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Abstract. To capture and understand animal behavior, engineers and
biologists seek to develop biologically accurate neuromechanical mod-
els of muscle dynamics and neural control. However, demand-driven
enhancement of complex neuromechanics, such as the multifunctional
Aplysia californica feeding apparatus, can be challenging due to the mul-
tidimensional biomechanical and neural models involved. We propose an
analysis pipeline that enables reinforcement learning (RL) to classify
which aspects of an engineered neuromechanical model can accurately
capture animal behavior. As an example, prioritizing where demand-
driven enhancement of a biomechanical and neural model is needed, the
neural model of a published neuromechanical model of Aplysia swallow-
ing during feeding was replaced with an RL controller and their perfor-
mances were compared and correlated with in vivo swallowing behav-
ior. By comparing the performance of the neural model and the learned
model to in vivo animal behavior, we can pinpoint areas for improvement.
The analysis pipeline identified that the neuromechanical model confi-
dently captured force performance with no significant difference from
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animal swallowing force behavior. It most usefully also indicated that
the biomechanical model will need to be improved in future iterations
to better capture motor neuron activity. Future work should explore
the accuracy of the RL-enabled analysis pipeline with a more advanced
biomechanical model.

Keywords: reinforcement learning · neuromechanical model · Aplysia
californica

1 Introduction

Biologically-accurate neuromechanical models of complex animal behavior are
valuable tools for engineers and biologists. Engineers and roboticists often use
these models to learn how to design robots capable of precise control and robust
adaptability witnessed in nature [1–4]. Biologists and neuroscientists can test
biological hypotheses using these models to deepen their understanding of what
has been observed experimentally and in literature [5–8]. One common model
organism for developing these neuromechanical models is the marine mollusk
Aplysia californica. This animal displays complex multifunctionality in its feed-
ing behaviors despite its relatively small neuromusculature. With this tractable
neuromusculature system, Aplysia can adjust its feeding behavior between bit-
ing, swallowing, and rejecting food (i.e., seaweed) efficiently [9–12]. For example,
if Aplysia detects that an object it was ingesting is inedible, it can switch from
swallowing behavior to rejection behavior. By developing models that represent
muscle dynamics and neural control, roboticists and biologists alike can better
understand how Aplysia is capable of this multifunctionality and how this could
be applied to advancing current soft robots [13–15].

When developing models that can represent the multifunctional behavior of
Aplysia’s feeding apparatus, the question of how complex the model should be
becomes very important due to the trade-off between low computational cost
and high complexity. Therefore, model complexity should be dependent on the
application of the model. For example, in robotics, one may want a fast model
that is moderately biologically accurate, whereas in neuroscience, one may want
a highly accurate model, even if it is computationally slower. Given this trade-
off, a model should be as complex as needed for a goal, but no more so. This
compromise is at the core of demand-driven complexity [13]. However, in complex
neuromechanical models, it can be challenging to identify what aspects of the
model need to be refined at any given stage of model development.

In this work, we present a method that leverages reinforcement learning (RL)
in an analysis pipeline to identify what aspects of a neuromechanical model of
Aplysia need to be improved towards better capturing in vivo animal behavior.
Our approach both identifies which components in the tested model deviate
from in vivo animal behavior and gives a potential order of priority for which
components need improvement.
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2 Methods

2.1 Analysis Pipeline

Systematically identifying what aspects of a model to focus on when using
demand-driven complexity in neuromechanical modeling is challenging because
there are currently few quantitative tools to assess the aspects of these highly
complex models that deviate most from the target data. For the approach
presented here, we focused on identifying if the biomechanical model, neural
model, or both should have priority for future model improvements. Our analysis
pipeline begins with the GymSlug Reinforcement Learning Gym [16]. GymSlug
is based on a previously published neuromechanical model of Aplysia feeding [13]
in which the neural circuitry is represented using Boolean operations, and the
biomechanics are a simplified quasistatic spring model with 1st order muscle
dynamics. The model parameters were hand-tuned simultaneously by experts in
Aplysia feeding behavior to produce qualitatively similar multifunctional feeding
behavior. In GymSlug, the neural model is replaced with an RL controller, which
takes the state of the biomechanics as inputs and outputs motor neuron activi-
ties. We posit that if the biomechanical model were a perfect representation of
the animal biomechanics, given enough training data, then the RL model would
converge to a control strategy that highly correlated with the in vivo neural sig-
nals. We will call the expert hand-tuned neuromechanical model the “Expert”
model and the RL policy model the “Trained” model.

To identify areas within the Expert model that may need demand-driven
complexity-based improvements, we first ran the GymSlug training program on
six randomly-seeded iterations with a training period of 500,000 epoch iterations
to match the amount of experimental in vivo Aplysia data. This created six
individual RL control policies, which were used to generate simulated data for a
sequence of four to five swallows each following training.

Following model data generation, all the experimental and predicted ani-
mal swallowing data was segmented and normalized. We then calculated the
cross-correlation coefficient distribution of fundamental motor and interneural
swallowing behavior properties between the Animal data, Expert models, and
Trained models. Inter-animal, Animal-to-Expert, and Animal-to-Trained model
cross-correlation distributions were compared to determine if the predicted swal-
lowing behavior is highly correlated with in vivo swallowing behavior. Using this
approach, if the Expert model did not highly correlate with animal data and the
learned neural activations of the Trained model resulted in a higher correlation
with the animal data than the neural model, improvement for those components
in the neural model should be a high priority. If the learned activations are not
more highly correlated, then improvements to the biomechanical model should
be a priority.

Animal Swallowing Dataset. To test the ability of our analysis pipeline to
quantitatively identify discrepancies between animal behavior and neuromechan-
ical models, a diverse dataset of animal behavior and model-predicted behavior
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is required. The animal data was collected in [9]. Briefly, adult Aplysia were
placed in a temperature-controlled testing chamber at 14–16◦C, and a piece of
unbreakable seaweed, composed of two strips of Nori applied on either side of
double-sided tape, was hung over this chamber attached to a load cell. Electrodes
were implanted in the Aplysia to record activity in the I2 muscle, the radular
nerve, buccal nerve 2, and buccal nerve 3. For each experiment, 4 to 5 swallow
cycles were extracted from the raw data since that is the observed favorable
time until the slug begins to behave differently [9]. The dataset from this work
consists of six feeding sequences with four to five consecutive swallows from five
individual Aplysia [9]. Unbreakable seaweed was used to allow swallowing pulling
force measurement and recording activity in key motor neurons. This pipeline
includes the activation frequency of the I2 muscle as well as the firing frequen-
cies of B8a/b (manipulating the grasper closing I4 muscle), B38 (activating the
pinching function in I3), and B6/B9/B3 (controlling the activation of the I3
muscle).

Fig. 1. Example swallowing performance datasets for (A) Aplysia in vivo experi-
ments [9], (B) Expert model tuned behavior [13], and Trained model learned behav-
ior [16]. The dashed lines separate consecutive swallowing cycles and were found using
the segmentation and normalization methods. The separate swallows were individually
used to make cross-correlation comparisons.

Segmentation and Normalization. Since we are interested in how different
the models are to the animal data, in other words, how well the models correlate
to animal data, we wanted to segment and normalize the animal data, Expert
model data, and Trained model data to compare swallows with different phase
durations to each other. For the segmentation, we split our time series data based
on the onset of B31/32 neuron activation [9]. B31/32 innervates the I2 protractor
muscle, rapidly decreasing the force on the seaweed after force peaks during the
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retraction stage of the previous swallow [17]. The odontophore is pushed to the
jaw opening, releasing the tension on the seaweed. In the reinforcement learning
model, multiple B31/B32 activity episodes may occur within the same swallow.
Therefore, to distinguish these bursts from the initial onset, a second segmen-
tation criterion was introduced so that the segmentation should only happen
if both an onset of B31/B32 activity and a steep negative slope in the force
data were observed. Following segmentation, each swallow was time-normalized
before subsequent comparisons. For normalization, time was divided by the total
time elapsed in the segment, scaling all swallowing cycles to a normalized time
of one, allowing for direct swallow comparisons. After applying the segmenta-
tion and normalization described (Fig. 1), the sample size for the animal swallow
dataset is N = 24, the expert predicted swallow dataset is N = 1, and the trained
predicted swallow dataset is N = 26. Note that the expert dataset is a single
swallow because the neural model activation does not vary with every swallow
cycle, making each swallow in a sequence of swallows exactly the same.

2.2 Statistical Analysis

Animal and Model Performance Correlation. To assess the similar-
ity between two signals, in this case, animal swallowing behavior and model-
predicted swallowing behavior, we conducted a cross-correlation analysis. This
involved shifting the animal data (x) by various lag values (m) and computing
the dot product with the Expert or Trained model data (y). The resulting cross-
correlation coefficients (c) quantify the degree of correlation between the two
signals across different temporal displacements, described by the equation:

c = max( ̂Rxy(m − P )), where m = 1, 2, ..., 2P − 1 (1)

where ̂Rxy(m) is defined as

̂Rxy(m) =

{

∑P−m−1
n=0 x(n+m)y

∗
n m ≥ 0

̂R∗
xy(m) m < 0

(2)

where P is the amount of data point in both signals and the asterisk denotes
complex conjugation. We want the max ̂Rxy(m−P ) because that is the moment
when the lag shift between the two signals results in the highest correlation [18].
This value then has to be normalized to be between [−1,1] so it is normalized as

ccoeff =
c

̂Rxx(0) ̂Ryy(0)
(3)

where Rxx(0) and Ryy(0) refer to the cross-correlation of one signal compared
to itself with zero lag. Cross-correlation coefficients were calculated between
the swallows of a single animal and the swallows of all animals to see how much
Intra- and Inter-animal variation is typical. Additionally, we calculated the cross-
correlation coefficients for all animal swallows to all Expert and Trained model
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swallows. Finally, we calculated the cross-correlation coefficients between Expert
and Trained models to see how different their simulated swallows are. We will call
these five different correlations “Intra-Animal” correlations, “Inter-Animal” cor-
relations, “Animal-to-Expert” correlations, “Animal-to-Trained” correlations,
and “Expert-to-Trained” correlations, respectively.

Bootstrapped Confidence Interval. Because our data sets include multiple
swallows from each individual (both real and modeled) as well as dependency
within our time series data between motor activity and grasping force, statis-
tical comparisons of correlation coefficient distributions were performed using
block bootstrapping and confidence intervals. Block bootstrapping is a boot-
strapping method used for time series dependence [19] that creates blocks of
data with strong dependence and assumes data outside the blocks hold insignif-
icant dependencies. In the case of the swallowing data in this work, we consider
a single swallow to be a block and assume that each swallow can be considered
sufficiently independent of the next and previous swallow for the purposes of
our pipeline. For all comparisons, we applied block bootstrapping and randomly
resampled 10,000 times the median difference between the two groups being
compared, thereby creating histograms of the bootstrapped differences between
the medians of these distributions. Using a 95% confidence interval, the differ-
ence between each group is significant if a median difference of 0 does not fall
within the confidence interval (i.e., we can reject the null hypothesis) and non-
significant if 0 lies within the confidence interval (i.e., we fail to reject the null
hypothesis).

We use this bootstrapped confidence interval in three different ways: (1) for
animal-to-model correlations (Animal-to-Expert and Animal-to-Trained) rela-
tive to the Inter-animal group, (2) for model to RL model correlations (Expert-
to-Trained) relative to Inter-animal, and (3) for animal-to-model correlation
comparisons (Animal-to-Expert relative to Animal-to-Trained). We will describe
these three cases in more detail. (1) If the difference between the animal-to-model
and Inter-animal correlations are significant for any given property, we hypoth-
esize that the model did not accurately capture animal swallowing behavior
for demand-driven complexity. However, if there is no significant difference, the
model can capture animal swallowing behavior, so no improvement is needed for
the tested model property. (2) To determine if there is high variability between
the Expert and Trained model performance, indicating discrepancies between
the tuned neural model’s and the RL controller’s neural activity and/or swal-
lowing force, we assess whether the difference between Expert-to-Trained and
Inter-animal correlations is significant. And lastly, (3) when the confidence inter-
val between Animal-to-Expert and Animal-to-Trained is found, if there is no
significant difference, we hypothesize that the biomechanical model should be
prioritized since the performance accuracy with different neural models did not
change. If the confidence interval does show a significant difference, then there
are two possibilities. The neural model should be prioritized if the Animal-to-
Trained correlation is higher than the Animal-to-Expert since replacing the neu-
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ral model with an RL controller increases performance accuracy. Inversely, the
biomechanical model should be prioritized if the Animal-to-Expert correlation
is higher than the Animal-to-Trained correlation since having the tuned neural
model increases performance accuracy. Using these three results, we can confi-
dently pinpoint exactly which components in the neuromechanical model need
to be prioritized for demand-driven complexity improvement in future, more
advanced iterations.

3 Results and Discussion

After conducting the analysis pipeline on the Expert model for the selected
neural activations (i.e., I2 Muscle Activation, B8a/b, B38, and B6/B9/B3) and
the resulting force on unbreakable seaweed, we found that force could confi-
dently capture animal-like swallowing behavior, while neural activations could
not (Fig. 2). The cross-correlation coefficient distributions were first found for
comparisons of Intra- and Inter-animal swallows to serve as a benchmark for
the typical variability seen in vivo. The cross-correlation coefficient distribu-
tions for Intra-animal and Inter-animal comparisons had medians of 0.97 (IQR
0.96–0.98) and of 0.96 (IQR 0.93–0.97), respectively (Fig. 2). As outlined in
Sect. 2.1, comparisons were then performed with cross-correlation coefficient
distributions of all animal swallows compared to all Expert model swallows
(Animal-to-Expert), all animal swallows compared to all Trained model swal-
lows (Animal-to-Trained), and all Expert model swallows compared to all trained
model swallows (Expert-to-Trained). The corresponding median and interquar-
tile range were 0.95 (IQR 0.94–0.96), 0.95 (IQR 0.93–0.97), and 0.95 (IQR 0.95–
0.96), respectively (Fig. 2). After calculating the bootstrapped confidence inter-
vals of force for both the Expert and Trained models, the null hypothesis failed
to be rejected for a confidence level of 95%, ranging from [−0.0011, 0.0187]
(Fig. 3A) and [−0.0014, 0.0121] (Fig. 3B), respectively. Given that the expert-
tuned model used in this work to test our analysis pipeline was hand-tuned to
mimic the force profile from Aplysia swallowing data, it is unsurprising that
the force time series was not statistically significantly different from that of the
animal data.

On the other hand, the analyzed neural activities of both Expert and Trained
models failed to accurately capture animal swallowing behavior. The cross-
correlation coefficient distribution median and interquartile ranges for all mod-
eled motor neuron activity relative to animal swallows is detailed in Table 1.
Compared to the previously discussed force correlations, the correlations found
for motor neuron activity are much more variable, with cross-correlation coeffi-
cients below 0.9, indicating lower model accuracy. The bootstrapped confidence
intervals comparing both the Animal-to-Expert and Animal-to-Trained distribu-
tions relative to the Inter-animal distribution rejected the null hypothesis for all
neural activities (Fig. 4, Table 2). This indicates that the correlation coefficients
varied significantly from the expected distributions across multiple individual
animals, and therefore, neither model accurately captures animal-like swallowing
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Fig. 2. Cross correlation distributions of animal and model comparisons. Boxes repre-
sent the 2nd and 3rd interquartile range with the center line at the median. Whiskers
represent the 1st and 4th quartiles. Empty circles are outliers. Animal swallowing
comparisons (both Intra-Animal and Inter-Animal) were performed for benchmarking,
animal-to-model comparisons (Animal-to-Expert and Animal-to-Trained), and model-
to-model comparisons (Expert-to-Trained) were performed as part of the analysis
pipeline. Note that the sample size is not the same for the animal swallow dataset
(N = 24), expert predicted swallow dataset (N = 1), and trained predicted swallow
dataset (N = 26).

Fig. 3. Bootstrapping confidence intervals for force on seaweed for Animal-to-Expert
(A) and Animal-to-Trained (B) relative to the Inter-animal group. Zero was found in
both confidence intervals, represented by the red dashed line. Therefore, we fail to reject
the null hypothesis. Thus, there is no significant difference between animal swallowing
behavior and model-predicted animal behavior. (Color figure online)
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Table 1. Median and interquartile range (IQR) of cross-correlation coefficient distri-
butions for internal neural activation properties.

activity for the neurons compared in this work. Alone, this information indicates
that model improvements are needed, but we still need to determine specifically
what aspects of the model should be targeted for demand-driven complexity
improvements.

Table 2. Confidence interval (CI) for Expert and Trained model predictions for internal
neural activation properties.

Comparing the Animal-to-Expert and Animal-to-Trained cross-correlation
distribution to each other (Fig. 5), as well as comparing the Expert-to-Trained
distribution to the Inter-animal distribution (Fig. 6), gives us insight into which
portions of the model, either the neural model or biomechanical model, may need
to be prioritized for improvement. For I2 muscle and motor neuron B6/B9/B3
activation, the confidence interval for the median difference between the Animal-
to-Expert and Animal-to-Trained correlation distributions rejected the null
hypothesis, the intervals being [−0.0603, −0.0387] (Fig. 5A) and [−0.0785,
−0.0359] (Fig. 5D), respectively. Even though the Expert and Trained swallows
are highly correlated to each other for these two properties (Table 1, Fig. 2A,
2D), there is a significant difference between how well they correlate with the
animal swallowing dataset, with the Expert model having a higher correlation
to animal swallowing than the Trained model (Fig. 5).
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Fig. 4. Bootstrapping confidence intervals for motor neurons. A: I2 muscle activation,
B: motor neuron B8a/b, C: motor neuron B38, and D: motor neurons B6/B9/B3
for Animal-to-Expert (left) and Animal-to-Trained (right) relative to the Inter-animal
group. (A–D) We reject the null hypothesis for all activation properties since zero was
not found inside any of the confidence intervals.
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Fig. 5. Bootstrapping confidence intervals for motor neurons to determine which of the
two components of the neuromechanical model, the neural or biomechanical model,
needs to be prioritized for improvement. A: I2 muscle activation, B: motor neuron
B8a/b, C: motor neuron B38, and D: motor neuron B6/B9/B3 for Animal-to-Expert
relative to Animal-to-Trained. (A, D) We reject the null hypothesis since zero was not
found inside the confidence interval. (B, C) Zero was found inside the confidence inter-
vals, represented by the red dashed line. Therefore, we fail to reject the null hypothesis.

For motor neuron B8a/b, the confidence interval for the median difference
between the Animal-to-Expert and Animal-to-Trained correlation distributions
failed to reject the null hypothesis, with the confidence interval being [−0.0482,
0.0012] (Fig. 5B). Therefore, there was no significant difference between how
well the two models captured in vivo B8 activity in swallowing behavior. Based
on this analysis, the RL policy did not learn I2, B3/B6/B9, or B8a/b activity
that better correlated with animal data than the expert-tuned neuromechan-
ical model. Therefore, future modeling efforts should focus on improving the
biomechanical model associated with each of these motor neurons.

Whereas the trends for I2, B3/B6/B9, and B8a/b activity correlations were
similar, all correlations of B38 stand out as being substantially lower than
those of the other motor neurons. The confidence intervals comparison of the
Animal-to-Expert and Animal-to-Trained cross-correlation distributions to that
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Fig. 6. Bootstrapping confidence intervals for motor neurons’ performance correlation.
A: I2 muscle activation, B: motor neuron B8a/b, C: motor neuron B38, and D: motor
neurons B6/B9/B3 for Expert-to-Trained relative to the Inter-animal group. (A–D)
We reject the null hypothesis for all activation properties since zero was not found
inside any of the confidence intervals.

Fig. 7. Variability between individual trials of Trained model predicted swallow behav-
ior for B38. The dashed lines separate consecutive swallowing cycles were found using
the segmentation and normalization methods. A, B, and C are B38 boolean activation
performances during three randomly selected trials, each swallow looking drastically
different from consecutive swallows from the same trial and individual swallows from
the other trials.



High-Dimensional Neuromechanical Model Analysis 345

of Inter-animal variability of B38 were significant with [0.2705, 0.3102] and
[0.2573, 0.2929], respectively (Fig. 4C). Furthermore, much wider variability was
observed in the correlations for the trained B38 activity relative to the Inter-
animal group (Table 1). Finally, comparing the Animal-to-Expert and Animal-
to-Trained cross-correlation distribution to each other resulted in a confidence
interval of [−0.0035, 0.0339] (Fig. 5C), indicating that not only did the models
not correlate well with the animal data, they also did not correlate well with the
animal data by a similar amount, with no significant difference in their perfor-
mance accuracy, pointing to priority in improving the biomechanical model. In
vivo, B38 activity in swallowing begins before I2 activation and then substan-
tially overlaps I2 activation (Fig. 1A) [20]. In the Expert model, B38 activity
is much shorter and occurs at the onset of I2 activation (Fig. 1B), whereas in
the Trained model, B38 activity is highly variable, and much of the activity
often occurs during the retraction phase activation of B6/B9/B3 and B8a/b
(Figs. 7, 1C). Thus, the Expert and Trained models both exhibit B38 activity
that is very different from the real animal behavior, and the two models are even
more different from each other, with an Expert-to-Trained correlation median
of 0.49 (IQR 0.47–0.57) and a confidence interval comparing Expert-to-Trained
and Inter-animal variability showing a significant difference with [0.3749, 0.4501]
(Table 1, Figs. 2C, 6C). Based on these outcomes, future model efforts should
revisit both the biomechanics of pinch in the anterior region of I3 and the neural
model implementation of B38. In the current biomechanical model, B6/B9/B3
also contribute to the jaw pinch [13,16], whereas the jaw pinch is likely more
specifically mediated by B38 in the biomechanics of the real animal. This may
make the B38 activation less important in the model implementations and, there-
fore, more prone to unrealistic variability. Additionally, jaw pinch during the
retraction phase could hinder successful behavior by resisting inward seaweed
movement; the presence of a large amount of B38 activation in the retraction
phase of many Trained model responses suggests the model may not fully capture
this.

4 Conclusions

This work presents a pilot study on a reinforcement-learning enabled analysis
pipeline that classifies if an engineered neuromechanical model can confidently
capture animal behavior, our test case being an existing model of Aplysia cali-
fornica feeding. Using our analysis pipeline, we assessed this model to identify
areas for future model refinement. We replaced the neural model with a rein-
forcement learning neural network and compared the correlation distributions of
key motor neurons to those in animal swallowing data. By comparing the model’s
performance under its own neural control to that under RL-control, we showed
that despite the model being able to capture swallowing force, the biomechan-
ical model may not fully capture the complexities of in vivo neuromechanics.
Furthermore, in comparing the correlations of the neural controller to the RL
controller relative to Animal-to-Animal variability, we see that they are markedly
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different and yet can both generate similar force outputs. This finding may indi-
cate that the biomechanical model does not fully capture the mechanics of the
Aplysia feeding apparatus, especially concerning motor neuron B38. Another
limitation of the model being analyzed in this work is that the Boolean neural
model is constrained to be either on or off, whereas real neurons can show much
more graded spiking frequencies. The rapid alternation of on/off states in the
Boolean model may greatly reduce the correlations, whereas using a more con-
tinuous model (e.g., an integrate-and-fire model [21], a synthetic nervous system
model [22], or a multi-conductance Hodgkin-Huxley-like model [21]) might show
less variation and thus yield better correlations. Finally, the analysis pipeline
is limited by the small amount of experimental animal data available. A larger
sample size would capture a wider range of possible animal behaviors and yield
more precise results.

Future work should compare the results of this analysis pipeline when a more
advanced biomechanical model is implemented to determine if this RL-enabled
analysis approach has accurately identified areas for improvement. More experi-
mental animal data can also be collected to have a larger sample of Aplysia swal-
lowing behavior. Additionally, future tools should supplement this pipeline with
an additional RL-enabled analysis wherein the neural model serves as the envi-
ronment, and the biomechanical model is replaced with an RL policy, thereby
further classifying areas for future demand-driven complexity model enhance-
ment.
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