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Data-consistent inversion is designed to solve a class of stochastic inverse problems where the solution is a pullback of
a probability measure specified on the outputs of a quantities of interest (Qol) Map. This work presents stability and
convergence results for the case where finite Qol data result in an approximation of the solution as a density. Given
their popularity in the literature, separate results are proven for three different approaches to measuring discrepancies
between probability measures: f-divergences, integral probability metrics, and LP metrics. In the context of integral
probability metrics, we also introduce a pullback probability metric that is well-suited for data-consistent inversion.
This fills a theoretical gap in the convergence and stability results for data-consistent inversion that have mostly
focused on convergence of solutions associated with approximate maps. Numerical results are included to illustrate
key theoretical results with intuitive and reproducible test problems that include a demonstration of convergence in the

measure-theoretic “almost” sense.
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1. INTRODUCTION

Uncertainty Quantification (UQ) has become a critically important field of study due to the increasing re-
liance on physics-based computational models to make data-informed and data-consistent decisions. UQ
problems are generally categorized as being either forward or inverse problems depending on the direc-
tion that uncertainty is considered to propagate. The solutions to these UQ problems are often represented
as probability densities, on either model input or output spaces, and often require some form of approxi-
mation, which introduces error. The focus of this paper is on the impact of such approximation error on the
solutions to a specific class of stochastic inverse problems involving aleatoric (i.e., irreducible) uncertain-
ties where the inferential target is a distribution on model inputs. Specifically, we consider the solution to
this class of problems as being defined by a pullback of an observed probability measure associated with
specified Quantities of Interest (Qol) defined on the space of model outputs.

Data-consistent inversion (DCI) provides a measure-theoretic framework for solving this class of stochas-
tic inverse problems [5,11,12]. In DCI, the solution has what is referred to as the data-consistency prop-
erty in that its push-forward through the Qol map matches the observed probability measure. In [12], a
density-based solution is derived via the Disintegration Theorem [18]. This particular representation of
the solution has seen the most development, analysis, and application in recent years, e.g., see [9,16,38—
40,44,47 48,55]. It is worth noting that the density form of the solution perhaps first appeared in [36] where
it was derived through heuristic arguments based on logarithmic pooling and referred to as “Bayesian
melding.” Fundamental distinctions in assumptions, form, and properties of the solution from the typical
Bayesian framework led to a distinction of the terminology used in the DCI framework in [13] (which is
a follow-up to [12]). In [13] and many of the works that chronologically follow it, an initial and predicted
density are used to describe the initial quantification of uncertainties on parameters and Qol, respectively,
independent of any observed data. The observed density describes the quantification of uncertainty for the
observed Qol data. An update to the initial density is then obtained via the product of the initial density
with the ratio of observed to predicted densities evaluated on the outputs of the Qol map. The updated
density serves as an exact solution to the aleatoric stochastic inverse problem. In practice, when the ob-
served or predicted densities are not known exactly, they are estimated from finite samples, which results
in an approximation to the updated density. This work provides the stability and convergence analysis
of approximate updated densities associated with a wide range of common density estimation techniques

that we may utilize for estimating the observed or predicted densities.
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To situate DCI within the UQ literature, we contrast this framework with the typical Bayesian frame-
work that begins with an initial assumption of epistemic (i.e., reducible) uncertainty in data and param-
eters. For instance, a common assumption in a Bayesian setting is that noisy data are observed for a
single instance of a system associated with true, but unknown, parameter values, e.g., see [4,17,19,22,24,
30,31]. The solution to the resulting inverse problem within the Bayesian framework is known as a pos-
terior, which is a conditional density defined by the product of a prior density on parameters and a data-
likelihood function that is usually constructed from the differences in simulated and observed Qol data.
The posterior does not satisfy the data-consistency property but instead is interpreted as defining the rel-
ative likelihoods that any particular estimate for the parameters could have produced all of the observed
(noisy) data. Subsequently, the posterior is typically utilized to produce a parameter estimate such as the
maximum a posteriori (MAP) estimate, e.g., see [1,10,35]. Convergence analysis in Bayesian frameworks
is typically focused on the particular point estimate produced and its associated uncertainty as quantified
by the posterior covariance. Such analysis will often make use of the Bernstein-von Mises theorem [46],
which guarantees that the resulting uncertainty in a parameter estimate, such as the MAP point, is reduced
as more data are incorporated. This is fundamentally distinct from the type of stability and convergence
analysis we consider in the DCI framework where the goal is to estimate the entire updated density. We
refer the interested reader to either the review paper [5] or Section 7 of [12] for more thorough discussions

and examples that compare and contrast these frameworks designed to solve different types of problems.

Prior studies such as [12] provide the theory of existence, uniqueness (up to the choice of initial), and
stability of the updated density with respect to perturbations in the various densities. However, that work
considered stability only with respect to the L'-norm, i.e., the total-variation metric. Subsequent studies
investigated the stability and convergence of updated densities in L? (for I < p < oo) when the Qol map
is subject to epistemic errors due to an approximation of the map using discretized computational models
or surrogate representations, e.g., see [13,16]. In this work, we fill a theoretical gap in the DCI literature
concerning stability and convergence of solutions when predicted or observed densities are approximated
from finite data. While non-parametric kernel density estimation (KDE) is perhaps the most common
approach to approximate densities in the DCI literature, there is a growing body of literature on other
data-driven approaches for density estimation which utilize different metrics or divergences to analyze
convergence rates and optimize approximations, e.g., see [21,25,27,42,43,45,53]. Building upon this grow-

ing body of literature, we consider three different classes of stability and convergence results. First, we
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prove the stability of the updated density with respect to f-divergences. Next, we prove that convergence
of the approximate observed or predicted densities in an integral probability metric implies convergence
of the updated density in a novel pullback integral probability metric. Finally, we show that the conver-
gence of approximate observed or predicted densities in the L? metric implies convergence of the updated
density in the LP metric.

The remainder of this paper is organized as follows. In Section 2, we summarize the density-based
DCI approach and current L!-based stability theory. We also provide some direct generalizations of the
assumptions and theory that set the stage for the more novel results provided in subsequent sections. In
Section 3, we consider the class of f-divergences, prove a general result regarding the f-divergence be-
tween the initial and updated distributions, and prove stability of the updated density in the f-divergence
with respect to approximations of the observed and predicted densities. Then, in Section 4, we consider
the class of integral probability metrics (IPM), prove stability in the IPM with respect to appoximations of
the observed and predicted densities, and introduce a novel pullback IPM. In Section 5, we prove stability
and convergence of the updated density in the L”-metric. Numerical demonstrations of key theoretical

results are provided in Section 6 and concluding remarks are found in Section 7.

2. DATA-CONSISTENT INVERSION

Let A C R™ denote the parameters of interest in a particular simulation model and (A, Ba, pa) the associ-
ated measure space using the Borel c-algebra B, and Lebesgue measure . We denote the quantities of
interest (Qol) map as @ : A — D C R? where (D, Bp, up) is the measure space of possible observed data
with D := Q(A) denoting the image of A.

A standard assumption is that @) is measurable so that Q~!(E) € B, for all E € Bp where Q! denotes
the pre-image map, which is a common notation used in measure theory. We emphasize that () is not
assumed to be invertible since in general d and n need not be equal.

The stochastic inverse problem is now defined as follows.

Definition 2.1.
Given an observed probability measure, Pops on (D, Bp), the stochastic inverse problem is to find a proba-

bility measure, P5 on (A, B, ), that is data-consistent in the sense that

PA(Q™'(E)) = Pons(E), 1)
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for all events F € Bp.

Assuming P and P, are absolutely continuous with respect to py and pp, respectively (i.e., assum-
ing probability densities, w5 and 7., exist), then the stochastic inverse problem above is equivalent to

finding a density 7 such that

PA(Q(E)) = /

TAA) pa = / Tobs (¢) Up = Pops(E), VE € Bp. )
Q-(E) E

In either case, the solution to the stochastic inverse problem is a pullback probabiltiy measure. This is
equivalent to saying that the observed probability measure should be the push-forward of the solution to
the stochastic inverse problem. When both () is one-to-one (implying d = n) and the Jacobian of () exists,
then the stochastic inverse problem has a unique solution that can be determined, in theory, by the classical

change of variables formula:

TA(A) = Tobs(Q(A)) [ g

where | Jg| is the determinant of the Jacobian of Q(A). One of the main challenges of solving the stochastic
inverse problem is that Qol maps are typically ill-posed, i.e., Q@ ~'(g) is not unique for a given ¢ € D. This
is often true even if d = n due to nonlinearities in the map. In [12], a measure-theoretic framework based
on the disintegration theorem [20] is developed and analyzed for constructing a density-based solution,

which we summarize below.

2.1 Density-based solutions

Since the stochastic inverse problem is in general ill-posed due to the potential existence of many pullback
measures, the framework of [12] utilizes an initial density, denoted by 7init, defined on (ma, By ) to regular-
ize the space of solutions. The push-forward of in;: through the Qol map defines the predicted density,

Tpred, 1-€.,

IP>pred(-E) = /Eﬂpred(Q)uD = ,/Q—I(E) 71-init(?\)MA = Pinit(Q_l(E)) (3)

for every event I/ € Bp. If 7in;t leads to a predicted density 7,eq that is equal to 7 almost everywhere,
then mmini is itself a data-consistent solution to the stochastic inverse problem. However, making such an a

priori choice for iy is unrealistic. Instead, we utilize the predicted density to construct an update to the
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initial density that is data-consistent.

Definition 2.2.
Given both an observed density, mops, and an initial density, mnit, with corresponding predicted density,

Tpred, the updated density is defined as

T obs (Q O\))

mup() = T (r(A), - where r(h) = = AES.

(4)
The proofs of existence, uniqueness, and stability of the updated density is a consequence of the disin-
tegration theorem [8], which rewrites integrals in a convenient form for the analysis of pullback measures,

where for any A € By,

Pop(A) = /A rap(N) tia = /D ( /A T ;iii((%((};\))))d“A’q) ip. (5)

Here, ps , denotes the disintegration of the Lebesgue measure py along the set AN Q7 '(q) := {A € A :
Q(N) = ¢}. To see that P, defines a consistent solution, we need to show that Pup(Q ™' (B)) = Pops(B) for
every B € Bp. To show this, we first observe that for each ¢ € D, Q(A) = ¢ in the inner integral since
A € AN Q7 '(g). This implies that the observed and predicted densities can be factored out of the inner
integral with Q(A) replaced by ¢. The inner integral subsequently integrates to 7mpreq(¢), which cancels the
denominator of the factored out ratio and results in an integral over B of mops(g). It immediately follows
that Pup (Q " (B)) = Pops(B). See [12] for more details. The proofs in this present work make extensive use

of the disintegration of measures.

An important theoretical detail is that a predictability assumption is required for the updated density
to be a data-consistent solution to the stochastic inverse problem. In its weakest form, the assumption is
that 7 is absolutely continuous with respect to m.q. However, in practice, we often assume a stronger

form, which we state below.

Assumption 1.

There exists a constant C' > 0 such that

Tobs(q) < Cpred(q),  forae. g € D.
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Intuitively, this assumption requires that the support of the predicted density contains the support of
the observed density. At a more practical level, this form of the predictability assumption guarantees that
standard random sampling schemes can be utilized (see [12] for more details). This form also guarantees
that any observed values with positive likelihood are likely to be predicted by the choice of Qol map
and initial density. Loosely speaking, we must be able to predict the observed data with push-forward
samples from the initial density through the Qol map. Note that this means that the constant C'is implicitly
dependent on the initial density and the Qol map: a different choice of mjnit or @ leads to a different
predictability constant.

Assumption 1 is straightforward to verify in practice by first noting that

Baa(r(V) = [

Ar(}\)ﬂ'initO\)HA = /Aﬂ'up()\)}/LA =1.

In other words, if the predictability assumption holds, then the updated density is in fact a density im-
plying its integral is equal to one. If samples are generated from the initial probability measure, then this

expectation can be approximated as follows

N
BrO) = [ r0 (M ~ 5 > () ©

Thus, comparing the sample average of the updated ratios to one provides a convenient computational di-
agnostic to verify the predictability assumption is satisfied. While outside the scope of the current work, if
the predictability assumption is violated, recent methods on formulating the problem within a variational
framework and utilizing gradient flows to shift the support of the initial density may prove useful, e.g.,
see [33].

We conclude this particular subsection with the following definition of a conditional density on A N

Q™ '(q) for a given ¢ € D that is useful in the proofs of this paper.

Definition 2.3.

For ¢ € D with myreq(q) > 0 we define

_ Tinit(A)
Winit\q(}\) o Wpred(Q) (7)

to be the initial probability density conditioned on q.
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We note that 7yt |4 is a valid probability density over the set A N Q~'(q) due to the fact that Tpred 18 the

push forward of 7, i.e.,

Tpred (q) = / Tinit(A) dpupa,gy Vg € D. (8)
ANQ~'(q)

It is also worth noting that in (4), m,p involves a re-weighting of 7in;t by the ratio, r(A), of the observed and
predicted densities that are both evaluated at Q(A). As a consequence, if A is restricted to a parameter set
where Q(A) = ¢ for some fixed ¢ € D, then 7, is simply a re-scaling of 7ini. This implies that 7, and i
have exactly the same conditional densities when conditioned on ¢. In other words, 7(A) serves to update

the initial density only in those directions informed by the Qol data.

2.2 Stability and Convergence: Total Variation (TV) Metric

It is often the case that the observed and predicted densities, and therefore the updated density, are nu-
merically approximated using a finite number of samples from these distributions. Prior work (e.g., see
[12,15]) on assessing the impact of these approximations utilized the total variation (TV) metric, which is
sometimes referred to as the L'-metric on the space of probability measures defined on a common measure

space that are all absolutely continuous with respect to the same dominating measure.

Definition 2.4.
Let P4 and PZ represent probability measures on the measure space (X, Bx, px ) that admit Radon-Nikodym
derivatives (with respect to px) 74 (z) and 77 (x), respectively. Then, the total variation (TV) metric is

given by
dry (B4, P%) = [ |7 () 77 @) ldx. ©)
X

Throughout this paper, we assume that either the observed or predicted densities are approximated in
some manner. The following theorems, paraphrased from [12], involve the stability of the updated density
with respect to perturbations in the observed or predicted densities. An important note is that the TV
metrics involving the observed or predicted densities are computed over (D, Bp) while the TV metrics

involving the updated densities are computed over (A, By).

Theorem 1 (Predicted Stability in TV). For fixed measures Pi,;; and P,ps with corresponding densities iy and

Volume x, Issue x, 2024
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Tobs, Tespectively, let Tyyeq denote an approximation to myy such that

Tobs (@) < CTprea(q),  forae. q € D,

for some constant C' > 0, and let ﬁ’up denote the associated updated measure obtained from this approximation. Then,

drv (Pupa IF>u]g) < Cdry (Ppredv Ppred)~

Proof. See the proof of Theorem 5.1 in [12]. O

Theorem 1 justifies the approximation of the predicted density using finite samples drawn from the
initial density and propagated through the Qol map. Specifically, it guarantees that such errors will go to
zero as long as Tpreq cONverges to mpreq in the limit of infinite samples. In other words, 7y — myp in L'(A)

as Tpred — Tpred iN L'(D). Note that the convergences occur in different spaces.

Theorem 2 (Observed Stability in TV). For fixed measures Py and Py.q with corresponding densities ;i and

Tpred, Tespectively, let I@ohs denote an approximation to Pops such that

%obs(Q) < Cﬂ'pred(Q)a fO?’ ae. q €D,

for some constant C' > 0, and let I?’up denote the associated updated measure obtained from this approximation. Then,
drv (Pupy [@14;9) =dry (PobSa Iﬁobs) .

Proof. See the proof of Theorem 4.1 in [12]. O

Theorem 2 states that the approximation error in the observed density is exactly the approximation
error of the corresponding approximation of the updated density. It immediately follows that Ty, — myp
in L'(A) as Tgps — Tops in L (D).

2.3 Direct Generalization of TV Results

The objective of the remainder of this paper is to generalize the stability and convergence results mentioned

above to other divergences and metrics that quantify the discrepancy between two probability measures.
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In several cases, the TV metric is noted as a special case. Before we proceed to these generalizations, we
note that Theorems 1 and 2 involve comparing a single approximation of the updated density to the exact
updated density. Here, we generalize these results to compare two separate updated probability densities
associated with two distinct approximations to either the observed or predicted densities. We make use
of this generalization to analyze stability and convergence with f-divergences and integral probability
metrics in Sections 3 and 4. It also serves as the basis for constructing some of the numerical examples in

Section 6. First, we require a generalization of the predictability assumption.

Assumption 2.

There exists a constant C' > 0 such that:

. . IR A B
1. Given arbitrary observed densities 7/, . and 7 _

wgs(q) < prred(q), and wﬁs(q) < prred(q) fora.e. ¢ € D.

2. Given arbitrary predicted densities wrfj‘red and wﬁed
A
Tobs(4) < CMoreq(q), and  mops(q) < Cwﬁed, fora.e. ¢ € D.

Note that when two approximations to an observed or predicted density are considered, Assumption 2
provides conditions that guarantee that each of the associated updated density approximations also exist.
In many of the theorems below, Assumptions 2.1 and 2.2 are also utilized to provide useful bounds for
various terms in the proofs. In cases involving Assumption 2.2, we often require an additional assumption
that one of the approximated predicted densities can be scaled to bound the exact predicted density (and
without loss of generality, we make this assumption for Wée 4)- This allows us to handle technical complica-
tions that arise in the proofs related to the predicted density appearing in the denominator of the updated

density.

A

Theorem 3. For fixed measures Py, and Pyys with corresponding densities mii and oy respectively, let ]P’p oq and

7

]P’;?;ed denote arbitrary predicted measures which satisfy Assumption 2.2 with associated updated measures IP’;,“p and
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Plﬁ,. Additionally, assume there exists another constant Cy > 0 such that

Tpred(q) < C) ﬂ;ﬁed(q), forae. q€D.

Then, there exists a constant Cy > 0 such that

dTv(Pfl‘p, Pp) < CZdTV(P;;Areda PYa)-

Proof. See APPENDIX A.1. O

As mentioned previously, for two different predicted densities, we require the additional assumption
that the true predicted density is absolutely continuous with respect to W;‘red. This assumption is not

necessary for the case of two different observed densities.

Theorem 4. For fixed measures Py,;; and Pp,.q with corresponding densities miyi and m.q respectively, let IP’S‘ZS and
PE  denote arbitrary observed measures which satisfy Assumption 2.1 with associated updated measures ]P’MAP and
IP’fp. Then,

dTV (wa Pqu) = dTV (P(gsa Pgis) .

Proof. See APPENDIX A 2. O

Remark 5. We recover Theorem 1 if ]P’fred = Pyreq in Theorem 3, and we recover Theorem 2 if IP’;},S = Py in

Theorem 4.

3. STABILITY AND CONVERGENCE USING F-DIVERGENCES

Many common approaches for quantifying the discrepancy between two probability measure are derived
from f-divergences. While f-divergences are generally not metrics due to a lack of symmetry, the gener-
alization of the stability results from the total variation metric to f-divergences are relatively straightfor-
ward. Below, we provide the formal definition of an f-divergence and provide some context and a brief

literature review for the practical application of f-divergences.

Definition 3.1.

Let P4 and P? be probability measures on measure space (X, Bx, jtx) admitting densities 74 and 7Z. The

International Journal for Uncertainty Quantification
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f-divergence is defined as

7TA X
Dy® 1#%) = [ 1 (T3 ) n® el (10

where f is a specific convex function defining the f-divergence such that f(t) is bounded Vt > 0, f(1) =0,

and f(0) = limy+ o0 f(#).

In the context of density estimation, f-divergences are often useful in determining optimal parameters
or hyper-parameters of a density model [7,27]. For instance, the Kullback-Liebler (KL) divergence can
be written as the sum of the negative, expected loglikelihood that the data came from the approximate
distribution plus an entropy term independent of the hyper-parameters. Thus, optimal hyper-parameters
can be computed by maximizing the loglikelihood, which will then minimize the KL divergence.

Note that in the definition of the f-divergence, we do not necessarily assume that P? is absolutely
continuous with respect to P4. If these measures do not possess this property, then the f-divergence is
typically defined as infinite, which is not very useful in terms of stability or convergence, so practically we
only apply f-divergences to measures that satisfy this absolute continuity condition. When measuring the
f-divergence of a measure PZ from another measure P#, we write the forward f-divergence as D; (P ||
PB). When the roles of the target and approximate are reversed, i.e.,, D (PP || P4), we call this the reverse
f-divergence. Note that the reverse f-divergence is not necessarily the same as the forward f-divergence.

The choice of f defines the type of divergence. For instance, choosing f(t) = 1 |t — 1| recovers the
total variation metric while f(¢) = tInt defines the KL divergence. KL divergences have found extensive
applications in statistics and machine learning, particularly in variational inference [7], optimal experi-
mental design [6,29], and information geometry [2]. Moreover, this particular divergence has served as
a useful tool to quantify the information gained in moving from initial to updated measures in data con-
sistent inversion [14,49]. Additionally, it enables the assessment of the distance between the initial and

updated densities in terms of the distance between observed and predicted measures, as demonstrated

in [12]. Below, we show that this utility can be extended to other types of f-divergences.

3.1 Equivalence of f-divergences within the DCI Framework

Due to the fact that the solution of the stochastic inverse problem is a pullback probability measure, we

can make precise statements regarding the f-divergences between measures on the parameter space and

Volume x, Issue x, 2024
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corresponding measures on the data space. The following theorem states that the f-divergence of the

updated density from the initial density is equal to the f-divergence of the observed from the predicted.

Theorem 6 (f-divergence and DCI). Given probability measures, Py, Pops, and Pp.q which satisfy the Assump-

tion 1 and updated measure P, given by (4),
Df (Pup”Pinit) = Df (Pobs”Ppred) :
Proof. See APPENDIX B.1. O

In this case, Assumption 1 guarantees that the f-divergence is finite since the observed and updated
measures are absolutely continuous with respect to the predicted and initial measures, respectively. The
implication is that by computing the f-divergence of relevant measures in the data space D, we obtain the
value of the f-divergence of relevant measures in the parameter space A and vice-versa. This is valuable
when the densities in one space are simpler to evaluate than in another, e.g., if the dimension of one space
is smaller or if the densities in one space are given analytically. Next, we consider f-divergences between

different updated densities.

3.2 Stability of Updated Densities using f-divergences

The goal of this section is to show stability of densities using an f-divergence in the data space leads to
stability of the updated densities on the parameter space. First, we show that the forward f-divergence
between two updated densities obtained from the same observed but with different predicted densities is
bounded above by a constant times the reverse f-divergence between the predicted densities. As the proof
demonstrates, the dependence on the reverse f divergence is a consequence of the predicted densities

appearing in the denominator of the corresponding updated densities.

Theorem 7 (Predicted Stability in f-divergence). For fixed measures Py, and Pqps with corresponding densities

=B

o : A
Tinit ANd Tops, respectively, let T pred and ored

denote predicted densities satsifying Assumption 2.2 and let IP’,‘;‘F and
Plf; denotes the respective associated updated measures. Additionally, assume there exists another constant Cy > 0
such that

Tored(q) < O} ﬂ;ﬁed(q), forae. q€D.

International Journal for Uncertainty Quantification



10

11

12

13

14

15

16

Stability and Convergence of Solutions to SIPs Using Approximate PDFs 15

Then, there exists a constant C, > 0 such that

A A
Df(]P)up H Pqu) <G Df(Pﬁed || HDpred)'

Proof. See APPENDIX B.2. O

7.‘.B

Remark 8. Tuking =, to be the push-forward of s, i.e., 7, o

pred — Tpred. and

to be some approximation of myreq
that converges in the f-divergence, implies convergence of the approximate updated densities in the f-divergence.

Note that the additional assumption is trivially satisfied if we take wp“}ed = Tpred-

Next, we show that the f-divergence between two updated densities is precisely the f-divergence

between the two respective observed densities.

Theorem 9 (Observed Stability in f-divergence). For fixed measures Piy;; and Pp,.q with corresponding densities
Tinit AN Tpreq, respectively, let IP’:LS and ]P’g7S denote observed measures satisfying Assumption 2.1 and let IP’;‘; and Pﬁ,

denote the respective associated updated measures. Then,

Dy(Pyy || Pyy) = Dy(Pg [ Pagy)-

obs

Proof. See APPENDIX B.3. O

Remark 10. Tuking 7’5, = mops and w5, to be some approximation of mps that converges in the f-divergence, implies

convergence of the approximate updated densities in the f-divergence.

4. STABILITY AND CONVERGENCE USING INTEGRAL PROBABILITY METRICS (IPM)

Integral probability metrics (IPMs) have become increasingly popular tools in the context of machine learn-
ing and generative Al, e.g., see [3,32,34,50]. These metrics are used during the training of neural networks
to stabilize the learning process by constraining the generative probability distribution to be similar to
the target observed distribution. The class of IPMs includes the maximum-mean-discrepancy [26] and the
earth mover’s distance [37], among others. We give the abstract definition of an integral probability metric

and follow-up with specific cases.

Definition 4.1.

Let P# and PP be two probability measures on a measure space (X, Bx). An integral probability metric is
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defined as

dr (P4, P5) —bup‘ / fdPA — / fdPE

feF

where F is a defined class of real-valued, bounded measureable functions on X.

IPMs generalize certain probability metrics through the appropriate choice of functions F. For in-
stance, by choosing F to be {f : || f||oc < 1}, where ||f|| is the supremum of |f(z)| over X, the resulting
metric dr is equivalent to the total variation metric (see APPENDIX C). The Kantorovich metric, which

is the dual of the Wasserstein distance, is obtained by choosing F = {f : ||f||lL < 1}, where ||f||L is the

Lipschitz semi-norm on a metric space (X, p),

[f(x) = fy)]

L e o

: ac;éyinX}.

The Kernel distance or maximum mean discrepancy is obtained when 7 = {f : ||f||x < 1}, where X

represents a reproducing kernel Hilbert space.

4.1 Using IPM within the DCI Framework

In the context of DCI, we are quantifying distances between measures on different spaces A and D. It is
therefore appropriate to consider IPMs defined by different function spaces. Specifically, we consider a
family of functions F, be a set of real valued functions {f : A — R} and a set Gp where {g : D — R}.
These two families may, in general, reproduce the same norms (as is the case when F, and Gp are chosen

to induce total variation metrics), but this is not necessary.

Our goal is to establish the relationship between the metrics defined by two function space 7, and Gp,
examining how approximations of measures in the data space impact the corresponding updated measures
in the parameter space. As in the coming analysis of stability in L” metrics in Section 5, the ratio of minit

and mpreq plays a critical role.

Now consider the IPM defined by 7 between two updated densities with different observed densities

A
sand 7robs,
A B
d]:A (]P)upa = sup
fEFA

IRESEANEEAI T
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Applying the disintegration theorem and Definition 2.3 gives

d]:A (prv pr) = fseuJ-P
A

/ ( / SN it g () duA,q> (A (q) — 78 (¢)) dup
D ANQ~'(q)

The inner integral is the expected value of the function f € Fx conditioned on ¢, i.e.,

Bl 0D = [ fO Wi

where E, |, is the expected value taken with respect to the conditional initial measure Py ;. We note that
[E, |, is a linear operator acting on the space of functions 7, and mapping them to the space of functions
Gp. Thus, a sufficient condition for determining the stability of the updated density with respect to the
observed or predicted distribution using different integral probability metrics is that E, |, is a bounded
operator. The following theorem shows how to relate the two metrics defined by Fa and Gp to ensure
that convergence of an approximate observed or predicted distribution in the data space will guarantee

convergence of the approximate updated distribution in the parameter space.

Theorem 11 (Predicted Stability in IPM). Let Fa and Gp be used to define IPM for measures on A and D,

respectively. Suppose |, is a bounded operator from F to Gp. For fixed measures Piy;; and Py, with corresponding

A

B
pre ™

densities Tinir and Ty respectively, let pred

g and denote predicted densities satisfying Assumption 2.2 and let

IP’MA;7 and }P’ﬁ, denotes the respective associated updated measures. Additionally, assume there exists another constant
Cy > 0 such that

Tpred (@) < Clﬂﬁed(q), forae. q€D.

Then, there exists a constant Cy > 0 such that

dr, (PuAp’ Pqu) < Chdgy, (P;?redv IP)ﬁed)

Proof. See APPENDIX D.1. O

Theorem 12 (Observed Stability in IPM). Let F and Gp be used to define IPM for measures on A and D, re-
spectively. Suppose E |, is a bounded operator from F to Gp. For fixed measures Piy;y and Py,eq with corresponding

densities iyt and Ty respectively, let PA and PB

s . denote observed measures satisfying Assumption 2.1 and let
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pr and ]P’u"; denote the respective associated updated measures. Then, there exists C > 0 such that

dr, (P, Pr) < Cdg, (P, Py

obs’ = obs

Proof. See APPENDIX D.2. O

o A A : B
Remark 13. Similar to Remarks 10 and 8, we can take 7/, = myps (o7 Tored = Tpred), and if we assume 7., converges

t0 Tops (07 T8

pred COTIVETSES L0 Tpyeq) in the IPM, then the approximate updated densities also converge in the appropriate

IPM.

Theorems 11 and 12 provide sufficient conditions for determining stability using IPMs that involve the
boundedness of £, |,. In some cases, it is straightforward to verify this condition holds. For instance, if 75
is defined as {f : (||f|lec + ||f]|z) < 1}, then F, induces the so-called Dudley metric. If we compare this
to Gp defined as the total variation metric, i.e., {g : ||g||c < 1} and A is compact (and finite dimensional),

we can show that E, |, is bounded since, Vf and Vg,

|EA|q(f)’ =

/ SO Tt 1 (W)l
ANQ~1(q)

<

1o - / Tinit | (V)i g
ANQ~'(q)

= £ llse < 1flloe +11£1lz

which implies that

Eajq (Pl = [Eajg(Hllse < I flloo + £l = [1F1l74-

It is worth noting that while this condition is sufficient for determining stability using integral proba-
bility metrics, it is not necessary. Indeed, in [54], it is shown that as long as there exists functions g € Gp

that can dominate functions E, |, f in a piecewise-sense, then the stability condition holds.

4.2 A pullback IPM

We close this section with a concise description of how to construct an IPM on the parameter space that is
equal to a given IPM on the data space. This has potential applications in settings where machine learning

algorithms are used to produce observed distributions that rely on optimizing an unorthodox IPM Fp.
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This is also practical when the goal is to generate approximated updated distributions that are close to an
exact updated distribution based precisely on how close the associated approximate observed distribution

is to an exact observed distribution.

Definition 4.2.
Let d7,, be an IPM on the distributions of the data space defined by Fp. Let () be a measurable quantity of

interest map @ : A — D. Define a class of functions F} such that for every g € Fp

Then, we define the pullback IPM with respect to dz,, as

/ fdPA — / fdP®

We can verify that this definition produces a valid integral probability metric by recalling the assump-

dr; (P4, PB) = sup
fG}'A

tion that @ and g are measurable functions on corresponding Borel sets. Since @ : (A, By) — (D, Bp) is
measurable and g : (D, Bp) — (R, B) is measurable for all g € Fp, the composition f = goQ is measurable.
Also, since every g € Fp is bounded so too must each f € FJ, thus satisfying the definition of an IPM.
The next theorem shows that the pullback IPM measures differences between updated densities by the
differences between their corresponding distributions in the data space, i.e. how different are the push-

forwards with respect to an IPM on D.

Theorem 14 (Stability using the Pullback IPM). For fixed measures Py, and P,y with corresponding densities

denote predicted densities satisfying Assumption 2.2 and let P}y and P

Tinit and Tops respectively, let 7r voq ANd B up up

pred

denotes the respective associated updated measures. Additionally, assume there exists another constant C > 0 such

that

7T'pred( ) <C ﬂ-pred(q) fOT’ ae. q€D.

Then, there exists a constant Cy > 0 such that

d]:,\ (HbupﬂIED ) < Chdry (P;rewpﬁed)‘ (11)

Similarly, for fixed measures Piyi; and Pyy.q with corresponding densities Tini and my,q respectively, let ]P’fbs and Pﬁs
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denote observed measures satisfying Assumption 2.1 and let ]P’;?p and ]P’u'; denote the respective associated updated

measures. Given an IPM on D defined by Fp and the corresponding data-consistent IPM defined by F, we have

dr; (Phy, PY) = drp, (P, PR, (12)

ups = u, obs» = obs

Proof. See APPENDIX D.3. O

5. CONVERGENCE OF UPDATED DENSITIES IN L”

This section focuses on convergence of the updated density in LP-metrics. Due to the complexity of some
of the technical details in this section, we do not pursue the more general scenario considered in previous
sections with (somewhat) arbitrary ﬂfp and wlﬁ,, and focus on the special case where 7T'{?p = myp and 7rfp
involves an approximation.

While TV is a commonly used metric for evaluating density estimations, the mean-integrated squared
error or MISE is perhaps the dominant metric considered within the kernel density estimation literature.
This is equivalent to measuring the mean L*-error (squared) between distributions, and is therefore also
referred to as the L2-risk. Other density estimation techniques use more general LP-risk to prove various
theoretical convergence results and to determine bounds on the rate of convergence [21,51]. Given these
considerations, we seek to generalize Theorems 1 and 2 to the general class of L? metrics with p > 1,
which, as we illustrate, are more difficult to work with than the total variation metric. To be precise, we
aim to show that the convergence of any sequence of approximations 7} .; — Tpred OF Tgp, — Tobs that

pr obs

converges in L? implies the convergence of the updated densities 7(j, — myp in LP. First, we define the L?

metric measuring the difference between two probability measures.

Definition 5.1.
Let P4 and PZ be two probability measures on a measure space (X, By, ity) admitting densities 74 and

7B, Then the LP-metric (or distance) over X’ between P4 and P? is defined as

1/p
Aoy (P4, PP) = </X |74 (x) — P ()] dHX) = [|=* - 7TBHLP(X)

forany 1 < p < oo.

Note that if p = 1, then this reduces to the TV metric given in Definition 2.4.
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5.1 Rates of Convergence

We are also interested in analyzing the rate of convergence of the approximation to the updated density in
relation to rates of convergence of the density approximations to either 7preq OF Tobs in D. The results we
obtain in this section show that the rate of convergence is of the same order on almost all of A but not
necessarily on all of A. This is similar in spirit to other convergence proofs of density estimates which
are shown to hold true on sequences of nested compact sets that converge from below to the full domain,
e.g., see [28]. It is also common for results in measure theory to refer to a property holding everywhere
except on a measurable set of arbitrarily small size, e.g., see Luzin’s theorem (cf. Theorem 7.10 in [23]) and
Egoroff’s theorem (cf. Theorem 2.33 in [23]). We define rate of convergence in an almost sense formally

below.

Definition 5.2.
Let P be a sequence of probability measures on measure space (X', Bx, iy ) which converges to IP in metric
dr»(x) defined over the domain X'. We say the convergence rate of P" is of order O(p(n)) in an almost sense

if for every € > 0 there exists a measurable subset A of X such that P(4) < e and

drr(a\a)(P",P) < Mp(n) ¥Yn>N (13)

for some M, N € R.

Practically, Definition 5.2 implies that this order of convergence holds on “most” of the space since
P(X \ A) > 1 — e. For example, if ¢ = 0.01, we can guarantee the existence of a set that is at least 99%
probable such that that the order of convergence holds on this set. Note that because P* — P in LP(X), P
still converges to P on the “small set” A, the definition simply states that the convergence rate is something
other than O(p(n)) on this small set. Indeed, since € is arbitrary, we can make X'\ A as close to X in measure
IP as is desired, hence the use of the term “almost all” of X'. With the above two definitions, we proceed to
analyzing the convergence and rate of convergence of the updated density in terms of the LP-metric over
A.

Note that both Theorem 1 and 2 require their own versions of the predictability assumption, which
is necessary to guarantee existence of the solution to the inverse problem using either approximation. In
this paper, we are primarily interested in a more general case where it is possible to define a sequence

of approximations that converge in LP. As in [16], using approximations of the observed or predicted
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densities requires the assumption that, in an asymptotic sense, these approximations satisfy versions of
the predictability assumption to guarantee the existence of solutions to the inverse problem using these
approximations. For convenience, we combine these two cases in the following assumption that includes
a third case involving simultaneous approximations of both the observed and predicted densities, which

is a common occurrence in practice.

Assumption 3.

There exists a constant C' > 0 such that:

1. Given a sequence of approximate observed densities, (W(C’gs), there exists an M such that Vm > M,

ﬂ.c'r)%s(Q) < Cﬂ-pred(Q) a.e.qec D. (14)

2. Given a sequence of approximate predicted densities, (Wgre d), there exists an /V such that Vn > N,

Tobs (Q) < C(7-‘-gred (q) a.e.q €D. (15)
3. Given sequences of approximate observed densities and predicted densities, which satisfy (14) and
(15) there exists a K such that Vm,n > K we have

ﬂ—gés(q) S ngred(q) a.e.qec D. (16)

The following corollaries describe rates of convergence in L'(A) of updated density approximations.

Corollary 1. If 7. — o in L'(D) with rate of convergence O(p(m)) and Assumption 3.1 is satisfied, then

Ty — Tup i L'(A) with rate of convergence O(p(m)).
Proof. The proof is an immediate consequence of Theorem 2. O

Corollary 2. If !

pred — Tpred 11 L' with rate of convergence O(p(n)) and Assumption 3.2 is satisfied, then m7, —

up

Ty in L'(A) with rate of convergence O(p(n)).

Proof. The proof is an immediate consequence of Theorem 1. O

Corollary 3. If n”

pred —* Tpred and w7 — mops in L'(D) with rates of convergence O(p(n)) and O(y(m)), respect-

fully, and Assumption 3.3 is satisfied, then mj,myy, in LY(A) with rate of convergence O(p(n) + y(m)).
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Proof. The proof follows from applying a triangle inequality to the TV metric. O

5.2 Stability and Convergence in L? with Approximate Densities

First, we show that the updated density converges to the true updated density in the LP-metric on A if
the approximation of the predicted density converges in the LP-metric on D. It is worth noting that an
additional assumption involving the initial density belonging to L*° is made to avoid singularities that
complicate the proofs. Since we are typically free to choose initial densities in the setup of the problems,

this is often a trivial assumption to satisfy in practice.

Theorem 15 (L” Convergence with Approximated Predicted Densities). Suppose miyix € L™(A) and mops

are chosen so that Assumption 1 is satisfied. If (my,,,) satisfies Assumption 3.2 and m,

pred —* Tpred in LP(D), then

Ty — Tup i LP(A).

Proof. See APPENDIX E.1. O

Theorem 16 (Rate of Convergence with Predicted in LP). Suppose minyy € L (A) and myps are chosen so that
Assumption 1 is satisfied. If (m,,;) satisfies Assumption 3.2, mp, ., — Tpreq in LP(D), and the convergence rate of

T

Pyeq is of order O(p(n)) on almost all of D, then the convergence rate of P, is of order O(p(n)) on almost all of A.

Proof. See APPENDIX E.2. O

Next, we show that the updated density converges to the true updated density in the L”-metric on A

if the approximation of the observed density converges in the LP-metric on D.

Theorem 17 (L? Convergence with Approximated Observed Densities). Suppose i € L>(A) and s are
chosen so that Assumption 1 is satisfied. If (my,) satisfies Assumption 3.1 and . — Tops in LP (D), then myj, — muyp

in LP(A).
Proof. See APPENDIX E.3. O

Theorem 18 (Rate of Convergence with Observed in LP). Suppose mini € L™ (A) and mys are chosen so that

Assumption 1 is satisfied. If (n)},.) satisfies Assumption 3.1, wly . — Tops in LP(D), and the convergence rate of P,

is of order O(p(n)) on almost all of D, then the convergence rate of Py, is of order O(p(n)) on almost all of A.

Proof. See APPENDIX E 4. O
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Theorems 16 and 18 demonstrate that in the LP-metric, the order of convergence for the updated den-
sity is equal to the order of convergence for the density approximations in the data space. While these
theorems are not quite as strong as their counterparts in the total variation metric, they are more generally
applicable to common measures of convergence, especially the mean-integrated squared error (MISE) or
L?*-risk. In addition, similar to the L' results, these theorems imply that, as long as the dimension of the
data space is relatively small, the curse of dimensionality associated with estimating the updated density
in the parameter space can be mitigated, which is beneficial if the dimension of the parameter space is
large since many density estimation techniques scale poorly with dimension. We conclude this section by
noting that a simple application of the triangle inequality can be used for the case where both the observed

and predicted densities are approximated if Assumption 3.3 is satisfied.

6. NUMERICAL EXAMPLES

The examples of this section are intended to be straightforward and reproducible to highlight key aspects

of the theoretical results presented above in the context of practical approximation issues.

6.1 Estimating Discrepancies in Parameter Space via Discrepancies in Data Space

This example illustrates how f-divergences are useful in the context of practical approximation issues
encountered when constructing a kernel density estimate (KDE) in the DCI framework. We focus on
numerically demonstrating Theorem 9, which gives
Dy (Pgp. Pip) = Dy (P, Poy)-

In the interest of space, we limit the presentation to the KL divergence, which is a commonly used f-
divergence. We demonstrate how the above result is useful in quantifying the discrepancy between distinct
updated densities in the parameter space by measuring the discrepancy between the associated estimates
of observed densities in the data space obtained via different bandwidth parameter selection techniques
utilized in the KDE estimates. For the interested reader, the supplemental files (see APPENDIX E.5) pro-
vides the code to generate both the results presented here as well as additional results that utilize Gaussian
Mixture Models (GMMs), which are popular semi-parametric density estimation techniques. These addi-

tional results include numerical demonstration of the thematically similar theoretical results from both
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Section 3 and Section 4 that relate discrepancies (measured in either f-divergences or IPMs) between data
space densities (wWhether observed or predicted densities) to discrepancies in the associated updated den-

sities in the parameter space.

6.1.1 DCI Setup

Consider the Qol map @ : A — D given by

A1 COS Ay A3
QM) = +
}\] sin }\2 >\4
This mapping draws circular arcs of radius A; and angle A, around a central point (A3,A4). Suppose
that data points are randomly drawn from circular arcs centered around points three uncertain points

{Hk}zzl C R% We consider these central points to be uncertain as well as the sampling distribution of

their radii and arc lengths, and represent the initial state of uncertainty as:
3
A1~ U[0.65,1.35], Ay ~ U[0,27], (A, A4) ~ > wiN (g, 0° ),
k=1

where wy = % are the weights of a mixture normal distribution with means located at the centers p; =
{(-1,0.5),(0,0),(1,0.5)} and variance determined by 0> = 0.005. The left plot in Figure 1 shows the
corresponding push-forward sample of m = 15000 predicted points ¢ € D drawn from these initial distri-
butions.

The right plot in Figure 1 shows n = 500 observations drawn from the so-called “dual moons” dataset,
which is a commonly utilized dataset used for evaluating density estimation in machine learning. The DCI
problem in this example is to utilize ) to find an updated probability density on A that is consistent with

estimated densities computed from this observed “dual moons” dataset.

6.1.2 KDEs and the Bandwidth Parameter

Given a sample zi, . .., 2, from an unknown distribution 7, the KDE is defined by,

1 & T —T;
- 550 (52)
i=1
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Predicted Observed

—32 0 2 -2 0 2
qi q1

FIG. 1: Predicted QolI (left). Observed Qol shown superimposed on the predicted Qol (right).

where K is a non-negative kernel function and 4 is a bandwidth parameter. Perhaps the most commonly
used kernel is a Gaussian kernel, and the resulting Gaussian KDE is simply referred to as GKDE. We use

the GKDE in this example.

One of the challenges with using a KDE (regardless of the kernel choice) is determining an appropriate
bandwidth parameter & for the density approximation. If the bandwidth is chosen too large, the resulting
density is over-smoothed, but if the bandwidth is chosen too small, the density overfits the data resulting

in increased variance in the estimate between different sample sets of the same size.

Heuristic approaches for choosing the bandwidth are common, but they often make strong assump-

tions about the target density. For instance, Silverman’s rule-of-thumb [41] gives

4 \TE
hsitver == ( > nd+s 6qa (17)

d+2

where 6, is the computed variance of the sample data. This heuristic is based on an assumption that the

samples are independently and identically distributed from a normal distribution.

Alternatively, a statistical strategy, such as cross-validation [52], can optimally choose the bandwidth

with respect to some criteria, e.g., the KL divergence. Minimizing the KL divergence is equivalent to
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maximizing the expected loglikelihood of the data, which makes it easy to compute, i.e.,
hey i= arg;nin D1, (Pops, @obs) = arg leax Ejmny, [log mkpE(q)] - (18)

6.1.3 Quantifying Impact of Bandwidth Selection

Fig. 2 compares results using either (17) or (18) to construct a GKDE estimate of the observed density.
The use of hgjver clearly oversmooths the GKDE compared to the use of h.,. The impact of these distinct
estimates of the observed density on the corresponding updated densities is shown in Fig. 3, where it is

clear that the oversmoothed observed density leads to an insignificant update to the marginal of A;.

We can quantitatively measure the impact of the choice of bandwidths on the updated density—or
in this example, the information gained from choosing h., instead of hgje—using the KL divergence.
Moreover, Theorem 9 states that to measure these differences between updated densities, it suffices to
measure the differences between the observed densities in the data space. Using the notation of Theorem 9,

denote the GKDEs obtained using h;jver and h¢, by 74 and 78

obs -bs» and the corresponding updated densities

by ﬂfp and ﬂlﬁ,, respectively. We use Monte-Carlo sampling (M = 10000 samples) from wfp and 74 to
estimate the KL divergences in both the parameter and data spaces. Over B = 30 batches, the resulting
average estimate of Dy, (4,75 ) ~ 0.953 with a standard deviation of 0.008. The average estimate of
Dk, (wfp, 7rfp) ~ 0.950 with a standard deviation of 0.006. As expected, the estimates of the KL divergence
are nearly equal up to errors due to sampling. This illustrates the utility of Theorem 9: the computation
of discrepancies between approximate densities in the parameter space can be replaced by a potentially
more efficient computation of discrepancies between approximate densities in the data space where the

actual approximations take place. This implies that the discrepancies between updated densities can be

estimated without the need to solve the stochastic inverse problem.

6.2 L? Order of Convergence in an Almost Sense

Here, we numerically demonstrate Theorem 16 that states that the rate of convergence in L? of approx-
imated updated densities is the same (in the measure-theoretic almost sense) as that of the associated

approximated predicted densities.
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Silverman's Cross-Validation

—2.5 0.0 2.5 —2.5 0.0 2.5
q1 q1

FIG. 2: The left plot shows the approximation of the observed density using a GKDE and Silverman’s rule-of-thumb,
hsilver, for the bandwidth parameter. This clearly leads to an oversmoothed estimate of the density. The right plot
shows the approximation of the observed density using a GKDE and cross-validation to select the bandwidth param-
eter, hoy, which leads to a better estimate of the distribution of the dual moons dataset.

6.2.1 DCI Setup

Consider the linear Qol map @ : A — D from R? to R defined by Q(A) = A; +A,, with a triangular observed

density defined by:
4q 0<gq<3,
Tobs(q) = § —4(g— 1) 1<qg<1, (19)
0 otherwise.

Let the initial density be uniform on [0, 1] x [0, 1], then the exact predicted density is also a triangular
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Update Marginal: A; Update Marginal: A,

0.3

0.2 1

0.1

. ‘ . ] 00— . . .
0.4 0.8 1.2 1.6 0 2 4 6

— Approx. of TCup (hgitver for mops) — Approx. of TCup (hey for mops) ' TCinit

FIG. 3: The initial and approximate updated marginals associated with the first two components of A: the radius
parameter A; and angle parameter A;. The right plot shows that the two approximations of the updated density mp
(using either hgjyer OF hey for the GKDE of mops) have marginals that appear to mostly agree on A, and differ from
the marginal of the initial density 7init. The left plot shows that the approximation of myp associated with Agjiyer fails
to produce an update for A; that is significantly different from 7in;. On the other hand, the approximation of myp
associated with hey shows a distribution of A; that is not uniformly distributed.
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density:

q 0<qg<],
Tpred (7) = { —(¢—2) 1<¢<2, (20)
0 otherwise.

For the sake of illustration, suppose we approximate this density using the following sequence,

g+ 0<g<l,
Wgred(Q) =y—-(@—-2)—gnlq) 1<g<2, (21)
0 otherwise.
1 where g,(q) = —2(g — 2) is chosen so that Thred 18 @ valid probability distribution that integrates to 1 (true

2 forany n > 2). Fig. 4 shows the observed, predicted, and approximations of the predicted for n = 2,4, and

3 8.

4 6.2.2 Rates of Convergence

The LP-error in the approximation of 7], 4 has the following closed form,

1/p
1 p 2 2 p
dMD+/ - dm)
1

( = (q—2)
G () )

1

LN

5 For a fixed p, this clearly converges to 0 with order O(n ™).

Since the predictability assumption is satisfied for each n > 2 (i.e,, Tored 1S absolutely continuous with
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2.0
g Obs.
Pred.
1.5 n=2
n=4
n=3§
1.0
0.5
0.0 -
—0.5 0.0 0.5 1.0 1.5 2.0 2.5

31

FIG. 4: The observed and predicted densities (solid lines) defined by Egs. (19) and (20). Dashed lines show a sequence

of approximations defined by Eq. (21) that converge to the predicted density.
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respect to mops), we can compute the approximate updated density, 7y, for each n, as

m 0<QMA) <3
Tup(A) = _gg\())\i_ll) 1<em <1
0 otherwise

for any A € [0,1] x [0,1]. Asn — oo, the approximate updated densities converge to the exact updated

density, mp, given by

4 0<QQA) <3
Tup(A) = _4(%((7;\))_ D <M <1
0 otherwise

1 Theorem 15 guarantees that this convergence is in L since 7 4 — Tpred in L.

2 Fig. 5 shows the corresponding convergence rates of 7 ; — Tpred Versus my, — myp in L with p = 4.
3 Note that while 7, — myp, the order of convergence is closer to O(n~%%) rather than the rate of Tored —
4  Tpred, Which is O(n~"). Indeed, for this specific example, we can show that the rate of convergence of the

5 updates must be strictly less than the rate of convergence between the predicted densities in L”.

However, according to Theorem 16, if we fix an € > 0, there exists a set A5 such that the P, (A45) < €
and the rate of convergence of m(j, — myp in L” over A\ Q7 !(As) is O(n™!). For this example, if we choose

6 < \/g and take the small set A; as in the proof of Theorem 18 (see APPENDIX E.1), i.e.,

As = {q : 7Tpred(Q) < 5} = {(] < 6} U {_(5 - 2) < q}7 (22)

then we have

>
Pup(Q ' (As)) = Pops(As) = / 4q dpp = 28> < €
0

6 and the rate of convergence should be of order O(n™") on the rest of the parameter space as desired. Fig. 5

7 illustrates the numerical recovery of the desired order of convergence on A \ Q~!(45) with e = 0.01,

8 5=,/5.
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Rate of Convergence (RoC)

—e— D,RoC=-1.0
—o— A, RoC = —0.65
—e— A\Q7!(A),RoC = —0.94

1.5 2.0 2.5 3.0 3.5

n

FIG. 5: Shows the rate of convergence (RoC) of 7y — Tpred in L*(D) versus Tlp — Tup iN L*(A). The rate of

convergence of mji, in L*(A\ Q' (As)) is almost O(n™"), with A5 defined by Eq. (22) using € = 0.01 and & = /5.
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7. CONCLUSIONS

This paper addresses the common scenario where finite data or model evaluations are used to approximate
probability densities which are subsequently used to construct approximate solutions to stochastic inverse
problems. Previous results in the literature demonstrated stability and convergence in the total variation
(ie., the L"), metric. This paper generalized these results to other methods of quantifying the discrep-
ancy between probability measures that have gained in popularity in recent years, namely, f-divergences,
integral probability metrics, and L” metrics. To the authors knowledge, this paper is the first to theo-
retically prove and numerically demonstrate stability and convergence for solutions to stochastic inverse
problems under these other methods for quantifying discrepancies between measures. Numerical results

using straightforward and reproducible test problems illustrated key theoretical results.
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APPENDIX A. PROOFS OF TOTAL-VARIATION STABILITY AND CONVERGENCE RESULTS

In this appendix, we provide proofs of the theorems from Section 2, in order of appearance. We begin with

Theorem 3.

APPENDIX A.1 Proof of Theorem 3

. . . e . A B
For fixed measures Pin;it and Pgps with corresponding densities minit and mops respectively, let ]P’precl and ]P’precl

denote arbitrary predicted measures which satisfy Assumption 2 with associated updated measures IP’(j‘p
and pr. Additionally, assume there exists another constant C'; > 0 such that
Wpred(q) < ﬂ}ﬁed(q), fora.e. ¢ € D.
Then, there exists a constant C, > 0 such that
dry (PA PE)Y < Codry (P, PE ).

up’ = up pred> = pred

Proof. Utilizing (4) for P/ and P2, we obtain

up up”’
oy [y @A) mas(@O)
ire (Bl 25) = [ ¥ mha@) T T @

Collecting and factoring terms, and applying the predictability assumption gives

Tinit(A) B

dry (P4 PB <C’/ —_—
TV( up> up) = Aﬁéed(Q(A)) 7T'pred

(QN) = it (@N))| diia.

Applying the disintegration theorem yields

1
d ]P)A ,PB < (- / / (A d . . ’ B A ’ d .
v ( up up) = pJano-1) Trinit (A) Haq ﬂ;f‘red(q) ﬂ-pred(q) 7Tpred(q) HD

Identifying the inner integral as mpreq(q) produces

7Tpred(Q) ) ‘ B

dTV(PA Py ) <C- > A d(q) ﬂ-pred(q) - 7Tf;{red(q) dup,
pre

up’ = up
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A

pred” which allows us to obtain

where we now see the utility of the additional assumption on mpeq and 7

7"'pred(Q) ‘ B A
| Tored(@) — rd(q)‘ dup
D w}g“red(Q) pre pre

<C-01- [ |nfale) - mha(a)| dup
D

dry (P, Po) < C-

=Cy-dpy (Pgred’ P}ied)’

1 which completes the proof.

3 APPENDIX A.2 Proof of Theorem 4

. . . e . A B
For fixed measures Pyt and Ppreq with corresponding densities 7rinit and 7mpreq respectively, let Py and P

denote arbitrary observed measures which satisfy Assumption 2 with associated updated measures pr

and PJ,. Then,
dTV <pr, PEP) = dTV (P(?by Pﬁ)s) .

Proof. Utilizing (4) for P{, and P[,, we obtain

up”’
dpy (PA PB)/W..(A).WW..(A).W dn
TV T ups & up A init ﬂ-pred(Q()\)) init ﬂ-pred(Q()\)) A-

Factoring out the appropriate terms and applying the disintegration theorem gives

A B 7(init(?\) A B
dry Pu ,Pu ——/ / 7d}l@~ N Tobs\q) — Tops (4 dHD-
( P p) D ANQ~(q) 7Tpred(QO\)) ' | bS( ) ob ( >‘

4 Equation (8) implies the inner integral is one and the conclusion follows. O

5 APPENDIX B. PROOFS OF F-DIVERGENCE STABILITY AND CONVERGENCE RESULTS

6 In this appendix, we provide proofs of the theorems from Section 3, in order of appearance. We begin with

7 Theorem 6.
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APPENDIX B.1 Proof of Theorem 6: f-divergence and DCI

Given probability measures, Pinit, Pops, and Ppreq which satisfy the Assumption 1 and updated measures

Py given by (4), we have the following relationship,
Df (Pup”Pinit) = Df (]P)obsH]Ppred) .

Proof. Utilizing (4) we obtain

Dy (Pup | Pinit) = /Af <7TObS(QO\))> Tinit(A) dita =/

Tas(QN) Y
Tprea(Q(A) R ( ) AP

Tpred (QN))

Since the predicted measure is the push-forward of the initial, we rewrite this as

Substituting dPpreq = Tpred(q)dup on the right-hand side finishes the proof. O

APPENDIX B.2 Proof of Theorem 7: Stability w.r.t. Predicted with f-divergences

A

For fixed measures Piniy and Pops with corresponding densities iy and 7,15 respectively, let Tor b

ed and 71-pred

denote predicted densities such that
Tobs(q) < Cmrq(q), and  7aps(q) < CmBo4(q), forae. g €D,

pred pred

for some constant C' > 0, and let pr and ]P’fp denotes the respective associated updated measures. Addi-

tionally, assume there exists another constant C; > 0 such that
Tored (q) < C) ﬂ}ﬁed(q), fora.e. ¢ € D.
Then, there exists a constant C, > 0 such that

Df(]P)S‘p H pr) <Cy- Df(Pgred || ]P)}?red)'
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Proof. Utilizing (4) for Py, and P{},, we obtain

). mas(@0)
Tinit(A) A Q) Tobs (Q(A))

1”@$'M9[U'WMQ>%WWW B T R

T2 (QMV) "pred

Canceling terms and applying the predictability assumption gives

7TBred(CQ()\))
Df(Pl?p || pr) < C/Aﬂ-inito\) ' f (m) d}lA.

Applying the disintegration theorem yields

red \d
D ( < C- / / 771n1t dlfLAq f P d( ) dup.
ANQ~(q) pred(q)

Identifying the inner integral as mpeq(q) produces

D IP)A B < ﬂ.PBred(q)
f( up I IP)up) <C-: Df m Wpred(q) dup,
pre

where we now see the utility of the additional assumption on 7preq and .

prea» Which allows us to obtain

rea ()
Df(]P){?p || P < c- / < pred 7Tpred(q) dup
pred<q
7.(.B
oo [ (D) o) o
D Wpred(Q)

=0 Df(Pfred || P;}red)7

which completes the proof. O

APPENDIX B.3 Proof of Theorem 9: Stability w.r.t. Observed with f-divergences

. . . “ge . A B
For fixed measures Pyt and Ppreq With corresponding densities 7init and 7mpreq respectively, let Py and P

denote observed measures such that

77;1‘35((1) < Cﬂ'pred(‘l)v and Wis(Q) < Cﬂpred(Q) fora.e. ¢ € D,
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for some constant C' > 0, and let IP’A and P2 » denote the respective associated updated measures. Then,
A B B
Df(Pup || HDu )= Df(Pobs H IP)obs)'

Proof. Utilizing (4) for Py, and P{,, we obtain

T (QAN)
TinitN) - 22507 7B Q)
ey - [ 1 () oy shiaon
PIE

Canceling terms and applying the disintegration theorem gives

A By _ Tinit(A) . W(’?bs((I)
Dr(Eg 185 = | (/m](q) (@) d““) 1 (S et o

obs

Equation (8) implies the inner integral is one and the conclusion follows.

APPENDIX C. TOTAL VARIATION AS IPM

We show that choosing F tobe {f : || f||coc < 1} produces the total variation metric. Consider,

A By _ A B
dr(P?,P )—:lelg/fdp /fdP
=J§1€12/f dux—/f z)dpy
—sup | [ 7(@)(x (@) ~ 77 )i
feFlJx

Now it is clear that for every f € F where F is chosen tobe {f : || f||ooc < 1},

< /X £(@)] |7 (@) — 7B (2)] dua

A —7TB.TJ X
g/XHmeh (2) — 7 (z)| dus

A —7TB$
s/X|7r () — 7 ()| du

= dpy (P4, PB)

@) dua
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by the triangle inequality and the fact that || f||c < 1. For the other direction, define f4 (z) to be

1 74z)—7B(x) >0

—1 a4(x) —7B(z) <O0.

Then || f1||oo < 1. In addition, Vx € X, the definition of fi implies that
[ (@) — 77 (@)] < fi(@)(rA(2) — 77 ()

= [ 17te) — 7P @) du < [ falo)(mt @) - 7P @)

= dTV(]P)Aa IP)B) <

[ ) @) — P @)
X

< sup
feF

|t - wB<x>>duX]
= dr(P4,PP)

Thus, the total variation metric is equivalent to the integral probability metric with F chosen to be {f :

[ flloc < 1} since
dr (P4, PP) < dpy (P4, PP)  and dry (P4, PP) < dx (P4, PP).

APPENDIX D. PROOFS OF IPM STABILITY AND CONVERGENCE RESULTS

In this appendix, we provide proofs of the theorems from Section 4, in order of appearance. We begin with

Theorem 11.

APPENDIX D.1 Proof of Theorem 11: Stability of Updated via Predicted using IPM

Let 7, and Gp be used to define IPM for measures on A and D, respectively. Suppose E,, is a bounded
operator from Fj to Gp. For fixed measures Pinix and Pops with corresponding densities minie and mops
respectively, let 7T£,4red and w}ﬁed denote predicted densities satisfying Assumption 2.2 and let pr and IP’EP
denotes the respective associated updated measures. Additionally, assume there exists another constant

(1 > 0 such that

Tpred (q) < C’mﬁred(q), fora.e. q € D.
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Then, there exists a constant C, > 0 such that

dF, (]P)ép’ pr) < Chdg,, ( pred> IP)pred>

Proof. Without loss of generality, assume that F := {f : ||f||z, < 1} and Gp = {g : ||gl|gpr < 1}, where
|| - |74 and || - ||g,, denote the norms defining the IPM for measures on A and D, respectively. Since E, |, is

a bounded operator, 3C' > 0 such that Vf € Fa

Eajq(Nlgn < ClIfll7y < C.

Thus,

1 1
EAGDllsn <1 SEng(f) € Ip

1 In other words, the range of é]E Alq 18 contained in Gp.

Therefore, we have,

dr, (Pop, Poy) = = sup / /A . ](q) (M) Tinit |g(A) dMa,gTpred () (7;,%2(8 y %ij&) dpp
- s | [ EAq<f>W<wged<q>—ﬂ;‘;ed<q>>dup
=C- s / CEA|q(f)7%(W£ed(Q) — Threa(q)) dip
<c o | [ of )W(wﬁm ~ i al@)) dio

A
< (- dg, (Ppred> IP)pB;ed)7

2 where we have used the predictability assumption and the additional assumption involving mp.eq and ﬂ-pre a

3 to obtain the last inequality.
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APPENDIX D.2 Proof of Theorem 12: Stability of Updated via Observed using IPM

Let 7, and Gp be used to define IPM for measures on A and D, respectively. Suppose E, |, is a bounded
operator from F, to Gp. For fixed measures Pinit and Ppeq with corresponding densities 7init and mpreq
respectively, let P/} and PZ  denote observed measures satisfying Assumption 2.1 and let IP’A and IP’B
denote the respective associated updated measures. Then, there exists C' > 0 such that

dr, (P{?p? up) < Cdgy, (P obsv]P)c])Bbs)
Proof. For the case of approximate predicted densities, the proof is similar to the proof in APPENDIX D.1,

except we have

d]:A(IPép7 1]13p = sup // 7Tmlt|q( )du/\ q( obs( ) obs( )) dHD
fEFA ANQ— ‘(q)
— swp / Eal(f) (7o (@) — 7E4(0)) dytp
fEFA
sup | [ ZE()rdal) = i) dup
fEFA
< swp | [ gla)(mby(@) ~ mla) duo
9€Gp |JD

=C- ng( obstobs)

APPENDIX D.3 Proof of Theorem 14: Stability using the Pullback IPM

. . . “ge . A B
For fixed measures Pyt and Ppreq with corresponding densities 7init and 7mpreq respectively, let P;p and P

denote observed measures such that
7"'clflxas(Q) < Cﬂ'pred(Q)v and W(ﬁas(Q) < Cﬂpred(Q) fora.e. g € D,

for some constant C' > 0 (i.e.,, Assumption 2.1), and let ]P’A and IE”B denote the respective associated

updated measures. Given an IPM on D defined by Fp and the corresponding data-consistent IPM defined
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by Fj, we have

d]:,’{ (prv pr) = de (P(ﬁ)y chﬁas)v (Dl)

A

Similarly, for fixed measures Pinit and Pops with corresponding densities 7inis and mops respectively, let Tired

B
and m.q

denote predicted densities such that

Tobs(q) < Cw{fmd(q), and  7ops(g) < nged(q), fora.e. ¢ € D,

for some constant C' > 0 (i.e., Assumption 2.2), and let IP’{fp and IP’EP denote the respective associated

updated measures. Additionally, assume there exists another constant C'y > 0 such that

7Tpred<q> < Clﬂ'lfred(Q), fora.e. q € D.

Then, there exists a constant C, > 0 such that

d]"/*\ (P{?p’ pr) < Codry (Péredv IP)fred)' (D.2)

Proof. Given f € F}, choose gf € Fp to be the corresponding function such that

which exists because of the definition of the data-consistent IPM.

Eo(f) = /A o ST N
nQ-'(q
- / 07 Q) it |g Vit g
ANQ~!(q)
=g(Q)/ Tinit|q(A)d1A 4
ANQ~(q)

=g(q).

Similarly, for each g € Fp, choose f, to be the corresponding function in F}. The same equality holds for
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each function g. Thus, to prove (11), we have

/DEAlq(f) <:§bs<(qq))> (WiredEZ§> (Wp?red(q) - Wf?red(q)) dHD

pred

dr(PA PBY = sup

<C-Cy sup
9€Gp

= ng (]P);lred’ P}?red)'

/D 9(a) (@) — 7B (@) dusp

To prove (12), we proceed as above except we do not require the additional assumption,

A B
d]—'j{ (Pupv IP)up) = fseu;_)*
A

/D Enjo(f)(mhe(a) — 72.(0)) dHD‘

= sup
9€Gp

= ng (]PobSa Ebobs) .

/D 9(0) (nh(a) — 7B(0)) dup

APPENDIX E. PROOFS OF L. CONVERGENCE RESULTS

In this appendix, we provide proofs of the theorems from Section 5, in order of appearance. We begin with

Theorem 15.

APPENDIX E.1 Proof of Theorem 15: L.? Convergence with Approximated Predicted Densities

Suppose minit € L>(A) and mps are chosen so that Assumption 1 is satisfied. If (ﬂgred) satisfies Assump-
tion 3 and 7y g — Tpred in LP (D), then mj, — myp in LP(A).

The proof uses standard measure-theoretic techniques. First, we partition the output space into two
sets of “small” and “large” measure. We then consider the pre-images of these sets in the input space and
separately argue why the L? difference between the approximate and exact updated densities are small on
each of these sets. The argument for the pre-image of the “small” set is straightforward in that it directly

relies upon the fact that the initial probability of the set is itself small. The argument for the pre-image of

the “large” set is more subtle.

Proof. Let € > 0. Since mpreq is a probability density and therefore in L'(D), we can choose a set As C D
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defined by 4 > 0 as

As ={q: 71'pred(Q) <8}
such that

eP 1

32070 O lmne (W)

)

/ Tpred <Q) dup <
As

where C' is the maximum of the predictability constants from Assumptions 1 and 3. We use the set

Q7 '(As) C A to split the following integral into two terms that we can separately bound,

p
Ity = mupllncny = [ [t = o] disn

/A\Q‘(A5)
=Ip\@-1(a4)

p
+ / T = mup )| i
Q~1(4s)

p
TN = mup(W)| it

::IQ”(AB)

First, consider the “small” set Q' (As). We rewrite the approximate updated density and true updated

— Tos(q)
Trpred(q)

_ mobs(q)

density in terms of the initial density times the ratio r,,(¢) = = e) and 7(q) respectively. From
pre

Assumptions 1 and 3, there exists N¢ such that Vn > N¢

_ ﬂ-ObS(q) n r _ 7Tobs(‘])
m(q) = 7“3@ @ <C and 7(q) Torea(d) <cC.

Thus,

QWM:A%Mwammm—m@wmmva
=/’ Tt WP (@A) — HQAN P d
Q- '(As)

§ ZPCP / |7Tinit()\)‘p d[,LA.
Q™'(As)
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Applying Holder’s inequality p — 1 times followed by the disintegration theorem gives

Lo P das < I [ i) din,
—1(As) Q~'(As)

Nl [ [ ) s duo
As JANQ™!(q)

=Tpred (Q)

= sy | sa(a) di.

5

By our choice of A5,

2¢eP
IQ—I(ABE) S T

Next, we bound the integral on the “large” set A \ Q~!(As). We begin by re-arranging the terms of the

difference between updated densities by finding a common denominator as follows

;JLred(QO\)) 7r1:7red(c2()\))

ﬂ-gred (Q()\)) — Tpred (Q()\))
Tpred (Q()\))%gred (Q(?\))

Trrea Q) = Torea Q)|

T (N) = Tap(N)| = Tini(A)

Tobs(QA))  Tobs(Q(N)) ‘

= Winit(}\) . Wobs(QO\)) :

7Tini‘co\) . Wobs(QO\)) .
7Tpred(CQ(}\» : ﬂ-gred(Q()\))

__mld) o o
= @) @A) [Threa Q) rea (QOV)|

where 7, (¢) is the ratio described earlier. Assumption 3 implies ,,(Q(A)) is bounded by C' and 7preq(q) > 8

on the complement of A;. It follows that

p
I <& / |init (M) Trea Q) ~ 7 Q1) d
—1 Tini . .
MQas) S et [ o I Tored (Q(N)) HA
Rewriting the above integrand as
=8 Tinit(Q(A)) P

| Tinit (A)

Tored(Q(N)) Thred(QA)) = Tprea (QAN)) |
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and then applying Holder’s inequality p — 1 times, we obtain

Ing-1(a4)

CpHWinit(}\)Hi;l(A) Tinit (A) n P
= ov=! /A\Q'(As) Torea( QU Pt Q) = Torea QO] b

Applying the disintegration theorem yields

Tnvg-1(a4)

Pl ) )
< init d " o d 7
= op—1 ~/D~/A\Q—‘(A5) Wpred(QO\)) HA,q pred(q) pred(q) Wo

=1

which reduces to

CP||minie V)17 o P
UNGRIVIS IS 5p1 = /D Tored (@) — Tpred (¢)| dup
CP||mimit W) 5
= 6p_l ( ) Hﬂ'}?red - ﬂ'predHip(D)' (El)

Since Wgred — Tpred i LP(D), we can choose N5 > N¢ such that n > N; implies that the above integral is

less than €” /3. Combining this with the bound from the “small” set, we have that for n > N5,

1/
178 = upllzeay < (To-10a) + Invo-104))

2eP P\ /P
<<3+3> = €.

The conclusion follows. O

APPENDIX E.2 Proof of Theorem 16: Rate of Convergence with Predicted in L,

Suppose Tinit € L>°(A) and mqps are chosen so that Assumption 1 is satisfied. If (7, 4) satisfies Assump-

tion 3, w3 .y — Tpred in LP (D), and the convergence rate of Prea 18 of order O(p(n)) on almost all of D, then

the convergence rate of Py, is of order O(p(n)) on almost all of A.

Proof. This follows immediately from the bound obtained in Equation (E.1) in the proof of Theorem 15
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located in Appendix APPENDIX E.1. O

APPENDIX E.3 Proof of Theorem 17: L.? Convergence with Approximated Observed Densities

Suppose Tinit € L>°(A) and 7ops are chosen so that Assumption 1 is satisfied. If (77} ) satisfies Assumption 3

and 7y — Tobs in LP(D), then 7w, — mup in LP(A).

The proof is similar to that of Theorem 15 in that we let ¢ > 0 and follow analogous (and in some case
identical) steps to choose an IV such that n > N implies that ||7{l, — Tup|[2r(a) < €. Below, we mention the

relevant, and in some cases subtle, details that change in the argument.

Proof. In proving that I-1(4,) is small, the only relevant detail that changes is that r,,(¢) is now defined
in terms of the ratio of the approximated observed density 7}  t0 mpreq. The proof that I\ g-1(4,) can be
made small for sufficiently large n is simpler than in the previous proof. First, there is no need to find a

common denominator in the difference of the approximated and exact updated densities since factoring

immediately gives

init (A n
o) = )| = T I Q) = s Q)
It then follows that
1 . |7 (QN)) — Tobs(QN)) |
IA\Q?I(AE) = or—1 /A\Ql(A:S) |7Tmlt(}\)|p . WPred(Q(?\)) da.

Utilizing this and a similar argument as before, we obtain

[[7init (A) | |I£;1(A)

IA\Q*‘(A(,) < op—1 |1 7obs — ﬂ-ObSHiP(D)' (E.2)

Comparing this to the bound obtained in the previous proof, we note the absence of C? and that the
LP(D) norm is now of the difference in observed densities as opposed to predicted densities. Both of these
differences are attributed to the simpler first step that did not require finding a common denominator.
To finish the proof, we simply appeal to the fact that now 7} . — 7 in LP(D) to make the above term

small. 0
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APPENDIX E.4 Proof of Theorem 18: Rate of Convergence with Observed in LP

Suppose Tinit € L*°(A) and 7ops are chosen so that Assumption 1 is satisfied. If (77, ) satisfies Assump-
tion 3, . — 7ops in LP(D), and the convergence rate of P7, . is of order O(p(n)) on almost all of D, then

the convergence rate of P, is of order O(p(n)) on almost all of A.

Proof. This follows immediately from the bound obtained in Equation (E.2) in the proof of Theorem 17 in

Appendix APPENDIX E.3. O

APPENDIX E.5 Code to Reproduce Results
All of the scripts used to generate the numerical results in this paper can be found at

https://github.com/sandialabs/MrHyDE/tree/main/scripts/DCI/Ll-generalization
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