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Abstract. We formulate a novel approach to solve a class of stochastic problems, referred
to as data-consistent inverse (DCI) problems, which involve the characterization of a probability
measure on the parameters of a computational model whose subsequent push-forward matches an
observed probability measure on specified quantities of interest (Qol) typically associated with the
outputs from the computational model. Whereas prior DCI solution methodologies focused on either
constructing nonparametric estimates of the densities or the probabilities of events associated with
the preimage of the Qol map, we develop and analyze a constrained quadratic optimization approach
based on estimating push-forward measures using weighted empirical distribution functions. The
method proposed here is more suitable for low-data regimes or high-dimensional problems than the
density-based method, as well as for problems where the probability measure does not admit a
density. Numerical examples are included to demonstrate the performance of the method and to
compare with the density-based approach where applicable.
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1. Introduction. The formulation and solution of an inverse problem impacts
the type of information revealed about parameters of a model from observed data.
For instance, inverse problems can be posed deterministically and solved using opti-
mization methods [28, 21] to determine “parameters of best fit” in a particular sense.
Some stochastic inverse problems seek a quantification of epistemic uncertainty in
likely parameter values utilizing Bayesian methods [27, 16]. In this work, we seek to
quantify aleatoric uncertainties about the parameters of the model from probabilistic
information of the observed data. In other words, we seek a probability measure
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of the model inputs (i.e., the model parameters) given a probability measure that
characterizes uncertainties of the model outputs. We require the solution to this in-
verse problem to be data-consistent, meaning that the push-forward of the probability
measure on the parameter space matches a given target distribution on the observed
data space. This type of inverse problem naturally arises in scenarios where observed
variability in data is primarily due to intrinsic variability in the model inputs.

1.1. Comparison to related inverse problem work. A probability distri-
bution can be characterized by its cumulative distribution function (CDF), measure,
or, if it exists, its density (i.e., its Radon—Nikodym derivative). Previous approaches
to solving the data-consistent inverse (DCI) problem either approximate a pullback
measure directly through event approximation in both the input and output spaces as
in [12] or use a nonparametric kernel density approximation in the output space [11].
These approaches are challenging to implement when the number of simulated data are
limited, e.g., when the computational model is expensive to evaluate. Moreover, there
is an implicit assumption that sufficient information exists on observations to specify
either a measure or density. The method described in this paper circumvents these
issues by directly approximating a CDF via an optimally weighted empirical distribu-
tion function (EDF). The proposed method does not require the existence of densities
for any of the distributions involved, and it does not rely on kernel density estima-
tion methods, which may be unreliable in low-data regimes and are computationally
expensive in high-dimensional spaces. A key feature of DCI solutions is that all com-
putations are performed in the output space, which is generally lower-dimensional
than the parameter space, and the proposed method preserves this advantage.

1.2. Contributions. The contributions of this work are both algorithmic and
theoretical. The method we propose builds upon the approach introduced and an-
alyzed in [2, 26] for approximating push-forward measures by performing a change-
of-measure objective using EDFs via solution to an optimization problem that deter-
mines optimal weights on the simulated output samples. These weights minimize the
L2-norm between the weighted EDF and a given target distribution function and are
guaranteed to exist since they are the result of a strictly convex quadratic optimization
problem. Thus, for the case where simulated data are limited, a solution is achievable
that is guaranteed optimal in an L?-sense. Moreover, the target distribution may be
in the form of either a CDF or an EDF, which guarantees a solution to this approach
even in cases further limited by availability of observational data.

The key to building upon the optimization-based approach for push-forward EDFs
to solve the DCI problem is through the addition of a critical binning step in the
output space. This provides a practical partitioning of the observed space prior to
solution of the optimization problem that permits the proper distribution of weights
in the input space. We both prove and demonstrate numerical convergence of the
optimization-based solution to the DCI solution.

1.3. Organization. Background and previous approaches for DCI are described
in section 2. Section 3 describes the optimization-based approach. Convergence and
other theoretical results are discussed in section 4 (proofs are found in the appendices).
Section 5 contains applications and examples. Conclusions and future directions follow
in section 6. Section 7 provides details on obtaining the code utilized to produce the
results in this work.

2. Data-consistent inversion (DCI). We summarize the concepts of DCI and
direct the interested reader to [11] for more details.
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2.1. Terminology and notation. Let A € A denote the uncertain parameters
in a model for which the goal is to estimate a distribution given a particular distribu-
tion on quantities of interest (Qol) corresponding to model outputs. Let ) denote the
Qol map from the parameter space, A, to the data space, D, i.e., Q(A) =D. We equip
A and D with o-algebras By and Bp as well as measures pp and pup, respectively.
These measures are dominating measures that allow us to express probability mea-
sures defined on these spaces as Radon—Nikodym derivatives. While not necessary,
it is often the case that A C R? and D C R%, B, and Bp are Borel o-algebras, and
ua and pp are Lebesgue measures. In that case, the Radon-Nikodym derivatives are
referred to as probability density functions or more simply as densities.

Due to the variability in the parameters, the Qol follow a distribution. The dis-
tribution of these observations defines the observed distribution and corresponds to a
probability measure, P,ps, on the measurable space (D, Bp). The problem of determin-
ing a distribution of parameters that could have produced the observed distribution
is a stochastic inverse problem that can be solved using DCI. In mathematical terms,
the problem is stated as follows: given an observed measure Ppp,s on (D, Bp), we seek
a measure Py on (A, By) such that for A € Bp,

(2.1) PA(QH(A)) = Pops(A).

Such a measure is Py is called a pullback of Pyps, and P,y is the push-forward of Py .
Note that we are using the common measure-theoretic shorthand notation Q! to
denote the preimage map (i.e., we are not assuming @ is invertible).

We emphasize that the stochastic inverse problem is often ill-posed, i.e., many
pullback measures may exist. Even in cases where the dimension of D equals or even
exceeds the dimension of A, nonlinear () will often result in nonuniqueness of solutions.
Section 2.2 summarizes both a theoretical and a practical approach for constructing
a particular solution under some additional assumptions.

2.2. Density-based solutions. Here, we summarize the theoretical construc-
tion of the “density-based” solution in the more general context of Radon—Nikodym
derivatives of probability measures. We use the term “density-based” because it is
frequently the case that the derivatives are densities as stated above.

If P,,s admits a Radon—Nikodym derivative with respect to pp, it is denoted
Tobs- We then reframe the stochastic inverse problem in terms of Radon—Nikodym
derivatives where (2.1) is rewritten as

(22) PA(Q_l(A)) = /Ql(A) A d,U/A :/Aﬂ—obs d,U/D = Pobs(A)~

In other words, the goal is to determine a pullback of P,s in terms of a Radon-
Nikodym derivative with respect to p, which we denote here by my.

Clearly, (2.1) dictates some restrictions on the structure of a solution, m,, in
terms of its aggregate behavior on sets defined by Q !, but this Qol map provides no
information as to how m, should behave within a set Q~(q) for a given q € D.

The key theoretical tool for constructing a solution to the stochastic inverse prob-
lem is the disintegration theorem [13]. Below, we summarize a version for probability
measures that describes the unique decomposition of any probability measure defined
on (A,By) in terms of its associated push-forward and a family of conditional proba-
bility measures.
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THEOREM 2.1 (disintegration theorem). Assume Q : A — D is By-measurable,
Py is a probability measure on (A, By), and Pp is the push-forward measure of Py on
(D,Bp). There exists a Pp-almost everywhere uniquely defined family of conditional
probability measures {Pg}qep on (A,Ba) such that for any A € By,

Py(A)=Pa(ANQ™H(q)),

s0 Pg(A\ Q7 1(q)) =0, and there exists the following disintegration of Ph:

PA) = [ P dyirola)= [ ( /. o )quw) 0Pp(q)
for A€ By.

From Theorem 2.1, it is self-evident that P, is a solution to the stochastic inverse
problem if its push-forward Pp is equal to Pops. While this gives some mechanism
for checking whether a proposed probability measure is a solution to the stochastic
inverse problem, it fails to address how to construct P since the family of condi-
tional probability measures remains undefined. To address this, we utilize an initial
probability measure P, on (A,Ba). The disintegration of this measure is used to
construct the unknown family of conditional probability measures. The push-forward
of Pyt defines a measure we refer to as the predicted probability measure, Ppred.

In [11], it is shown that if the initial, observed, and predicted distributions admit
Radon—Nikodym derivatives, and if the observed measure P, is absolutely continuous
with respect to the predicted measure Ppyeq, then Theorem 2.1 implies a solution to
the stochastic inverse problem is given by

— _ Tnie(A) i

for all A € By, where {{ia q}qep comes from the disintegration of the measure pia,
Tpred 18 the Radon—Nikodym derivative of Ppred, and the term miyit(A)/mprea (Q(A))
defines the conditional density associated with Q~1(q) for each g € D. For further
details of this derivation, and proof that such a solution is data-consistent, we refer
the reader to [11].

The term 7ops(g) in (2.3) can be brought into the inner integral by rewriting it
as Tobs(@(A)). It follows that the data-consistent solution is given by integrating the
following Radon—Nikodym derivative over A:

Tobs(Q(A))
Tpred (Q(A))

where, by a standard result involving changes of measures and Radon—Nikodym
derivatives,! the ratio 7(A) = % defines the Radon-Nikodym derivative of
P,y with respect to Ppreq and serves to reweight the initial likelihoods of parameters.
It is worth noting that for each datum q € D, r(X) is constant for all X € Q~(q).
In other words, this reweighting updates the initially assumed likelihoods Q~1(q) for
each g € D without updating the initially assumed conditional likelihoods of points
within such sets. It is this observation that leads to the reference of the solution given

in (2.3) and (2.4) as an update to the initial distribution.

(2'4) 7"'upda‘ce()\) 1= Tinit ()\) = ﬂinit()\)T(A)

LCf. Proposition 3.9(a) in [19].
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2.3. Numerical approximation of densities. Even when spaces are nomi-
nally infinite-dimensional, practical considerations and discretizations often result in
A CRP and D C R? for some finite p and d so that the Radon Nikodym derivatives
(with the exception of r(A)) are densities as previously mentioned. We are often con-
fronted with the situation where these densities must be approximated from a finite
set of (typically i.i.d.) samples from the observed distribution along with a finite
set of (typically i.i.d.) samples from the initial distribution and their associated pre-
dicted values. Below, we describe a typical approach based on direct estimation of
the observed and predicted densities.

Suppose we have m data points {q",...,q™}, equal to {Q(A),...,Q(A™)}, where
{)\1, .. .,)\m} are unobserved. Here, we take a moment to clearly define the use of
subscript and superscript indices throughout this work. Since any collection of samples
may denote a collection of vectors, we denote each sample within the collection using
superscripts. Any index subscript denotes a component of a vector; i.e., the ith sample
of a d-dimensional Qol is denoted as ¢' =[g!,...,q%] .

Any parametric or nonparametric density estimation method can be applied to
estimate mops from these m samples. Some popular nonparametric density estimation
techniques utilized in the literature are kernel density estimation (KDE) [17, 14],
normalizing flows (NFs) [25], and Dirichlet process-based mixture models [18, 23].

We emphasize that even if the initial density is given exactly, the predicted density
is not typically known except for the simplest of Qol maps and initial distributions.
In practice, the predicted density, mpyed, is approximated by propagating n i.i.d. sam-
ples from the initial distribution, {)\1, ey )\”}, through the map @, to create a set of
i.i.d. samples from the (unknown) predicted distribution {Q(A') = ¢',...,Q(A\") =
g"} for which any density estimation technique can be applied. As previously men-
tioned, the theoretical existence of Tupdate assumes Py is absolutely continuous with
respect to Ppreq. However, in practice, we often make a stronger assumption that al-
lows us to utilize this set of i.i.d. samples from the initial distribution to either create
an estimate of mupdate Or apply rejection sampling to this set to generate an i.i.d. set
of samples from the updated distribution. We refer the interested reader to [11] for
more details and simply restate the stronger form below.

Assumption 2.2 (strong form of the predictability assumption). There exists a
constant C' > 0 such that for almost every g € D, mobs(q) < CTrprea(q)-

To verify this assumption is satisfied in practice, we utilize a quantitative diag-
nostic that we summarize below. If the predictability assumption is satisfied, then
Tupdate given in (2.4) defines a density, which implies

(25) 1= [\ '/Tupdatc()\) d/l,A = /A Winit(A)T(A) d,uA = ]Einit(r()\)).

Thus, in practice, we verify the predictability assumption holds by computing the
sample average of 7(A) on a random sample drawn from the initial distribution, and
comparing this to a value of unity.

2.4. An illustrative example. Consider a manufacturing process for creating
metal alloy rods to be used in a high-temperature environment such as welding. In-
consistencies in the manufacturing process, such as the mechanical processes for the
cutting, measuring, and smoothing of the ends of the rods, coupled with inconsis-
tencies in the alloy, result in variations in rod lengths, ¢, and thermal diffusivities,
k. For this example, assume that £ € [1.9,2.1] and & € [0.5,1.5] are both dimension-
less. Further assume that the objective is to determine the distribution of ¢ and &
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prior to the utilization of the rods in an engineered system whose functional safety
is dependent on these parameters. Using the notation above, we let A = (¢,x) and
A=[1.9,2.1] x [0.5,1.5] C R2.

We now define a model of an experimental procedure that leads to a Qol map
between the measure spaces (A, By, ua) and (D, Bp, up). Assuming that the rods are
long and thin, the temperature of the rod at spatial location 0 < z < ¢ and time ¢ > 0
is modeled by the 1-dimensional heat equation

0 02
§u($,t) = n@u(a@t), O<z<d,

u(0,t) =u(l,t) =0, t>0,
u(z,0) =z, O<z <,

where v is (dimensionless) temperature. For the sake of illustration and simplicity,
we consider homogeneous Dirichlet boundary conditions, where “0” is the ambient
temperature, throughout the experiment. The initial temperature profile u(z,0) = x
is chosen to provide an interesting response over both space-time and the parameter
space. The analytic solution for the temperature is given by

202 TN (—1)kH kr | . (krx
(2.6) u(z, t; X)) = — Z exp [—ﬁe—Zt} sin (7) .

k=1

Assume for each experiment that we have a single sensor that can accurately and
precisely measure the temperature at a specific point * = 1.2 along the rod and
point t* = 0.01 in time. In this case, Q(A) = u(z*,t*;A) defines the Qol map from
A to D C R. For practical computations, we truncate this sum after the 100th term.
Note that for this example the Qol is defined by a single temperature measurement
in space-time so that D C R, whereas the parameter space A C R?. Subsequently,
there are infinitely many possible combinations of ¢ and k in the contour defined by
Q~1(q) for a given datum q € D, and the conditional probability for these (¢, x) pairs
is not specified by (2.1). See Figure 1 for an illustration. For the sake of simplicity,
to generate the observed samples, we assume 7ops is normal and take m samples
from it. This simulates a typical scenario where we do not know the exact observed

1.25

0.6137

1.15 0.6075

- 0.6013

< 0.5952
0.95

0.5890

0.85 0.5828

0.75 0.5766

1.95 1.97 199 2.01 2.03 2.05

Fic. 1. Contours for the map @Q in the illustrative example. Note the distinct “contour sets”
whose probabilities are uniquely defined by Pay,s. However, the probabilities within these contour sets
cannot be determined by Pyps.
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1204
100 1 Observed histogram
—— Observed KDE
2 80 i i
= Predicted histogram
S 60/ Predicted KDE
] Pred. violation observed histogram
40+ — -+ Pred. violation observed KDE
201
0L+ il - L -
0.577 0.589 0.601 0.613 0.625 0.637

D

F1G. 2. Predicted and observed histograms for the illustrative example and their estimated
KDEs. We also show an alternate possible observed distribution, labeled “Pred. violation observed”
because for this example, Assumption 2.2 is violated: this observed distribution is not absolutely
continuous with respect to the predicted.

155 ] 0.0018 1.25 ]
. 0.0015 115
0.0012
1.05 A 1.05
x 0.0009 X
0.95 - 0.95 4
0.0006
0.85 - 0.85 -
0.0003 .
0.75 0.75 A .
0.0000

1.95 1.97 1.99 2.01 2.03 2.05 1.95 1.97 1.99 201 2.03 205
] ]

Fic. 3. Result of density-based method for data-consistent inversion. On the left we show
density-based weights plotted on the initial samples. The result of rejection sampling is shown on
the right.

distribution but instead have access to samples drawn from this distribution. Here,
we utilize a Gaussian KDE to estimate 7, from the data.

We assume a uniform initial distribution A and propagate n = 2FE3 i.i.d. samples
from this distribution to produce samples from the predicted distribution. Since
D is dimensionless, we can either visually confirm Assumption 2.2 by comparing the
observed and predicted density approximations in Figure 2 or compute the diagnostic,
which to five significant digits is Einit(r(A)) ~ 1.0064. We pause here to demonstrate
the usefulness of this diagnostic. For the predictability-violating observed distribution
shown in Figure 2, the diagnostic is Eipit (1(A)) = 0.5118. For more complex examples
when the distributions are not easily visualized, the diagnostic provides a reliable way
to verify whether Assumption 2.2 is satisfied.

With Assumption 2.2 verified, we move onto interrogating mupdate via the weights
r(A) available on the set of initial samples. In the left plot of Figure 3, we visualize
r(A) as a function on the set of initial samples, while in the right plot we show an
i.i.d. set of samples for mypdate generated via rejection sampling based on these 7(A)
values.

3. Empirical distributions and optimal estimation. The density-based
method for solving the DCI problem from section 2 requires the initial, predicted,
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and observed distributions to all admit densities. Moreover, when any of these den-
sities are estimated, a sufficient number of samples must exist to approximate them,
e.g., using KDEs. In practice, the number of observed or simulated samples may
be limited due to either high experimental or computational cost in obtaining each
sample. Moreover, utilizing density estimation methods may fail if even a single one
of the densities (initial, predicted, or observed) fails to exist. We therefore propose an
alternative method based on empirical distribution functions (EDFs), which always
exist as approximations to cumulative distribution functions (CDFs) that are in 1-to-1
correspondence with probability measures.

An attractive feature of the density method is that all of the critical computations
take place in the data space, which is generally lower-dimensional than the parame-
ter space. Specifically, the densities of the predicted and observed distributions are
estimated, and a ratio of densities is computed, all in the data space. While the
ratios are then applied to samples in the parameter space, the computations are re-
stricted to the data space. We pursue a distribution-based approach with a similar
feature. The specific method we propose, in section 3.3, is motivated from the em-
pirical importance weights for a change of probability measure method described in
[2]. In [2], i.i.d. samples from an unknown proposal distribution are reweighted using
an optimization-based method to perform a change-of-measure from the proposal to
a target distribution that itself may only be given in terms of a set of i.i.d. samples.
We summarize this method, using our notation and terminology, in section 3.1.

3.1. Computation of optimal weights on the data space. For all but the
simplest of Qol maps and initial distributions, the predicted distribution is unknown
and must be estimated. We assume access to a set of n i.i.d. samples {g‘}?"; to
estimate the predicted empirical CDF as

pred (@) = o Zﬂ(qi =q),

where

1 ifq' =g,

0 else,

which converges almost everywhere to Fpreq as n— 00, e.g.; see Theorem 20.6 in [8].
Note that because the samples are vectors in R? space, we use the symbols < and
> to denote elementwise less than and elementwise greater than, respectively. For
example if x <y, then ; <y, 2 <yY,,..., s <Yy

An EDF over n samples can be transformed by a vector w into a weighted EDF
as

n 1 . i
(31) pred;w(q) - E Zwlﬂ(q = q)a
i=1
where w; > 0 for 1 < ¢ < n and %2?21 w; = 1 so that I;‘red;w defines a valid

probability distribution.
In [2], it is proposed that the weights should minimize the quadratic function

1
5/ ( I?red;'w(q)_Fobs(q))Qd/,LD,
D
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Routine 3.1. QP({q’,...,q"} CR? Fiapg).
1: Set H e R*¢ and b e R! as

1 0 15
H;j:= 72 H /” dqy, b= 7 H /’i Fiarg(q) dqy,
k=1" %k k=1" 4k
where z,zj =max{q}, qi}
2: Solve for w:
minimize w Hw—b"w
subject to w >0,
(3.2) 1
;2 wi=1
i=1
3: Return w. > Output

which is the square of the L?-norm of the difference between the weighted predicted
EDF and the true observed CDF. Moreover, [2] proves that this choice of w defines a
distribution with a CDF that converges in both L' and L? to the observed CDF F,.

We note here that, as in [2], we can, without loss of generality, assume that the
support of the predicted sample distribution is contained within the d-dimensional
hypercube. If this is not the case, we simply scale a bounding box for the samples
from the predicted distribution using either the known (assumed compact) support of
distribution, or the minimum and maximum componentwise values within the sample
set and the integrand by the same factor. The scaled problem is equivalent to the
unscaled version, and the optimal w is the same. To find the minimizing weights w,
we solve a standard-form quadratic program (QP) with linear constraints. This is
summarized in Routine 3.1 (see [2] for derivation details). In Routine 3.1, we use £
instead of n for the number of samples because we consider two different algorithms
in the following subsections that involve different numbers of samples. We also use
Fiarg instead of the CDF Fp¢ since an EDF that approximates this CDF may also
be used as discussed below.

The matrix H constructed in Routine 3.1 is symmetric positive-definite so the
QP has a unique solution [9]. We emphasize that the matrix H is dense and of order
£, meaning that the computational complexity of the QP increases as the number of
samples does. However, the complexity of the QP is independent of the dimension
of the problem. In step 2, any algorithm or package for solving QPs with linear
constraints should suffice. In this work we solve the QP using the convex optimization
Python package cvzopt [3]. Running QP({ql,...,q”} , Fobs) returns the vector of
weights w € R" such that F[ ., defined in (3.1) is the L?-optimal estimate of Fipg.
If the exact target CDF Fi.., is not known, as in the case when we have samples
from the observed distribution instead of an exact form, we can apply the method
using the EDF F{7, . for a set of m i.i.d. samples from the observed distribution. In
that case, letting {yl, .. .,ym} denote the m samples of the target distribution, the
b; computation in step 1 reduces to

m

1 ! 1 ! ,
biZZH/, Ft?rg(Q)ko:zH/, Ezﬂ(yjjq)qu-
q

i

8 k=179 " j=1
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FIG. 4. Data space comparisons of the optimal L? reweighting scheme with the density-based
approach for the illustrative example when n=2E3, m =1FE4. On the left we plot the EDF's; on the
right we plot the estimated densities.

It is shown in [2] that the resulting weighted EDF converges in the L'- and L?-norms to
Fiarg as £,m — oco. Applying Routine 3.1 to the illustrative example with £ =n =2E2
samples (chosen to demonstrate the step-function nature of the solution), where the
target distribution is an EDF of a normal distribution (using m = 1F4), results in
the distribution approximation shown in Figure 4. For the sake of comparison, we
also show the results in the data space for the density-based method with n = 2FE2,
i.e., we plot the densities for predicted, observed, and push-forward of the updated
distribution. In both plots, we observe that the estimated predicted distribution is
a poor estimate of the observed distribution whether it is represented as an EDF
(left plot) or density (right plot). The different reweighting schemes both produce a
change of measure resulting in an improved estimate of the observed distribution. In
the subsections below, we explore how to utilize the QP-based reweighting scheme to
construct a weighted EDF approximation of the updated distribution.

3.2. Naive approach for utilizing an EDF. The first method we consider
for solving the DCI problem is deemed the “naive” approach. For this approach, we
use Routine 3.1 to compute a set of weights on the predicted samples (samples from
the initial distribution that have been pushed forward through the map @), and we
apply these weights directly on the corresponding initial samples. This is summarized
in Algorithm 3.2, which outputs I}, .,,, defined in (3.4), as the solution. This defines
the following probability measure:

(3.3) init;w(B):ﬁ2wiH(>‘ €B), BeDB,.

By comparing r(A) (shown in the left plot of Figure 3) to the weights, w, com-
puted from the naive method (shown in the left plot of Figure 5), we observe that
while the geometric structures of these weights are similar, the values are not the
same as shown on the right side of Figure 5. Not only does this naive method place
significantly more weight on certain samples, but the variation in the weights is also
significantly greater than the variation in the density-based weights. This is due to the
simple fact that the QP is solved in the data space without any controls for variability
in the parameter space. Thus, while the solution is always optimal in the data space,
it does not necessarily preserve any structure in the parameter space. More precisely,
this naive approach does not require the solution to conform to the well-defined con-
ditional structure dictated by the generalized contours of the map in the parameter
space. This observation motivates the binning approach in the next section.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/12/25 to 132.194.13.45 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A3134 K. O. BERGSTROM, T. D. BUTLER, AND T. M. WILDEY

Algorithm 3.2. Naive approach.
1: Set n €N, Fypg, and {X\’ . > Input

2: for 1<i<ndo
3:  Evaluate ¢' = Q(X\").
4: end for
5: Use Routine 3.1 to compute w = QP({q'}}_;, Fobs)-
6: Apply w to initial samples {A"}_,,
1 n
n _ 1
(34) init;w ()‘) - ﬁ Z uJZ]I(A = A)
i=1
7: Return Fij .- > Output
0.0029
1.25 2 1 0.0068 ]
o = .
115 00024 20,0057 ..
=
0.0020 ]
. < 0.0045
x 00015 g 0.00341
0.951{ % =
0.0010 000231
0.85 1 g 0.0011 4
0.0005 2
0.75 | Z 0.0000
e 757 188 Dol 563 i 0.0000 0.0000 0.0005 0.0009 0.0014 0.0018
1.95 1.97 1.99 2.01 2.03 2.05 - : - - :
! Radon-Nikodym weights

Fic. 5. Weights resulting from naive distribution-based method applied to initial samples on the
left. Direct comparison to density-based weights on the right with the line indicating where perfect
agreement occurs.

3.3. Binning approach. We now describe a two-step method to enforce the
desired structure along the so-called contours defined by the preimage map Q' for
which the conditionals defined by the disintegration of the initial probability mea-
sure are desired. The key is to construct the “binning distribution” (defined below)
associated with a particular partitioning of D. Denote by {C},_, a partitioning of
the data space. For each cell Cy, a representative point, denoted by c*, is identified.
These representative points could be the geometric center of the cell, the average of
the predicted samples that fall into the cells, or any other suitable point in Cy. Al-
ternatively, we may first generate the points and then consider the partition defined
(implicitly) as Voronoi cells. Each cell must be a continuity set (i.e., a measurable set
A with P(0A) =0 where 0A denotes the topological boundary of A) of Ppeq, which
in turn implies that it is a continuity set of P,ps, by Assumption 2.2.

It is important to emphasize that the explicit construction of these cells is never
actually required in either theory or practice, but we do reference the assumed con-
tinuity set property of these cells in the theoretical analysis of section 4.2. Further
discussion on how to form an appropriate partition is found in section 3.4. For now,
it suffices to understand this property as implying that the boundaries of such sets
are both measurable and have zero-measure. We solve a QP using the representative
points as input samples in Algorithm 3.2, which effectively gives us an L?-optimized
weight for each (implicitly defined) cell. We define the resulting weighted EDF below.
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DEFINITION 3.1 (binning distribution). The binning distribution associated with
{ckYhzy is defined as F ., = 5 30 will(c* < q).

Note here that because our sample set is now composed of p samples, w is now a
p-dimensional vector that is chosen separately from the n parameter samples for which
the Qol map is evaluated. The subscript up in F}_ ,, is utilized to emphasize that the
partitioning utilized to construct the bins may be done a priori to any specification
of a probability measure or generation of a random sample set on D. In other words,
the measure of each bin may best be described, a priori, by utilizing pp.

To define a weighted EDF on A, we utilize a classifier, denoted QP, to bin the n
samples {X',..., A"} into the p (implicitly defined) sets {Q1(C?),...,Q~(CP)}. Tt is
at times conceptually convenient to also view the classifier QP as defining a (discrete)
map between the parameter and data space so that QP(X\) = c* for a particular value
of 1 < k < p. The meaning of the notation Q)P as either a classifier or a discrete
map will always be clear from the context. This results in a vector of n weights

Algorithm 3.3. Binning approach.
1: Set p,mbateh € N, Finig, and Fops. > Input

2: Partition D= J;_, C.
3: Identify representative point c* € Cj for each k.
4: Use Routine 3.1 to compute w = QP({c*}_,, Fops)-
5: Use w t0 set {ng,min fr_; With nj min >0 for all k.
6: Set n <0, ng total < 0 for 1 <k < p, initialize empty array of parameter
samples S, and define classifier QP such that QP(\) = c* for some 1 <k <p
for all A€ A.
7: while ny, total < Mg min for any k& do
8:  Generate npuien initial samples {/\i}?zmh
9:  Append {)\i}?:bim' to S, and set m < n + Npatch-
10:  for 1 <i<npaten do
11: Apply QP to classify to which {Q™!(Cy) 2:1 sample A’ belongs.
12:  end for
13: for 1<k<pdo
14: Tk, batch < number of {)\i}j:bimh in Q71 (Cy).
15: N total <= Mk total + Tk, batch-
16:  end for
17: end while
18: Create array of n scalar weights (ug,...,u,) as

Wi .
— if Tk, min > 0,

U; = ng
0 else,
and set u = [u1,...,u,] .
19: Construct weighted EDF, F:¥. . on sample set S as
(3.5) FiffuX) =Y uwil(A <),
i=1
20: Return Fi .. > Output
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Ly,

w = [uy,...,u,]", where u; corresponds to sample X" and is defined as u; = "

when A" € Q71(Cx) and ny is equal to the total number of parameter samples in
Q~1(Cx). We emphasize that we bin the samples in the output space, which is typically
lower-dimensional than the parameter space. In addition, the computational cost
of the naive algorithm depends primarily on p, and the cost for adding samples is
negligible. The method is described in detail below.

Observe that the push-forward of F:¥ =~ through the discrete map QP is, by

init;uw
. » .
construction, equal to FF .., since we have

(36)  FP_ Zwkﬂ F<q)= Z Y wlld=q)=Fy7(9)

Pz {i:Q(A")eCr}

Thus, when applying this approach, we denote by by, the push-forward of Fi¥.,
via the map QP. As p and n increase, F'" red » and Fm;f .. converge to the observed
and update distribution, respectively, as shown in section 4.

We illustrate the weights obtained from the binning method, where the partition
is generated using a regular grid with 35 bins, in the left plot of Figure 6. Comparing
the right plots of Figures 5 and 6, it is clear the resulting weights from the binning
method are closer to the density-based weights than the weights generated by the
naive method. Note that the binning method assigns samples in the same bin the
same weights, which explains the stepwise nature of the right plot in Figure 6.

3.4. Construction of bins. The binning method we have developed is similar
to the two-step nonparametric importance sampling methods in [29] and [24]. There,
a proposal distribution is approximated using a nonparametric density method, and
then classical importance sampling is performed. Here, we are using a histogram-like
nonparametric density estimation to approximate the predicted density on the data
space before performing an optimization-based change of measure.

If we construct the cells using a regular grid partitioning scheme and represen-
tative points are chosen as the geometric centers of the cells, the first step is exactly
a histogram density approximation. When the support of the predicted density is
irregular or the data space is very high dimensional, it may be more effective to use a
data-driven partitioning scheme. For example, we can cluster the predicted samples
using K-means clustering [4], and use variance-minimizing representative points. For

0.0019 " 0.0019 =
4
0.0016 5 0.0016 | g
(]
2 |
0.0013 > 0.0013
0.0010 € 0.0010
£
=) 1
00003 0.0003
o i
; ; : ; . ’ 0.0000 SO ¥ ; ; ; ‘
1.95 1.97 1.99 2.01 2.03 2.05 0.0000 0.0005 0.0009 0.0014 0.0018
2 Radon-Nikodym weights

F1G. 6. Weights resulting from the two-step partitioning method applied to initial samples on
the left. Direct comparison to density-based weights on the right with the line indicating where
perfect agreement occurs.
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the convergence results of this paper to hold, we require a single additional assumption
on the clustering method.

Assumption 3.2. The binning distribution F,.P,, converges as n,p — oo to a

Jw

distribution that is absolutely continuous with respect to the observed distribution.

For the illustrative example, Figure 7 shows the binning of the samples in the
parameter space that result from using both a regular grid partition and a K-means
clustering method to create the cells on the data space. The bins resulting from the
K-means binning method still follow the contours of the mapping, as do the bins
from the regular grid binning method, but they are more size-variable along the data-
informed direction.

We plot the resulting weights obtained from the K-means clustering on the initial
samples and compare to the density-based weights in the plots of Figure 8.

Visualizing the push-forward of the solution resulting from each method, as in
Figure 9, we see that the binning method is not necessarily the L?-optimal step func-
tion on the predicted samples. For this figure, in order to more clearly see differences
in the results for each of the methods, we reran the heat equation experiment with
m = 10E4 and n = 2FE2, and p, the number of bins, equal to 10. It may, in fact,
result in a greater L2-distance between the resulting weighted EDF in the data space

1.251
1.151
1.05 1
0.95]

0.85 1

0.75 1
1.95 197 189 201 203 2.
L

Fic. 7. Binning of initial samples resulting from regular grid and K-means clustering parti-
tioning methods using 40 bins. Although the bins are computed on the output space, here we are
showing the samples binned in the input space to illustrate how samples in the same bin fall in the
same contour event.
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Fic. 8. Weights resulting from the two-step partitioning method, where the partition is gen-
erated using a K-means classifier, applied to initial samples on the left. Direct comparison to
density-based weights on the right.
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Fic. 9. Push-forward distributions resulting from the various distribution-based methods. In
both partition cases, we used 10 bins. In all cases, m =10E4, n=2FE2.
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Fic. 10. On the left: Histograms of observed and predicted samples and KDE estimations of
the observed and predicted densities. On the right: DCI results for the binning and density-based
methods. The CDF of the push-forward of the update computed from the density method (“PF update
CDF” in the plot) is clearly less accurate than the push-forward of the binning-based solution.

and the observed distribution than that produced by the naive method. However, the
result is still optimal for the weighted EDF over the partition centers, and as long
as the partition is sufficient, it results in a relatively small loss in accuracy for the
push-forward and remains data-consistent. The solution itself is stable and accurate
compared to the naive method.

Next, we consider the case where at least one of the distributions involved does
not admit a density. In this case, the density-based solution does not technically exist
and application of the density method will result in clear inaccuracies. For the heat
equation example, we consider an observed distribution defined as a mixture of uni-
form distributions, Pyps ~ 0.5U((0.585,0.59]) 4+ 0.124((0.59,0.595]) + 0.444((0.595,0.6]),
resulting in a piecewise-linear distribution function. We use m = 10E4 observed sam-
ples and n = 2F4 input/predicted samples. The distributions involved and the result
of the DCI density-based methods and binning-based methods are shown in Figure 10.
The right plot illustrates the errors the density-based method produces around the
endpoints of the subintervals associated with each uniform distribution (where a “den-
sity” exhibits discontinuities), whereas the binning-based method produces a solution
that is indistinguishable to the observed distribution.
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4. Theoretical results. The goal of this section is to summarize existing results
and develop the necessary theory required to prove that the weighted EDF obtained
via Algorithm 3.2 converges to the data-consistent solution. Section 4.1 provides the
theoretical results for multivariate distribution functions. Specifically, we provide a
theoretical connection between the LP-convergence of multivariate distribution func-
tions and the more commonly studied weak convergence. For the univariate case,
L'-convergence of univariate distribution functions is equivalent to convergence in
the Kantorovich/Wasserstein distance metric and implies weak convergence [20]. The
weak convergence of multivariate distribution functions subsequently implies conver-
gence on the so-called P-continuity sets, where P is the probability measure associated
with the limit of the distribution functions. Recalling that the binning sets utilized
in Algorithm 3.2 are P,cq-continuity sets, we then prove that the weighted EDFs
converge to the data-consistent solution in section 4.2.

4.1. Convergence of multivariate distribution functions. We start with a
formal definition of weak convergence for probability measures defined on a measurable
space constructed from a metric space S along with its Borel o-algebra .

DEFINITION 4.1. A sequence of probability measures { P, }, o on (S,%) converges
weakly to probability measure P if, for any P-continuity set A, lim, ., P,(A) —
P(A).

The following lemma relates this definition of weak convergence to the pointwise
convergence of the corresponding multivariate distribution functions when S =R?.

LEMMA 4.2. Let F be a distribution function on R% corresponding to a probability
measure P, and {F,}, .y a sequence of distribution functions corresponding to prob-
ability measures {P,}. If F,(x) — F(x) at all continuity points x € R% of F, then
P, — P weakly.

Proof. The proof of this is provided within Example 2.3 of [7]. d

The necessity of convergence at every continuity point of F' in the above lemma
hints at a technical hurdle we must overcome. Specifically, convergence of distribution
functions in LP is not pointwise convergence. However, convergence in LP implies the
existence of a subsequence F,, — F' almost everywhere (a.e.). It is not immediately
obvious that all the continuity points of F' should belong to the a.e. set nor is it
immediately clear how to relate a subsequential limit to a limit of the original sequence
of distribution functions. We address these issues below.

The next lemma states that a multivariate CDF that converges a.e. must also
converge at all continuity points of the limit distribution.

LEMMA 4.3. Let F be a multivariate distribution function on RY, and {Fy,}nen
a sequence of approximate distribution functions. Suppose that F,, — F a.e.; then
F, — F at all continuity points of F'.

Proof. See Appendix A. ]

We now state the main result of this subsection that connects LP-convergence of
multivariate distribution functions to weak convergence of probability measures.

THEOREM 4.4. Let F be a multivariate distribution function on R® corresponding
to a probability measure P, and {Fp}nen a sequence of distribution functions cor-
responding to probability measures {Py}nen. If F, = F in LP, where p > 1, then
P, — P weakly.
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Proof. See Appendix B. 0

Theorem 4.4 immediately extends a result given in [2] involving the convergence of
the L2-based optimization method for reweighting the empirical distribution function
in the data space that we exploit within Algorithm 3.3. Specifically, between Theorem
1 and Corollary 1 in [2], the authors demonstrate that the optimal L2-convergence
of distribution functions implies L!-convergence. It is then commented that in the
univariate case (i.e., for distribution functions defined on R) this is equivalent to
convergence in the Kantorovich/Wasserstein distance from which weak convergence
follows under the additional assumption of bounded support of the proposal mea-
sure. By referring to Theorem 4.4 instead of the Kantorovich/Wasserstein distance,
it immediately follows that the optimization approach developed in [2], and utilized
in the QP portion of Algorithm 3.3, produces a sequence of distribution functions and
corresponding probability measures that weakly converge in R? for any d > 1. We
summarize this observation as a corollary.

COROLLARY 4.5. Let F be a distribution function on R?® corresponding to a prob-
ability measure P, and {F].} a sequence of distribution functions resulting from ap-
plying Algorithm 3.2 to a set of n samples {x',...,x"} from a distribution that is
absolutely continuous with respect to P. Then, the probability distributions corre-
sponding to the distribution functions {Fj}, o converge weakly to F' as n— oo.

4.2. Convergence of EDF approximations of solutions to the inverse
problem. Returning to the inverse problem, the goal is to use Theorem 4.4 to show
that under certain conditions the binning-based solution obtained from Algorithm 3.3
produces EDFs such that the associated probabilities of certain events on A converge
to the probabilities given by the data-consistent solution Ppdate-

Recall from (3.6) that the push-forward of Fiﬁif;u through the map QP is, by
construction, equal to F_ ., = % b_,w;l(c* < q). Denoting by F;;fd;u the push-
forward of Fji¥.,, via the map QP proves the following lemma.

LEMMA 4.6. Let {Cr}i_, be a Pops-continuity partition of D, with associated
weights w € RP generated by Algorithm 3.3, and let {)\j}ll be the corresponding
sequence of random samples in A with computed weights uw € R™ from Algorithm 3.3.
Together, these weights and samples define a predicted distribution P;’fd;u such that
for every Poys-continuity set D,

lim lim PP (D)= Pys(D).

p—roon—oo Prediu
In other words, Pyl — Pobs weakly as p,n — 0.

We now formally state the main result of this paper.

THEOREM 4.7. Assume the predictability assumption holds, and let Fupgate and
Pypdate denote the distribution and probability measure, respectively, defined by the
density-based approach. Under the conditions of Lemma 4.6, the sequence of distribu-
tion functions {Fioi., }oop=1 and associated probability measures { Py, }oo,—1 have
the following properties.
(i) Defining the push-forward F;,  as in Lemma 4.6, Fy:b\  — Fops weakly as
n,p — 0.

(ii) Let A € By with Q(A) € Bp a continuity set of Popns and Pons(Q(A)) > 0.
sy 1

If {N }J.Zl is an i.i.d. set drawn from Py, then P, (A) = Pupdate(A) as
n,p — o0.
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Proof. See Appendix C. 0

Part (i) of the above theorem states that the sequence of pullback distributions
constructed via Algorithm 3.3 push forward to distributions that converge weakly to
the observed distribution. Part (ii) of the above theorem describes the convergence on
the parameter space of these pullback distributions. The condition that Pops(Q(A)) >
0 is used to avoid conditioning on sets of zero measure.

5. Numerical results.

5.1. Convergence. To demonstrate convergence in both the data space D and
the parameter space A, we return to the example introduced in section 2.4. We begin
with a reference set in A, push this set through the map @, and then consider the
corresponding contour set. To this end, we take A = [2.01,2.02] x [0.95,1.0] C A to
define B =Q(A) ~[0.59,0.5936] C D, and Q~1(B) C A (see Figure 11).

Baseline estimates of probabilities for these sets are generated with the density-
based DCI method and repeated trials utilizing distinct initial samples for each trial
(the observed samples are not regenerated) to compute the average probabilities for
a more accurate approximation. We set m = 1E5, n = 1E5, and utilize 10 trials to
obtain Pyps(B) ~0.26697 and Pypdate(A) ~ 0.01986.

We now utilize the set B to illustrate the weak convergence for probabilities in
D as n,p — oo (see Theorem 4.7(i)). Sets of n (ranging from 1E3 to 1E4) initial
samples are drawn. Following Algorithm 3.3, each set of initial samples is drawn
by appending samples to the previous set. Once the initial samples are drawn, we
create p bins (ranging from 20 to 160) using regular linear spacing on D. We then
compute the optimization-based weights and estimate the probability of B as the sum
of weights on samples binned in B. Figures 12 and 13 summarize the mean error and
standard deviation of these results taken over 20 trials. Trends are observed as we
move from the upper left corner (corresponding to small n and p values) to the lower
right corner (corresponding to larger n and p values) in both figures. Specifically,
Figure 12 illustrates a trend toward more accurate approximations, while Figure 13
illustrates a trend towards reduced variance in these estimates. Note that the set
A is quite small in comparison to the size of the parameter space, so that estimate
variance is primarily driven by sample size n instead of bin number p. Consider, for
example, that in one trial with n =1F4, only 89 samples fall in A.

We now illustrate the weak convergence for probability in A in Theorem 4.7(ii)
with the set A. Figure 14 shows that as n,p — oo the absolute error decreases. The
standard deviation of the results also decreases as n,p — co as shown in Figure 15.
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FiG. 11. Sets A and Q~1(B) in A on the left. Set B on the right.
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pred;u

1000 - 8.85E-03 7.35E-03 6.85E-03 6.64E-03 5.42E-03 2.92E-03 2.60E-03 e

2000 - 7.40E-03 6.75E-03 5.93E-03 5.03E-03 [ENE M E T MR I E B R Xk 90055

3000 - 5.52E-03 5.10E-03 4.71E-03 3.18E-03 2.77E-03 2.13E-03 1.36E-03 0.0040

4000 1 4.3 3.60E03 2.81E-03 2.54E-03 1.79E-03 1.09E-03 0.0035

5000 | 4.10E-0: 3.72E-03 3.38E-03 2.76E-03 2.41E-03 160E-03 8.77E-04 0/0030
RT] 5.72E03 3.46E-03 3.37E-03 3.03E-03 2.56E-03 2.16E-03 147E-03 8.56E-04 0.0025

PO 3.39E-03 3.16E-03 3.16E-03 2.80E-03 2.43E-03 2.07E-03 1.39E-03 7.73E-04

S 329E-03 2.87E-03 2.82E-03 2.46E-03 2.19E-03 188E-03 1.25E-03 7.33E-04 e

PR 3.23E-03 2.80E-03 2.73E-03 2.33E-03 2.03E-03 1.73E-03 1.11E-03 0.00185

JOOOLOE 3.03E-03 2.63E-03 2.70E-03 2.25E-03 1.94E-03 1.61E-03 1.05E-03 6 0.0010

P
Fia. 13. Standard deviation over 20 trials of PLuY,  (B).

1000 - 1.55E-03 1.44E-03 1.28E-03 1.27E-03 [ el 9.81E-04 7.57E-04

2000 6.47E-04 6.19E-04 5.68E-04 4.83E-04 6.94E-04 5.97E-04 4.55E-04

3000 7.78E-04 7.33E-04 7.40E-04 6.22E-04 6.83E-04 7.00E-04 6.12E-04 Lo

PISNR 0.48E-04 6.51E-04 5.91E-04 6.37E-04 5.75E-04 5.57E-04 6.37E-04 5.37E-04

CWOOR 8.91E-04 6.01E-04 5.04E-04 5.60E-04 5.18E-04 4.97E-04 4.91E-04 4.48E-04

YR 9.77E-04 6.56E-04 5.46E-04 577E-04 5.43E-04 534E-04 5.43E-04 5.18E-04

FONLR 7.43E-04 4.27E-04 3.32E-04 3.85E-04 3.55E-04 3.52E-04 3.55E-04 -04 6x 107

IR 8.17E-04 5.11E-04 4.11E-04 4.69E-04 4.30E-04 4.35E-04 4.53E-04

PN 7.74E-04 4.79E-04 3.94E-04 4.40E-04 4.18E-04 4.24E-04 4.19E-04 4.27E-04 P

LIV 7.89E-04 4.74E-04 3 4.34E-04 4.06E-04 4.07E-04 4.20E-04 4.12E-04

P

FiG. 14. Absolute error between mean of PP (A) over 100 trials and Pops(A).

init;u

5.2. Fluid flow through porous media. We now consider a 3-dimensional
porous media model with a heterogeneous permeability field from the SPE10 data set
[15]. The physical domain is a 3-dimensional slab: € = [0,1200] x [0, 2200] x [0, 100],
where the coordinates are given in feet. The model for single phase incompressible
flow is given by
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1000 - 5.58E-03 5.81E-03 6.31E-03 5.82E-03 5.91E-03 6.23E-03 5.98E-03 6.24E-03 [ 0.00400

2000 - 429E-03 4.37E-03 4.42E-03 4.52E-03 4.22E-03 4.47E-03 4.49E-03 4.46E-03 -0.00375

EVOOR 3.23E-03 3.37E-03 3.36E-03 3.34E-03 3.35E-03 3.39E-03 3.44E-03 0.00350

PIWOOR 2.99E-03 3.03E-03 3.00E-03 3.00E-03 2.99E-03 3.03E-03 2.98E-03 3.05E-03

EWWOR 2.61E-03 2.66E-03 2.64E-03 2.65E-03 2.62E-03 2.64E-03 2.60E-03 2.65E-03 000323
P 2 52603 2.56E-03 2.53E-03 2.58E-03 2.55E-03 2.53E-03 2.55E-03 2.53E-03 0.00300

FOLCR 2.39E-03 2.38E-03 2.34E-03 2.38E-03 2.39E-03 2.33E-03 2.35E-03 2.35E-03

EOONR 2.47E-03 2.48E-03 2.44E-03 2.48E-03 2.47E-03 2.43E-03 2.44E-03 2.47E-03 000275

EOLE 2.32E-03 2.28E-03 2.26E-03 2.29E-03 2.27E-03 2.25E-03 2.26E-03 2.28E-03 0.00250

OINLR 2.256-03 2.21E-03 2.19E-03 2.24E-03 2.20E-03 2.19E-03 2.21E-03 2.23E-03 Biioass

20 40 60 80 100 120 140 160
p

Fic. 15. Standard deviation over 20 trials of P™P. (A).

pred;u

u Magnitude

u Magnitude

Fic. 16. On the left: The numerical approximation of the pressure field. In the middle: The
numerical approximation of the magnitude of the welocity field. On the right: The streamlines
associated with the samples from the initial distribution.

(5.1) u=-KVp, z€Q,

V-u=0, x €01,
where K is the heterogeneous permeability field designed to mimic channelized flow
in a subsurface reservoir. We apply a pressure drop from one side (high y values) to
the other (low y values) by fixing the pressure along these faces and applying no-flow
boundary conditions (u-n =0) on the remaining faces. The mesh is a uniform grid of
60 x 220 x 50 elements, and we use a hybridized mixed formulation [10], which results
in 6.6 million degrees of freedom, where 2.2 million are global/hybrid and 4.4 million
are local/subgrid.

The input space for the inverse problem is defined by the 3-dimensional starting
positions for a set of streamlines, generated using ParaView [1], which flow through the
domain (generally in the decreasing y-direction). The output space is defined by the
3-dimensional final positions (we simplify the output space to 1 dimension as described
below) for the streamlines. These final positions are given when the flow stops or the
streamlines reach y = 0 (i.e., when they exit the domain). The pressure field, the
magnitude of the velocity field, and the set of streamlines associated with the samples
from the initial density are shown in Figure 16. The starting and ending points of
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. Start positions | 0.0150 A Observed hist.
- Finish positions
Mops

0.0125 |

Predicted hist.

.0.0100 1
=
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0.0050 +

0.0025

0.0000 === T T AL
0 200 400 600 800 1000 1200
X

F1G. 17. On the left: Starting positions for the initial samples shown in blue, and the endpoints
for these samples shown in orange. On the right: The predicted samples and KDE shown in orange,
and the observed samples and KDE shown in blue. (Color figure available online.)

0,000 0.020

0.0050
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Fic. 18. On the left: Update samples shown in color, observed shown in black. For readability,
because the magority of the weights are close to zero, we remove samples whose weights are less than
1E-4 from the plot. The observed samples are 1-dimensional, so they are plotted with y and z both
uniformly and randomly distributed from 0 to 100. On the right: Push-forward of results from the
density method. (Color figure available online.)

the initial samples are shown on the left of Figure 17. They are generated uniformly
in the intersection of a 3-dimensional sphere and the domain. We are interested in
the initial samples that either exit or get close to exiting the domain by the end of
the simulation, that is, samples for which the y-values of their finish positions are
less than 100. Selecting just these samples from the initial sample set leaves us with
6467 initial samples. We then focus on the z-position of the streamlines, resulting
in a 1-dimensional output space. The observed distribution is N(900,25), and we
generate 1E4 points from the observed distribution to serve as observed samples. We
illustrate each output distribution using a KDE on the right of Figure 17.

We apply the density method along with rejection sampling to find a set of samples
from the updated density. The mean r-value of the density method is approximately
1.07, indicating good, but not excellent, results. We show the accepted samples in
the input space, as well as the push-forward of these samples in the data space, in
Figure 18. We observe that the update samples are clustered toward a region with
higher z-values. This makes sense considering the spatial properties of the problem. In
the data space, we see that the results are also reasonable, although the push-forward
of the update solution does not quite match the observed density.

Next, we apply the K-means binning method. Because the majority of the prob-
ability for the observed distribution is centered in a small region of the support of
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5
o

0.0060

Q
©

0.0050

o
o

0.0041

o
>

0.0031

0.0022

Cumulative distribution
o
N

0.0012

o
=)

o

200 400 600 800 1000 1200
X

0.0002

Fic. 19. On the left: Solution weights from the K-means binning method shown in color;
observed shown in black. For readability, because the majority of the weights are close to zero,
we remove samples whose weights are less than 1E-4 from the plot. The observed samples are
1-dimenstonal, so they are plotted with y and z both uniformly and randomly distributed from 0
to 100. On the right: Push-forward of results from the K-means binning method. (Color figure
available online.)

1 \
0.006 LR LY TXYY) 0.020 1 ‘I‘ TMops
i) 1 —
5, 0.004 1 0.015 1 \ gz
'g 2 bin 7
5 )
) 002 5 0.0104 bin 43
= —_— Icfentlty 0.005 4
5,605 bin 7
R s bin43 -
, i . e 0.000 1
0.000 0.001 0.002 0.003 0.004 0.005 800 1000 1200
Radon-Nikodym weights X

Fic. 20. On the left: Comparison of the weights from the density and distribution-based meth-
ods, highlighting outlier bins. On the right: Zoomed-in plot of push-forward of density solution,
highlighting outlier bin regions.

the predicted, we require a relatively large number of bins, which informs our choice
of p = 100 bins. The results, shown as weighted EDFs on the data space, as well
as the weights plotted on the initial samples, are given in Figure 19. We observe
that the binning approach produces larger weights for the samples that are mostly
clustered toward a region of higher z-values, which is both what we expect and agrees
with the results from the density solution. Unlike the density-based method that
produced some clearly identifiable approximation errors in the push-forward of the
updated density, the resulting CDFs show that the push-forward of the solution from
the binning method closely matches the observed distribution on the data space.

We provide some more details regarding the issues with the density-based ap-
proximation seen in the right plot of Figure 18 that the binning method is able to
overcome. First, we see that the majority of the predicted density is concentrated
around x = 400 with long tails, while the observed density is narrow and centered
along the far end of the right-tail of the predicted distribution. Subsequently, a large
number of samples from the initial distribution need to be propagated through the
model to obtain an accurate approximation of the predicted density in this region.
In other words, the issue of accuracy with the density-based method in this case is
essentially due to insufficient samples within the support of the observed distribution
which impacts the KDE approximations. This is explored further in Figure 20. The
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left plot of Figure 20 shows a comparison of the weights of the samples obtained from
the two methods. The majority of the samples exhibit weights that fall roughly along
the identity line, indicating a similarity of the computed weights between the meth-
ods in each region. However, there are two clear bins of samples that are outliers
as highlighted in this plot. The right plot of Figure 20 zooms in on the observed
density to highlight where these specific outlying bins occur in the data space. As
discussed above, this is one of the tail-ends of the predicted density resulting in rela-
tively few predicted samples falling within in the region where the observed density is
concentrated. Subsequently, the predicted KDE used in the density method exhibits
approximation errors in this region that are magnified by their presence in the denom-
inator of the updated density. By comparing the KDE estimate of the push-forward
of the updated density to the observed density, we see that bin 43 is associated with
samples where the density-based method leads to an underestimation of the Radon—
Nikodym weights, while bin 7 is associated with samples where the density-based
method leads to an overestimation of the Radon—Nikodym weights. This is consistent
with the position of the outlier bins relative to the identity line in the left plot of
Figure 20.

6. Conclusions. In this work, we develop a distribution-based approach for
solving data-consistent stochastic inverse problems. While previous approaches to
solving such problems require approximations of events or densities, this work pro-
vides a rigorous methodology that applies to cases with limited observational or sim-
ulation/prediction data as well as situations where densities and events cannot be
approximated effectively. This builds upon prior work by incorporating a binning
approach in the data space to properly distribute probabilistic weights in the input
space. Proofs of convergence of the distribution-based solution to the density-based
solution as the number of samples and bins increase are provided.

In future work, we aim to formalize a theoretical proof of the stability of the pull-
back measure that is defined by the weighted EDF on the parameter space, as well
as a theoretical proof to justify the generalization of the method to more arbitrary
input sample sets (i.e., not just those generated according to a specified initial distri-
bution). We are also interested in quantifying the effect of the model form errors on
the weighted EDFs and the corresponding approximations to the pullback measure.
Future directions will also include a utilization of this approach in the context of op-
timal experimental design and an exploration of the use of this approach to efficiently
perform hierarchical Bayesian inference.

It is also worth noting that a somewhat related Bayesian approach referred to
as data-free inference (DFI) is explored in [6, 22] to construct a family of posterior
distributions exhibiting self-consistent correlations, in the absence of data, with re-
spect to the available information. However, the notion of consistency in DFI centers
around given statistical information and the goal is to utilize a Bayesian framework to
construct an entire family of posteriors that are pooled together into a single distribu-
tion. A full comparison of the DCI and DFT solutions as well as the various numerical
methods utilized to construct and interrogate these solutions is also a topic for future
work.

7. Code. Code to reproduce the figures and examples in this paper is contained
in the GitHub repository [5] for this paper.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/12/25 to 132.194.13.45 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A DISTRIBUTIONS-BASED APPROACH FOR DCI A3147

Appendix A. Proof of Lemma 4.3. Before beginning the proof, we recall
again the notions of “greater than” and “less than” in multivariate spaces. Specifically,
we use the standard notation > and < to indicate componentwise greater than and
componentwise less than, respectively; i.e., x = (x1,...,24) = y = (yq,...,y,) if and
only if 1 > yy,...,z4 > y,. If a function is “nondecreasing,” we mean this in the
componentwise sense: F(x)> F(y) if ¢ = y.

Proof. Let & be a continuity point of F. Let A={z: F,(z) — F(z)}, which we
refer to as an “a.e. set” meaning the Lebesgue measure of the complement of A is
zero. For 0 > 0, define & — 0 as the point (x1—9,...,£4—9). Then, {z:x—0 <z <z}
defines a d-dimensional cube of Lebesgue measure §¢ > 0. Since A is an a.e. set, there
exists an (uncountably) infinite number of points in AN{z:x —4d <z Jx}. Itis
therefore possible to choose a sequence {I'};—; C AN{z:z < x} such that I' - x. An
analogous argument implies we can also choose a sequence {u'};—1 C AN{z:2z =z}
such that u® — x. Because each F}, is nondecreasing in the componentwise sense, for
any n € N and any ¢ € N, we have

F,(I") < Fy(x) < F,(ub).
The goal is to prove Fy,(x) — F(x). To do this, we first observe that

liminf F,(1") < liminf F, (z) < liminf F, (u?)

n— oo n—oo n—oo

and

limsup F,(I") < limsup F, () < limsup F, (u).

n—roo n—oo n—oo

Now, as n — 00, Fy,(1') = F(l;) because I' € A for each i, and similarly F,(u’) —
F(u?) for each i. Thus,

F(I') = lim F,(I") <liminf F, ()

n— oo n—oo

and

limsup F,,(x) < lim F,(u’) = F(u').

n—oo n— oo

As i — 00, by construction we have I' — 2 and u* — x, and « is a continuity point of
F', so we have

lim F(I') = F(x) < lim (lim inf Fn(az)) =liminf F, (x)

71— 00 11— 00 n—oo n—oo

and

lim <limsup Fn(w)> =limsup F,(z) < F(x) = lim F(u').

i—»00 n— 00 n— oo 1—00

Thus, we have found

F(x) <liminf F,, () < limsup F,,(z) < F(x)

n—00 n—00

which implies that lim,,_, o, F,(2) exists and is equal to F'(x). Since x was an arbitrary
continuity point of F', the conclusion follows. 0
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Appendix B. Proof of Theorem 4.4. Before we prove this theorem, we recall
a useful result connecting the convergence of subsequences to the original sequence
that is straightforward to prove but can seem confusing when used without context.

LEMMA B.1. Let {pn}nen be a sequence of real numbers. If there exists p € R
such that for any subsequence {pn, }ren there exists a further subsequence {pnk, ten
that converges to p, then p, — p.

While Lemma B.1 is a standard result in analysis, the proof can be difficult to
find as it is often left as an exercise. We provide the proof below for ease of reference.

Proof. Suppose that (p,) does not converge to p. Then there exists a & > 0 such
that for every N € N there exists n > N such that |p, — p| > e. Choose such an & >0,
and inductively construct a subsequence (p,, ) as follows. For k=1, ny > 1 such that
|pn, —p| > €; for k =2, choose na > ny + 1 such that |p,, —p| > e. Assume that we
have chosen the first k terms in the sequence, and then choose ngi; > ny such that
|Pnss — p| > €. This defines a subsequence (py, ) such that |p,, —p| > e for all k € N.
By assumption, there must exist a further subsequence (pnkk) such that Pny, = D
but by construction all terms in any subsequence are at least a ¢ distance from p, a
contradiction. 0

We can finally proceed in proving Theorem 4.4 below.

Proof. Let {F),, }ren be a subsequence of {F), },en. Since F,, — Fin L?, F,,, - F
in LP as well. Thus, there exists a further subsequence {Fnkl}leN that converges
a.e. to F. By Lemma 4.3, for any continuity point & of F', the subsubsequence
Fy,, (x) — F(z). By Lemma B.1, F,(z) — F(z) at all continuity points of F.
Finally, by Lemma 4.2, P,, — P weakly. O

Appendix C. Proof of Theorem 4.7.

Proof. The proof of (i) follows immediately from Lemma 4.6.
To prove (ii), first we let C4 := Q 1(Q(A)) denote the contour event in By
induced by the set A. We apply the law of total probability to write

Bt (A) = Pt (A1 Ca) B, (Ca) + Bt (A C2) Pt (C),

init;u — % init;uw init;w
where C'§ denotes the complement of C4. Since A C C4, A and C are disjoint,
which implies PP (A]|CG)=0. Since PP (Cy)=PP (Q(A)), we have

init;w init;w pred;u

Pt (A) = Pt (A|CA) Pl (Q(A)).

init;uw init;uw pred;uw
From (i), we have P70y (Q(A)) = Pobs(Q(A)) > 0 as n,p — oo. We use this
along with the method of n being chosen as a function of p in Algorithm 3.3 to

observe that for sufficiently large p, P°P, (Q(A)) > 0. By the definition of Cy,

pred;uw
it follows that both Pupdatg(CA) > 0 and, for sufficiently large p, P (Ca) > 0.
Because the samples {\’ }j:1 used to construct Piif, are ii.d., the strong law of
large numbers implies Rﬁif;u(A |C4) = Punit(A|Ca). Since Pypdate and Piyig have the
same conditional probabilities on contour events via the disintegration theorem, we

have

lim PP (A | CA) — Pinit(A ‘ CA) = Pupdate(A | CA).

n,p—00 init;w

It follows that
PP (A) = Pupdate(A]Ca)Pons(Q(A)) as n,p — oo.

init;uw
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The result follows by recognizing that Pops(Q(A)) = Pypdate(Ca) and applying the law
of total probability to Pupdate analogously to how it was applied to Py,
above.

Reproducibility of computational results. This paper has been awarded
the “STAM Reproducibility Badge: Code and data available” as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://zenodo.org/doi/10.5281/zenodo.10676816.
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