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Abstract. The passive dynamics of stance can explain why large ani-
mals, like horses and humans, require neuromuscular activity to maintain
stance whereas smaller animals like cockroaches do not [20]. The dynamic
properties that govern an animal’s movement, like inertia, stiffness, and
damping, are dictated by its size, scaling with its length [28]. The nat-
ural frequency of an animal’s limb in stance can be predicted using its
stiffness to inertia ratio, which scales inversely with length. We theorize
that the passive mechanics of smaller animal limbs, with higher resonant
frequencies than walking cycle frequencies, restore limb position quickly
enough that neuromuscular intervention is not needed to correct pertur-
bations during stance. Larger animals, however, require muscle activation
since their mechanics depend more on inertia and are less dominated by
viscoelastic effects, leading to a lower natural frequency.

Keywords: Scaling · Stance · Passive Stability · Resonant Frequency.

1 Introduction

Regardless of size, the movements of all legged animals are governed by the
same forces: inertia, gravity, stiffness, and damping. Scale, however, affects which
of these influences locomotion dynamics the most. Recent studies suggest that
locomotion behaviors can be split into three categories (kinetic, viscous, and
quasi-static) based on limb length and walking cycle period [28]. Sutton et al.
state that the differences in each behavior manifest in the phase shift between
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a joint’s actuation and its displacement. A joint’s rotational position (θ) can be
described using a sinusoid while its velocity (θ̇) and acceleration (θ̈) are the first
and second time derivatives of its position. Each time derivative of a sinusoid
shifts behavior 90◦ further out of phase. This means the actuation of a viscous
system, largely dominated by velocity-dependent effects like damping, is 90◦ out
of phase from joint motion. Similarly, a kinetic system, dominated by acceleration
effects like inertia, is 180◦ out of phase. How do we categorize animals into these
three regions?

An animal’s size is the biggest contributing factor to its dynamic behavior.
Because of the square-cube law, the mass of a given animal scales in accordance
with its length cubed. At the same time, the linear stiffness and damping of
an animal’s joint muscles scale proportionally to its length [28]. This means the
ratio of damping and stiffness to inertia is high for smaller animals and low
for larger animals. As a consequence, the limbs of small creatures, like insects,
are largely dominated by viscous and elastic forces, whereas the limbs of larger
creatures like humans and horses are dominated by kinetic forces. The ratio of
stiffness to inertia determines the natural frequency (Eq. (1)).

ωn =

√
k

m
(1)

Given how mass (m) and stiffness (k) scale with size, the natural frequency (ωn)
will be higher for smaller animals and lower for larger animals.

When a non-periodic perturbation is applied to a passive dynamic system,
it oscillates at its natural frequency. Animals, however, are not passive systems
since they are capable of generating torques about their joints using their mus-
cles. Many investigators have studied how animal locomotion and stance stabil-
ity are affected by perturbations in vivo and in simulation [2,5,23,26,29,30]. A
prevalent focus of these studies is how the nervous system controls the muscles
to perform corrective actions accounting for perturbations. Bingham et al., for
example, discuss that while a wider stance is commonly accepted as more stable
for humans, this is actually due to the mechanical advantage wider stances offer
neuromuscular control for torque generation as opposed to inherent mechanical
stability [2]. On the other end of the spectrum, Jindrich et al. have shown that
insects, like cockroaches, are passively stable; they do not need any neuromus-
cular interference to remain standing [20].

In this paper, we explore the interplay between animal size and passive stabil-
ity in stance. We theorize that the need for corrective neuromuscular interference
depends on the difference between an animal system’s natural frequency and the
frequency of its locomotion cycle. From literature, it is known that walking cycle
frequency tends to scale inversely with animal size [3,10,11,15,16,18,19,34] and
we have established that the same is true for animal natural frequencies while in
stance. In particular, we expect walking frequencies to scale with 1

length0.35 , per
Hooper 2012 [17], while resonant frequencies should scale with 1

length per Eq. (1)
and Sutton et al. 2023 [28]. The different scaling coefficients for these two values
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mean that animals of different sizes have different relationships between resonant
frequency and walking frequency.

We believe that the point at which natural frequency is overtaken by walking
cycle frequency is when neuromuscular intervention is required to stabilize the
system: the passive mechanics of the limb will restore limb position at the limb’s
natural resonant frequency, and if this frequency is very high, as it is in small
insects, the speed of this reaction can be sufficiently fast that the nervous sys-
tem will have no need to add additional torque. This would explain why larger
animals require muscle activation to remain standing while smaller insects can
do so passively [20]. Unlike cockroaches and fruit flies, kinetic force dominated
animals on the scale of horses and humans have such low stiffness and damping
compared to their mass that they cannot recover passively within one period of
their walking cycle. This means they are liable to become unstable and poten-
tially fall over during the walking cycle when perturbed unless they use their
muscles to provide active stabilization.

2 Methods

To test this theory, we first constructed a mathematical inverted pendulum
model of a leg in stance. We then used this to guide our modification of the
4-bar mechanism presented by Bingham et al., which mimics the standing posi-
tion of a human [2]. This model is scalable so that we can import the mass and
length of an animal to obtain an isometrically scaled human stance analog for
that animal’s size.

2.1 Inverted Pendulum

One of the simplest ways to represent the dynamics of a leg in stance is with an
inverted pendulum spring-mass-damper system with the point of ground contact
fixed via a pin joint. The general equation of motion for a rotational system, such
as this, can be expressed as:

T = Jθ̈ + cθ̇ + kθ (2)

where J is inertia, c is rotational damping, and k is rotational stiffness. This
study is interested in the leg’s passive response when a perturbation is experi-
enced during the stance phase. To this end, we considered the response of the
inverted pendulum for an impulse of magnitude A applied at the hip, which
can be modeled using the following textbook solution [24], which is based on
impulse-momentum:

θ(t) =
A

√
kJ

√
1 − ( c

2Jωn

)2 e

(−ct

2J

)
sin

(
ωn

√
1 − ( c

2Jωn

)2
t

)
(3)

The hip was chosen to replicate the force application site of the Stanford
Bump’em system, a perturbation apparatus used to analyze human locomotion
stability [29].



442 S. Riddle et al.

Fig. 1. The 4-bar model, modified from Bingham et al. 2011 [2]. The center of mass
for each linkage is denoted by a gray circle and the hip torsion spring and dampers are
denoted by the green spirals at the top of each leg. (Colour figure online)

2.2 Modified 4-Bar Model

While useful for analyzing the general motion of a leg, the inverted pendulum
relies on the stiffness and damping of a joint between the leg and the ground,
a joint that, anatomically speaking, does not exist. To create a more accurate
stance model, we developed a dynamic model in Simscape, a Simulink (MAT-
LAB) add-on package, similar to the 4-bar model presented in Bingham et al.
2011 [2]. The 4-bar consists of two pin joints at the ankles fixed to the ground
and two pin joints at the hips with a leg link running from ankle to hip on each
side and a torso link spanning the hip joints (Fig. 1).

The Bingham model implemented motors at the hip joints to study the effects
of neuromuscular hip torque feedback on balance. We replaced these with tor-
sional springs and dampers to emulate the passive dynamic properties of a hip
joint. The stiffness and damping parameters were tuned in accordance with Sut-
ton et al. [28], where rotational stiffness and damping for each hip can be calcu-
lated using leg length as:

kr =
n

2
k0s

2L3 (4)

cr =
n

2
c0s

2L3 (5)
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where k0 (12·103 N
m2 , [18,27]) and c0 (1.31·103 Ns

m2 , [7,13,27,31,35]) are empirically
determined proportionality constants and s (10−1.5, [6,9,12,32]) is a unitless
lever arm coefficient [28]. To allow this model to approximate stance for 6-legged
insects, 4-legged mammals, and 2-legged humans, we lump the joint and leg
properties of ipsilateral limbs. This means that each leg of the model actually
represents half the number of legs (n) of the given animal. For a human with two
legs, each hip model only contains one leg’s worth of stiffness (n

2 = 1), but for a
fruit fly with six legs, each hip model has three legs worth of stiffness (n

2 = 3).
This simplification was made so that the effect of scale for the range of models
tested could be explored using a single, approximate model.

Mass, inertia, and center of mass (COM) parameters were kept roughly the
same as the Bingham model except for the distribution of mass between the
legs (mleg) and the trunk (mtrunk). The portion of the mass in all of the legs
combined was changed from 32% of the total body mass to 25%, that of a rat [33].
Larger animals have a greater proportion of their mass in their legs compared to
smaller species, like insects. To accommodate this, and generalize the model for
the variety of animals analyzed, the rat mass distribution was used as it lies in
the middle of the length scale of the species included in this study. The equations
for all of the model parameters can be found in Table 1. Importantly, all of these
parameters can be calculated with just two properties: effective leg length (L)
and total body mass (mtot). Both of these are somewhat commonly reported
data points, allowing us to test this model for a wide variety of animals.

Table 1. The calculations for the parameters of the 4-bar model, using only body mass
(mtot) and leg length (L).

Model Parameter Calculation

Leg Length [m] L - From Literature

Total Body Mass [kg] mtot - From Literature

Total Body Length [m] Ltot = L
0.530

Leg Mass [kg] mleg = 0.125 ∗ mtot

Leg Inertia about COM [kg m2] Ileg = 0.030 ∗ mtot ∗ Ltot

Leg COM from ankle [m] LCOM = 0.293 ∗ Ltot

Trunk Mass [kg] mtrunk = 0.75 ∗ mtot

Trunk Inertia about COM [kg m2] Ileg = 0.020 ∗ mtot ∗ Ltot

Trunk COM from hip [m] HCOM = 0.108 ∗ Ltot

Hip Width [m] W = 0.134 ∗ Ltot

As for the perturbation, a linear force impulse was applied at the left hip
of the 4-bar linkage to emulate the Stanford Bump’em, which applies sudden
perturbation to subjects about the hip [29]. An impulse can be expressed in
units of Force · time, which can be expanded to mass · acceleration · time, which
has units of length4

time . To accommodate this, the magnitude of the pulse was scaled
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with L4. As the Bump’em can apply up to 200 N of force for a human, the scaled
force magnitude for other species was calculated as follows:

Fimpulse = 200(
L

Lhuman
)4N (6)

Since the leg length of an average human is roughly 1 m this reduces to 200L4N,
where L is the animal leg length given in meters.

2.3 Animal Data

Animal masses and leg lengths were gathered from the literature and compiled
in Table 2. The test animals included: horse, human, cat, rat, mouse, cockroach,
and fruit fly. These cover leg lengths from 5 mm to 1.5 m, a range of 4 orders of
magnitude. A table containing the walking cycle period of each animal was found
in the supplementary documentation of Sutton et al. 2023 [28]. These values
were converted to walking cycle frequency, with units [ rads ], via the relationship
ω = 2π

T and recompiled into Table 2 here.

Table 2. The masses, lengths, and walking cycle frequencies gathered from the litera-
ture for the species of interest in this paper.

Species Leg Length [m] Body Mass [kg] Walking Frequency [ rad
s

] Refs

Horse 1.5 · 100 5.0 · 102 7.1 · 100 [16,18]

Human 1.0 · 100 7.0 · 101 1.3 · 101 [2,11]

Cat 2.5 · 10−1 4.5 · 100 2.5 · 101 [1,10]

Rat 5.0 · 10−2 5.0 · 10−1 3.1 · 101 [8,19]

Mouse 2.0 · 10−2 2.6 · 10−2 6.3 · 101 [4,15]

Cockroach 8.0 · 10−3 1.0 · 10−3 1.4 · 102 [3,20]

Fruit Fly 5.0 · 10−4 1.0 · 10−7 1.3 · 102 [25,34]

3 Results

To find the natural frequency (ωn) of the 4-bar system for each animal, the
perturbation simulation was run with each set of parameters neglecting damping
terms. The position of the torso center of mass was recorded at each timestep
and the peak-to-peak times of the resulting oscillations were calculated, giving
us the period of oscillation (T ) for the system. This was then converted into
natural frequency, with units [ rads ], the same way the walking frequencies were
calculated. These frequencies, along with the walking cycle frequencies, were
plotted against leg length in Fig. 2. This shows that the natural frequency scales
inversely with animal leg length.
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Fig. 2. The natural frequencies of the 4-bar model (blue) and walking cycle frequencies
from literature (orange), as they scale with animal mass and leg length. (Colour figure
online)

Fig. 3. Corrected natural frequencies of the 4-bar model (blue) and walking cycle
frequencies (orange). Relation between walking frequency and length from Hooper
2012 [17] (red dashed line), and the linear regression of our data (blue dashed line) are
also plotted. (Colour figure online)
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From these results, it is apparent that the natural frequencies gathered from
the model are smaller than the walking cycle frequencies for every animal, except
for the fruit fly. This was unexpected given that we know, at the very least, that
cockroaches possess passively stable stances [20]. To understand this discrepancy,
we compared the stiffness of our model cockroach to that of a live cockroach.
Jindrich et al. found the linear stiffness of a cockroach to be 16 N

m [20] while
our model parameters calculate a torsional stiffness of 5.1 · 10−4 Nm

rad for a single
hip joint. We know from Sutton et al. that linear stiffness scales with L while
rotational stiffness scales with L3, so we divide our rotational stiffness by L2

(L = 8 mm), giving us an equivalent linear stiffness of 0.29 N
m per modeled

hip, or 0.58 N
m total. This means our 4-bar model may underestimate hip joint

stiffness for the cockroach by a factor of 28.
To assess if this underestimation is responsible for the discrepancy between

natural and walking frequency, we scaled all of our hip stiffnesses by a factor
of 28 and re-ran the simulations. The results in Fig. 3 show that the lines now
cross as expected, with the cockroach having a higher natural frequency than
walking cycle frequency with the inflection point near the mouse scale (10−2 m).
Also plotted in Fig. 3 is the trendline corresponding to walking frequency as a
function of length, presented in Hooper 2012 [17]. Hooper states that the walking
frequency of an animal scales with 1

L0.35 , which agrees with the frequencies we
found in the literature. While all animals are capable of a range of walking speeds,
we considered only the maximum walking speeds reported in the literature for
this analysis, as these closely aligned with the Hooper trendline. To estimate
how our model’s natural frequencies scaled with leg length, we performed a
linear regression on the log-scaled data. This gave us Eq. (7) with a fraction of
variance explained of R2 = 0.95.

ωn =
2π

0.28L0.87
(7)

Equation (7) suggests that the natural frequency of our model scales with 1
L0.87 .

This deviates from the 1
L scaling we predicted based on Eq. (1) and Sutton et

al. 2023 [28].

4 Discussion

To understand why the resonant frequency of our model does not scale as pre-
dicted, we consider the equation for the natural frequency of a rotational system:

ωn =

√
kr
J

(8)

where torsional stiffness kr and inertia J are expected to scale with L3 and L5

respectively [28]. We deduced that if the natural frequency was not scaling as
expected, it was because at least one of these model properties was not scal-
ing as expected. To test this, we reintroduced damping to the model and ran
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the simulations again. This time, we used a constant force, scaled with L4 as
before, applied at the same location as the impulse, and recorded the steady
state angular displacement of the system from rest with respect to the ankle Δθ.
The equation for the moment generated by a torsion spring is:

M = kr · Δθ (9)

so, to find the stiffness of the whole model kr we took the applied force multiplied
by the leg length squared, to calculate the applied moment M , and divided by
the recorded Δθ. We then ran a linear regression on the log-scaled stiffnesses
and found that the measured kr scales with L2.9, which is reasonably close to
the expected L3 scaling.

With stiffness scaling as expected, the discrepancy must lie in the inertia.
Breaking J down further, we see it is not actually an independent variable, but
rather it is proportional to mass · length2. Since leg length is the variable by
which we scale our model, it did not make sense to run a linear regression on
this parameter. The body masses, however, were empirically determined, not
calculated with L. We ran a linear regression on the log-scaled body masses
and found that the values from the literature scaled with L2.64, rather than
L3, meaning the total inertia of the model scales with L4.64. Substituting this
scaling and our findings from the stiffness regression into Eq. (8), we find a
natural frequency that scales with 1

L0.87 , exactly what we see from the original
linear regression run on the measured natural frequencies of the model. This
confirms that our model scaling unexpectedly is due to the true mass of the
species we tested scaling with L2.64, not L3.

What might account for the scaling difference? The notion that mass scales
with length cubed was originally derived under the assumption that animals
are roughly cylindrical in shape [14,22], which works well for larger animals.
However, smaller animals tend to take on a much more crouched posture, which
would affect the distribution of body mass and leg geometry [21]. This very dif-
ferent posture could affect the mass-to-leg length relationship and consequently
lead it to deviate from the isometric L3 scaling.

Frequency scaling aside, our model, before correction, may also underesti-
mate stiffness by a factor of 28. There may be multiple reasons for this, but
two primary causes are likely our model’s inability to account for significant
anatomical differences between species and musculature differences between the
joints in a given leg. The 4-bar mechanism is modeled after a human standing
with feet hip-width apart and isometrically scaled to the size of each animal.
This means we do not account for changes in stance width, body center of mass
location, or species-specific mass distributions, among other factors. It makes
sense that stiffness for our cockroach-scaled model would be underestimated
since cockroaches have a splayed-out stance, which should theoretically be more
stable than the hip-width leg stance modeled. Additionally, we considered only
rotational hip stiffnesses that apply torques linearly proportional to the angular
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displacement. However, passive forces in biological muscles exhibit large tran-
sient effects and viscoelasticity, which may need to be reflected in future model
interactions. Finally, joint stiffness data reported in literature and used in this
work, typically comes from the knee joint, which for many species has less muscu-
lature than the hip joint. Cross sections of a cockroach coxa and femur, provided
by Sasha Zill (personal communication), show there is roughly seven times more
cross-sectional area in the muscles controlling the hip than the knee. Since joint
stiffness is correlated to muscle size, this would further explain why our model
underestimates stiffness. These findings highlight the importance of consider-
ing stance configuration, posture, biological material properties, and leg joint
anatomy in future modeling efforts.

5 Conclusions and Future Work

In this work, we explored the relationship between an animal’s natural frequency
during stance and its passive stability. We theorized that when a creature’s
undamped natural frequency is larger than its walking cycle frequency, it has
a passively stable stance. As a consequence, in response to perturbations, large
animals, such as humans, require nervous system activity to remain stable [2],
whereas small animals, such as cockroaches, maintain stability without addi-
tional neural activity [20]. Our initial model implementation, assuming mass
scaled with L3 and isometrically scaling the human-inspired four-bar mechanism,
resulted in deviations from this prediction. However, further analysis found that
this approach underestimated hip stiffness compared to reported values in the
literature. Correcting this underestimation and re-running the simulations pro-
duced results supporting this claim. With the correction, when scaled for both
cockroaches and fruit flies, the model exhibits higher natural frequencies than
walking frequencies, while the opposite is true for larger animals like horses and
humans. This supports the theory that, in small animals, the passive mechanics
of the joint are fast enough to dampen perturbation without the aid of neuro-
muscular feedback.

While this is a promising result, there are still a few issues with this model
that require further investigation. As stated previously, we needed to increase
the stiffness of the hip joints by a factor of 28 to get the model stiffness for
a cockroach to agree with the stiffness found in the literature [20]. However,
we have not yet investigated whether this factor should be constant across all
species. It is also possible that the stiffness multiplier may not be so large if
we change the model to account for preferred stance widths and limb postures.
Wider stances would naturally manifest a greater overall stiffness for the 4-bar
mechanism, giving the cockroach model a stiffness closer to that found in the
literature. As this is an ongoing project, both of these issues will be explored in
future work
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