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Data-consistent inversion is designed to solve a class of stochastic inverse problems where the solution is a pullback of

a probability measure specified on the outputs of a quantities of interest (QoI) Map. This work presents stability and

convergence results for the case where finite QoI data result in an approximation of the solution as a density. Given

their popularity in the literature, separate results are proven for three different approaches to measuring discrepancies

between probability measures: f -divergences, integral probability metrics, and Lp metrics. In the context of integral

probability metrics, we also introduce a pullback probability metric that is well-suited for data-consistent inversion.

This fills a theoretical gap in the convergence and stability results for data-consistent inversion that have mostly

focused on convergence of solutions associated with approximate maps. Numerical results are included to illustrate

key theoretical results with intuitive and reproducible test problems that include a demonstration of convergence in the

measure-theoretic “almost” sense.
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1. INTRODUCTION1

Uncertainty Quantification (UQ) has become a critically important field of study due to the increasing re-2

liance on physics-based computational models to make data-informed and data-consistent decisions. UQ3

problems are generally categorized as being either forward or inverse problems depending on the direc-4

tion that uncertainty is considered to propagate. The solutions to these UQ problems are often represented5

as probability densities, on either model input or output spaces, and often require some form of approxi-6

mation, which introduces error. The focus of this paper is on the impact of such approximation error on the7

solutions to a specific class of stochastic inverse problems involving aleatoric (i.e., irreducible) uncertain-8

ties where the inferential target is a distribution on model inputs. Specifically, we consider the solution to9

this class of problems as being defined by a pullback of an observed probability measure associated with10

specified Quantities of Interest (QoI) defined on the space of model outputs.11

Data-consistent inversion (DCI) provides a measure-theoretic framework for solving this class of stochas-12

tic inverse problems [5,11,12]. In DCI, the solution has what is referred to as the data-consistency prop-13

erty in that its push-forward through the QoI map matches the observed probability measure. In [12], a14

density-based solution is derived via the Disintegration Theorem [18]. This particular representation of15

the solution has seen the most development, analysis, and application in recent years, e.g., see [9,16,38–16

40,44,47,48,55]. It is worth noting that the density form of the solution perhaps first appeared in [36] where17

it was derived through heuristic arguments based on logarithmic pooling and referred to as “Bayesian18

melding.” Fundamental distinctions in assumptions, form, and properties of the solution from the typical19

Bayesian framework led to a distinction of the terminology used in the DCI framework in [13] (which is20

a follow-up to [12]). In [13] and many of the works that chronologically follow it, an initial and predicted21

density are used to describe the initial quantification of uncertainties on parameters and QoI, respectively,22

independent of any observed data. The observed density describes the quantification of uncertainty for the23

observed QoI data. An update to the initial density is then obtained via the product of the initial density24

with the ratio of observed to predicted densities evaluated on the outputs of the QoI map. The updated25

density serves as an exact solution to the aleatoric stochastic inverse problem. In practice, when the ob-26

served or predicted densities are not known exactly, they are estimated from finite samples, which results27

in an approximation to the updated density. This work provides the stability and convergence analysis28

of approximate updated densities associated with a wide range of common density estimation techniques29

that we may utilize for estimating the observed or predicted densities.30
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To situate DCI within the UQ literature, we contrast this framework with the typical Bayesian frame-1

work that begins with an initial assumption of epistemic (i.e., reducible) uncertainty in data and param-2

eters. For instance, a common assumption in a Bayesian setting is that noisy data are observed for a3

single instance of a system associated with true, but unknown, parameter values, e.g., see [4,17,19,22,24,4

30,31]. The solution to the resulting inverse problem within the Bayesian framework is known as a pos-5

terior, which is a conditional density defined by the product of a prior density on parameters and a data-6

likelihood function that is usually constructed from the differences in simulated and observed QoI data.7

The posterior does not satisfy the data-consistency property but instead is interpreted as defining the rel-8

ative likelihoods that any particular estimate for the parameters could have produced all of the observed9

(noisy) data. Subsequently, the posterior is typically utilized to produce a parameter estimate such as the10

maximum a posteriori (MAP) estimate, e.g., see [1,10,35]. Convergence analysis in Bayesian frameworks11

is typically focused on the particular point estimate produced and its associated uncertainty as quantified12

by the posterior covariance. Such analysis will often make use of the Bernstein-von Mises theorem [46],13

which guarantees that the resulting uncertainty in a parameter estimate, such as the MAP point, is reduced14

as more data are incorporated. This is fundamentally distinct from the type of stability and convergence15

analysis we consider in the DCI framework where the goal is to estimate the entire updated density. We16

refer the interested reader to either the review paper [5] or Section 7 of [12] for more thorough discussions17

and examples that compare and contrast these frameworks designed to solve different types of problems.18

Prior studies such as [12] provide the theory of existence, uniqueness (up to the choice of initial), and19

stability of the updated density with respect to perturbations in the various densities. However, that work20

considered stability only with respect to the L1-norm, i.e., the total-variation metric. Subsequent studies21

investigated the stability and convergence of updated densities in Lp (for 1 ≤ p ≤ ∞) when the QoI map22

is subject to epistemic errors due to an approximation of the map using discretized computational models23

or surrogate representations, e.g., see [13,16]. In this work, we fill a theoretical gap in the DCI literature24

concerning stability and convergence of solutions when predicted or observed densities are approximated25

from finite data. While non-parametric kernel density estimation (KDE) is perhaps the most common26

approach to approximate densities in the DCI literature, there is a growing body of literature on other27

data-driven approaches for density estimation which utilize different metrics or divergences to analyze28

convergence rates and optimize approximations, e.g., see [21,25,27,42,43,45,53]. Building upon this grow-29

ing body of literature, we consider three different classes of stability and convergence results. First, we30

International Journal for Uncertainty Quantification



Stability and Convergence of Solutions to SIPs Using Approximate PDFs 5

prove the stability of the updated density with respect to f -divergences. Next, we prove that convergence1

of the approximate observed or predicted densities in an integral probability metric implies convergence2

of the updated density in a novel pullback integral probability metric. Finally, we show that the conver-3

gence of approximate observed or predicted densities in the Lp metric implies convergence of the updated4

density in the Lp metric.5

The remainder of this paper is organized as follows. In Section 2, we summarize the density-based6

DCI approach and current L1-based stability theory. We also provide some direct generalizations of the7

assumptions and theory that set the stage for the more novel results provided in subsequent sections. In8

Section 3, we consider the class of f -divergences, prove a general result regarding the f -divergence be-9

tween the initial and updated distributions, and prove stability of the updated density in the f -divergence10

with respect to approximations of the observed and predicted densities. Then, in Section 4, we consider11

the class of integral probability metrics (IPM), prove stability in the IPM with respect to appoximations of12

the observed and predicted densities, and introduce a novel pullback IPM. In Section 5, we prove stability13

and convergence of the updated density in the Lp-metric. Numerical demonstrations of key theoretical14

results are provided in Section 6 and concluding remarks are found in Section 7.15

2. DATA-CONSISTENT INVERSION16

Let Λ ⊂ R
n denote the parameters of interest in a particular simulation model and (Λ,BΛ,µΛ) the associ-17

ated measure space using the Borel σ-algebra BΛ and Lebesgue measure µΛ. We denote the quantities of18

interest (QoI) map as Q : Λ → D ⊂ R
d where (D,BD,µD) is the measure space of possible observed data19

with D := Q(Λ) denoting the image of Λ.20

A standard assumption is that Q is measurable so that Q−1(E) ∈ BΛ for all E ∈ BD where Q−1 denotes21

the pre-image map, which is a common notation used in measure theory. We emphasize that Q is not22

assumed to be invertible since in general d and n need not be equal.23

The stochastic inverse problem is now defined as follows.24

Definition 2.1.25

Given an observed probability measure, Pobs on (D,BD), the stochastic inverse problem is to find a proba-26

bility measure, PΛ on (Λ,BΛ), that is data-consistent in the sense that27

PΛ(Q
−1(E)) = Pobs(E), (1)
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for all events E ∈ BD.1

Assuming PΛ and Pobs are absolutely continuous with respect to µΛ and µD, respectively (i.e., assum-2

ing probability densities, πΛ and πobs, exist), then the stochastic inverse problem above is equivalent to3

finding a density πΛ such that4

PΛ(Q
−1(E)) =

∫

Q−1(E)

πΛ(λ)µΛ =

∫

E

πobs(q)µD = Pobs(E), ∀E ∈ BD. (2)

In either case, the solution to the stochastic inverse problem is a pullback probabiltiy measure. This is

equivalent to saying that the observed probability measure should be the push-forward of the solution to

the stochastic inverse problem. When both Q is one-to-one (implying d = n) and the Jacobian of Q exists,

then the stochastic inverse problem has a unique solution that can be determined, in theory, by the classical

change of variables formula:

πΛ(λ) = πobs(Q(λ)) |JQ|

where |JQ| is the determinant of the Jacobian of Q(λ). One of the main challenges of solving the stochastic5

inverse problem is that QoI maps are typically ill-posed, i.e., Q−1(q) is not unique for a given q ∈ D. This6

is often true even if d = n due to nonlinearities in the map. In [12], a measure-theoretic framework based7

on the disintegration theorem [20] is developed and analyzed for constructing a density-based solution,8

which we summarize below.9

2.1 Density-based solutions10

Since the stochastic inverse problem is in general ill-posed due to the potential existence of many pullback11

measures, the framework of [12] utilizes an initial density, denoted by πinit, defined on (πΛ,BΛ) to regular-12

ize the space of solutions. The push-forward of πinit through the QoI map defines the predicted density,13

πpred, i.e.,14

Ppred(E) :=

∫

E

πpred(q)µD =

∫

Q−1(E)

πinit(λ)µΛ = Pinit(Q
−1(E)) (3)

for every event E ∈ BD. If πinit leads to a predicted density πpred that is equal to πobs almost everywhere,15

then πinit is itself a data-consistent solution to the stochastic inverse problem. However, making such an a16

priori choice for πinit is unrealistic. Instead, we utilize the predicted density to construct an update to the17
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initial density that is data-consistent.1

Definition 2.2.2

Given both an observed density, πobs, and an initial density, πinit, with corresponding predicted density,3

πpred, the updated density is defined as4

πup(λ) := πinit(λ)r(λ), where r(λ) =
πobs(Q(λ))

πpred(Q(λ))
. (4)

The proofs of existence, uniqueness, and stability of the updated density is a consequence of the disin-5

tegration theorem [8], which rewrites integrals in a convenient form for the analysis of pullback measures,6

where for any A ∈ BΛ,7

Pup(A) :=

∫

A

πup(λ) µΛ =

∫

D

(∫

A∩Q−1(q)

πinit(λ)
πobs(Q(λ))

πpred(Q(λ))
dµΛ,q

)
µD. (5)

Here, µΛ,q denotes the disintegration of the Lebesgue measure µΛ along the set Λ ∩ Q−1(q) := {λ ∈ Λ :8

Q(λ) = q}. To see that Pup defines a consistent solution, we need to show that Pup(Q
−1(B)) = Pobs(B) for9

every B ∈ BD. To show this, we first observe that for each q ∈ D, Q(λ) = q in the inner integral since10

λ ∈ Λ ∩ Q−1(q). This implies that the observed and predicted densities can be factored out of the inner11

integral with Q(λ) replaced by q. The inner integral subsequently integrates to πpred(q), which cancels the12

denominator of the factored out ratio and results in an integral over B of πobs(q). It immediately follows13

that Pup(Q
−1(B)) = Pobs(B). See [12] for more details. The proofs in this present work make extensive use14

of the disintegration of measures.15

An important theoretical detail is that a predictability assumption is required for the updated density16

to be a data-consistent solution to the stochastic inverse problem. In its weakest form, the assumption is17

that πobs is absolutely continuous with respect to πpred. However, in practice, we often assume a stronger18

form, which we state below.19

Assumption 1.20

There exists a constant C > 0 such that21

πobs(q) ≤ Cπpred(q), for a.e. q ∈ D.
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Intuitively, this assumption requires that the support of the predicted density contains the support of1

the observed density. At a more practical level, this form of the predictability assumption guarantees that2

standard random sampling schemes can be utilized (see [12] for more details). This form also guarantees3

that any observed values with positive likelihood are likely to be predicted by the choice of QoI map4

and initial density. Loosely speaking, we must be able to predict the observed data with push-forward5

samples from the initial density through the QoI map. Note that this means that the constant C is implicitly6

dependent on the initial density and the QoI map: a different choice of πinit or Q leads to a different7

predictability constant.8

Assumption 1 is straightforward to verify in practice by first noting that

Einit(r(λ)) =

∫

Λ

r(λ)πinit(λ)µΛ =

∫

Λ

πup(λ)µΛ = 1.

In other words, if the predictability assumption holds, then the updated density is in fact a density im-9

plying its integral is equal to one. If samples are generated from the initial probability measure, then this10

expectation can be approximated as follows11

E(r(λ)) =

∫

Λ

r(λ)πinit(λ)µΛ ≈
1

N

N∑

i=1

r(λi). (6)

Thus, comparing the sample average of the updated ratios to one provides a convenient computational di-12

agnostic to verify the predictability assumption is satisfied. While outside the scope of the current work, if13

the predictability assumption is violated, recent methods on formulating the problem within a variational14

framework and utilizing gradient flows to shift the support of the initial density may prove useful, e.g.,15

see [33].16

We conclude this particular subsection with the following definition of a conditional density on Λ ∩17

Q−1(q) for a given q ∈ D that is useful in the proofs of this paper.18

Definition 2.3.

For q ∈ D with πpred(q) > 0 we define

πinit |q(λ) :=
πinit(λ)

πpred(q)
(7)

to be the initial probability density conditioned on q.19
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We note that πinit |q is a valid probability density over the set Λ∩Q−1(q) due to the fact that πpred is the

push forward of πinit, i.e.,

πpred(q) =

∫

Λ∩Q−1(q)

πinit(λ) dµΛ,q ∀q ∈ D. (8)

It is also worth noting that in (4), πup involves a re-weighting of πinit by the ratio, r(λ), of the observed and1

predicted densities that are both evaluated at Q(λ). As a consequence, if λ is restricted to a parameter set2

where Q(λ) = q for some fixed q ∈ D, then πup is simply a re-scaling of πinit. This implies that πup and πinit3

have exactly the same conditional densities when conditioned on q. In other words, r(λ) serves to update4

the initial density only in those directions informed by the QoI data.5

2.2 Stability and Convergence: Total Variation (TV) Metric6

It is often the case that the observed and predicted densities, and therefore the updated density, are nu-7

merically approximated using a finite number of samples from these distributions. Prior work (e.g., see8

[12,15]) on assessing the impact of these approximations utilized the total variation (TV) metric, which is9

sometimes referred to as the L1-metric on the space of probability measures defined on a common measure10

space that are all absolutely continuous with respect to the same dominating measure.11

Definition 2.4.

Let PA and P
B represent probability measures on the measure space (X,BX ,µX) that admit Radon-Nikodym

derivatives (with respect to µX ) πA(x) and πB(x), respectively. Then, the total variation (TV) metric is

given by

dTV (P
A,PB) :=

∫

X

|πA(x)− πB(x)|dµX . (9)

Throughout this paper, we assume that either the observed or predicted densities are approximated in12

some manner. The following theorems, paraphrased from [12], involve the stability of the updated density13

with respect to perturbations in the observed or predicted densities. An important note is that the TV14

metrics involving the observed or predicted densities are computed over (D,BD) while the TV metrics15

involving the updated densities are computed over (Λ,BΛ).16

Theorem 1 (Predicted Stability in TV). For fixed measures Pinit and Pobs with corresponding densities πinit and

Volume x, Issue x, 2024
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πobs, respectively, let π̃pred denote an approximation to πpred such that

πobs(q) ≤ Cπ̃pred(q), for a.e. q ∈ D,

for some constant C > 0, and let P̃up denote the associated updated measure obtained from this approximation. Then,

dTV (Pup, P̃up) ≤ CdTV (Ppred, P̃pred).

Proof. See the proof of Theorem 5.1 in [12].1

Theorem 1 justifies the approximation of the predicted density using finite samples drawn from the2

initial density and propagated through the QoI map. Specifically, it guarantees that such errors will go to3

zero as long as π̃pred converges to πpred in the limit of infinite samples. In other words, π̃up → πup in L1(Λ)4

as π̃pred → πpred in L1(D). Note that the convergences occur in different spaces.5

Theorem 2 (Observed Stability in TV). For fixed measures Pinit and Ppred with corresponding densities πinit and

πpred, respectively, let P̃obs denote an approximation to Pobs such that

π̃obs(q) ≤ Cπpred(q), for a.e. q ∈ D,

for some constant C > 0, and let P̃up denote the associated updated measure obtained from this approximation. Then,

dTV

(
Pup, P̃up

)
= dTV

(
Pobs, P̃obs

)
.

Proof. See the proof of Theorem 4.1 in [12].6

Theorem 2 states that the approximation error in the observed density is exactly the approximation7

error of the corresponding approximation of the updated density. It immediately follows that π̃up → πup8

in L1(Λ) as π̃obs → πobs in L1(D).9

2.3 Direct Generalization of TV Results10

The objective of the remainder of this paper is to generalize the stability and convergence results mentioned11

above to other divergences and metrics that quantify the discrepancy between two probability measures.12
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In several cases, the TV metric is noted as a special case. Before we proceed to these generalizations, we1

note that Theorems 1 and 2 involve comparing a single approximation of the updated density to the exact2

updated density. Here, we generalize these results to compare two separate updated probability densities3

associated with two distinct approximations to either the observed or predicted densities. We make use4

of this generalization to analyze stability and convergence with f -divergences and integral probability5

metrics in Sections 3 and 4. It also serves as the basis for constructing some of the numerical examples in6

Section 6. First, we require a generalization of the predictability assumption.7

Assumption 2.8

There exists a constant C > 0 such that:9

1. Given arbitrary observed densities πA
obs and πB

obs10

πA
obs(q) ≤ Cπpred(q), and πB

obs(q) ≤ Cπpred(q) for a.e. q ∈ D.

11

2. Given arbitrary predicted densities πA
pred and πB

pred12

πobs(q) ≤ CπA
pred(q), and πobs(q) ≤ CπB

pred, for a.e. q ∈ D.

13

Note that when two approximations to an observed or predicted density are considered, Assumption 214

provides conditions that guarantee that each of the associated updated density approximations also exist.15

In many of the theorems below, Assumptions 2.1 and 2.2 are also utilized to provide useful bounds for16

various terms in the proofs. In cases involving Assumption 2.2, we often require an additional assumption17

that one of the approximated predicted densities can be scaled to bound the exact predicted density (and18

without loss of generality, we make this assumption for πA
pred). This allows us to handle technical complica-19

tions that arise in the proofs related to the predicted density appearing in the denominator of the updated20

density.21

Theorem 3. For fixed measures Pinit and Pobs with corresponding densities πinit and πobs respectively, let PA
pred and22

P
B
pred denote arbitrary predicted measures which satisfy Assumption 2.2 with associated updated measures P

A
up and23
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P
B
up. Additionally, assume there exists another constant C1 > 0 such that1

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.

Then, there exists a constant C2 > 0 such that

dTV (P
A
up,P

B
up) ≤ C2dTV (P

A
pred,P

B
pred).

Proof. See APPENDIX A.1.2

As mentioned previously, for two different predicted densities, we require the additional assumption3

that the true predicted density is absolutely continuous with respect to πA
pred. This assumption is not4

necessary for the case of two different observed densities.5

Theorem 4. For fixed measures Pinit and Ppred with corresponding densities πinit and πpred respectively, let PA
obs and

P
B
obs denote arbitrary observed measures which satisfy Assumption 2.1 with associated updated measures P

A
up and

P
B
up. Then,

dTV

(
P
A
up,P

B
up

)
= dTV

(
P
A
obs,P

B
obs

)
.

Proof. See APPENDIX A.2.6

Remark 5. We recover Theorem 1 if PA
pred = Ppred in Theorem 3, and we recover Theorem 2 if PA

obs = Pobs in7

Theorem 4.8

3. STABILITY AND CONVERGENCE USING F -DIVERGENCES9

Many common approaches for quantifying the discrepancy between two probability measure are derived10

from f -divergences. While f -divergences are generally not metrics due to a lack of symmetry, the gener-11

alization of the stability results from the total variation metric to f -divergences are relatively straightfor-12

ward. Below, we provide the formal definition of an f -divergence and provide some context and a brief13

literature review for the practical application of f -divergences.14

Definition 3.1.

Let PA and P
B be probability measures on measure space (X,BX ,µX) admitting densities πA and πB . The

International Journal for Uncertainty Quantification
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f -divergence is defined as

Df (P
A || PB) =

∫

X

f

(
πA(x)

πB(x)

)
πB(x)dµX (10)

where f is a specific convex function defining the f -divergence such that f(t) is bounded ∀t > 0, f(1) = 0,1

and f(0) = limt+→∞ f(t).2

In the context of density estimation, f -divergences are often useful in determining optimal parameters3

or hyper-parameters of a density model [7,27]. For instance, the Kullback-Liebler (KL) divergence can4

be written as the sum of the negative, expected loglikelihood that the data came from the approximate5

distribution plus an entropy term independent of the hyper-parameters. Thus, optimal hyper-parameters6

can be computed by maximizing the loglikelihood, which will then minimize the KL divergence.7

Note that in the definition of the f -divergence, we do not necessarily assume that PB is absolutely8

continuous with respect to P
A. If these measures do not possess this property, then the f -divergence is9

typically defined as infinite, which is not very useful in terms of stability or convergence, so practically we10

only apply f -divergences to measures that satisfy this absolute continuity condition. When measuring the11

f -divergence of a measure P
B from another measure P

A, we write the forward f -divergence as Df (P
A ||12

P
B). When the roles of the target and approximate are reversed, i.e., Df (P

B || PA), we call this the reverse13

f -divergence. Note that the reverse f -divergence is not necessarily the same as the forward f -divergence.14

The choice of f defines the type of divergence. For instance, choosing f(t) = 1

2
|t− 1| recovers the15

total variation metric while f(t) = t ln t defines the KL divergence. KL divergences have found extensive16

applications in statistics and machine learning, particularly in variational inference [7], optimal experi-17

mental design [6,29], and information geometry [2]. Moreover, this particular divergence has served as18

a useful tool to quantify the information gained in moving from initial to updated measures in data con-19

sistent inversion [14,49]. Additionally, it enables the assessment of the distance between the initial and20

updated densities in terms of the distance between observed and predicted measures, as demonstrated21

in [12]. Below, we show that this utility can be extended to other types of f -divergences.22

3.1 Equivalence of f -divergences within the DCI Framework23

Due to the fact that the solution of the stochastic inverse problem is a pullback probability measure, we24

can make precise statements regarding the f -divergences between measures on the parameter space and25
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corresponding measures on the data space. The following theorem states that the f -divergence of the1

updated density from the initial density is equal to the f -divergence of the observed from the predicted.2

Theorem 6 (f -divergence and DCI). Given probability measures, Pinit, Pobs, and Ppred which satisfy the Assump-

tion 1 and updated measure Pup given by (4),

Df

(
Pup‖Pinit

)
= Df

(
Pobs‖Ppred

)
.

Proof. See APPENDIX B.1.3

In this case, Assumption 1 guarantees that the f -divergence is finite since the observed and updated4

measures are absolutely continuous with respect to the predicted and initial measures, respectively. The5

implication is that by computing the f -divergence of relevant measures in the data space D, we obtain the6

value of the f -divergence of relevant measures in the parameter space Λ and vice-versa. This is valuable7

when the densities in one space are simpler to evaluate than in another, e.g., if the dimension of one space8

is smaller or if the densities in one space are given analytically. Next, we consider f -divergences between9

different updated densities.10

3.2 Stability of Updated Densities using f -divergences11

The goal of this section is to show stability of densities using an f -divergence in the data space leads to12

stability of the updated densities on the parameter space. First, we show that the forward f -divergence13

between two updated densities obtained from the same observed but with different predicted densities is14

bounded above by a constant times the reverse f -divergence between the predicted densities. As the proof15

demonstrates, the dependence on the reverse f divergence is a consequence of the predicted densities16

appearing in the denominator of the corresponding updated densities.17

Theorem 7 (Predicted Stability in f -divergence). For fixed measures Pinit and Pobs with corresponding densities18

πinit and πobs, respectively, let πA
pred and πB

pred denote predicted densities satsifying Assumption 2.2 and let PA
up and19

P
B
up denotes the respective associated updated measures. Additionally, assume there exists another constant C1 > 020

such that21

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.
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Then, there exists a constant C2 > 0 such that

Df (P
A
up || PB

up) ≤ C2 ·Df (P
B
pred || PA

pred).

Proof. See APPENDIX B.2.1

Remark 8. Taking πA
pred to be the push-forward of πinit, i.e., πA

pred = πpred, and πB
pred to be some approximation of πpred2

that converges in the f -divergence, implies convergence of the approximate updated densities in the f -divergence.3

Note that the additional assumption is trivially satisfied if we take πA
pred = πpred.4

Next, we show that the f -divergence between two updated densities is precisely the f -divergence5

between the two respective observed densities.6

Theorem 9 (Observed Stability in f -divergence). For fixed measures Pinit and Ppred with corresponding densities

πinit and πpred, respectively, let PA
obs and P

B
obs denote observed measures satisfying Assumption 2.1 and let PA

up and P
B
up

denote the respective associated updated measures. Then,

Df (P
A
up || PB

up) = Df (P
A
obs || P

B
obs).

Proof. See APPENDIX B.3.7

Remark 10. Taking πA
obs = πobs and πB

obs to be some approximation of πobs that converges in the f -divergence, implies8

convergence of the approximate updated densities in the f -divergence.9

4. STABILITY AND CONVERGENCE USING INTEGRAL PROBABILITY METRICS (IPM)10

Integral probability metrics (IPMs) have become increasingly popular tools in the context of machine learn-11

ing and generative AI, e.g., see [3,32,34,50]. These metrics are used during the training of neural networks12

to stabilize the learning process by constraining the generative probability distribution to be similar to13

the target observed distribution. The class of IPMs includes the maximum-mean-discrepancy [26] and the14

earth mover’s distance [37], among others. We give the abstract definition of an integral probability metric15

and follow-up with specific cases.16

Definition 4.1.

Let PA and P
B be two probability measures on a measure space (X ,BX ). An integral probability metric is
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defined as

dF (P
A,PB) := sup

f∈F

∣∣∣∣
∫

X

fdPA −

∫

X

fdPB

∣∣∣∣

where F is a defined class of real-valued, bounded measureable functions on X .1

IPMs generalize certain probability metrics through the appropriate choice of functions F . For in-

stance, by choosing F to be {f : ||f ||∞ ≤ 1}, where ||f ||∞ is the supremum of |f(x)| over X , the resulting

metric dF is equivalent to the total variation metric (see APPENDIX C). The Kantorovich metric, which

is the dual of the Wasserstein distance, is obtained by choosing F = {f : ||f ||L ≤ 1}, where ||f ||L is the

Lipschitz semi-norm on a metric space (X , ρ),

||f ||L := sup

{
|f(x)− f(y)|

ρ(x, y)
: x 6= y in X

}
.

The Kernel distance or maximum mean discrepancy is obtained when F = {f : ||f ||H ≤ 1}, where H2

represents a reproducing kernel Hilbert space.3

4.1 Using IPM within the DCI Framework4

In the context of DCI, we are quantifying distances between measures on different spaces Λ and D. It is5

therefore appropriate to consider IPMs defined by different function spaces. Specifically, we consider a6

family of functions FΛ be a set of real valued functions {f : Λ → R} and a set GD where {g : D → R}.7

These two families may, in general, reproduce the same norms (as is the case when FΛ and GD are chosen8

to induce total variation metrics), but this is not necessary.9

Our goal is to establish the relationship between the metrics defined by two function space FΛ and GD,10

examining how approximations of measures in the data space impact the corresponding updated measures11

in the parameter space. As in the coming analysis of stability in Lp metrics in Section 5, the ratio of πinit12

and πpred plays a critical role.13

Now consider the IPM defined by FΛ between two updated densities with different observed densities

πA
obs and πB

obs,

dFΛ(P
A
up,P

B
up) = sup

f∈FΛ

∣∣∣∣
∫

Λ

f(λ)(πA
up(λ)− πB

up(λ)) dµΛ

∣∣∣∣ .
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Applying the disintegration theorem and Definition 2.3 gives

dFΛ
(PA

up,P
B
up) = sup

f∈FΛ

∣∣∣∣∣

∫

D

(∫

Λ∩Q−1(q)

f(λ)πinit |q(λ) dµΛ,q

)
(πA

obs(q)− πB
obs(q)) dµD

∣∣∣∣∣

The inner integral is the expected value of the function f ∈ FΛ conditioned on q, i.e.,

EΛ|q(f(λ)) =

∫

Λ∩Q−1(q)

f(λ)πinit |q(λ)dµΛ,q

where EΛ|q is the expected value taken with respect to the conditional initial measure Pinit |q . We note that1

EΛ|q is a linear operator acting on the space of functions FΛ and mapping them to the space of functions2

GD. Thus, a sufficient condition for determining the stability of the updated density with respect to the3

observed or predicted distribution using different integral probability metrics is that EΛ|q is a bounded4

operator. The following theorem shows how to relate the two metrics defined by FΛ and GD to ensure5

that convergence of an approximate observed or predicted distribution in the data space will guarantee6

convergence of the approximate updated distribution in the parameter space.7

Theorem 11 (Predicted Stability in IPM). Let FΛ and GD be used to define IPM for measures on Λ and D,8

respectively. Suppose EΛ|q is a bounded operator from FΛ to GD. For fixed measures Pinit and Pobs with corresponding9

densities πinit and πobs respectively, let πA
pred and πB

pred denote predicted densities satisfying Assumption 2.2 and let10

P
A
up and P

B
up denotes the respective associated updated measures. Additionally, assume there exists another constant11

C1 > 0 such that12

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.

Then, there exists a constant C2 > 0 such that

dFΛ(P
A
up,P

B
up) ≤ C2dGD

(PA
pred,P

B
pred)

Proof. See APPENDIX D.1.13

Theorem 12 (Observed Stability in IPM). Let FΛ and GD be used to define IPM for measures on Λ and D, re-

spectively. Suppose EΛ|q is a bounded operator from FΛ to GD. For fixed measures Pinit and Ppred with corresponding

densities πinit and πpred respectively, let PA
obs and P

B
obs denote observed measures satisfying Assumption 2.1 and let
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18 T. Butler, R. Spence, T. Wildey, & T. Yen

P
A
up and P

B
up denote the respective associated updated measures. Then, there exists C > 0 such that

dFΛ
(PA

up,P
B
up) ≤ CdGD

(PA
obs,P

B
obs)

Proof. See APPENDIX D.2.1

Remark 13. Similar to Remarks 10 and 8, we can take πA
obs = πobs (or πA

pred = πpred), and if we assume πB
obs converges2

to πobs (or πB
pred converges to πpred) in the IPM, then the approximate updated densities also converge in the appropriate3

IPM.4

Theorems 11 and 12 provide sufficient conditions for determining stability using IPMs that involve the

boundedness of EΛ|q . In some cases, it is straightforward to verify this condition holds. For instance, if FΛ

is defined as {f : (||f ||∞ + ||f ||L) ≤ 1}, then FΛ induces the so-called Dudley metric. If we compare this

to GD defined as the total variation metric, i.e., {g : ||g||∞ ≤ 1} and Λ is compact (and finite dimensional),

we can show that EΛ|q is bounded since, ∀f and ∀q,

∣∣EΛ|q(f)
∣∣ =

∣∣∣∣∣

∫

Λ∩Q−1(q)

f(λ)πinit |q(λ)dµΛ,q

∣∣∣∣∣

≤

∣∣∣∣∣||f ||∞ ·

∫

Λ∩Q−1(q)

πinit |q(λ)dµΛ,q

∣∣∣∣∣

= ||f ||∞ ≤ ||f ||∞ + ||f ||L,

which implies that

||EΛ|q(f)||GD
= ||EΛ|q(f)||∞ ≤ ||f ||∞ + ||f ||L = ||f ||FΛ

.

It is worth noting that while this condition is sufficient for determining stability using integral proba-5

bility metrics, it is not necessary. Indeed, in [54], it is shown that as long as there exists functions g ∈ GD6

that can dominate functions EΛ|qf in a piecewise-sense, then the stability condition holds.7

4.2 A pullback IPM8

We close this section with a concise description of how to construct an IPM on the parameter space that is9

equal to a given IPM on the data space. This has potential applications in settings where machine learning10

algorithms are used to produce observed distributions that rely on optimizing an unorthodox IPM FD.11
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This is also practical when the goal is to generate approximated updated distributions that are close to an1

exact updated distribution based precisely on how close the associated approximate observed distribution2

is to an exact observed distribution.3

Definition 4.2.

Let dFD
be an IPM on the distributions of the data space defined by FD. Let Q be a measurable quantity of

interest map Q : Λ → D. Define a class of functions F∗
Λ such that for every g ∈ FD

f(λ) := (g ◦Q)(λ) = g(Q(λ)).

Then, we define the pullback IPM with respect to dFD
as

dF∗
Λ
(PA,PB) = sup

f∈F∗
Λ

∣∣∣∣
∫

Λ

fdPA −

∫

Λ

fdPB

∣∣∣∣

We can verify that this definition produces a valid integral probability metric by recalling the assump-4

tion that Q and g are measurable functions on corresponding Borel sets. Since Q : (Λ,BΛ) → (D,BD) is5

measurable and g : (D,BD) → (R,B) is measurable for all g ∈ FD, the composition f = g◦Q is measurable.6

Also, since every g ∈ FD is bounded so too must each f ∈ F∗
Λ, thus satisfying the definition of an IPM.7

The next theorem shows that the pullback IPM measures differences between updated densities by the8

differences between their corresponding distributions in the data space, i.e. how different are the push-9

forwards with respect to an IPM on D.10

Theorem 14 (Stability using the Pullback IPM). For fixed measures Pinit and Pobs with corresponding densities11

πinit and πobs respectively, let πA
pred and πB

pred denote predicted densities satisfying Assumption 2.2 and let PA
up and P

B
up12

denotes the respective associated updated measures. Additionally, assume there exists another constant C1 > 0 such13

that14

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.

Then, there exists a constant C2 > 0 such that15

dF∗
Λ
(PA

up,P
B
up) ≤ C2dFD

(PA
pred,P

B
pred). (11)

Similarly, for fixed measures Pinit and Ppred with corresponding densities πinit and πpred respectively, let PA
obs and P

B
obs16
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denote observed measures satisfying Assumption 2.1 and let PA
up and P

B
up denote the respective associated updated1

measures. Given an IPM on D defined by FD and the corresponding data-consistent IPM defined by F∗
Λ, we have2

dF∗
Λ
(PA

up,P
B
up) = dFD

(PA
obs,P

B
obs), (12)

Proof. See APPENDIX D.3.3

5. CONVERGENCE OF UPDATED DENSITIES IN LP
4

This section focuses on convergence of the updated density in Lp-metrics. Due to the complexity of some5

of the technical details in this section, we do not pursue the more general scenario considered in previous6

sections with (somewhat) arbitrary πA
up and πB

up, and focus on the special case where πA
up = πup and πB

up7

involves an approximation.8

While TV is a commonly used metric for evaluating density estimations, the mean-integrated squared9

error or MISE is perhaps the dominant metric considered within the kernel density estimation literature.10

This is equivalent to measuring the mean L2-error (squared) between distributions, and is therefore also11

referred to as the L2-risk. Other density estimation techniques use more general Lp-risk to prove various12

theoretical convergence results and to determine bounds on the rate of convergence [21,51]. Given these13

considerations, we seek to generalize Theorems 1 and 2 to the general class of Lp metrics with p > 1,14

which, as we illustrate, are more difficult to work with than the total variation metric. To be precise, we15

aim to show that the convergence of any sequence of approximations πn
pred → πpred or πn

obs → πobs that16

converges in Lp implies the convergence of the updated densities πn
up → πup in Lp. First, we define the Lp

17

metric measuring the difference between two probability measures.18

Definition 5.1.

Let PA and P
B be two probability measures on a measure space (X ,BX ,µX ) admitting densities πA and

πB . Then the Lp-metric (or distance) over X between P
A and P

B is defined as

dLp(X )(P
A,PB) :=

(∫

X

∣∣πA(x)− πB(x)
∣∣p dµX

)1/p

=
∥∥πA − πB

∥∥
Lp(X )

for any 1 ≤ p < ∞.19

Note that if p = 1, then this reduces to the TV metric given in Definition 2.4.20
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5.1 Rates of Convergence1

We are also interested in analyzing the rate of convergence of the approximation to the updated density in2

relation to rates of convergence of the density approximations to either πpred or πobs in D. The results we3

obtain in this section show that the rate of convergence is of the same order on almost all of Λ but not4

necessarily on all of Λ. This is similar in spirit to other convergence proofs of density estimates which5

are shown to hold true on sequences of nested compact sets that converge from below to the full domain,6

e.g., see [28]. It is also common for results in measure theory to refer to a property holding everywhere7

except on a measurable set of arbitrarily small size, e.g., see Luzin’s theorem (cf. Theorem 7.10 in [23]) and8

Egoroff’s theorem (cf. Theorem 2.33 in [23]). We define rate of convergence in an almost sense formally9

below.10

Definition 5.2.

Let Pn be a sequence of probability measures on measure space (X ,BX ,µX ) which converges to P in metric

dLp(X ) defined over the domain X . We say the convergence rate of Pn is of order O(ρ(n)) in an almost sense

if for every ε > 0 there exists a measurable subset A of X such that P(A) < ε and

dLp(X\A)(P
n,P) ≤ Mρ(n) ∀n ≥ N (13)

for some M,N ∈ R.11

Practically, Definition 5.2 implies that this order of convergence holds on “most” of the space since12

P(X \ A) ≥ 1 − ε. For example, if ε = 0.01, we can guarantee the existence of a set that is at least 99%13

probable such that that the order of convergence holds on this set. Note that because P
n → P in Lp(X ), Pn

14

still converges to P on the “small set” A, the definition simply states that the convergence rate is something15

other than O(ρ(n)) on this small set. Indeed, since ε is arbitrary, we can make X \A as close to X in measure16

P as is desired, hence the use of the term “almost all” of X . With the above two definitions, we proceed to17

analyzing the convergence and rate of convergence of the updated density in terms of the Lp-metric over18

Λ.19

Note that both Theorem 1 and 2 require their own versions of the predictability assumption, which20

is necessary to guarantee existence of the solution to the inverse problem using either approximation. In21

this paper, we are primarily interested in a more general case where it is possible to define a sequence22

of approximations that converge in Lp. As in [16], using approximations of the observed or predicted23
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densities requires the assumption that, in an asymptotic sense, these approximations satisfy versions of1

the predictability assumption to guarantee the existence of solutions to the inverse problem using these2

approximations. For convenience, we combine these two cases in the following assumption that includes3

a third case involving simultaneous approximations of both the observed and predicted densities, which4

is a common occurrence in practice.5

Assumption 3.6

There exists a constant C > 0 such that:7

1. Given a sequence of approximate observed densities,
(
πm

obs

)
, there exists an M such that ∀m ≥ M ,

πm
obs(q) ≤ Cπpred(q) a.e. q ∈ D. (14)

2. Given a sequence of approximate predicted densities,
(
πn

pred

)
, there exists an N such that ∀n ≥ N ,

πobs(q) ≤ Cπn
pred(q) a.e. q ∈ D. (15)

3. Given sequences of approximate observed densities and predicted densities, which satisfy (14) and

(15) there exists a K such that ∀m,n ≥ K we have

πm
obs(q) ≤ Cπn

pred(q) a.e. q ∈ D. (16)

The following corollaries describe rates of convergence in L1(Λ) of updated density approximations.8

Corollary 1. If πm
obs → πobs in L1(D) with rate of convergence O(ρ(m)) and Assumption 3.1 is satisfied, then9

πm
up → πup in L1(Λ) with rate of convergence O(ρ(m)).10

Proof. The proof is an immediate consequence of Theorem 2.11

Corollary 2. If πn
pred → πpred in L1 with rate of convergence O(ρ(n)) and Assumption 3.2 is satisfied, then πn

up →12

πup in L1(Λ) with rate of convergence O(ρ(n)).13

Proof. The proof is an immediate consequence of Theorem 1.14

Corollary 3. If πn
pred → πpred and πm

obs → πobs in L1(D) with rates of convergence O(ρ(n)) and O(γ(m)), respect-15

fully, and Assumption 3.3 is satisfied, then πn
upπup in L1(Λ) with rate of convergence O(ρ(n) + γ(m)).16
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Proof. The proof follows from applying a triangle inequality to the TV metric.1

5.2 Stability and Convergence in Lp with Approximate Densities2

First, we show that the updated density converges to the true updated density in the Lp-metric on Λ if3

the approximation of the predicted density converges in the Lp-metric on D. It is worth noting that an4

additional assumption involving the initial density belonging to L∞ is made to avoid singularities that5

complicate the proofs. Since we are typically free to choose initial densities in the setup of the problems,6

this is often a trivial assumption to satisfy in practice.7

Theorem 15 (Lp Convergence with Approximated Predicted Densities). Suppose πinit ∈ L∞(Λ) and πobs8

are chosen so that Assumption 1 is satisfied. If (πn
pred) satisfies Assumption 3.2 and πn

pred → πpred in Lp(D), then9

πn
up → πup in Lp(Λ).10

Proof. See APPENDIX E.1.11

Theorem 16 (Rate of Convergence with Predicted in Lp). Suppose πinit ∈ L∞(Λ) and πobs are chosen so that12

Assumption 1 is satisfied. If (πn
pred) satisfies Assumption 3.2, πn

pred → πpred in Lp(D), and the convergence rate of13

P
n
pred is of order O(ρ(n)) on almost all of D, then the convergence rate of Pn

up is of order O(ρ(n)) on almost all of Λ.14

Proof. See APPENDIX E.2.15

Next, we show that the updated density converges to the true updated density in the Lp-metric on Λ16

if the approximation of the observed density converges in the Lp-metric on D.17

Theorem 17 (Lp Convergence with Approximated Observed Densities). Suppose πinit ∈ L∞(Λ) and πobs are18

chosen so that Assumption 1 is satisfied. If (πn
obs) satisfies Assumption 3.1 and πn

obs → πobs in Lp(D), then πn
up → πup19

in Lp(Λ).20

Proof. See APPENDIX E.3.21

Theorem 18 (Rate of Convergence with Observed in Lp). Suppose πinit ∈ L∞(Λ) and πobs are chosen so that22

Assumption 1 is satisfied. If (πn
obs) satisfies Assumption 3.1, πn

obs → πobs in Lp(D), and the convergence rate of Pn
obs23

is of order O(ρ(n)) on almost all of D, then the convergence rate of Pn
up is of order O(ρ(n)) on almost all of Λ.24

Proof. See APPENDIX E.4.25
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Theorems 16 and 18 demonstrate that in the Lp-metric, the order of convergence for the updated den-1

sity is equal to the order of convergence for the density approximations in the data space. While these2

theorems are not quite as strong as their counterparts in the total variation metric, they are more generally3

applicable to common measures of convergence, especially the mean-integrated squared error (MISE) or4

L2-risk. In addition, similar to the L1 results, these theorems imply that, as long as the dimension of the5

data space is relatively small, the curse of dimensionality associated with estimating the updated density6

in the parameter space can be mitigated, which is beneficial if the dimension of the parameter space is7

large since many density estimation techniques scale poorly with dimension. We conclude this section by8

noting that a simple application of the triangle inequality can be used for the case where both the observed9

and predicted densities are approximated if Assumption 3.3 is satisfied.10

6. NUMERICAL EXAMPLES11

The examples of this section are intended to be straightforward and reproducible to highlight key aspects12

of the theoretical results presented above in the context of practical approximation issues.13

6.1 Estimating Discrepancies in Parameter Space via Discrepancies in Data Space14

This example illustrates how f -divergences are useful in the context of practical approximation issues

encountered when constructing a kernel density estimate (KDE) in the DCI framework. We focus on

numerically demonstrating Theorem 9, which gives

Df (P
A
up,P

B
up) = Df (P

A
obs,P

B
obs).

In the interest of space, we limit the presentation to the KL divergence, which is a commonly used f -15

divergence. We demonstrate how the above result is useful in quantifying the discrepancy between distinct16

updated densities in the parameter space by measuring the discrepancy between the associated estimates17

of observed densities in the data space obtained via different bandwidth parameter selection techniques18

utilized in the KDE estimates. For the interested reader, the supplemental files (see APPENDIX E.5) pro-19

vides the code to generate both the results presented here as well as additional results that utilize Gaussian20

Mixture Models (GMMs), which are popular semi-parametric density estimation techniques. These addi-21

tional results include numerical demonstration of the thematically similar theoretical results from both22
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Section 3 and Section 4 that relate discrepancies (measured in either f -divergences or IPMs) between data1

space densities (whether observed or predicted densities) to discrepancies in the associated updated den-2

sities in the parameter space.3

6.1.1 DCI Setup4

Consider the QoI map Q : Λ → D given by

Q(λ) =



λ1 cos λ2

λ1 sin λ2


+



λ3

λ4


 .

This mapping draws circular arcs of radius λ1 and angle λ2 around a central point (λ3, λ4). Suppose

that data points are randomly drawn from circular arcs centered around points three uncertain points

{µk}
3

k=1
⊂ R

2. We consider these central points to be uncertain as well as the sampling distribution of

their radii and arc lengths, and represent the initial state of uncertainty as:

λ1 ∼ U [0.65, 1.35], λ2 ∼ U [0, 2π], (λ3, λ4) ∼
3∑

k=1

wkN (µk,σ
2I),

where wk = 1

3
are the weights of a mixture normal distribution with means located at the centers µk =5

{(−1, 0.5), (0, 0), (1, 0.5)} and variance determined by σ2 = 0.005. The left plot in Figure 1 shows the6

corresponding push-forward sample of m = 15000 predicted points q ∈ D drawn from these initial distri-7

butions.8

The right plot in Figure 1 shows n = 500 observations drawn from the so-called “dual moons” dataset,9

which is a commonly utilized dataset used for evaluating density estimation in machine learning. The DCI10

problem in this example is to utilize Q to find an updated probability density on λ that is consistent with11

estimated densities computed from this observed “dual moons” dataset.12

6.1.2 KDEs and the Bandwidth Parameter13

Given a sample x1, . . . , xn from an unknown distribution π, the KDE is defined by,

πKDE(x) =
1

nh

n∑

i=1

K

(
x− xi

h

)
,
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FIG. 1: Predicted QoI (left). Observed QoI shown superimposed on the predicted QoI (right).

where K is a non-negative kernel function and h is a bandwidth parameter. Perhaps the most commonly1

used kernel is a Gaussian kernel, and the resulting Gaussian KDE is simply referred to as GKDE. We use2

the GKDE in this example.3

One of the challenges with using a KDE (regardless of the kernel choice) is determining an appropriate4

bandwidth parameter h for the density approximation. If the bandwidth is chosen too large, the resulting5

density is over-smoothed, but if the bandwidth is chosen too small, the density overfits the data resulting6

in increased variance in the estimate between different sample sets of the same size.7

Heuristic approaches for choosing the bandwidth are common, but they often make strong assump-8

tions about the target density. For instance, Silverman’s rule-of-thumb [41] gives9

hsilver :=

(
4

d+ 2

) 1

d+4

n
−1

d+4 σ̂q, (17)

where σ̂q is the computed variance of the sample data. This heuristic is based on an assumption that the10

samples are independently and identically distributed from a normal distribution.11

Alternatively, a statistical strategy, such as cross-validation [52], can optimally choose the bandwidth12

with respect to some criteria, e.g., the KL divergence. Minimizing the KL divergence is equivalent to13
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maximizing the expected loglikelihood of the data, which makes it easy to compute, i.e.,1

hcv := argmin
h

DKL(Pobs, P̃obs) = argmax
h

Eq∼πobs
[log πKDE(q)] . (18)

6.1.3 Quantifying Impact of Bandwidth Selection2

Fig. 2 compares results using either (17) or (18) to construct a GKDE estimate of the observed density.3

The use of hsilver clearly oversmooths the GKDE compared to the use of hcv . The impact of these distinct4

estimates of the observed density on the corresponding updated densities is shown in Fig. 3, where it is5

clear that the oversmoothed observed density leads to an insignificant update to the marginal of λ1.6

We can quantitatively measure the impact of the choice of bandwidths on the updated density—or7

in this example, the information gained from choosing hcv instead of hsilver—using the KL divergence.8

Moreover, Theorem 9 states that to measure these differences between updated densities, it suffices to9

measure the differences between the observed densities in the data space. Using the notation of Theorem 9,10

denote the GKDEs obtained using hsilver and hcv by πA
obs and πB

obs, and the corresponding updated densities11

by πA
up and πB

up, respectively. We use Monte-Carlo sampling (M = 10000 samples) from πA
up and πA

obs to12

estimate the KL divergences in both the parameter and data spaces. Over B = 30 batches, the resulting13

average estimate of DKL(π
A
obs, π

B
obs) ≈ 0.953 with a standard deviation of 0.008. The average estimate of14

DKL(π
A
up, π

B
up) ≈ 0.950 with a standard deviation of 0.006. As expected, the estimates of the KL divergence15

are nearly equal up to errors due to sampling. This illustrates the utility of Theorem 9: the computation16

of discrepancies between approximate densities in the parameter space can be replaced by a potentially17

more efficient computation of discrepancies between approximate densities in the data space where the18

actual approximations take place. This implies that the discrepancies between updated densities can be19

estimated without the need to solve the stochastic inverse problem.20

6.2 Lp Order of Convergence in an Almost Sense21

Here, we numerically demonstrate Theorem 16 that states that the rate of convergence in Lp of approx-22

imated updated densities is the same (in the measure-theoretic almost sense) as that of the associated23

approximated predicted densities.24
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FIG. 2: The left plot shows the approximation of the observed density using a GKDE and Silverman’s rule-of-thumb,
hsilver, for the bandwidth parameter. This clearly leads to an oversmoothed estimate of the density. The right plot
shows the approximation of the observed density using a GKDE and cross-validation to select the bandwidth param-
eter, hcv, which leads to a better estimate of the distribution of the dual moons dataset.

6.2.1 DCI Setup1

Consider the linear QoI map Q : Λ → D from R
2 to R defined by Q(λ) = λ1+λ2, with a triangular observed

density defined by:

πobs(q) =





4q 0 ≤ q < 1

2
,

−4(q − 1) 1

2
≤ q ≤ 1,

0 otherwise.

(19)

Let the initial density be uniform on [0, 1] × [0, 1], then the exact predicted density is also a triangular
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FIG. 3: The initial and approximate updated marginals associated with the first two components of λ: the radius
parameter λ1 and angle parameter λ2. The right plot shows that the two approximations of the updated density πup

(using either hsilver or hcv for the GKDE of πobs) have marginals that appear to mostly agree on λ2 and differ from
the marginal of the initial density πinit. The left plot shows that the approximation of πup associated with hsilver fails
to produce an update for λ1 that is significantly different from πinit. On the other hand, the approximation of πup

associated with hcv shows a distribution of λ1 that is not uniformly distributed.
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density:

πpred(q) =





q 0 ≤ q < 1,

−(q − 2) 1 ≤ q ≤ 2,

0 otherwise.

(20)

For the sake of illustration, suppose we approximate this density using the following sequence,

πn
pred(q) =





q + 1

n 0 ≤ q < 1,

−(q − 2)− gn(q) 1 ≤ q ≤ 2,

0 otherwise.

(21)

where gn(q) = − 2

n (q − 2) is chosen so that πn
pred is a valid probability distribution that integrates to 1 (true1

for any n ≥ 2). Fig. 4 shows the observed, predicted, and approximations of the predicted for n = 2, 4, and2

8.3

6.2.2 Rates of Convergence4

The Lp-error in the approximation of πn
pred has the following closed form,

||πn
pred − πpred||Lp(D) =

(∫

D

∣∣∣πn
pred(q)− πpred(q)

∣∣∣
p

dµD

)1/p

=

(∫
1

0

∣∣∣∣
1

n

∣∣∣∣
p

dµD +

∫
2

1

∣∣∣∣
2

n
· (q − 2)

∣∣∣∣
p

dµD

)1/p

=

(
1

np
+

(
2
p

np

)(
1

p+ 1

))1/p

=
1

n
·

(
1 +

2
p

p+ 1

)1/p

.

For a fixed p, this clearly converges to 0 with order O(n−1).5

Since the predictability assumption is satisfied for each n ≥ 2 (i.e., πn
pred is absolutely continuous with
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FIG. 4: The observed and predicted densities (solid lines) defined by Eqs. (19) and (20). Dashed lines show a sequence
of approximations defined by Eq. (21) that converge to the predicted density.

Volume x, Issue x, 2024



32 T. Butler, R. Spence, T. Wildey, & T. Yen

respect to πobs), we can compute the approximate updated density, πn
up, for each n, as

πn
up(λ) =





4Q(λ)

Q(λ) + 1

n

0 ≤ Q(λ) < 1

2

−4(Q(λ)− 1)

Q(λ) + 1

n

1

2
≤ Q(λ) ≤ 1

0 otherwise

for any λ ∈ [0, 1] × [0, 1]. As n → ∞, the approximate updated densities converge to the exact updated

density, πup, given by

πup(λ) =





4 0 < Q(λ) < 1

2

−4(Q(λ)− 1)

Q(λ)
1

2
≤ Q(λ) ≤ 1

0 otherwise

Theorem 15 guarantees that this convergence is in Lp since πn
pred → πpred in Lp.1

Fig. 5 shows the corresponding convergence rates of πn
pred → πpred versus πn

up → πup in Lp with p = 4.2

Note that while πn
up → πup, the order of convergence is closer to O(n−0.65) rather than the rate of πn

pred →3

πpred, which is O(n−1). Indeed, for this specific example, we can show that the rate of convergence of the4

updates must be strictly less than the rate of convergence between the predicted densities in Lp.5

However, according to Theorem 16, if we fix an ε > 0, there exists a set Aδ such that the Pup(Aδ) < ε

and the rate of convergence of πn
up → πup in Lp over Λ \Q−1(Aδ) is O(n−1). For this example, if we choose

δ <
√

ε

2
and take the small set Aδ as in the proof of Theorem 18 (see APPENDIX E.1), i.e.,

Aδ := {q : πpred(q) ≤ δ} = {q ≤ δ} ∪ {−(δ− 2) ≤ q}, (22)

then we have

Pup(Q
−1(Aδ)) = Pobs(Aδ) =

∫
δ

0

4q dµD = 2δ2 < ε

and the rate of convergence should be of order O(n−1) on the rest of the parameter space as desired. Fig. 56

illustrates the numerical recovery of the desired order of convergence on Λ \ Q−1(Aδ) with ε = 0.01,7

δ =
√

ε

2
.8
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FIG. 5: Shows the rate of convergence (RoC) of πn

pred → πpred in L4(D) versus πn

up → πup in L4(Λ). The rate of

convergence of πn

up in L4(Λ \Q−1(Aδ)) is almost O(n−1), with Aδ defined by Eq. (22) using ε = 0.01 and δ =
√

ε

2
.
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7. CONCLUSIONS1

This paper addresses the common scenario where finite data or model evaluations are used to approximate2

probability densities which are subsequently used to construct approximate solutions to stochastic inverse3

problems. Previous results in the literature demonstrated stability and convergence in the total variation4

(i.e., the L1), metric. This paper generalized these results to other methods of quantifying the discrep-5

ancy between probability measures that have gained in popularity in recent years, namely, f -divergences,6

integral probability metrics, and Lp metrics. To the authors knowledge, this paper is the first to theo-7

retically prove and numerically demonstrate stability and convergence for solutions to stochastic inverse8

problems under these other methods for quantifying discrepancies between measures. Numerical results9

using straightforward and reproducible test problems illustrated key theoretical results.10
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APPENDIX A. PROOFS OF TOTAL-VARIATION STABILITY AND CONVERGENCE RESULTS1

In this appendix, we provide proofs of the theorems from Section 2, in order of appearance. We begin with2

Theorem 3.3

APPENDIX A.1 Proof of Theorem 34

For fixed measures Pinit and Pobs with corresponding densities πinit and πobs respectively, let PA
pred and P

B
pred5

denote arbitrary predicted measures which satisfy Assumption 2 with associated updated measures P
A
up6

and P
B
up. Additionally, assume there exists another constant C1 > 0 such that7

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.

Then, there exists a constant C2 > 0 such that

dTV (P
A
up,P

B
up) ≤ C2dTV (P

A
pred,P

B
pred).

Proof. Utilizing (4) for PA
up and P

B
up, we obtain

dTV (P
A
up,P

B
up) =

∫

Λ

∣∣∣∣∣πinit(λ) ·
πobs(Q(λ))

πA
pred(Q(λ))

− πinit(λ) ·
πobs(Q(λ))

πB
pred(Q(λ))

∣∣∣∣∣ dµΛ.

Collecting and factoring terms, and applying the predictability assumption gives

dTV (P
A
up,P

B
up) ≤ C

∫

Λ

πinit(λ)

πA
pred(Q(λ))

·
∣∣∣πB

pred(Q(λ))− πA
pred(Q(λ))

∣∣∣ dµΛ.

Applying the disintegration theorem yields

dTV (P
A
up,P

B
up) ≤ C ·

∫

D

∫

Λ∩Q−1(q)

πinit(λ) dµΛ,q ·
1

πA
pred(q)

·
∣∣∣πB

pred(q)− πA
pred(q)

∣∣∣ dµD.

Identifying the inner integral as πpred(q) produces

dTV (P
A
up,P

B
up) ≤ C ·

∫

D

πpred(q)

πA
pred(q)

·
∣∣∣πB

pred(q)− πA
pred(q)

∣∣∣ dµD,
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where we now see the utility of the additional assumption on πpred and πA
pred, which allows us to obtain

dTV (P
A
up,P

B
up) ≤ C ·

∫

D

πpred(q)

πA
pred(q)

·
∣∣∣πB

pred(q)− πA
pred(q)

∣∣∣ dµD

≤ C · C1 ·

∫

D

∣∣∣πB
pred(q)− πA

pred(q)
∣∣∣ dµD

= C2 · dTV (P
B
pred,P

A
pred),

which completes the proof.1

2

APPENDIX A.2 Proof of Theorem 43

For fixed measures Pinit and Ppred with corresponding densities πinit and πpred respectively, let PA
obs and P

B
obs

denote arbitrary observed measures which satisfy Assumption 2 with associated updated measures P
A
up

and P
B
up. Then,

dTV

(
P
A
up,P

B
up

)
= dTV

(
P
A
obs,P

B
obs

)
.

Proof. Utilizing (4) for PA
up and P

B
up, we obtain

dTV (P
A
up,P

B
up) =

∫

Λ

∣∣∣∣πinit(λ) ·
πA

obs(Q(λ))

πpred(Q(λ))
− πinit(λ) ·

πB
obs(Q(λ))

πpred(Q(λ))

∣∣∣∣ dµΛ.

Factoring out the appropriate terms and applying the disintegration theorem gives

dTV (P
A
up,P

B
up) =

∫

D

(∫

Λ∩Q−1(q)

πinit(λ)

πpred(Q(λ))
dµΛ,q

)
·
∣∣πA

obs(q)− πB
obs(q)

∣∣ dµD.

Equation (8) implies the inner integral is one and the conclusion follows.4

APPENDIX B. PROOFS OF F -DIVERGENCE STABILITY AND CONVERGENCE RESULTS5

In this appendix, we provide proofs of the theorems from Section 3, in order of appearance. We begin with6

Theorem 6.7
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APPENDIX B.1 Proof of Theorem 6:f -divergence and DCI1

Given probability measures, Pinit, Pobs, and Ppred which satisfy the Assumption 1 and updated measures

Pup given by (4), we have the following relationship,

Df

(
Pup‖Pinit

)
= Df

(
Pobs‖Ppred

)
.

Proof. Utilizing (4) we obtain

Df

(
Pup‖Pinit

)
=

∫

Λ

f

(
πobs(Q(λ))

πpred(Q(λ))

)
πinit(λ)dµΛ =

∫

Λ

f

(
πobs(Q(λ))

πpred(Q(λ))

)
dPinit.

Since the predicted measure is the push-forward of the initial, we rewrite this as

∫

Λ

f

(
πobs(Q(λ))

πpred(Q(λ))

)
dPinit =

∫

D

f

(
πobs(q)

πpred(q)

)
dPpred.

Substituting dPpred = πpred(q)dµD on the right-hand side finishes the proof.2

APPENDIX B.2 Proof of Theorem 7: Stability w.r.t. Predicted with f -divergences3

For fixed measures Pinit and Pobs with corresponding densities πinit and πobs respectively, let πA
pred and πB

pred4

denote predicted densities such that5

πobs(q) ≤ CπA
pred(q), and πobs(q) ≤ CπB

pred(q), for a.e. q ∈ D,

for some constant C > 0, and let PA
up and P

B
up denotes the respective associated updated measures. Addi-6

tionally, assume there exists another constant C1 > 0 such that7

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.

Then, there exists a constant C2 > 0 such that

Df (P
A
up || PB

up) ≤ C2 ·Df (P
B
pred || PA

pred).
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Proof. Utilizing (4) for PA
up and P

B
up, we obtain

Df (P
A
up || PB

up) =

∫

Λ

f



πinit(λ) ·

πobs(Q(λ))

πA
pred(Q(λ))

πinit(λ) ·
πobs(Q(λ))

πB
pred(Q(λ))


πinit(λ) ·

πobs(Q(λ))

πB
pred(Q(λ))

dµΛ.

Canceling terms and applying the predictability assumption gives

Df (P
A
up || PB

up) ≤ C

∫

Λ

πinit(λ) · f

(
πB

pred(Q(λ))

πA
pred(Q(λ))

)
dµΛ.

Applying the disintegration theorem yields

Df (P
A
up || PB

up) ≤ C ·

∫

D

∫

Λ∩Q−1(q)

πinit(λ) dµΛ,q · f

(
πB

pred(q)

πA
pred(q)

)
dµD.

Identifying the inner integral as πpred(q) produces

Df (P
A
up || PB

up) ≤ C ·

∫

D

f

(
πB

pred(q)

πA
pred(q)

)
πpred(q) dµD,

where we now see the utility of the additional assumption on πpred and πA
pred, which allows us to obtain

Df (P
A
up || PB

up) ≤ C ·

∫

D

f

(
πB

pred(q)

πA
pred(q)

)
πpred(q) dµD

≤ C · C1 ·

∫

D

f

(
πB

pred(q)

πA
pred(q)

)
πA

pred(q) dµD

= C2 ·Df (P
B
pred || PA

pred),

which completes the proof.1

APPENDIX B.3 Proof of Theorem 9: Stability w.r.t. Observed with f -divergences2

For fixed measures Pinit and Ppred with corresponding densities πinit and πpred respectively, let PA
obs and P

B
obs3

denote observed measures such that4

πA
obs(q) ≤ Cπpred(q), and πB

obs(q) ≤ Cπpred(q) for a.e. q ∈ D,
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for some constant C > 0, and let PA
up and P

B
up denote the respective associated updated measures. Then,

Df (P
A
up || PB

up) = Df (P
A
obs || P

B
obs).

Proof. Utilizing (4) for PA
up and P

B
up, we obtain

Df (P
A
up || PB

up) =

∫

Λ

f



πinit(λ) ·

πA
obs(Q(λ))

πpred(Q(λ))

πinit(λ) ·
πB

obs(Q(λ))

πpred(Q(λ))


πinit(λ) ·

πB
obs(Q(λ))

πpred(Q(λ))
dµΛ.

Canceling terms and applying the disintegration theorem gives

Df (P
A
up || PB

up) =

∫

D

(∫

Λ∩Q−1(q)

πinit(λ)

πpred(Q(λ))
dµΛ,q

)
· f

(
πA

obs(q)

πB
obs(q)

)
πB

obs(q) dµD.

Equation (8) implies the inner integral is one and the conclusion follows.1

APPENDIX C. TOTAL VARIATION AS IPM2

We show that choosing F to be {f : ||f ||∞ ≤ 1} produces the total variation metric. Consider,

dF (P
A,PB) = sup

f∈F

∣∣∣∣
∫

X

fdPA −

∫

X

fdPB

∣∣∣∣

= sup
f∈F

∣∣∣∣
∫

X

f(x)πA(x)dµX −

∫

X

f(x)πB(x)dµX

∣∣∣∣

= sup
f∈F

∣∣∣∣
∫

X

f(x)(πA(x)− πB(x))dµX

∣∣∣∣ .

Now it is clear that for every f ∈ F where F is chosen to be {f : ||f ||∞ ≤ 1},

∣∣∣∣
∫

X

f(x)(πA(x)− πB(x))dµX

∣∣∣∣ ≤
∫

X

|f(x)|
∣∣πA(x)− πB(x)

∣∣ dµX

≤

∫

X

||f ||∞
∣∣πA(x)− πB(x)

∣∣ dµX

≤

∫

X

∣∣πA(x)− πB(x)
∣∣ dµX

= dTV (P
A,PB)
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by the triangle inequality and the fact that ||f ||∞ ≤ 1. For the other direction, define f±(x) to be

f±(x) =





1 πA(x)− πB(x) > 0

−1 πA(x)− πB(x) < 0.

Then ||f±||∞ ≤ 1. In addition, ∀x ∈ X , the definition of f± implies that

∣∣πA(x)− πB(x)
∣∣ ≤ f±(x)(π

A(x)− πB(x))

⇒

∫

X

∣∣πA(x)− πB(x)
∣∣ dµX ≤

∫

X

f±(x)(π
A(x)− πB(x))dµX

⇒ dTV (P
A,PB) ≤

∣∣∣∣
∫

X

f±(x)(π
A(x)− πB(x))dµX

∣∣∣∣

≤ sup
f∈F

∣∣∣∣
∫

X

f(x)(πA(x)− πB(x))dµX

∣∣∣∣

= dF (P
A,PB)

Thus, the total variation metric is equivalent to the integral probability metric with F chosen to be {f :

||f ||∞ ≤ 1} since

dF (P
A,PB) ≤ dTV (P

A,PB) and dTV (P
A,PB) ≤ dF (P

A,PB).

APPENDIX D. PROOFS OF IPM STABILITY AND CONVERGENCE RESULTS1

In this appendix, we provide proofs of the theorems from Section 4, in order of appearance. We begin with2

Theorem 11.3

APPENDIX D.1 Proof of Theorem 11: Stability of Updated via Predicted using IPM4

Let FΛ and GD be used to define IPM for measures on Λ and D, respectively. Suppose EΛ|q is a bounded5

operator from FΛ to GD. For fixed measures Pinit and Pobs with corresponding densities πinit and πobs6

respectively, let πA
pred and πB

pred denote predicted densities satisfying Assumption 2.2 and let PA
up and P

B
up7

denotes the respective associated updated measures. Additionally, assume there exists another constant8

C1 > 0 such that9

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.
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Then, there exists a constant C2 > 0 such that

dFΛ
(PA

up,P
B
up) ≤ C2dGD

(PA
pred,P

B
pred)

Proof. Without loss of generality, assume that FΛ := {f : ||f ||FΛ
≤ 1} and GD := {g : ||g||GD

≤ 1}, where

|| · ||FΛ
and || · ||GD

denote the norms defining the IPM for measures on Λ and D, respectively. Since EΛ|q is

a bounded operator, ∃C > 0 such that ∀f ∈ FΛ

||EΛ|q(f)||GD
≤ C||f ||FΛ

≤ C.

Thus,

1

C
||EΛ|q(f)||GD

≤ 1 ⇒
1

C
EΛ|q(f) ∈ GD

In other words, the range of 1

CEΛ|q is contained in GD.1

Therefore, we have,

dFΛ
(PA

up,P
B
up) = sup

f∈FΛ

∣∣∣∣∣

∫

D

∫

Λ∩Q−1(q)

f(λ)πinit |q(λ) dµΛ,qπpred(q)

(
πobs(q)

πA
pred(q)

−
πobs(q)

πB
pred(q)

)
dµD

∣∣∣∣∣

= sup
f∈FΛ

∣∣∣∣∣

∫

D

EΛ|q(f)
πobs(q)πpred(q)

πA
pred(q)π

B
pred(q)

(πB
pred(q)− πA

pred(q)) dµD

∣∣∣∣∣

= C · sup
f∈FΛ

∣∣∣∣∣

∫

D

1

C
EΛ|q(f)

πobs(q)πpred(q)

πA
pred(q)π

B
pred(q)

(πB
pred(q)− πA

pred(q)) dµD

∣∣∣∣∣

≤ C · sup
g∈GD

∣∣∣∣∣

∫

D

g(q)
πobs(q)πpred(q)

πA
pred(q)π

B
pred(q)

(πB
pred(q)− πA

pred(q)) dµD

∣∣∣∣∣

≤ C2 · dGD
(PA

pred,P
B
pred),

where we have used the predictability assumption and the additional assumption involving πpred and πA
pred2

to obtain the last inequality.3

4
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APPENDIX D.2 Proof of Theorem 12: Stability of Updated via Observed using IPM1

Let FΛ and GD be used to define IPM for measures on Λ and D, respectively. Suppose EΛ|q is a bounded

operator from FΛ to GD. For fixed measures Pinit and Ppred with corresponding densities πinit and πpred

respectively, let PA
obs and P

B
obs denote observed measures satisfying Assumption 2.1 and let PA

up and P
B
up

denote the respective associated updated measures. Then, there exists C > 0 such that

dFΛ
(PA

up,P
B
up) ≤ CdGD

(PA
obs,P

B
obs)

Proof. For the case of approximate predicted densities, the proof is similar to the proof in APPENDIX D.1,2

except we have3

dFΛ(P
A
up,P

B
up) = sup

f∈FΛ

∣∣∣∣∣

∫

D

∫

Λ∩Q−1(q)

f(λ)πinit |q(λ) dµΛ,q(π
A
obs(q)− πB

obs(q)) dµD

∣∣∣∣∣

= sup
f∈FΛ

∣∣∣∣
∫

D

EΛ|q(f)(π
A
obs(q)− πB

obs(q)) dµD

∣∣∣∣

= C · sup
f∈FΛ

∣∣∣∣
∫

D

1

C
EΛ|q(f)(π

A
obs(q)− πB

obs(q)) dµD

∣∣∣∣

≤ C · sup
g∈GD

∣∣∣∣
∫

D

g(q)(πA
obs(q)− πB

obs(q)) dµD

∣∣∣∣

= C · dGD
(PA

obs,P
B
obs)

4

APPENDIX D.3 Proof of Theorem 14: Stability using the Pullback IPM5

For fixed measures Pinit and Ppred with corresponding densities πinit and πpred respectively, let PA
obs and P

B
obs6

denote observed measures such that7

πA
obs(q) ≤ Cπpred(q), and πB

obs(q) ≤ Cπpred(q) for a.e. q ∈ D,

for some constant C > 0 (i.e., Assumption 2.1), and let P
A
up and P

B
up denote the respective associated8

updated measures. Given an IPM on D defined by FD and the corresponding data-consistent IPM defined9
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by F∗
Λ, we have1

dF∗
Λ
(PA

up,P
B
up) = dFD

(PA
obs,P

B
obs), (D.1)

Similarly, for fixed measures Pinit and Pobs with corresponding densities πinit and πobs respectively, let πA
pred2

and πB
pred denote predicted densities such that3

πobs(q) ≤ CπA
pred(q), and πobs(q) ≤ CπB

pred(q), for a.e. q ∈ D,

for some constant C > 0 (i.e., Assumption 2.2), and let P
A
up and P

B
up denote the respective associated4

updated measures. Additionally, assume there exists another constant C1 > 0 such that5

πpred(q) ≤ C1π
A
pred(q), for a.e. q ∈ D.

Then, there exists a constant C2 > 0 such that6

dF∗
Λ
(PA

up,P
B
up) ≤ C2dFD

(PA
pred,P

B
pred). (D.2)

Proof. Given f ∈ F∗
Λ, choose gf ∈ FD to be the corresponding function such that

f(λ) = gf (Q(λ))

which exists because of the definition of the data-consistent IPM.

EΛ|q(f) =

∫

Λ∩Q−1(q)

f(λ)πinit |q(λ)dµΛ,q

=

∫

Λ∩Q−1(q)

gf (Q(λ))πinit |q(λ)dµΛ,q

= g(q)

∫

Λ∩Q−1(q)

πinit |q(λ)dµΛ,q

= g(q).

Similarly, for each g ∈ FD, choose fg to be the corresponding function in F∗
Λ. The same equality holds for
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each function g. Thus, to prove (11), we have

dF∗
Λ
(PA

up,P
B
up) = sup

f∈F∗
Λ

∣∣∣∣∣

∫

D

EΛ|q(f)

(
πobs(q)

πB
pred(q)

)(
πpred(q)

πA
pred(q)

)
(πB

pred(q)− πA
pred(q)) dµD

∣∣∣∣∣

≤ C · C1 sup
g∈GD

∣∣∣∣
∫

D

g(q)(πA
pred(q)− πB

pred(q)) dµD

∣∣∣∣

= dGD
(PA

pred,P
B
pred).

To prove (12), we proceed as above except we do not require the additional assumption,

dF∗
Λ
(PA

up,P
B
up) = sup

f∈F∗
Λ

∣∣∣∣
∫

D

EΛ|q(f)(π
A
obs(q)− πB

obs(q)) dµD

∣∣∣∣

= sup
g∈GD

∣∣∣∣
∫

D

g(q)(πA
obs(q)− πB

obs(q)) dµD

∣∣∣∣

= dGD
(Pobs, P̃obs).

1

APPENDIX E. PROOFS OF LP CONVERGENCE RESULTS2

In this appendix, we provide proofs of the theorems from Section 5, in order of appearance. We begin with3

Theorem 15.4

APPENDIX E.1 Proof of Theorem 15: Lp Convergence with Approximated Predicted Densities5

Suppose πinit ∈ L∞(Λ) and πobs are chosen so that Assumption 1 is satisfied. If (πn
pred) satisfies Assump-6

tion 3 and πn
pred → πpred in Lp(D), then πn

up → πup in Lp(Λ).7

The proof uses standard measure-theoretic techniques. First, we partition the output space into two8

sets of “small” and “large” measure. We then consider the pre-images of these sets in the input space and9

separately argue why the Lp difference between the approximate and exact updated densities are small on10

each of these sets. The argument for the pre-image of the “small” set is straightforward in that it directly11

relies upon the fact that the initial probability of the set is itself small. The argument for the pre-image of12

the “large” set is more subtle.13

Proof. Let ε > 0. Since πpred is a probability density and therefore in L1(D), we can choose a set Aδ ⊂ D
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defined by δ > 0 as

Aδ := {q : πpred(q) < δ}

such that

∫

Aδ

πpred(q) dµD <
εp

3 · 2p−1
·

1

Cp · ||πinit(λ)||
p−1

L∞(Λ)

,

where C is the maximum of the predictability constants from Assumptions 1 and 3. We use the set

Q−1(Aδ) ⊂ Λ to split the following integral into two terms that we can separately bound,

||πn
up − πup||

p
Lp(Λ) =

∫

Λ

∣∣∣πn
up(λ)− πup(λ)

∣∣∣
p

dµΛ

=

∫

Λ\Q−1(Aδ)

∣∣∣πn
up(λ)− πup(λ)

∣∣∣
p

dµΛ

︸ ︷︷ ︸
=:IΛ\Q−1(Aδ)

+

∫

Q−1(Aδ)

∣∣∣πn
up(λ)− πup(λ)

∣∣∣
p

dµΛ

︸ ︷︷ ︸
=:I

Q−1(Aδ)

.

First, consider the “small” set Q−1(Aδ). We rewrite the approximate updated density and true updated

density in terms of the initial density times the ratio rn(q) =
πobs(q)
πn

pred(q)
and r(q) = πobs(q)

πpred(q)
respectively. From

Assumptions 1 and 3, there exists NC such that ∀n ≥ NC

rn(q) =
πobs(q)

πn
pred(q)

≤ C and r(q) =
πobs(q)

πpred(q)
≤ C.

Thus,

IQ−1(Aδ) =

∫

Q−1(Aδ)

|πinit(λ)rn(Q(λ))− πinit(λ)r(Q(λ))|p dµΛ

=

∫

Q−1(Aδ)

|πinit(λ)|
p |rn(Q(λ))− r(Q(λ))|p dµΛ

≤ 2
pCp ·

∫

Q−1(Aδ)

|πinit(λ)|
p
dµΛ.
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Applying Hölder’s inequality p− 1 times followed by the disintegration theorem gives

∫

Q−1(Aδ)

|πinit(λ)|
p
dµΛ ≤ ||πinit(λ)||

p−1

L∞(Λ) ·

∫

Q−1(Aδ)

πinit(q) dµΛ,

= ||πinit(λ)||
p−1

L∞(Λ) ·

∫

Aδ

∫

Λ∩Q−1(q)

πinit(λ) dµΛ,q

︸ ︷︷ ︸
=πpred(q)

dµD

= ||πinit(λ)||
p−1

L∞(Λ) ·

∫

Aδ

πpred(q) dµD.

By our choice of Aδ,

IQ−1(Aδε
) ≤

2εp

3
.

Next, we bound the integral on the “large” set Λ \Q−1(Aδ). We begin by re-arranging the terms of the

difference between updated densities by finding a common denominator as follows

∣∣∣πn
up(λ)− πup(λ)

∣∣∣ = πinit(λ)

∣∣∣∣∣
πobs(Q(λ))

πn
pred(Q(λ))

−
πobs(Q(λ))

πpred(Q(λ))

∣∣∣∣∣

= πinit(λ) · πobs(Q(λ)) ·

∣∣∣∣∣
πn

pred(Q(λ))− πpred(Q(λ))

πpred(Q(λ))π̃n
pred(Q(λ))

∣∣∣∣∣

=
πinit(λ) · πobs(Q(λ))

πpred(Q(λ)) · πn
pred(Q(λ))

·
∣∣∣πn

pred(Q(λ))− πpred(Q(λ))
∣∣∣

=
πinit(λ)

πpred(Q(λ))
· rn(Q(λ)) ·

∣∣∣πn
pred(Q(λ))− πpred(Q(λ))

∣∣∣

where rn(q) is the ratio described earlier. Assumption 3 implies rn(Q(λ)) is bounded by C and πpred(q) ≥ δ

on the complement of Aδ. It follows that

IΛ\Q−1(Aδ) ≤
Cp

δp−1

∫

Λ\Q−1(Aδ)

|πinit(λ)|
p ·

∣∣∣πn
pred(Q(λ))− πpred(Q(λ))

∣∣∣
p

πpred(Q(λ))
dµΛ.

Rewriting the above integrand as

|πinit(λ)|
p−1 ·

πinit(Q(λ))

πpred(Q(λ))

∣∣∣πn
pred(Q(λ))− πpred(Q(λ))

∣∣∣
p

,
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and then applying Hölder’s inequality p− 1 times, we obtain

IΛ\Q−1(Aδ)

≤
Cp||πinit(λ)||

p−1

L∞(Λ)

δp−1

∫

Λ\Q−1(Aδ)

πinit(λ)

πpred(Q(λ))

∣∣∣πn
pred(Q(λ))− πpred(Q(λ))

∣∣∣
p

dµΛ.

Applying the disintegration theorem yields

IΛ\Q−1(Aδ)

≤
Cp||πinit(λ)||

p−1

L∞(Λ)

δp−1

∫

D

∫

Λ\Q−1(Aδ)

πinit(λ)

πpred(Q(λ))
dµΛ,q

︸ ︷︷ ︸
=1

∣∣∣πn
pred(q)− πpred(q)

∣∣∣
p

dµD,

which reduces to

IΛ\Q−1(Aδ) ≤
Cp||πinit(λ)||

p−1

L∞(Λ)

δp−1

∫

D

∣∣∣πn
pred(q)− πpred(q)

∣∣∣
p

dµD

=
Cp||πinit(λ)||

p−1

L∞(Λ)

δp−1
||πn

pred − πpred||
p
Lp(D). (E.1)

Since πn
pred → πpred in Lp(D), we can choose Nδ ≥ NC such that n ≥ Nδ implies that the above integral is

less than εp/3. Combining this with the bound from the “small” set, we have that for n ≥ Nδ,

||πn
up − πup||Lp(Λ) ≤

(
IQ−1(Aδ) + IΛ\Q−1(Aδ)

)1/p

<

(
2εp

3
+

εp

3

)1/p

= ε.

The conclusion follows.1

APPENDIX E.2 Proof of Theorem 16: Rate of Convergence with Predicted in Lp2

Suppose πinit ∈ L∞(Λ) and πobs are chosen so that Assumption 1 is satisfied. If (πn
pred) satisfies Assump-3

tion 3, πn
pred → πpred in Lp(D), and the convergence rate of Pn

pred is of order O(ρ(n)) on almost all of D, then4

the convergence rate of Pn
up is of order O(ρ(n)) on almost all of Λ.5

Proof. This follows immediately from the bound obtained in Equation (E.1) in the proof of Theorem 156
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located in Appendix APPENDIX E.1.1

APPENDIX E.3 Proof of Theorem 17: Lp Convergence with Approximated Observed Densities2

Suppose πinit ∈ L∞(Λ) and πobs are chosen so that Assumption 1 is satisfied. If (πn
obs) satisfies Assumption 33

and πn
obs → πobs in Lp(D), then πn

up → πup in Lp(Λ).4

The proof is similar to that of Theorem 15 in that we let ε > 0 and follow analogous (and in some case5

identical) steps to choose an N such that n ≥ N implies that ||π̃n
up − πup||Lp(Λ) < ε. Below, we mention the6

relevant, and in some cases subtle, details that change in the argument.7

Proof. In proving that IQ−1(Aδ) is small, the only relevant detail that changes is that rn(q) is now defined

in terms of the ratio of the approximated observed density πn
obs to πpred. The proof that IΛ\Q−1(Aδ) can be

made small for sufficiently large n is simpler than in the previous proof. First, there is no need to find a

common denominator in the difference of the approximated and exact updated densities since factoring

immediately gives
∣∣∣πn

up(λ)− πup(λ)
∣∣∣ =

πinit(λ)

πpred(Q(λ))
|πn

obs(Q(λ))− πobs(Q(λ))| .

It then follows that

IΛ\Q−1(Aδ) ≤
1

δp−1

∫

Λ\Q−1(Aδ)

|πinit(λ)|
p ·

∣∣πn
obs(Q(λ))− πobs(Q(λ))

∣∣p

πpred(Q(λ))
dµΛ.

Utilizing this and a similar argument as before, we obtain8

IΛ\Q−1(Aδ) ≤
||πinit(λ)||

p−1

L∞(Λ)

δp−1
||πn

obs − πobs||
p
Lp(D). (E.2)

Comparing this to the bound obtained in the previous proof, we note the absence of Cp and that the9

Lp(D) norm is now of the difference in observed densities as opposed to predicted densities. Both of these10

differences are attributed to the simpler first step that did not require finding a common denominator.11

To finish the proof, we simply appeal to the fact that now πn
obs → πobs in Lp(D) to make the above term12

small.13
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APPENDIX E.4 Proof of Theorem 18: Rate of Convergence with Observed in Lp
1

Suppose πinit ∈ L∞(Λ) and πobs are chosen so that Assumption 1 is satisfied. If (πn
obs) satisfies Assump-2

tion 3, πn
obs → πobs in Lp(D), and the convergence rate of Pn

obs is of order O(ρ(n)) on almost all of D, then3

the convergence rate of Pn
up is of order O(ρ(n)) on almost all of Λ.4

Proof. This follows immediately from the bound obtained in Equation (E.2) in the proof of Theorem 17 in5

Appendix APPENDIX E.3.6

APPENDIX E.5 Code to Reproduce Results7

All of the scripts used to generate the numerical results in this paper can be found at8

https://github.com/sandialabs/MrHyDE/tree/main/scripts/DCI/L1-generalization9
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