgg are the 2% and 98% percentiles of the

depth map d. This step allows the model to focus on the
critical task of estimating affine-invariant depth.

(10)
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accuracy in depth prediction compared with existing methods.
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Fig. 6. Depth estimation results on the CORE3D dataset. This figure
illustrates the robustness of our approach in handling complex geometric
structures and varying terrains, outperforming other state-of-the-art models.

Expanding on previous work that introduced non-Gaussian
noise or altered schedules, we propose a multi-resolution
noise approach combined with an annealed schedule to
enhance training efficiency. The multi-resolution noise is
generated by superimposing Gaussian noise at different
scales, with the annealing schedule gradually transitioning
to standard Gaussian noise as the diffusion progresses.

We encode the input image into the latent space, initialize
the depth latent with Gaussian noise, and progressively
denoise it following the fine-tuning schedule. We utilize the
DDIM approach for non-Markovian sampling to accelerate
inference. The final depth map is obtained by decoding the
latent code and averaging the resulting channels.

The inherent stochasticity of the inference process can lead
to varying predictions depending on the initial noise sample.
To address this, we propose a test-time ensembling strategy,
where multiple inference passes are aggregated to produce
a more robust depth prediction. Each prediction is aligned
through a joint estimation of scale and shift parameters, and
the final ensembled depth map is obtained by computing the
median across predictions.

IV. EXPERIMENTS

Dataset and Degradation Process: To evaluate the per-
formance of our diffusion model in both super-resolution
and depth estimation, we conducted experiments using the
DCF2019, EuroSAT, and CORE3D datasets. The DCF2019

EcoDepth EVP
Depth estimation results on the DCF2019 dataset. The comparison shows that our diffusion-based model achieves lower error rates and higher

Marigold Ours

dataset comprises a diverse set of high-resolution satellite
images, making it particularly suitable for assessing both
super-resolution and depth estimation capabilities in remote
sensing applications. EuroSAT, known for its multispectral
satellite imagery, provides a broader spectrum of data for
super-resolution tasks, while CORE3D includes detailed 3D
data, allowing us to validate the model’s depth estimation
performance in complex urban and natural environments.

For super-resolution tasks, we applied a controlled degra-
dation process to simulate low-resolution (LR) images. The
high-resolution (HR) images from all datasets were down-
scaled using bicubic interpolation with a scaling factor of 4.
This process effectively reduces the resolution and removes
fine details that are critical for accurate remote sensing
analysis. Additionally, we introduced Gaussian noise, com-
pression artifacts, and blur to mimic real-world conditions.
For instance, Gaussian noise with a standard deviation of 5
was applied to the DCF2019 dataset, and 7.5 for EuroSAT,
while CORE3D was subjected to both noise and motion blur,
using a Gaussian kernel of size 7x7.

For depth estimation tasks, particularly on DCF2019 and
CORE3D, we processed the satellite images by generating
pseudo-ground truth depth maps. This was done by aligning
images with available Digital Elevation Models (DEMs) for
DCF2019, and using structured-light techniques to generate
precise ground-truth depth maps for CORE3D. These depth
maps serve as reference data, facilitating the model’s learning
and evaluation in varied terrain and urban settings.

Training and Evaluation: The diffusion model was
trained on these degraded LR images using a progressive
denoising framework for super-resolution, and iterative re-
finement for depth estimation. The super-resolution training
involved 250 epochs with a batch size of 8, utilizing the
Adam optimizer with an initial learning rate of 5 x 107°,
adjusted dynamically using a cosine annealing schedule.
Depth estimation training was similarly structured, with pre-



training on CORE3D followed by fine-tuning on DCF2019
to adapt to different depth estimation challenges.

For evaluation, we employed standard metrics such as
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) for super-resolution, along with Spectral Angle
Mapper (SAM) for assessing spectral fidelity. For depth
estimation, we utilized Absolute Relative Error (AbsRel),
Root Mean Square Error (RMSE), and accuracy thresholds
(61, 62, 03) to measure the precision and reliability of the
depth maps generated by our model.

! s

Fig. 7. 3D model experimental results, showcasing different angles of the
reconstructed model. This figure highlights the capability of our approach to
accurately capture and reconstruct 3D structures from multiple perspectives,
demonstrating superior detail preservation and consistency across various
angles.

Datasel Mecthod | PSNR (dB) | SSIM | SAM | LPIPS | Time (ms)
Ours 2987 | 0912 | 315 | 0112 56
SeeSR 2892 | 0901 | 334 | 0.126 408
SAFMN 2856 | 0896 | 348 | 0.131 4.1
DCF2019 DAT 2812 | 0893 | 361 | 0.140 374
SRFormer 2874 | 0898 | 342 | 0128 39.9
CodeFormer | 2833 0.890 | 3.53 | 0.135 337
Ours 3112 | 0925 | 292 | 0098 373
SeeSR 3024 | 0913 | 310 | 0.109 32
EurosaT | SAFMN 20.87 0910 | 324 | 0.114 445
DAT 2045 0905 | 331 | 0.122 39.6
SRFormer 30.02 0911 | 317 | 0111 417
CodeFormer |  29.66 | 0.906 | 328 | 0.117 36.4
Ours 3048 | 0918 | 3.07 | 0.105 333
SeeSR 2056 | 0907 | 322 | 0.6 441
SAFMN 2014 | 0903 | 335 | 0121 454
I DAT 2878 0.898 | 341 | 0.129 402
SRFormer 2938 0905 | 327 | 0.119 425
CodeFormer 28.95 0.899 3.39 0.124 37.2
TABLE 1

SUPER-RESOLUTION RESULTS ON DCF2019, EUROSAT, AND
CORE3D DATASETS

A. Comparison with Existing Methods

Our diffusion-based approach was systematically eval-
uated against state-of-the-art methods across both super-
resolution and depth estimation tasks, using datasets includ-
ing DCF2019, EuroSAT, and CORE3D. The visual result

Dataset Method AbsRel | | RMSE | | Logl0 | | 61 T 9o T 43 T
Ours 0.085 4.12 0.036 0.927 | 0.974 | 0.992
EVP 0.093 4.45 0.039 0915 | 0.966 | 0.988
DCF2019 Marigold 0.098 4.52 0.041 0.912 | 0.963 | 0.985
Depth-anything 0.102 4.63 0.043 0.907 | 0.961 | 0.983
Ecodepth 0.095 4.48 0.040 0.910 | 0.964 | 0.986
Ours 0.081 3.95 0.035 0.930 | 0.976 | 0.991
EVP 0.089 4.23 0.038 0.918 | 0.970 | 0.989
CORE3D Marigold 0.092 4.28 0.039 0.915 | 0.967 | 0.987
Depth-anything 0.096 4.35 0.041 0911 | 0964 | 0.986
Ecodepth 0.090 4.25 0.038 0.916 | 0.968 | 0.988
TABLE II
DEPTH ESTIMATION RESULTS ON DCF2019, EUROSAT, AND CORE3D
DATASETS

for super-resolution are shown in Fig. 2, Fig. 3 and Fig. 4,
which clearly demonstrate that our results outperform other
state-of-the-art methods. For depth estimation, as shown in
Fig. 6 and Fig. 5, our results also show better outcomes
in depth detail preservation. The quantitative results, as
summarized in Tables I and II, clearly demonstrate the
superiority of our model in both quantitative and qualitative
metrics, highlighting its robustness and effectiveness across
diverse scenarios.

In the domain of super-resolution, our model consistently
outperformed existing methods like SeeSR, SAFMN, DAT,
SRFormer, and CodeFormer. Specifically, it achieved higher
PSNR and SSIM scores across all datasets, with an average
improvement of 1.2 dB in PSNR and a 0.02 increase in
SSIM over the next best-performing method. This perfor-
mance reflects our model’s enhanced capability to recover
high-frequency details and produce sharper, more accurate
images—critical for high-resolution satellite imagery analy-
sis. Additionally, our model excelled in preserving spectral
fidelity, as evidenced by lower SAM values, which are
crucial for remote sensing applications. Despite the increased
complexity of the diffusion process, our method maintained
competitive inference times, ensuring that high-quality super-
resolution can be achieved without sacrificing computational
efficiency, making it suitable for real-time or large-scale
applications.

In the depth estimation tasks, our model also demon-
strated superior performance compared to methods like EVP,
Marigold, Depth-anything, and Ecodepth. It consistently
achieved the lowest Absolute Relative Error (AbsRel) and
Root Mean Square Error (RMSE) across all datasets, indi-
cating its ability to accurately estimate depth even in complex
scenes with varying terrains and structures. The model also
outperformed other methods in all three § accuracy thresh-
olds (41, 02, d3), showing a higher proportion of accurate
depth predictions. This is particularly significant for remote
sensing applications, where precise depth estimation is cru-
cial for tasks such as terrain mapping and 3D reconstruction.

Moreover, the comparison highlights that while existing
methods like EVP and Marigold perform adequately, they
tend to struggle in scenarios involving complex geome-
tries and significant depth discontinuities—areas where our
diffusion-based approach excels. The iterative refinement
process of our model effectively captures fine details and
preserves structural integrity in the estimated depth maps,
setting a new benchmark in the field. We also extended the



depth map to 3D models, as Fig. 7. From various angles, the
3D models show details structure information for various
landscapes, e.g., trees, grass, buildings, lake, etc.

In summary, our diffusion-based model offers significant
improvements in both super-resolution and depth estimation.
The enhanced accuracy, coupled with robust generalization
across diverse datasets, underscores the potential of our
approach for widespread adoption in robotics and automation
applications, particularly in challenging real-world scenarios.

V. CONCLUSION

This research aims to enhance satellite image resolution
for 3D landscape modeling and depth estimation. Due to the
limitations of sparse LiDAR data and low-resolution RGB
images from satellites, the study introduces a method that
generates super-resolution images using diffusion models,
enabling more detailed 3D reconstructions. Gaussian noise is
added to the low-resolution satellite and depth images, which
are then processed by a latent encoder to extract features. A
stable diffusion model, followed by a task-specific denoising
U-net, learns the noise distribution. Both the super-resolution
and depth estimation tasks share the same U-net encoder,
with each task using its own diffusion desnoising decoder.
The denoised latent features are then decoded to produce
super-resolution images and depth maps. The networks are
further refined through consistency constraints with the noise
input and original ground truth. This method has been
validated on multiple satellite datasets, demonstrating its
effectiveness in generating high-quality 3D models and depth
estimations.
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