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Abstract. Mammalian locomotion is a complex behavior arising from
interaction between neural and biomechanical systems, driven by rhyth-
mic activity originating in the spinal cord. Although it has been exten-
sively studied, the structure of the circuits that produce this behavior
remains unknown. One approach to modeling the rhythmic activity is
with half-center models, in which there are alternating periods of flexion
and extension to coordinate muscle activity. While this approach is suf-
ficient for simple antagonistic muscle pairs, it can be difficult to expand
the controller for more complex models with muscle synergies. This work
introduces a method of modeling the activity in the spinal cord with a
population of neurons exhibiting a continuous cycle of activity, rather
than the push-pull of half-centers. To evaluate the effectiveness of this
neural model for locomotive behavior, we integrate it with a biomechan-
ical simulation to control the muscle activity in a pair of rat hindlimbs.
With this controller, a pair of simulated rat hindlimbs is able to walk
on the ground with joint trajectories exhibiting similar features to the
animal during locomotion. This model of the spinal cord activity shows
promising results on a simple model and demonstrates the ability to
be adapted to control more complex biomechanical models with muscle
synergies.

Keywords: Pattern Generation · Neuromechanical Simulation ·
Mammalian Locomotion

1 Introduction

Mammalian locomotion showcases the remarkable adaptability of biological sys-
tems. From navigating rugged terrain to scaling tree branches, mammals exhibit
a variety of locomotor behaviors. Central to these locomotion abilities is the
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interaction between their neural control mechanisms and biomechanical systems,
with the spinal cord playing a crucial role in coordinating their complex move-
ments [10]. Central Pattern Generators (CPG’s) in the spinal cord generate
rhythmic behavior autonomously and, thus, are a key to vertebrate locomotion
behavior [18]. While these circuits have been studied in animals (i.e. salaman-
ders, lamprey, crabs), the structure of locomotion pattern generators remains a
mystery [9,19,25,30].

A common approach to modeling the rhythmic activity in the spinal cord is
using a half center model [7]. The half center model is based on the principle of
escape and release, alternating between periods of flexion and extension. The half
centers represent a simplified model of the spinal cord and classifies motor neu-
rons and muscles to be either flexors or extensors. However, locomotion requires
the coordination of complex muscle synergies that cannot be simplified to antag-
onistic pairs [15–17,36]. Other works have expanded the traditional half center
model to include multiple layers of half centers to allow for more complex mus-
cle activation, as well as the ability to control the frequency and amplitude of
the motor neuron activity independently [14,29]. However, these models rely
on accurate tuning of parameters and small changes to these parameters may
result in significant changes in behavior. Recent studies have shown that opto-
genetic stimulation to the brain stem of a rat can cause a movement arrest or
freezing behavior [6]. Due to the bi-stable nature of the half center models, this
sort of stimulation would not result in an immediate ceasing of movement, but
rather the animal would continue to move until the neural system reached an
equilibrium point. The BSG model behaves similarly but features a greater num-
ber of equilibrium points, which may result in a more immediate cessation of
movement, offering improved control results.

Another method of modeling the rhythmic activity in the spinal cord can
be achieved by taking advantage of population dynamics. A model referred to
as the Balanced Sequence Generator (BSG), has been proposed to capture the
rotational dynamics observed in the spinal cord during rhythmic movement [24].
Rather than alternating periods of flexion and extention, the BSG provides a
continuous cycle of neuron activity which may allow for more complex control
of biomechanical models and muscle activations. The BSG is constructed using
a pool of randomly connected neurons and is able to change its frequency and
amplitude independently. However, the network requires principle component
and sensitivity analysis in order to classify its rotational properties and deter-
mine which neurons are able to produce these changes when an additional input
is applied [24]. As this network represents a low-dimensional trajectory, we can
use design principles from Recurrent Neural Networks (RNNs) to design a net-
work similar to the BSG, achieving rotational dynamics with continuous neural
activity [5]. With this approach, the network is designed to meet certain criteria
rather than analyzed after the fact. Models such as these have been developed,
but have yet to be used for the purposes of controlling a biomechanical model
[5]. The purpose of this work is to evaluate the effectiveness of such a controller
which uses continuous cycles of neuron activity as a CPG for locomotion.
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2 Methods

2.1 Modeling

The computational modeling in this work is done through integrating two soft-
ware packages. We first create a biomechanical model of rat hindlimbs with mus-
cles in the physics simulator Mujoco, which can then be controlled in Python
[34]. The neural controller is then designed using SNS-Toolbox, a Python pack-
age developed to design and simulate Synthetic Nervous Systems (SNS) [28].
The physics and neural simulations are integrated using a traditional forward
Euler method with a time step of 0.1 ms.

Biomechanical Model. The biomechanical model of rat hindlimbs was
adapted from previous works which also focused on bio-inspired control schemes
[14,22]. The skeleton model used was adapted from a model in OpenSim
[12,23,31]. As our model only contains the hindlimbs and pelvis, constraints must
be placed such that the model does not immediately fall or tip over. Previous
models built in Animatlab2, a neuromechanical simulation software designed by
Cofer et. al., placed additional bodies in front of and behind the hindlimbs with
a fixed relationship to the pelvis [11,14]. This effectively constrained the model,
preventing it from falling to the ground as well as limiting the roll and pitch
angles. However, this created additional mass and frictional forces. Rather than
placing these additional bodies, the same constraints were achieved in Mujoco
by placing hinge and prismatic joints at the pelvis, relative to the ground, with
limited ranges (see Fig. 1).

The model of the hindlimbs has also been updated to include passive compli-
ance in the toes of the rat. It has been shown that adding passive compliance in
robots can increase stability by allowing the foot to conform to the terrain and
increasing the number of contact points [4,8,27]. Based on Alexander (1990), this
principle can also be inferred about animals, where the pads on their feet act to
reduce the force at impact and conform to the ground [3]. In previous models
with rigid feet, the model walked on its toes with a single point of contact on
each leg. By adding joints in the toes with stiffness and damping, we can see an
increase in the number of contact points between the model and the ground, as
shown in Fig. 1. The addition of these passive joints allows the model to conform
to the ground and results in a more realistic and stable biomechanical model.

Our model of the rat hindlimbs uses flexor-extensor muscle pairs to control
the hip, knee, and ankle joints in the sagittal plane. The muscle attachment
points and maximum forces were adapted from the model presented in Deng
et al. (2019) and are implemented in Mujoco using a Hill type muscle model
[20]. The muscle force generated, as implemented in Mujoco, is a function of the
length, velocity, and motor neuron activity [34]:

FM = (FL(L) · Fv(v) · A(VMN ) + FP (L)) · F0 (1)
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Fig. 1. Biomechanical models of rat hindlimbs. (a) Model in Animatlab2 with addi-
tional bodies to prevent falling [14]. (b) Complete model in Mujoco used for this work
[23]. (c) Model with rigid toes. (d) Model with passively compliant toes. The orange
pucks in (c) and (d) represent the contact points with the ground. (Color figure online)

Fig. 2. Muscle model force generation curves. (a) Force-Length and Passive Force
curves. lmin and lmax are computed in the model compiler. (b) Force-Velocity curve.
vmax is computed in the model compiler [34]. (c) Sigmoidal Curve converting motor
neuron activity to muscle activation.

where FL is the active force as a function of length, Fv is the active force as a
function of velocity, L is the length of the muscle, v is the velocity of the muscle,
F0 is the peak active force, FP is the passive force, and A is a function which
converts the potential of the motor neuron, VMN , to a muscle activation between
zero and one. Examples of these functions are shown in Fig. 2 [34].
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Neural Model. Our objective was to develop a neural model for controlling a
biomechanical system. We start by creating a sequence generator which demon-
strates continuous cyclic neural activity, inspired by the BSG model proposed
by Lindén et al. [24]. A principle component analysis of the BSG showed that
the principle components exhibit a limit cycle. While the BSG model relied on
random connectivity, our approach aims to design a network that maintains con-
tinuous neural activity akin to a BSG but with specific latent dynamics resem-
bling a limit cycle. Notably, the minimum dimensionality of a system to generate
oscillations is a 2-dimensional system, we can examine the behavior of a rank
two system with the covariance [5]:

σ =
[
σ1 −σ2

σ2 σ1

]
. (2)

It has been shown that a rank two network with a covariance matrix containing
complex eigenvalues indicates an oscillatory behavior [32]. We can apply these
principles in designing the connection matrix of a pool of neurons, as was done
for RNNs in Beiran et al. Here, we can define a rank two connection matrix, J
[5]:

Jij =
1
N

2∑
r=1

m
(r)
i n

(r)
j (3)

where N is the number of neurons in the network, m(r) and n(r) are the left and
right singular vectors respectfully, and m(r) are also the principle components of
the system. The singular vectors are sampled from a single Gaussian distribution
with a zero mean and a covariance matrix based upon Eq. 2, v ∼ N (0, σTot)
where v are the singular vectors and σTot is the covariance matrix [5]:

σTot =

⎡
⎢⎢⎣

1 0 σ1 σ2

0 1 −σ2 σ1

σ1 −σ2 c 0
σ2 σ1 0 c

⎤
⎥⎥⎦ . (4)

In this work, we specified the values for the covariance matrix as: σ1 = 2.25,
σ2 = 0.25, and c = 5.45.

The resulting connection matrix, J , defines weight based connections. The
neural model used in this work, as defined in the Python package SNS-Toolbox
[28], is the non-spiking leaky integrator model,

Cm
dU

dt
= −GmU + Iapp +

n∑
i=1

Isyni
(5)

where Cm is the membrane capacitance, U is the membrane potential offset by
the resting potential (U = V − ER), Gm is the membrane conductance, Iapp
is an applied external current, and Isyn is the synaptic current. The synaptic
current uses a conductance based model:

Isyni
= gmaxi

· min
(

max
(

Upre

R
, 0

)
, 1

)
· (ΔEsyni

− U(t)) (6)
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where gmax is the maximum synaptic conductance, Upre is the membrane
potential of the pre-synaptic neuron, R is the range of synaptic activity, and
ΔEsyni

is the synaptic reversal potential offset by the neural resting poten-
tial (ΔEsyni

= Esyn − ER) and describes the function of the synapse. When
ΔEsyni

< 0, it indicates an inhibitory synapse. When ΔEsyni
> 0, it indicates

an excitatory synapse. The connectivity matrix described in Eq. 3 defines the
synapses in terms of weights. To convert this to a conductance based synapse, we
define the reversal potentials and maximum synaptic conductance’s according
to Szczecinski et al. [33].

ΔEsyn =

{
Einhibit if J < 0,

Eexcite if J ≥ 0.
(7)

gmax =
JR

ΔEsyn − JR
(8)

The sequence generator is composed of 200 neurons, similar to that of the BSG
network proposed by Linden et al. [24]. The activity in the sequence generator
defined using Eqs. 2–8 results in continuous neural behavior with the principle
components exhibiting a limit cycle, as shown in Fig. 3.

The sequence generator network is then connected to an output level motor
circuit consisting of Ia inhibitory neurons, motor neurons, Renshaw cells, and
Ia and Ib interneurons to incorporate feedback. Muscle velocity and tension
feedback (Ia and Ib, respectfully) are included in the motor circuit. This motor
circuit is present in numerous other neural models of locomotive circuitry, typi-
cally with an input from pattern generator networks [14,21,26,29]. As the focus
of this work is the effectiveness of the sequence generator, the parameters used
in the motor circuit model were derived from Deng et al. (2019). Unlike the

Fig. 3. Sequence Generator Activity. (a) Neuron activity where the color indicates the
neuron membrane potential, U , in mV. The x-axis shows the iteration or timestep
in the simulation where dt = 0.1 ms. (b) Component space showing the rotational
behavior of the first two principle components. The principle components are unitless.
(Color figure online)
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Fig. 4. Motor Circuit receiving input from the sequence generator. The hip, knee, and
ankle have separate motor circuits but share the sequence generator. The motor circuit
consists of motor neurons (MN), Renshaw cells (RC), Ia and Ib interneurons (IN), and
Ia inhibitory neurons. The Ia and Ib interneurons receive velocity and tension feedback,
respectively, from the corresponding muscle.

model presented in Deng et al. (2019) type II, length feedback, is not included
in the present model. Length feedback was used in previous models as an input
to the pattern generator networks [14,29], further analysis of the sequence gen-
erator is required to determine how to properly implement length feedback into
the network. Figure 4 shows the design of the motor network with input from
the sequence generator. Note that the hip, knee, and ankle each have their own
motor circuit, but share the sequence generator network.

2.2 Tuning

The tuning process was broken into two stages: the first focusing on how to
connect the sequence generator to the motor circuits, and the second focusing
on the strength of these connections and the Ia and Ib afferent feedback. In
this model, we designate continuous sections of the sequence generator to act
as inputs to the flexor and extensor sides of the motor circuits. This stage of
tuning dictates the timing of swing and stance in the model. Further tuning of
the joint trajectories could be done by tuning the parameters of the motor circuit,
however, this has not been done in this work. We first utilized the BFGS non-
linear optimization method, as implemented in SciPy [35] to determine which
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Fig. 5. Designated regions of flexion and extension in the sequence generator. The
extensor region (red) and flexor region (blue) are connected to the corresponding sec-
tions of the motor circuit. (Color figure online)

regions of the sequence generator to treat as inputs to the flexor and extensor
sides of the motor circuits. Examples of these flexor and extensor regions can
be seen in Fig. 5. The resulting simulated data of the joint trajectories was
compared to animal data of a rat walking on a treadmill, previously collected
by Allesandro et al., using a mean square error for single gait trajectories as the
loss function. Note that the animal data represents averages over multiple steps,
ensuring that the features observed are not artifacts of a single step [2]. The
strengths of the synapses from the sequence generator to the motor circuits were
fixed during this initial stage in the tuning process and later hand tuned along
with the strengths of the Ia and Ib feedback in order to improve and shape the
trajectories once the connectivity from the sequence generator was determined.

3 Results

The neural activity shown in Fig. 3 demonstrates the effectiveness of this network
design method to produce the rhythmic activity consistent with activity in the
spinal cord during locomotive behavior in rats [6]. Integrating these signals with
motor circuits consistent with two-layer pattern generator networks [14,29], we
are able to control a simplified model of rat hindlimbs with antagonistic muscle
pairs controlling the hip, knee, and ankle joints in the sagittal plane. Neurons 50–
98 in the sequence generator were identified as the inputs to the extensor neurons
of the motor circuits, while neurons 190–198 were identified as the inputs to the
flexor neurons of the motor circuits. The number of the neuron corresponds to
the order that it is active in the cycle (see Figs. 3 and 5 for examples). Figure 6
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Table 1. Connection strengths from the Sequence Generator (SG) to motor circuits.

Synaptic Connection
Maximum Synaptic
Conductance (µS)

Hip Motor Circuit

SG to MN Ext 0.03
SG to MN Flx 0.1
SG to Ia Ext 0.025
SG to Ia Flx 1.5

Knee Motor Circuit

SG to MN Ext 0.3515
SG to MN Flx 0.5
SG to Ia Ext 0.09
SG to Ia Flx 1.0

Ankle Motor Circuit

SG to MN Ext 0.2215
SG to MN Flx 1.5
SG to Ia Ext 0.15
SG to Ia Flx 0.16

shows the joint trajectories generated by the neural and biomechanical models
in the simulation, showing similar features between the simulated and animal
joint trajectories [2]. Table 1 shows the final strengths of the connections from
the sequence generator network to the motor circuits.

4 Discussion

This work has demonstrated the effectiveness of a network designed to produce
a continuous cycle of neural activity in controlling a biomechanical model of a
pair of rat hindlimbs. While there are noticeable differences in the trajectory for
a single gait (see Fig. 6) we are still able to identify key components. Among
these components noted in both the animal data and the simulation are: in the
hip, we see a slight bump with a change in velocity in early extension; in the
knee, leveling off in extension with a distinct peak just prior to flexion; and in
the ankle, a dip is observed in the middle of extension, just after touch down.

The joint trajectories could likely be improved through further tuning of
the motor network. It has been shown that given a reliable oscillator, the limit
cycle can be reshaped with a mapping function [1]. Treating the motor circuit
as a mapping function to the muscle activation, this network could be tuned to
reshape the input from the sequence generator to better control muscle activa-
tion during locomotion. The neural model presented in this work also does not
incorporate type II muscle feedback. In other works, which used more traditional
half-center oscillators, the type II feedback was used as feedback to the pattern
generator networks, helping to control the timing of the transition from flexion
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to extension and vice versa [14,29]. As the sequence generator presented in this
work is constructed as a pool of neurons, it is unclear how to integrate this feed-
back to achieve a similar impact. Through further analysis of the BSG, Lindén et
al. discovered that specific neurons in the network had a more significant impact
on the frequency and amplitude of the limit cycle than others. Based on the
similar dynamics, it is likely that our network has similar properties, and these
neurons would be ideal in integrating the type II feedback. However, further
analysis of the sequence generator presented in this work is needed to find such
neurons and integrate the feedback.

It should also be noted that the simplified biomechanical model using antag-
onistic muscle pairs may have also contributed to the differences in joint trajec-
tories shown in Fig. 6. While this simplification is sufficiently able to produce
locomotive behavior, it is vastly different than muscle control and coordination
of all 38 muscles in the rat hindlimb [36]. We hypothesize that for controlling the
more complex model, instead of assigning specific regions for flexion and exten-
sion in the sequence generator (see Fig. 5), we can designate small windows of
neurons in the sequence generator to connect to motor neurons controlling these
muscles, aligning the activity of the sequence generator with muscle activity for
each individual muscle. Controlling biomechanical models with these complex
muscle synergies is difficult with the half-center model, as not all of the muscles
can be classified as flexors or extensors and may be active during both phases.
Some half-center models have countered this argument by including additional
pattern generators, using the combination of signals to control muscle syner-
gies [13]. However, these additional half-centers add to the complexity of the
neural model, leading to the need for further tuning and a more computation-
ally expensive model. To expand the sequence generator model described in

Fig. 6. Joint trajectories for animal and simulated data. The axes were shifted such
that both lines start at zero. (a) Hip Joint Trajectory. (b) Knee Joint Trajectory. (c)
Ankle Joint Trajectory. T.D. and L.O. indicate touch down and lift off, respectfully,
for the simulated data.
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this work to more complex muscle synergies, some additional tuning would be
required to connect to the additional motor circuits. However, this tuning would
be restricted to these lower level circuits, as opposed to the half-center mod-
els which require additional tuning to both the lower level circuits and to the
additional half-centers involved in driving the rhythmic activity. Future works
will expand the biomechanical model to include the full array of muscles in the
hindlimb.

5 Conclusion

This study introduces a method of designing a network to model the rhythmic
activity in the spinal cord and demonstrates its ability to control a biomechanical
model of rat hindlimbs. Through integration with a biomechanical simulation,
our neural model successfully controlled antagonistic muscle pairs, resulting in
joint trajectories that exhibit similarities to those observed in rats during loco-
motion. Future work will focus on developing more biologically accurate models
and improving joint trajectories. This can be achieved by fine-tuning the motor
network and incorporating type II muscle feedback into the sequence genera-
tor. Additionally, expanding our biomechanical model to include the full array
of muscles in the hindlimb would provide a more comprehensive understanding
of how to control muscle synergies during locomotion. It is also important to
understand how this model behaves compared to other neural models, future
work will explore a comparison of this neural controller to others in the field.
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