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Abstract. Controlling limbs in robotics is a nonlinear, complicated calculation
that animals can do without significant effort. In this work we present a dynam-
ical neural model with bioinspired sensory receptive fields which is capable of
encoding the forward kinematics of a robotic leg. The model is implemented
using the SNS-Toolbox. Synaptic conductance values are tuned using the Func-
tional Subnetwork Approach. No optimization or machine learning is required.
To understand how network construction affects encoding accuracy, we systemati-
cally varied the sensory neuron receptor functions, the number of sensory neurons,
and neuron time constants. We use the root-mean-squared error to check the accu-
racy of the designed model. Finally, we show that our model with multiple outputs
is more efficient than multiple networks with one output each.
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1 Introduction

The control of limbs, whether for an animal or a robot, is a complicated task. For exam-
ple, to accurately compute the position of the endpoint of the limb (e.g., hand, foot),
sensory signals from across the limb must be integrated in a highly nonlinear way [1].
Furthermore, measurements taken along the limb may need to be transformed into the
body’s or head’s frame of reference to be intelligible and useful for control, e.g., targeting
placement of a hand or foot [2]. Despite the complexity of such calculations, animals
solve problems of limb placement gracefully and without much apparent effort, suggest-
ing that the nervous system has evolved mechanisms for computing (or approximating)
such calculations. In this study, we create a dynamical neural model inspired by sensory
receptive fields in insect limbs that may perform computations of this type.

In robotics, kinematics problems are solved by formulating vector and matrix equa-
tions [1]. For an open chain manipulator (e.g., a leg), the “forward kinematics” are
computed by expressing the position and orientation of the end-effector in space as a
function of the joint angles. Forward kinematics problems have a unique solution and can
be expressed as a cumulative multiplication of transformation matrices [1]. Despite these
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properties, their computation can be expensive and thus difficult to calculate as part of a
real-time robot controller or biomechanical model. This challenge has motivated the uti-
lization of artificial neural networks that reproduce forward kinematic solutions while
effectively side-stepping the actual kinematics calculations. Researchers have trained
and deployed such networks as part of robot manipulator controllers, enabling real-time
control and, thus, the implementation of more sophisticated controllers [3]. Researchers
have also used such networks to compute kinematic relationships within biomechani-
cal models, e.g., the length of a muscle as a joint rotates, accelerating simulation and
facilitating more rapid model improvement [4]. Such methods represent an advance in
computation, but they require a lot of data and time for tuning, and performance cannot
be guaranteed. Instead, we seek a model with structural and functional meaning that can
be tuned rapidly and directly.

We also seek a model with biological relevance. In insects and other animals, sensory
feedback is encoded by “range fractionated” sensory neurons [5-7], in which many
neurons respond to the same mechanical state (e.g., joint angle) but with sensitivity
to different “ranges”. For example, some neurons are only active when the joint is
extended; others are active only when the joint is flexed. This is believed to provide
redundancy and, therefore resiliency in case of noisy sensory feedback or damaged
sensory organs or neurons. We hypothesize that it also has computational advantages by
enabling downstream networks to operate like a decoder rather than an analog circuit,
which is prone to noise and miscalibration [8].

In this study, we apply tuning methods from our Functional Subnetwork Approach
[9] to extend and analyze our previously developed spatially distributed population-
coded network model [10]. The present study 1) demonstrates that this method can
be applied to accurately encode 3-dimensional forward kinematics problems with no
optimization or machine learning; 2) applies this method to compute multiple functions
of the inputs using the same network, resulting in efficient computation of many nonlinear
functions, simultaneously; and 3) quantifies network accuracy as the number of sensory
neurons, their activation functions, and time constants throughout the network are altered.
Furthermore, this study implements these models using the SNS-Toolbox [11].

2 Materials and Methods

2.1 Neural and Synaptic Models

The neural network was designed and simulated using the SNS-Toolbox library [11].
Each trial simulates 2 s of neural responses using Forward Euler integration with a
timestep of 1 ms. All simulations were performed through JetBrains PyCharm 2022.3.3
(Professional Edition).

All neurons are modeled as leaky integrators whose dynamics follow the equation:

¢ dU/dt = —GU — E;) + Ipjgs + Isyn + Lex, (D)

where C is the membrane capacitance, G is the membrane conductance, U is the com-
partment’s voltage, E; is the resting potential of the compartment, Ip;, is the constant
bias current, Iy, is the synaptic current, and I, is an external current, for example,
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the mechanotransductive current in a sensory neuron. In our network, all neurons have
E, = 0 and G = 1. Setting E, = 0 simply shifts all compartment voltages such
that the equilibrium voltage is 0 mV, instead of a physiological resting potential (e.g.,
E, ~ —60 mV), which complicates tuning and analysis. Setting G = 1 effectively
normalizes all synaptic conductance values to the leak conductance of that compartment.

Connections between neurons are non-spiking conductance-based chemical
synapses, where the conductance is:

Gyn = Gpax - max (0, min(1, Upre/R)), )

where Gjpqy is the maximum synaptic conductance, Upye is the presynaptic neuron’s
voltage, and R is the operating range of each neuron’s voltage.
Synaptic current has the following dynamics:

Isyn = Gsyn . (AES - Upost)’ 3

where AE; is the reversal potential relative to the postsynaptic rest potential (set to
20 mV for all synapses), and Up,y, is the postsynaptic neuron’s voltage.

The maximum synaptic conductance can be related to the functional “gain” of the
synapse, that is, kKsyn = Upost/Upreksyn = Upost/Upre, by the approximation:

ksynR

Guox = ———7—.
e AEs - ksynR

“4)

The derivation of this expression can be found in [9].

2.2 Network Architecture

For the neural network design, we incorporated and simplified several key features of
insect thoracic sensorimotor networks. First, joint angles are encoded by range fraction-
ated sensory neurons that form receptive fields (Fig. 1, yellow and orange circles 1-6)
[5-7]. In our model, each sensory neuron has a Gaussian receptive field with a unique
mean value (Fig. 2), which is not the most common receptive field in leg joint proprio-
ceptor sensory neurons but can be found [5]. We chose Gaussian receptive fields, which
are similar to visual sensory neurons [12, 13], because they facilitate network tuning
(see discussion).

The interneuron compartments (Fig. 1, cyan circles 7-15) represent the dendrite
of a single nonspiking interneuron (NSI). NSIs are large, branching neurons in insect
thoracic sensorimotor networks that integrate sensory feedback from dozens or hundreds
of sensory neurons and contribute to adaptive motor output [14—17]. We hypothesize
that the way information is integrated may support the calculation of limb kinematics.
To simplify the tuning and simulation of our model, compartments are not connected
through resistive pathways (see discussion).
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Finally, the output neurons (Fig. 1, red, green, and blue circles) represent motor
neurons onto which the NSIs synapse. The synaptic connections to them (Fig. 1, red,
green, and blue lines) ensure that the output neuron response reflects the quantity of
interest in a graded way. Such a scheme could form part of a feedback pathway, in which
the motor neurons are excited by sensory pathways and inhibited by other connections
that specify the intended leg posture. This network architecture is inspired by motor
control network in insects but may be extended to model many different neural structures.

All connections between neurons represent tuned conductance-based excitatory
synapses. For a particular angle of 8, one of the yellow sensory neurons will be most
active. In the same way, for a particular angle of 63, one of the orange sensory neurons
will be most active. The interneuron compartment that is excited by both these neurons
simultaneously will be the most active, so the synapse from that compartment to the
output neuron will primarily determine the output neuron’s activity level. We tuned each
synapse conductance such that the output neuron activity encodes the actual position of
the foot.
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Fig. 1. Example of the designed neural network architecture with 3 sensory neurons per joint.
Sensory neurons are represented in yellow and orange, interneuron compartments in cyan, and
output neurons for the leg’s x-, y-, and z-position are red, green, and blue, respectively. For the
synapses between sensory neurons and interneuron compartments, we set Eq. (4)’s gain values
for excitatory synapses equal to 1 (black lines). Synapses from interneuron compartments to
output neurons were tuned using normalized x-position (red lines), y-position (green lines), and
z-position (blue lines) of the foot from the forward kinematics calculation in Eq. (7). All figures
are color-coded, please use an online version of the paper for a better experience.
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To check the accuracy of the network prediction, we used the root-mean-squared
error (RMSE) metric:

N =RV
RMSE = —Zf=1(2 ) 5)

where x; is the actual time series, X; is the predicted time series, and N is the number of
data points.

2.3 Population Coding of an Input
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Fig. 2. An example of bell curve sensory encoding is used in the network. Each curve has mag-
nitude A = 1 and width ¢ = 20, but each curve’s “mean” value b varies by 0.32 radians from the
others. In this way, the activity profile of the neuron signals represents the rotation of the joint.

For every joint, we defined sensory neurons to get an encoded implementation of an
input. As an activation function, we used the Gaussian bell curve equation:

len(0) = A-exp(—c - (6 = b)), ©

where A is the magnitude, b controls the mean value, and ¢ controls the width of the
curve.
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2.4 Synaptic Conductance Tuning

To calculate how joint angles map to the position of the end effector, we solved a forward
kinematics problem in 3D space with joint angles ranging from —1.6 to 1.6 radians using
the product of exponentials formula [1]:

T — eSn—Ien—l (esngnM)’ (7)
where T is a 4x4 matrix that represents the position and orientation of the end effector,

S is the screw axis matrix, 6 is the joint rotation, and M is the position and orientation
of the end effector in the “zero configuration”, when all joint angles equal O (Fig. 3).

Fig. 3. X-, y-, and z- coordinate position surfaces for 6, and 63 joint angles

To find all exponential matrices, we used Rodrigues’ rotation formula:

S = I+ sin0[S] + (1 — cos O)[ST ®)
where [/S\] is a skew-symmetric representation of a screw axis matrix S.

Since every synaptic connection is excitatory, synaptic reversal potential values must
be positive. Furthermore, synaptic conductance must always be positive. To comply with
these conditions, we normalized all data from the forward kinematics to set gain values
for the synapses between interneuron compartments and output neurons:

Px — min(Px)
max(Px) — min(Px)’

ksynX = 9
where Py is a calculated x-position. This was repeated for P, and P;. Note that no
training dataset is required because the parameters are tuned based on the function of
the network.
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3 Results

To test our approach, we used a robotic leg from the Trossen Robotics PhantomX Hexa-
pod MK-IV (Fig. 4). We used the front left leg, which is rotated 45 degrees about the
Z-axis such that rotating either 6, or 63 changes the X, Y, and Z coordinate of the foot.
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Fig. 4. The drawing of the PhantomX Hexapod MK-IV with the origin at the center of a robot’s
body (I) and a leg configuration (II). 61 servo was fixed, and only 6> and 63 were used as inputs
to the network. Measurements of the leg were used for the forward kinematics calculation.

The sensory neurons accurately encode the joint angles using the Gaussian activation
function (Eq. 6) into neuron voltages (Fig. 5). In this experiment, there are 11 sensory
neurons that encode one joint, and each Gaussian “bell curve” function has a parameter
value ¢ = 20 and magnitude equal to 1. As 6, changes, which neuron is most active
changes in a corresponding way.
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Fig. 5. Bell curve encoded responses (colored lines) of the 6, input (black line). Each color
represents a sensory neuron response for the specific joint angle.

Each interneuron compartment represents one of the possible combinations of the
joint angles for 6, and 63. It implies that interneuron compartments can be active only
if both inputs from 6, and 03 are active at the same time or if activation of one of
those occurs right after another (Fig. 6). The threshold for synaptic activation for each
interneuron compartment is 1 mV, which is equal to the magnitude of the Gaussian
activation function. Using this threshold, we minimize situations when two or more
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Fig. 6. The interneuron compartment (blue) activation with response to the 6o = 63 = —1.6 rad
input values (solid yellow and orange lines respectively). Dashed yellow and orange lines represent
inputs of 6 and 63 joint angles.
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interneuron compartments are active simultaneously in response to the same sensory
inputs.
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Fig. 7. The network’s predicted x-position (red), y-position (green), and z-position (blue) com-
pared to the forward kinematics actual result (black). RMSE for x-, y-, and z-position are 41.76,
31.74, and 51.98 respectively.

By using optimal parameters for the number of sensory neurons per joint and width
of the activation function, the network activity tracks Py, Py, and P, for the robot foot
(Fig. 7). The neural activity exhibits some fluctuation over time but clearly follows the
position of the foot on average. To understand the impact of different network parameters,
we tested combinations of bell curve width (c) and the number of sensory neurons per
joint (V). We found that for every activation function, there is a specific number of sensory
neurons that produces the smallest error (Fig. 8), which we call an “optimal range.” For
narrower activation functions (higher value of the width parameter ¢) the RMSE is less
sensitive to the number of sensory neurons per joint (V). The best parameters for all x-,
y-, and z-positions are N = 11 sensory neurons per joint, with the bell curve width ¢ =
20 (Fig. 8, black line). We refer to these as the “optimal parameters” throughout the rest
of the results section. This model contains 146 neurons/neuron compartments in total
(22 sensory neurons, 121 interneuron compartments, and 3 output neurons).
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Fig. 8. RMSE of x-, y-, and z-positions for different combinations of bell curve’s width (color
lines) and number of sensory neurons. Bell curve width (c¢) varies from 8 to 34 (a smaller number
of the bell curve width means a wider activation function), and the number of neurons — varies
from 5 to 19. Optimal parameter values for the activation function’s width are shown in black
lines.

Another parameter that affects output is the neuron’s membrane capacitance. We
calculated RMSE by ranging values from 2 to 40 nF and found that increasing membrane
capacitance increases the error, presumably due to increased lag in the response (Fig. 9).
Past 40 nF, the RMSE hardly increases.
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Fig. 9. The RMSE of x-, y-, and z-positions with different values for membrane capacitance of
neurons.

To investigate the statistical nature of the network’s accuracy, we calculated the
difference between the predicted output and the actual calculation at each instant in
time and plotted histograms with error distributions (Fig. 10). All three outputs have a
bell-curve-like distribution with mean and median values for x-position: —9.4; —10.3,
y-position: —7.1; —8.5, and z-position: —15.6; —17.3 respectively. The negative sign
indicates peak overshoot (Fig. 7).

In addition, the linear regression slope between actual and predicted signals at each
instant in time was found (Fig. 11). This parameter characterizes the correlation between
signals: if the slope is equal to 1, it indicates a positive, 1:1 correlation between signals
and, thus, accurate network output. Using optimal parameters, slopes for the regression
are 1.02, 1.00, and 1.04 for x-, y-, and z-coordinates, respectively. This parameter can
also be combined with the RMSE to find optimal network parameters.
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Fig. 10. Error distribution for x- (red), y- (green), and z-coordinate (blue) of the leg. Dashed black
lines indicate mean values; dash-dotted magenta lines indicate median

To check the efficiency of the simultaneous multidimensional computation, we com-
pared the running time of the designed network, which has 3 outputs for x-, y-, and z-
positions with 3 separate networks that have the same architecture but only 1 output: for
X-, y-, and z-positions respectively. Running simulations on the Apple M1 SoC, 3.2 GHz,
7 cores GPU, 16 GB unified memory, we found that the network with 3 output neurons
performed calculations on average of 0.6 s for 10 trials, and the 3 networks with one
output neuron required 2 s for 10 trials. This suggests that using the same nonspiking
compartments to compute multiple quantities would be more efficient than building a
separate network for each quantity.
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Fig. 11. Slopes of the linear regression between actual and predicted signals for different com-
binations of activation function’s width (color lines) and number of sensory neurons. A dashed
horizontal line shows the ideal positive correlation between signals, and a dashed vertical — the
number of sensory neurons used in the paper. The black line shows an optimal width parameter.

4 Discussion

We designed a non-spiking neural network using SNS-Toolbox to calculate forward
kinematics for the 2 DoF robotic leg in 3D space. Gaussian bell curve was used as an
activation function to encode mechanical signals into sensory neuron activation. We
used normalized position values from the product of exponentials to tune synaptic con-
nections. No machine learning or optimization was required. By varying the number
of sensory neurons and bell curve width, we found parameters that give the best result
in forward kinematics computation. We found that the same network could be used to
compute multiple functions of the inputs, in this case, separate representations of the x-,
y-, and z-coordinate of the robotic leg’s foot. We discovered that there is an “optimal
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range” for the different sets of parameters, but it is unclear why it changes. We suggest
that one reason is the overlapping of activation functions. In the designed network, only
two neighboring functions may be active at each instant in time. Investigating an opti-
mal range, how it can be found, and its behavior will be useful for future work, such
as implementing a designed network into a robot. Since minimum error values were
achieved in all three output signals using the same parameters, we think that finding
conditions for an optimal range for one activation function will speed up the tunning
process for the whole network regardless of the number of inputs and outputs. As a statis-
tical analysis, we calculated a correlation between the predicted and actual signal using
linear regression. Alongside RMSE, the slope of the regression may be used in tunning
parameters of the network. We compared the running time for the 3-dimensional neural
network with that for 3 1-dimensional networks and found that simulation time largely
does not depend on a number of outputs once the bulk of the network is constructed. We
believe this method can be used in other high-dimensional nonlinear computations, e.g.,
altering descending commands to change the robot’s walking direction [18]. It also does
not require large datasets for training which reduces the running time for simulation.

Despite the success of our approach, there are limitations to this study. First, it may
be possible to achieve higher accuracy if machine learning methods were used to fine-
tune the network we constructed here. Recent work has shown that SNS models are
generalized representations of several different artificial neural network models, and
has successfully applied backpropagation to tune synaptic weights over time [19]. We
anticipate that the synaptic weights we calculated here would greatly accelerate learning
more precise values.

Another limitation is the computational complexity of this network. A model with
n input states and m sensory neurons per input would require m" interneuron compart-
ments. This may result in unwieldy networks for limbs with many joints or in cases
where many sensory neurons are required for each joint. In the future, we will investi-
gate ways to decrease the number of sensory neurons required. One possibility is that
by increasing the width of sensory encoding functions (i.e., decreasing c) or by using
different encoding functions (e.g., sigmoids), the network may achieve “hyperacuity”
as has been described in other sensory systems (e.g., visual system [12, 13]). Chang-
ing the encoding function in this way would require us to adapt the tuning method, but
would likely have additional benefits, e.g., the incorporation of resiliency against broken
Sensors or noisy inputs.

Having demonstrated that our approach works for three different, highly-nonlinear
functions, we believe this approach can be applied to other functions, for example,
computing Jacobians for transforming sensory data from one reference frame to another.
Another example is recent experimental work suggesting that an insect’s central brain
can transform “vectors” of sensory information to convert egocentric exteroceptive cues
into allocentric navigational signals [20]. We may be able to model such a transformation
using our approach.
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