SNS-TOOLBOX: A SUITE OF
TOOLS FOR THE DESIGN,
OPTIMIZATION, AND
IMPLEMENTATION OF
SYNTHETIC NERVOUS SYSTEMS

WILLIAM ROBERT PILLERS NOURSE

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Department of Electrical, Computer, and Systems Engineering

CASE WESTERN RESERVE UNIVERSITY

August, 2024

i
CASE WESTERN RESERVE UNIVERSITY
SCHOOL OF GRADUATE STUDIES

We hereby approve the thesis/dissertation of
William Robert Pillers Nourse
candidate for the degree of Doctor of Philosophy!.

Committee Chair

M. Cenk Cavusoglu

Committee Member

Roger Quinn

Committee Member

Gregory Lee

Committee Member

Michael Lewicki

Committee Member

Nicholas Szczecinski

Date of Defense
May 13, 2024

"We also certify that written approval has been obtained for any proprietary material contained
therein.

iii

TABLE OF CONTENTS

Listof Tables et vi
Listof Figures vii
Acknowledgements xvi
Abstract e e e xvii
Chapter I: Introduction 1
Chapter II: Background 6
2.1 Synthetic Nervous Systems 6
2.2 Newral Simulation Software 6
2.3 Visual Motion Processing 8
2.3.1 Drosophila melanogaster 8

232 Algorithmic Solutions 10

Chapter III: SNS-Toolbox: An Open Source Tool for Designing Synthetic

Nervous Systems 12
3.1 Abstract e e e e e 12
3.2 Introduction 13
3.3 Materialsand Methods 17
331 NewralModels 18
332 ConmnectionModels 21
333 InputsandOutputs 25
3.34 Software Design and Workflow 26
34 Resultso 28
34.1 Specifications 29
342 Performance Benchmarking 29
343 Basic Demonstration 35
344 MobileRobotControl 37

345 Musculoskeletal Dynamics 39

35 Discussion 42
Chapter IV: A Synthetic Nervous System for On and Off Motion Detection

Inspired by the Drosophila melanogaster Optic Lobe 46
41 Abstract e e e e e e 46
42 Introduction 46
4.3 Network Components unnn.. 49
43.1 Neural and SynapticModels 49
432 NewralFilters 51
44 NetworkDesign 52
441 InputProcessing 33
442 Initial Filter Stage 33
443 MotionDetectors, 34
45 Results e 38
45.1 Simulation Setup, 58
4.5.2 Individual EMD Stimulation 39
453 \VelocityResponse 60
454 Directional Selectivity 61
4.6 Discussionand FutureWork 62

Chapter V: SNSTorch: Simulation of Large-Scale Synthetic Nervous Systems 64

5.1 Abstract e e e e e 64
3.2 Introduction 64
33 Methods e 63
5.3.1 Newral Dynamics 65
5.32 SynapticConnections 66
34 Results e 67
54.1 Comparison with SNS-Toolbox 67
542 Parameter Tuning and Regression 68

5.4.3 Sequential Classification 69

3.5 Discussionand FutureWork 69
Chapter VI: FlyWheel: A Mobile Robot for Testing Models of Fly Motion

Control e 72

6.1 Abstract 72
6.2 Introduction 72
6.3 RobotDesign., 74
6.3.1 Central Computation 75

632 WheeledBase 16

633 Visuallnput, 76

6.4 Motion VisionDataset, 78
6.5 Motion Processing Network 78
6.5.1 Neuwral Modeling 79

6.5.2 General Network Properties 82

633 Retina 82

654 Lamina 83

635 Medulla 85

636 Lobula............, 85

657 LobulaPlate. 36

6.6 Results 87
6.7 Discussion 38
Chapter VII: Conclusion and Future Work 20
T.1 Summary e 20
7.2 Impactand FutureWork 01
Appendix A: Data Availability 04
Appendix B: Projects Using SNS-Toolbox 05

vi

LIST OF TABLES

Number Page
3.1 Comparison of neural simulation software. Note that due to the
many simulators available, not all are presented in this table. *To
be considered cross-platform compatible, the software must be easily
run on Linux, MacOS, and Windows. To implement some features,
custom code must be implemented which is incompatible with the

rest of the Nengo ecosystem. Limited GPU support is currently

3.2 Software and hardware specifications. 29

3.3 Maximum network size. e e e e e e e e e . 30

Number

2.1

3.1

32

LIST OF FIGURES

vii

FPage

Neuroanatomy of the motion vision pathway in the Drosophila melanogaster

optic lobe. Connectivity based on information presented in Borst et
al. 2020 [14] and Braun etal. 2023 [17].
Simulation method for a small example network using the SNS-
Toolbox. (A) Overall network diagram generated within the toolbox.
(B) Diagram of the general computational flow when simulating the
network. The network is unfolded in time, and neural voltages are
propagated in feedforward layers from one time-step to another.
Comparison of wall-clock times to simulate a network for one sim-
ulation time-step over varying network sizes, using the six software
backends provided in SNS-Toolbox. (A,B): Networks of non-spiking
neurons, (C,D): networks of spiking neurons. Left: Fully-connected
networks, Right: Sparsely connected networks, following the struc-
ture described in Section 3.4.2. Lines denote the mean over 1000
steps, shaded region denotes the area between the fifth and ninety-
fifth percentiles. The real-time limit is denoted with a horizontal

dashed black line. & ¢« i i i e e e e e e e e e

28

33

34

Comparison of wall-clock times for SNS-Toolbox to simulate a net-
work for one simulation time-step over varying network sizes, us-
ing SNS-Toolbox and three other neural simulators (Brian2 [51],
Nengo [11], and ANNarchy [130]). For the following simulators,

the time data presented are chosen as the best-performing backend

viii

variant, Brian?, standard Brian?, and the GPU-accelerated Brian2 CUDA:

SNS-Toolbox, all available variants; and ANNarchy, CPU-based
compilation, and GPU-based compilation. (A,B): Networks of non-
spiking neurons, (C,D): networks of spiking neurons. Left: Fully-
connected networks, Right: Sparsely connected networks, following
the structure described in Section 3.4.2. Lines denote the mean
over 1000 steps, shaded region denotes the area between the fifth

and ninety-fifth percentiles. The real-time limit is denoted with a

horizontal dashed black line.« v«

Comparison of wall-clock times to simulate a network for one sim-
ulation time-step over varying network sizes, using SNS-Toolbox on
three different embedded computing platforms (Intel NUC, Rasp-
berry Pi version 3b, and an NVIDIA Jetson Nano). The time data
presented are chosen as the best-performing backend variant at each
network size, with GPU-based backends excluded on the Raspberry
Pi. (A,B): Networks of non-spiking neurons, (C,D): networks of spik-
ing neurons. Left: Fully-connected networks, Right: Sparsely con-
nected networks, following the structure described in Section 3.4.2.
Lines denote the mean over 1000 steps, shaded region denotes the

area between the fifth and ninety-fifth percentiles. The real-time limit

is denoted with a horizontal dashed black line.

3.5

3.6

Using SNS-Toolbox to design a two-layer visual processing system.
A. Python code to generate the desired network. Image preprocessing
and output plotting are omitted. B. Network visual representation.
An input image is converted to stimulus current for a population of
neurons, representing the insect retina. From the retina, a 33 kernel
of inhibitory (light blue) and excitatory (purple) synapses is applied
to create a high-pass filtering effect in the next layer, representing the
L1 insect lamina neurons. C. Qutput of retina and lamina neurons,
respectively. Voltages are mapped to grayscale intensities.
LiDAR-based steering algorithm for a simulated mobile robot us-
ing ROS. (A): Network diagram of the control network. Each dis-
tance measurement angle of a simulated LiDAR is inverted, scaled,
and mapped as the input to a single input processing neuron. These
are then summed onto directional neurons corresponding to clock-
wise or counter-clockwise rotation, depending on which half of the
scanning field the neuron represents. All sensory neurons also con-
nect to a speed control neuron. The difference between the directional
neurons is taken as the rotational velocity, and the speed control neu-
ron is scaled by the maximum speed to control the linear velocity.
(B): Overhead view of the simulation environment in Gazebo [73].
Orange and white barriers act as boundaries of the course, the robot
trajectory is superimposed on top with a dashed blue line. (C): Neu-
ral activity of the three command neurons during the generation of

the trajectory shownabove.

3.7 SNS-Toolbox controls a musculoskeletal model of a rat hindlimb.
(A): Diagram of the neural control network. (B): Relationship be-
tween motor neuron voltage and muscle activation. (C): The mus-
culoskeletal model used in Mujoco [127]. (D): Neural activity from
the half-center neurons in the central rhythm generator. (E,F): Neu-
ral activity from the hip and knee/ankle pattern formation circuits.
(G-I): Motor neuron activity in the motor circuits for the hip, knee,
and ankle. (J-L): Joint angles of the hip, knee, and ankle. All record-
ings are shown for a period of 1000 ms, after the model has finished
initialization. Pictured are recordings from the elements within the
leftleg. e e e e e e e 41

4.1 A: Acircuitdiagram of a single column within the Drosophila motion
vision pathway, adapted from [13, 115]. B: Reduced diagram used
in this work. Node colors in both diagrams are chosen to highlight
their common functional roles. Single circles designate neurons
which behave as a low-pass filter, double circles indicate a band-
pass filter. Dark closed circles indicate inhibitory synapses, open
triangles indicate excitatory synapses. In panel B, D and S neurons
approximate band-pass behavior by filtering the responses of the
neurons, for reduced computational complexity. 43

42 A: Circuit diagram of a band-pass subnetwork. Two neurons are
tuned as low-pass filters with different cutoff frequencies, and are
subtracted to produce a band-pass response. B: Response of each

neuron within the subnetwork when subjected to a time-varying input. 31

4.3

44

4.5

4.6

A: Diagram of a three-arm Haag-Borst HR/BL EMD circuit [54]. B:
Schematic of the three-arm motion detectors in this work, for both On
and Off stimuli. PD denotes the preferred direction, ND denotes the
not preferred (null) direction. Nodes without color do not contribute
to behavior in this direction of motion.
Simulation of elements within the On pathway during a stimulus
moving in the preferred (Left) or null (Right) directions. Dashed
green traces correspond to Enhancement () signals, solid blue
to Direct () signals, dotted pink to Suppression () signals,
and solid indigo for the On EMD (On). Top: Traces of visual
stimuli to the Enhancement, Direct, and Suppression columns of
the motion detector; Middle: Traces of the Enhancement, Direct,
and Suppression neurons which are presynaptic to the EMD neuron;
Bottom: Trace of the final motion detector, which depolarizes for
stimuli traveling from left toright (On).
Simulation of elements within the Off pathway during a stimulus
moving in the preferred (Left) or null (Right) directions. Dashed
green traces correspond to Enhancement () signals, solid blue to
Direct () signals, dotted pink to Suppression () signals, and
solid olive for the Off EMD (Off). For further description refer to
Fig. 44, . e e
QOutput behavior of the On (solid indigo) and Off (dashed olive)
motion detectors when subjected to a square wave, translating from
10 to 360 per second. Target maximum velocity (180) shown
with a vertical dashed line. Top: Peak magnitude of the motion
detector in the preferred direction; Bottom: Ratio between the motion

detector in the preferred direction and the null direction.

xi

39

61

4.7

3.1

3.2

5.3

6.1

Peak response of each motion detector in the On (Left) and Off
(Right) pathways to a square wave gratingwith 30 and 30
Preferred direction of each sub-type: A: right to left; B: left to right
C: bottom to top; D: toptobottom.
Comparison in performance between SNS-Toolbox and SNSTorch.
(A) The network to be evaluated is the same structure as section,
with two populations being connected by a convolutional synapse.
(B) This network was compiled and then run in SNS-Toolbox and
SNSTorch at increasing population size.
Using SNSTorch for a parameter identification task. (A) We are
trying to match the behavior of a simple network of neurons, where
one neuron receives a random stimulus and excites the other neuron
via an excitatory chemical synapse. Using a ground truth model, the
network learned the neural and synaptic properties to replicate this
behavior. We chose to focus on minimizing the mean-squared error
between the final state of the original and trained network. Shown in
(B) is the training loss over 1000 random stimuli, and in (C) we plot

the trajectory of the postsynaptic neuron in the original and trained

Training an SNS for sequence classification. (A) We train an SNS
network to classify the row-wise sequential MNIST dataset [78],
where each handwritten digit is divided into 28 1x28 images. (B)
The SNS network consists of a single recurrent layer of non-spiking
neurons, with the recurrence implemented using chemical synapses.
Training loss (C) and accuracy (D) of the SNS network and an RNN

with a similar number of parameters. Line denotes the mean across

xii

five trials, the shaded area denotes the fifth and ninety-fifth percentiles. 70

FlyWheel, a mobile robot for testing models of motion control in flies.

13

6.2

6.3

6.4

System diagram of hardware and software components for FlyWheel.
There are three subsystems: visual input, central computation, and
a wheeled base. Each of these components is modular, and can be
removed and replaced on the robot. The visual input consists of two
160 degree FOV cameras, arranged to have a similar stereo FOV as
Drosophila melanogaster. The wheeled base provides power to the
system, and has two Dynamixel (Robotis Co. Ltd., Seoul, South
Korea) smart motors to provide propulsion. The central computing
platform runs a ROS framework on an NVIDIA Jetson Orin Nano
(NVIDIA, Santa Clara, CA), with a small wireless router as an exter-
nalaccesspoint. L. Lo e
FlyWheel field of view (FOV). Each eye has a 160 degree FOV, and
is arranged to produce a net FOV of 286 degrees with a stereo overlap
of Mdegrees.
Example stereo video frames after processing. Stereo pairs are con-
catenated into a single image, converted to greyscale, then downsam-

pled from the native resolution of 1232x3280 to 24x64 pixels.

xiii

78

Xiv
6.5 Timing performance of image formatting and processing execution on
target hardware. A: Latency in image processing as the target image
reduces in size. Two different interpolation methods are compared,
with nearest-neighbor interpolation shown in solid blue and area
interpolation shown in dashed orange. A vertical dashed line is
present at the image resolution 24x64, the scaled dimensions used
in our dataset. B: Time per simulation step of our visual motion
processing network, in seconds, as the dimensionality of the input
increases. Execution on the Jetson Orin Nano CPU are shown in
dotted green, and times for the Jetson Orin Nano GPU are shown
in solid red. Dark lines correspond to the average, the shaded area
corresponds to the 5th and 95th percentiles over 1000 steps. We
use a vertical dashed line to denote the dimensionality corresponding
to an input image size of 24x64 pixels. C: Detailed timing of our
network with an input dimensionality of 24x64 pixels. Shown is a
histogram of time per simulation step in milliseconds, over a testing
run of 10,000 steps. A black dashed vertical line denotes the 95th
percentile of the distribution. Shown in dashed green, solid orange,
and solid red would be the time per step needed for 14, 13, or 12
simulation steps per video frame. In this work we chose to use 13

steps per frame for our simulations. 79

6.6

6.7

6.8

6.9

Visual motion processing network used in this work, inspired by the
anatomy of Drosophila melanogaster and adapted from [93]. Visual
stimuli are encoded into a neural representation in the retina. They are
then spatiotemporally filtered in the lamina, and temporally filtered
again in the medulla. The lobula combines the neural activity in the
medulla into estimates of motion at each pixel, and these estimates

are summed across the entire visual field to generate a global estimate

of motion in the lobulaplate.

Receptive fields of the second layer in our visual motion process-
ing network. The fields for (A), (B),and (C) are based on

gaussian parameterizations of receptive fields between the retina and

lamina in Drosophila melanogaster [4]

Performance of the simple motion vision processing network on the
video clips in the test portion of the FlyWheel dataset. (A) Scatter-
plot of average neuron state for the clockwise and counter-clockwise
neurons for each image sequence. B. Curves denote the mean neural
response of all trials at each velocity, shaded area represents the 5th

and 95th percentiles. All data is normalized to the maximum of the

95th percentile across all velocities.

Activity within each population over the course of a horizontal grating
stimulus. Within each plot, the vertical axis represents the different

neurons in the population and the horizontal axis shows the progres-

sion of time. Brighter colors denote higher neural state.

xv

36

xvi

ACKNOWLEDGEMENTS

Firstly, | must thank my family for their unfailing support throughout this endeavor.
Thank you especially to my parents for always cheering me on, and to Elizabeth for
joining me and helping to get over the finish line. I would not be where I am today
without all of you.

Next, I must thank my research mentors, Dr. Quinn and Dr. Szczecinski. Dr.
Quinn always helped me navigate the twists and turns as [settled on a research topic,
and I always be grateful that he took a chance on an EE and let me discover an area
of work I never knew was possible. Dr. Szczecinski has truly been instrumental in
the details of this work, and has opened my eyes to the magic of neuroscience and
insects. Without his guidance, this work would have never been completed, and I
hope someday to merely approach his talents. I must also thank Dr. Cavusoglu, Dr.
Lee, and Dr. Lewicki for their feedback in preparing this dissertation, as well as
agreeing to participate on my committee.

Over the years | have had the pleasure of working with some of the best col-
leagues I could have asked for in the Biorobotics Lab at CWRU. The collaborative
environment on the eighth floor of Glennan has fostered some incredible discus-
sions, which have helped shape both this work as well as my work going forward.
Therefore I must thank, in no particular order and not limited to, the following
people: Clarus Goldsmith, Shanel Pickard, lan Adams, Fletcher Young, Marshaun
Fitzpatrick, Ken Moses, Nicole Graf, Natasha Rouse, and Shane Riddle. I would
also like to especially thank Clayton Jackson and Ben Rubinstein, who greatly

assisted with the physics simulation and gradient backpropagation in this work.

xvii
SNS-Toolbox: A Suite of Tools for the Design, Optimization, and
Implementation of Synthetic Nervous Systems

Abstract

by

WILLIAM ROBERT PILLERS NOURSE

In this dissertation I present SNS-Toolbox, an open-source software package for the
design and simulation of networks of biologically inspired neurons and synapses,
also known as synthetic nervous systems (SNS). SNS-Toolbox allows SNS networks
to be designed using a lightweight Python API, simulated in real-time on consumer
computer hardware, and executed onboard physical robotic systems. I also present
a companion package to SNS-Toolbox which allows simulation and training of
large SNS networks using gradient backpropagation. This software is released
under an open-source license with online documentation for ease of use, and has
been disseminated to other researchers for their use. As a demonstration, I use
SNS-Toolbox to implement a stereo visual motion detector, based on circuitry
present within the Drosophila melanogaster (fruit fly) optic lobe. This network
analyzes local motion at each point within a visual field, and returns an estimate of
global motion when subjected to grating stimuli. Finally [showcase the design of
FlyWheel, a robotic benchmark for studying models of insect vision and applying
SNS networks to physical hardware. This body of work marks the first tool which
is capable of simulating SNS networks with hundreds to thousands of neurons and
synaptic connections in real-time or faster, optimize networks with chemical reversal
potentials using gradient backpropagation, and interface these networks for control

of external systems.

Chapter 1

INTRODUCTION

While it may seem that roboticists have different research interests than neuro-
scientists and biologists, many in fact share a common goal: Understanding how
systems of varying intelligence interact with their environment to generate adaptive
behavior [24]. In robotics today, robots are being used to collect data on real world
interaction in order to generate large scale foundation models of how physical sys-
tems behave in interacting settings. Similarly, efforts are underway in neuroscience
to map the location and connections of every neuron in connectomic maps of ani-
mal nervous systems, and experimentally deduce the functional role of each neuron
based on behavioral experiments with electrical or optical recordings. In this light,
robotics and neuroscience have the possibility of working together to advance their
common goals: By implementing models of nervous systems which interact within
a real environment, neuroscientists can validate their models and run experimental
studies not possible in animals [83, 134], and roboticists can work towards un-
derstanding how intelligent behavior can emerge from the relatively small nervous
systems in animals [9].

For this synergy of interests to occur, it is vital to have software which can take
a biologically-inspired neural network, also known as a synthetic nervous system
(SNS), and run that network in a closed loop with a robotic system. While there
is a wide variety of neural simulation software available today [15, 51, 59, 141],
most do not offer an easy path to interfacing the neural simulation with external
systems such as robots or physics engines. Other frameworks which can interface
more easily with external systems exist [42, 91], but either reduce the complexity
of neural dynamics available or suffer performance issues when scaling to large

networks [28].

2

One area where artificial neural networks (ANNs) amd modern neural simulators
perform simplifications is that of synaptic dynamics. Most large-scale simulators
focus on synaptic weights [42, 141], ignoring more complex synaptic dynamics
such as chemical and electrical synapses. While many elements of these dynamics
can be approximated using weights, using the synaptic dynamics closer to those
seen in animal nervous systems allow SNS networks to perform some complex
computations with much smaller networks than ANNSs, such as multiplication and
modulation using chemical synapses [32, 121] or coordinate transformation using
electrical synapses [53, 97]. The primary aim of this dissertation is to develop
software for the design and simulation of networks with these complex bio-plausible
dynamics, as well as to interface these networks with other systems for the purposes
of control and interaction.

A domain of interest in both robotic systems and neuroscience is visual pro-
cessing of motion. Estimation of the body’s motion based on changes in visual
information is a problem known as ego-motion estimation [71], and is a prob-
lem which has been solved in the nervous system. In the fruit fly Drosophila
melanogaster in particular, an extremely detailed connectivity map has been pro-
duced which highlights the exact anatomy of the brain region responsible for this
behavior [108, 115]. The secondary aim of this dissertation is the design of a
reduced order implementation of the visual motion processing network in insects,
which is capable of discriminating direction of motion and could be implemented
on embedded robotic hardware.

Small networks of neurons can be designed and tuned by hand or analytic cal-
culations, and is often done in biological modeling [121]. However, this analysis
becomes intractable when extended to very large networks that are presented with
complex stimuli such as natural images. While numerous forms of optimization
exist for large neural networks, gradient backpropagation is currently the dominant
choice for optimizing large networks in machine learning with both feedforward [78]

3
and recurrent [136] connectivity. While this is generally not viewed as the opti-
mization method used in real nervous systems, the optimization performance for
implementation of neural systems using backpropagation is currently the state of the
art. Plenty of frameworks exist for optimizing artificial neural networks (ANNs) [95]
and even spiking neural networks (SNNs) [42, 58] using gradient descent, but none
currently exist which handle the complex dynamics of chemical synapses. While
traditionally ignored in the world of ANNs, chemical synapses have been shown
to exhibit useful nonlinear behavior which is not possible using synaptic weights
alone |52, 121]. Based on this, the third and final aim of this dissertation is the
design of software which allows for the optimization of large SNS networks using
modern gradient-based optimization.

After Chapter 2, every chapter in this dissertation consists of work that has
been either published, presented at, or submitted for publication in a peer-reviewed
journal, conference tutorial, or conference proceeding. [am the first author of each of
these works, and they are reproduced here in an order which is roughly chronological
but primarily for logical organization. Chapter 2 provides an overview in the fields
of SNS networks, neural simulation, and visual motion processing in both insects
and computational approaches.

Chapter 3 introduces SNS-Toolbox, the primary output of this dissertation. SNS-
Toolbox is an open-source Python software package which enables the design and
simulation of SNS networks using heterogeneous combinations of bio-plausible
neural and synaptic dynamics. Networks can be compiled to simulate on either a
CPU or GPU, and are easy to interface with external systems. As a demonstration
of this, I showcase examples of SNS-Toolbox controlling a robotic system in the
robot operating system (ROS) [99] and a musculoskeletal biomechanical model of
rat locomotion in the physics simulator MuJoco [127].

Using SNS-Toolbox, in Chapter 4 I present an SNS for estimating local visual

motion. This network is inspired by the connectivity information available for the

4
optic lobe in the fruit fly Drosophila melanogaster, and aims to be a minimal neural
representation which is suitable for future implementation on a robotic platform.
Just as in the insect, visual information is split into two pathways for processing
increasing or decreasing change in brightness, and these pathways are nonlinearly
summed across neighboring pixels to produce a local estimate of motion. I evaluate
this system on a collection of simulated visual gratings, and show that the network
is capable of producing sharp directional selectivity.

In order to expand this model to larger sizes, it was necessary to iterate on
SNS-Toolbox in order to handle significantly larger layer-based networks in real-
time. In Chapter 5 I introduce SNSTorch, an open-source companion package to
SNS-Toolbox designed to simulate large populations of non-spiking neurons which
can be combined into layered networks using chemical synapses. | demonstrate the
performance improvements of SNSTorch over SNS-Toolbox for large networks, and
use gradient backpropagation within PyTorch [95] to optimize parameter tuning via
regression in a small network as well as a large-scale recurrent SNS for sequence
classification. This marks the first time that chemical synapses have been incorpo-
rated into a framework compatible with modern machine learning techniques, and
opens the door for exploration of their benefits in other domains.

In Chapter 6, | outline the products of initial efforts to develop an SNS for global
visual motion estimation in natural environments. 1 first describe the design of
FlyWheel, a mobile robot which uses a stereo visual system to model the visual
information available to the fruit fly. I then use FlyWheel to record a collection of
image sequences during rotation, and then augment these sequences to generate an
open-source dataset for global motion estimation of over 21,000 one-second clips.
I then present initial results for adapting the network presented in Chapter 4 for
naturalistic settings.

Finally, in Chapter 7 I discuss the novelty of and impact of this work in neural

simulation, as well as future work in expanded capabilities of the software as well

as improving the insect-inspired visual motion processing network.

Over the scope of this dissertation, | describe the design and use of SNS-Toolbox,
as well as a companion package SNSTorch. These are the first tools which are
capable of simulating large-scale synthetic nervous systems of thousands of neurons
in real-time or faster, particularly networks which contain a heterogeneous mixture
of neural and synaptic dynamics. These networks can be used for the control of any
external system, which is also a novel capability for large-scale synthetic nervous
system simulators. Additionally, I present the capability to optimize chemical
synapses using gradient backpropagation, which is currently unused in machine
learning but allows the learning of modulatory connections. With these tools in
place, research can begin on the next generation of synthetic nervous systems as

well as their application across a wide variety of domains.

Chapter 2

BACKGROUND

2.1 Synthetic Nervous Systems

As mentioned in Chapter 1, a common goal of neuroscientists and roboticists is to
understand how animal nervous systems interact with their body and their environ-
ment in order to generate adaptive and intelligent behavior [24]. By understanding
and modeling aspects of the nervous system, it is hoped that robots will one day
be able to exhibit embodied intelligence [9] as well as animal-like robustness and
adaptability [124]. One approach is to design Synthetic Nervous Systems (SNS),
networks of conductance-based neurons and synapses which can be used to model
animal nervous systems [109, 120] and control robots [5, 50, 64]. SNS networks are
different from traditional artificial neural networks (ANNs) [32] or deep learning
(DL) [78] systems, with the main differences coming from where dynamic behavior
is implemented. In ANNSs, particularly with recurrence [136], complex dynamics
emerge as a network property if the network contains enough static neurons. In
contrast, SNS networks are built with neurons which themselves are dynamic sys-
tems [10] and then integrated within larger networks. In this way, SNS networks are
more similar to spiking neural networks (SNNs) [81], although they may contain
either non-spiking neurons, spiking neurons, or a heterogenous mixture of neurons
with different dynamics [50]. Additionally, synapses within SNS networks can also

have their own dynamics [123], adding an additional layer of dynamic complexity.

2.2 Newural Simulation Software

A wide variety of software exists for simulating conductance-based neural dynam-

ics [15, 51, 59, 141], and these simulators are capable of simulating highly detailed

7
and biologically accurate neural models. However, since these simulators were orig-
inally designed for the purpose of performing digital experiments and collecting data
over a long simulation run it can be challenging to interface these simulators with
external software and systems [39, 118]. Additionally, these simulators are limited
to being run on conventional CPUs, although some have begun to be adapted for
simulation on GPUs [2].

In the field of spiking neural networks (SNNs), many simulators have been
developed which simulate large networks of spiking neurons and train them with
principles from machine learning [42, 58, 89]. In general, training using modern
methods is limited to networks which use the leaky integrate and fire model of a
neuron. For pure simulation, simulators have also been designed to simulate the
Izhikevich neural model [66] at scale [91]. While these simulators are capable of
executing at high speed, they do so at the cost of limiting simulations to reduced
models of spiking neurons and current-based synapses. Additionally, most do not
support hybrid networks of neurons with heterogeneous dynamics, such as a mix of
spiking and non-spiking neurons.

Multiple solutions have been developed which combine a neural dynamics sim-
ulator with a physics engine. One approach is to combine an existing neural sim-
ulator with an existing physics engine using a middleware memory management
software [39, 131], allowing users who are comfortable with a specific neural simu-
lator to interface their networks with physics objects at the expense of complicated
software dependencies which are difficult to translate to other systems. The first
integrated system was AnimatLab [28], which allows networks consisting of either
a non-spiking or spiking neural model to control user-definable physics bodies to
be simulated in a GUI with an integrated plotting engine. Numerous models have
successfully been controlled with AnimatLab, both in simulation [27, 65, 120] and
with robotic hardware |50, 64], however the reliance on a GUI and the software im-
plementation makes it difficult to design larger networks [110]. The Neurorobotics

8
Platform (NRP) is a similar system to Animatlab in that it is large software suite
which integrates multiple neural simulators with a physics engine in a cloud-based
simulation environment [43], and has been used successfully for multiple neuro-
robotic controllers in simulation [22, 84]. However, the NRP comes with significant
overhead and is consequently unsuited for real-time control of robotic hardware.
Following developments in neuromorphic hardware which aims to accelerate
spiking neural networks [33], software toolkits are beginning to emerge which
enable the mapping of neural models to neuromorphic hardware [11, 77]. High-
performance robotic controllers have been developed using these frameworks [29,
38], however as of the writing of this dissertation neuromorphic hardware is not
widely available or affordable, and the solutions which exist do not support complex

synaptic dynamics such as chemical reversal potentials [33].

2.3 Visual Motion Processing

One example of a problem which has potential solutions in both neuroscience and
robotics is the processing of visual motion. Stabilizing the yaw motion of a mobile
agent is a special case of visual odometry where the motion of a camera through a

fixed world is calculated, also known as ego-motion estimation [71].

2.3.1 Drosophila melanogaster

A popular model organism for studying visual motion processing is the fruit fly
Drosophila melanogaster, as it contains many of the same logical elements as that
of the visual system in vertebrate animals [26] while using three orders of magnitude
fewer neurons [14, 79]. Combining this reduction in scale with the extensive work
in recent years to create a full Drosophila brain connectome [108, 137] makes the
fruit fly a compelling inspiration for robotic implementation.

Within the fruit fly, the motion vision pathway is an extremely important system

for adaptive behavior which aids in estimation of body motion and enabling rapid

9
Retina[] » J

Lamina[]

Medulla

Figure 2.1: Neuroanatomy of the motion vision pathway in the Drosophila
melanogaster optic lobe. Connectivity based on information presented in Borst
et al. 2020 [14] and Braun et al. 2023 [17].

response to oncoming threats [1, 31, 48]. Within the Drosophila optic lobe, retinal
and lamina cells convert changes in light intensity using spatiotemporal filters into
information used in the rest of the network. Within the lamina, cells L1-L.3 separate
information flow into two pathways: an On pathway for encoding increases in
brightness, and an Off pathway for encoding decreases in brightness [112, 125].
This transformed visual information is then filtered in the medulla by two banks
of unique spatiotemporal filters (Mil, Tm3, Mi4, Mi9 for the On pathway; Tml,
Tm2, Tm4, Tm9 for the Off pathway) [4, 40], which are then combined nonlinearly

-]

P

w

B W

b

b

. ¥

12
Chapter 3

SNS-TOOLBOX: AN OPEN SOURCE TOOL FOR DESIGNING
SYNTHETIC NERVOUS SYSTEMS

Material in this chapter has been previously published in

» Nourse, W. R., Szczecinski, N. S., & Quinn, R. D. (2022, July). SNS-
Toolbox: A Tool for Efficient Simulation of Synthetic Nervous Systems. In
Conference on Biomimetic and Biohybrid Systems (pp. 32-43). Cham:
Springer International Publishing.

* Nourse, W. R., Jackson, C., Szczecinski, N. S., & Quinn, R. D. (2023). SNS§-
Toolbox: An Open Source Tool for Designing Synthetic Nervous Systems and
Interfacing Them with Cyber—Physical Systems. Biomimetics, 8(2), 247.

Additionally, some material in this chapter was presented in person as the tutorial
"An Introduction to Design and Simulation using SNS-Toolbox and SNSTorch" at
the 2024 conference on Neuro Inspired Computational Elements (NICE) on April
26, 2024. Edits have been made to place this material into context with the rest of

this dissertation.

} A

One developing approach for robotic control is the use of networks of dynamic
neurons connected with conductance-based synapses, also known as Synthetic Ner-
vous Systems (SNS). These networks are often developed using cyclic topologies
and heterogeneous mixtures of spiking and non-spiking neurons, which is a diffi-
cult proposition for existing neural simulation software. Most solutions apply to
either one of two extremes, the detailed multi-compartment neural models in small

networks, and the large-scale networks of greatly simplified neural models. In this

13
work, we present our open-source Python package SNS-Toolbox, which is capable of
simulating hundreds to thousands of spiking and non-spiking neurons in real-time or
faster on consumer-grade computer hardware. We describe the neural and synaptic
models supported by SNS-Toolbox, and provide performance on multiple software
and hardware backends, including GPUs and embedded computing platforms. We
also showcase two examples using the software, one for controlling a simulated limb
with muscles in the physics simulator Mujoco, and another for a mobile robot using
ROS. We hope that the availability of this software will reduce the barrier to entry
when designing SNS networks, and will increase the prevalence of SNS networks

in the field of robotic control.

2 @

A common goal of neuroscientists and roboticists is to understand how animal
nervous systems interact with biomechanics and their environment and generate
adaptive behavior [24]. By understanding and modeling aspects of the nervous
system, it is hoped that robots will be able to exhibit embodied intelligence [9]
and exhibit animal-like robustness and adaptability [124]. One approach is to
design Synthetic Nervous Systems (SNS), networks of conductance-based neurons
and synapses which can be used to model animal nervous systems [109, 120] and
control robots [5, 50, 64]. Some strengths of SNS networks include that they can
be tuned using analytic design rules [121, 123] and that results obtained controlling
robotic hardware can propose neurobiological hypotheses [83, 134].

In order to design SNS networks for robotic control, software tools are needed.
Software for simulating SNS networks should support conductance-based modeling
of neurons and synapses, as there are elements of neural behavior in conductance-
based models which are incompatible with current-based models [100, 121]. Bidi-
rectional synaptic links, such as electrical synapses, should also be supported [33].

Simulators should also support networks with heterogeneous neural models, poten-

14
tially containing both spiking and non-spiking neurons [50]. While individual spik-
ing neurons can be more computationally powerful than non-spiking neurons [81],
non-spiking neurons are capable of capturing much of the dynamics of popula-
tions of spiking neurons while being more amenable to real-time simulation [130].
Networks should be able to be constructed in a programmatic way, in order to aid
the design of large but formulaic networks [110]. SNS networks should be able
to be simulated with faster than real-time performance using CPUs and GPUs,
and the same networks should be easily interfaced with physics simulation engines
and robotic hardware. Additionally, for accessibility and ease of use in laboratory
and educational settings, a simulator software should be cross-platform compati-
ble with the Windows (trademark Microsoft Corporation, Redmond, WA, USA),
MacOS (trademark Apple Corporation, Cupertino, CA, USA), and Linux operating
systems. A selected survey of available simulation software is presented in Table 3.1.

Software for simulating conductance-based neural dynamics have long been
available, with the most popular options being NEURON [59], NEST [49], GEN-
ESIS [15], and Brian [51]. These simulators are capable of simulating highly
detailed and biologically accurate neural models, however they were originally de-
signed for the purpose of performing digital experiments and collecting data over a
long simulation run. As such, interfacing with external software and systems can
be challenging [118] and often requires dedicated software for memory manage-
ment [39]. Additionally, these simulators are limited to being run on conventional
CPUs, although some have begun to be adapted for use with GPUs [2].

Other simulators are capable of designing large networks of neurons using prin-
ciples from machine learning, such as snnTorch [42], SpykeTorch [89], and Bind-
sNET [58]. These simulators are capable of executing at high speed on both CPUs
and GPUs, but they do so at the cost of limiting simulations to reduced models of
spiking neurons and current-based synapses. Simulators have also been designed

to simulate the Izhikevich neuron [66] and other spiking neurons at scale, including

15

No GUI Real-Time MNon-Spiking Chemical Electrical CPUIGPU Cross-
Software Required Capable & Spiking Synapses Synapses Support Platform*

AnimatLab X X X X

NRP X Xt Xt Xt X
Nengo X X X Kt Kt Kt X
snnTarch X X X X
Spyke- X ® X ®
Torch

BindsNET X X X X
Brian2 X X X X X X
NEURON X X X X X X
MNEST X X X K X
AMNNarchy X X X X X X

SNS- X X X X X X X
Toolbox

Table 3.1: Comparison of neural simulation software. Note that due to the many sim-
ulators available, not all are presented in this table. ~ To be considered cross-platform
compatible, the software must be easily run on Linux, MacOS, and Windows. T To
implement some features, custom code must be implemented which is incompatible
with the rest of the Nengo ecosystem. * Limited GPU support is currently available.

CARLSim [91], NEMO [45], GeNN [138]. CNS [90], and NCS6 [60]; however
they typically do not support hybrid networks of spiking and non-spiking neurons.

Multiple solutions have been developed which combine a neural dynamics simu-
lator with a physics engine. One approach is to combine an existing neural simulator
with an existing physics engine using a middleware memory management software.
This has been used to combine Brian [51] and SOFA [3] using CLONES [131],
as well as NEST [49] with Gazebo [73] using MUSIC [39]. This approach al-
lows users who are comfortable with a specific neural simulator to interface their
networks with physics objects. However, it leads to complicated software depen-

dencies which are difficult to translate to other systems. The first integrated system

16
was AnimatLab [28], which allows networks consisting of either a non-spiking or
spiking neural model to control user-definable physics bodies. It also comes with
an integrated plotting engine, allowing users to run experiments and analyze data
within a single application. Numerous models have successfully been controlled
with AnimatLab, both in simulation [27, 65, 120] and with robotic hardware [50,
64], however networks cannot be designed in a programmatic way and are difficult
to scale to larger networks [110]. The Neurorobotics Platform (NRP) is a large soft-
ware suite which integrates multiple neural simulators, including Nengo [11] and
NEST [49], with Gazebo [73] in a cloud-based simulation environment. The NRP
is a comprehensive toolbox which comes with a variety of advanced visualization
tools, and has been used successfully for multiple neurorobotic controllers in sim-
ulation [22, 84]. However, the NRP comes with much overhead and, as such, is
unsuited for real-time control of robotic hardware.

In recent years, high-performance robots have been developed which are con-
trolled using networks of spiking neurons [29, 38]. These networks achieve state-
of-the-art performance, but rely on specialized neuromorphic hardware, such as
Intel’s Loihi processors [33], which are not yet widely available. Lava [77] is a
relatively recent and promising software solution for designing spiking networks,
but it is primarily designed for use with CPUs and Loihi. Currently, the most widely
used software for implementing spiking networks and controlling real hardware is
Nengo [11], which has achieved impressive results [38]. However, Nengo is opti-
mized for networks designed using the Neural Engineering Framework [41], and can
have reduced performance without the use of neuromorphic hardware. One simula-
tor which can simulate networks with a mixture of spiking and non-spiking neurons
in real-time or faster is ANNarchy [130], which does so using a C++ code genera-
tion system. However, this code generation system which enables high performance
comes at the cost of incompatibility with the Microsoft Windows operating system,

which reduces its level of accessibility.

17

Here, we present SNS-Toolbox, an open-source Python package for the design
and simulation of synthetic nervous systems. SNS-Toolbox allows users to design
SNS networks with a simple interface and simulate them using established numer-
ical processing libraries on consumer-grade hardware. We focus on simulating a
specified set of neural and synaptic dynamics, without dedicated ties to a GUI or
a physics simulator. This focus allows the SNS-Toolbox to be easily interfaced
with other systems, and for a given network design to be able to be reused without
modification in multiple contexts. In previous work [94], we presented an initial
version of SNS-Toolbox with reduced functionality. Here we explain in detail the
expanded neural and synaptic dynamics supported in the toolbox, and describe the
workflow for designing and simulating networks. We provide results which demon-
strate comparative performance with other neural simulators, and we showcase the
use of SNS-Toolbox in two different applications, motor control of a muscle-actuated
biomimetic system in Mujoco [127], and navigation control of a robotic system in

simulation using the Robotic Operating System (ROS) [99].

3.3 Materials and Methods

Herein we describe the internal functionality of the SNS-Toolbox, how different neu-
rons and synapses are simulated, designed, and compiled by the user. Section 3.3.1
defines the neural models which are supported in the toolbox, and Section 3.3.2
does the same for connection types. Section 3.4.2 describes the design process
using SNS-Toolbox, and how a network is compiled and simulated.

All software described is written in Python [105], which was chosen due to its
ease of development and wide compatibility. Unless otherwise specified, the units
for all quantities are as follows, current (nA), voltage (mV), conductance (S),

capacitance (nF), and time (ms).

18

3.3.1 Neural Models

SNS-Toolbox is designed to simulate a small selection of neural models, which are
variations of a standard leaky integrator. In this section, we present the parameters

and dynamics of each neural model which can be simulated using SNS-Toolbox.

Non-Spiking Neuron

The base model for all neurons in SNS-Toolbox is the non-spiking leaky integrator,
as has been used in continuous-time recurrent neural networks [10]. This neural
model can be used to model non-spiking interneurons, as well as approximate the
rate-coding behavior of a population of spiking neurons [121]. The membrane

potential behaves according to the differential equation

_ (3.1)
where is the membrane capacitance, the membrane conductance, and is
the resting potential of the neuron. is an injected current of constant magnitude,
and is any external applied current. is the current induced via synapses

from presynaptic neurons, the forms of which are defined in Section 3.3.2.
During simulation, the vector of membrane potentials _ is updated at each step

by representing Equation (3.1) in a forward-Euler step:
(3.2)

where denotes the element-wise Hadamard product, and represents the simu-
lation timestep. is the membrane time factor, which is set as _
Spiking Neuron

Spiking neurons in SNS-Toolbox are represented as expanded leaky integrate-and-

fire neurons [88], with the membrane depolarization dynamics described in Equa-

19
tion (3.1) and an additional dynamical variable for a firing threshold [123],

— 0 (3.3)

where is a threshold time constant, and o is the initial threshold voltage. isa
proportionality constant which describes how changes in affect the behavior of ,
with O causing toalways equal . When the neuron is subjected to a constant
stimulus, (O results in a firing rate which decreases over time, and 0 causes a

firing rate which increases over time. Spikes are represented using a spiking variable

»

1

(3.4)
0 otherwise
which also triggers the membrane potential to return to rest:
if 1 . (3.5)
The vector of firing thresholds _ is updated as
_ _ _ _ 0 _ _ (3.6)
where — is the threshold time factor. Based on the threshold states, the spiking
states are updated as
0 (3.7

Note that for simplified implementation, all spikes with SNS-Toolbox are inter-
nally represented as impulses of magnitude 1. Using these spike states, the mem-

brane potential of each neuron which spiked is reset to .y

1 (3.8)

Neuron with Voltage-Gated lon Channels

The other neural model available within SNS-Toolbox is a non-spiking neuron
with additional Hodgkin—Huxley [61] style voltage-gated ion channels. The mem-

brane dynamics are similar to Equation (3.1), with the addition of an ionic current

20
[122]:

_ (3.9)

This ionic current is the sum of multiple voltage-gated ion channels, all obeying

the following structure:

(3.10)
Any neuron within a network can have any number of ion channels. is the
maximum ionic conductance of the j ion channel, and is the ionic reversal

potential. and are dynamical gating variables, and have the following dynamics

_— (3.11)
where functions of the form are a voltage-dependent steady-state
1

(3.12)

1 exp

and is a voltage-dependent time constant
exp (3.13)
denotes an exponent, and is the gate reversal potential. and are
parameters which shape the and functions. is the maximum value
of . Note that depending on the desired ion channel, the exponent for various

sections can be set to 0 in order to effectively remove it from Equation (3.10). One
particular example of this is a neuron with a persistent sodium current, which is also

available as a preset in SNS-Toolbox,

(3.14)

which is the same as Equation (3.10) with one dynamic variable disabled and some

variable renaming.

21

3.3.2 Connection Models

Within SNS-Toolbox, neurons are connected using connection objects. These can
either define links between individual neurons, or structures of connectivity between

neural populations (see Section 3.3.2).

Non-Spiking Chemical Synapse

When connecting non-spiking neurons, non-spiking chemical synapses are typically

used. The amount of synaptic current to post-synaptic neuron from presynaptic

neuron is
(3.15)
where is the synaptic reversal potential. is the instantaneous synaptic
conductance, which is a function of the presynaptic voltage
0 —_— (3.16)

is the maximum synaptic conductance, and voltages and define the
range of presynaptic voltages where the synaptic conductance depends linearly on
the presynaptic neuron’s voltage.
When simulating, Equation (3.15) is expanded to use matrices of synaptic pa-
rameters (denoted in bold),

_ Gsyn E Gsyn (3.17)

and each term is summed column-wise to generate the presynaptic current for each
neuron. Synaptic parameter matrices have an NxN structure, with the columns
corresponding to the presynaptic neurons and the rows corresponding to the postsy-

naptic neurons. Equation (3.16) is also expanded to use parameter matrices,

E
Guon 0 G non = R G rnax non (3.18)

22
Spiking Chemical Synapse
Spiking chemical synapses produce a similar synaptic current as non-spiking chem-

ical synapses (Equation (3.15)), but a key difference is that is a dynamical

variable defined as

—_— (3.19)

it 1 . (3.20)

The conductance is reset to , the maximum value, whenever the presy-

naptic neuron spikes. Otherwise, it decays to zero with a time constantof . When
simulated, these dynamics are represented as

Gopie Gepike 1 1 Teyn (3.21)

where Ggpie is the matrix of spiking synaptic conductances, and Ty, is the synaptic
time factor matrix.

An additional feature available with spiking synapses is a synaptic propagation
delay. This sets the number of simulation steps it takes for a spike to travel from one
neuron to another using a specific synapse, a feature which is useful for performing
some aspects of temporal computation [110]. If the synapse between neurons and

has a delay of timesteps, the delayed spike is represented as
(3.22)

For simulation, this propagation delay is implemented using a buffer matrix
buffer With columns and rows, where is the longest delay within the network.
The rows of pyrer are shifted down at each timestep, and the first row is replaced with
current spike state vector . pusier is then transformed into a matrix of delayed
spikes delay by rearranging based on the delay of each synapse in the network. delay

is then used to simulate the synaptic reset dynamics from Equation (3.20),

Gspike Gspike G max spike (3.23)

23
Electrical Synapses
Electrical synapses, or gap junctions, are resistive connections between neurons that

do not use synaptic neurotransmitters. As a result, the neurons exchange current

proportional to the difference between their voltage values. Their current is defined

as

(3.24)

where is the synaptic conductance. Electrical synapses are simulated
in SNS-Toolbox using a similar formulation as Equation (3.17),

Gelec Gelec (3.25)

SNS-Toolbox simulates electrical synapses as bidirectional by default, where
current can flow in either direction between the connected neurons. Rectified
connections are also supported, where current only flows from the presynaptic to
the postsynaptic neuron and only if . When simulating with rectified

electrical synapses, a binary mask M is generated,

M (3.26)

where denotes outer subtraction. The voltage of each neuron is subtracted in
a pairwise fashion, with the result processed by the heaviside step function

This generates a matrix where each element is 1 if current is allowed to flow in
that direction, and 0 otherwise. This binary mask is then applied to a synaptic

conductivity matrix Grec to obtain the masked conductance Mg,

Mg M Gre (3.27)

To generate the opposite current flow in rectified synapses, the masked conduc-

tance is then added to its transpose with the diagonal entries removed,

Mp Mg Mg diag Mg (3.28)

24
This final masked, transformed conductance matrix is substituted for Gejec

in Equation (3.25)

Mp Mp (3.29)

Matrix and Pattern Connections

In their base form, each of the preceding connection models defines the connec-
tion between two individual neurons. However, the connections’ behavior can be
extended to defining connections between populations of neurons. Following the
model presented in [123], in the simplest form of population-to-population connec-
tion all neurons become fully connected and the synaptic conductance is automat-
ically scaled such that the total conductance into each postsynaptic neuron is the
same as the original synapse.

For more complex desired behavior, more types of population-to-population
connections are available. Matrix connections allow the user to specify the exact
matrices for each synaptic parameter, and one-to-one connections result in each
presynaptic neuron to be connected to exactly one postsynaptic neuron, with all
synapses sharing the same properties. Pattern connections are also available, mod-
eled after convolutional connections in ANNs [78]. In pattern connections, a kernel

matrix K can be given,

K (3.30)

where the indices are values for a single synaptic parameter (). IfK

describes the connection pattern between two 3 3 neural populations, then the

25

resulting synaptic parameter matrix P will present the following structure:

0 0000
000
0 0 000
0 0 0
P (3.31)
0 0 0
000 0 0
000
0000 0

3.3.3 Inputs and Outputs

In order for an SNS to interact with external systems, it must be capable of receiving
inputs and sending outputs. For applying external stimulus to a network, input
sources can be added. These sources can be either individual elements or a one-

dimensional vector, and are applied to the network via |,

Ci (3.32)

where Cip is an LxN binary masking matrix which routes each input to the correct
target neuron. L is the number of input elements, and N is the number of neurons in
the network. This external input vector is varied from step to step and could come
from any source (e.g., static data, real-time sensors).

Output monitors can also be added, both for sending signals to other systems
and for observing neural states during simulation. These outputs are assigned one-
to-one to each desired neuron, meaning one output applied to a population of five
neurons results in five individual outputs. Output monitors can be voltage-based

or spike-based, where the output is the direct voltage or spiking state of the source

26

neuron. During simulation, the output vector is computed as

Cout voltage __ CﬂlllS]lili.B _ (3.33)

where Coyt voltage a1d Coyt spike are connectivity matrices for the voltage and spike-

based monitors, respectively.

3.3.4 Software Design and Workflow

Using SNS-Toolbox, the design and implementation of an SNS is split across three

phases, a design phase, a compilation phase, and a simulation phase.

Design

To design a network, users first define neuron and connection types. These describe
the parameter values of the various neural and synaptic models in the network,
which can be subsequently reused. Once the neuron and connection presets are
defined, they can be incorporated into a Network object (for a complete inventory
of the different elements which can be added to a Network, refer to Sections 3.3.1—
3.3.3). First, the user can add populations of neurons by giving the neuron type,
the size or shape of the population, and a name to refer to the population. When
simulated, all populations will be flattened into a one-dimensional vector, but during
the design process they can be represented as a two-dimensional matrix for ease of
interpretation (e.g., working with two-dimensional image data). After populations
are defined and labeled, the user can add synapses or patterns of synapses between
neurons/populations, giving an index or character-string corresponding to the source
and destination neurons or populations and the connection preset.

Once a network is designed, it can also be used as an element within another
network. In this way, a large network can be designed using large collections of
predefined subnetworks, in a methodology referred to as the Functional Subnetwork
Approach (FSA). Available within the SNS-Toolbox is a collection of subnetworks

27
which perform simple arithmetic and dynamic functions. For acomplete explanation

of these networks, as well as the FSA, please refer to [121].

Compilation

While it describes the full structure of an SNS, a Network object is merely a dic-
tionary which contains all of the network parameters. In order to be simulated, it
must be compiled into an executable state. Given a Network, the SNS-Toolbox can
compile a model capable of being simulated using one of the four software backends,
NumPy [56], PyTorch [95], a PyTorch-based sparse matrix library (torch.sparse),
and an iterative evaluator which evaluates each synapse individually. These back-
ends are all built on well-established numerical processing libraries, with PyTorch
bringing native and simple GPU support. Each backend has different strengths and
weaknesses, which are illustrated in Section 3.4.2. Although each is different, all
backends are compiled following the general procedure described in Algorithm 1.
Once a network is compiled, it can either be immediately used for simulation or

saved to disk for later use.

Algorithm 1 General compilation procedure.

function CompiLe(net,)
Get network parameters
Initialize state and parameter vectors and matrices
Set parameter values of each neuron in each population
Set input mapping and connectivity parameter values
Set connection synaptic parameter values
Calculate time factors
Initialize propagation delay buffer
Set output mapping and connectivity parameter values
return model

end function

Simulation

Since the SNS-Toolbox focuses on smaller networks which are connected with

varying levels of feedback loops [10, 50, 63, 64, 96] instead of multiple massively

28
connected layers [46], we optimize our computations by representing all networks
as single-layer, fully-connected recurrent networks. During simulation, the neural
dynamics are evaluated by unfolding the network through time. This is similar
to the method developed by Werbos et al., for training recurrent ANNs [136].
See Figure 3.1 for a visual representation of this strategy. At each timestep, every
neuron can receive input from any neuron at the previous step (including itself via an
autapse [113]). Although the SNS-Toolbox only acts as a neural dynamics simulator,
it is extensible to interact with other systems for controlling robot (Section 3.4.4) or

musculoskeletal (Section 3.4.5) dynamics.

t-dti]

t+did

Figure 3.1: Simulation method for a small example network using the SNS-Toolbox.
(A) Overall network diagram generated within the toolbox. (B) Diagram of the
general computational flow when simulating the network. The network is unfolded
in time, and neural voltages are propagated in feedforward layers from one time-step
to another.

3.4 Results

In this Section, we provide results showcasing the capabilities of SNS-Toolbox. We

first provide quantitative benchmarks which characterize the performance of the

29

software, and conclude with two application examples.

3.4.1 Specifications

Unless otherwise specified, all of the following results were obtained using the

software and hardware presented in Table 3.2.

Table 3.2: Software and hardware specifications.
Item CPU GPU RAM Python NumPy PyTorch CUDA

Specification AMD Ryzen 9 NVIDIA 32GEBDOR4 3810 1211 19.0 1ns
3900x RTX2060 2400 MHz

3.4.2 Performance Benchmarking

For evaluating the performance of the SNS-Toolbox, we present benchmarking
results for varying network size, structure, and type. In these benchmarks, networks
consist entirely of either spiking or non-spiking neurons, and are either densely or
sparsely connected. In densely connected networks, every neuron is synaptically
connected to every other neuron. For sparse networks, the neurons are connected
with the following structure; 8% of neurons receive external input, 12% of neurons
are recorded for output, and the number of neurons and synapses is equal. This
structure is based on general principles observed in previous large-scale synthetic

nervous systems [50, 64].

Maximum Network Size

Networks were constructed following the structure described in Section 3.4.2, and in-
creased in size until one of the following two termination conditions were met, either
the network parameter matrices could not fit in memory or network synthesis took
an excessive amount of time (=10 h). These experimental results are shown in Ta-
ble 3.3. The limiting factors of whether a network can successfully be synthesized

are the synaptic parameter matrices, as these increase in size quadratically as the

30
size of the network increases. CPU-based backends are able to achieve the highest
network sizes, which is expected due to the increased volume of memory available to
the CPU. The iterative backend is able to achieve the highest sizes of network, since
its neural and synaptic dynamics are computed by iterating over one-dimensional
arrays instead of vector and matrix operations on two-dimensional arrays. All of the
sparse networks took significantly longer to synthesize, resulting in termination of

their testing before running out of memory.

Table 3.3: Maximum network size.

Torch Torch Sparse Sparse
(CPU) (GPU) (CPU) (GPU)
Max Dense 11,010 20,010 22,000 7865 151* 2510*

Max 1:1 158,010 23,010 24,010 7639 17,510* 11,120*

Backend lterative NumPy

* Larger networks can be simulated, but compilation takes excessive time.

Backend Performance

We show that SNS-Toolbox is capable of simulating thousands of non-spiking
neurons in real-time or faster, with slower performance when simulating spiking
neurons. In total. 100 networks, which varied in size from 10 to 5000 neurons
in a logarithmic spacing, were generated and simulated for 1000 steps in each
backend. A simulation step of At = ().1 ms was used. The elapsed time to simulate
each step was recorded, and the results are shown in Figure 3.2. Each of the
available backends exhibit different strengths and weaknesses. For networks with
less than 100 neurons, the Numpy [56] backend runs the fastest, followed by the
PyTorch [95] backend running on the CPU. Once networks increase in size beyond
200-300 peurons, the PyTorch backend running on a GPU becomes the fastest.
While this backend is the fastest, the exchange of data between the CPU and GPU
results in a higher degree of temporal variability than the CPU-based backends.

Further investigation is needed to reduce this variability in performance.

31

The exact threshold for what could be considered real-time performance is
dependent on the simulation step size, which, in turn, is dependent on the membrane
properties of neurons within the network. While all networks in this test were
simulated with the same step size for consistency, accurately simulating spiking
networks will generally require a finer simulation step than non-spiking networks.
In this test, an elapsed time of (.1 ms per step is considered real-time for the spiking
networks. A step size of 1 ms would suffice for the non-spiking networks tested
in this section, so their real-time limit is 1 ms. For non-spiking networks, this
means that networks up to about 3000 neurons can be simulated in real-time, and for

spiking networks the threshold is about 100-200 neurons.

A Dense Non-5piking B Sparse Non-5piking
10f .
Numpy 107 o
—— Torch (CPU} 3
1p¢ o |— Torch (GPU}

E
— lterathve 10”3

—— RealTime

10° o

Step Time (ms)
Step Time (ms)

1ot E-.__.... S =

— T T T T T T T
10t 1 104
D Sparse Spiking

107

10° o

Step Time (ms)
Step Time (ms)

L

10—

T T T TTTTT] T T T T TTITT1] T T 1 T T T T TTITT1] T T T TTTTT]
108 10? 108 10¢ 107 10?

Number of Meurons Number of Neurons

Figure 3.2: Comparison of wall-clock times to simulate a network for one simulation
time-step over varying network sizes, using the six software backends provided in
SNS-Toolbox. (A,B): Networks of non-spiking neurons, (C.D): networks of spiking
neurons. Left: Fully-connected networks, Right: Sparsely connected networks,
following the structure described in Section 3.4.2. Lines denote the mean over 1000
steps, shaded region denotes the area between the fifth and ninety-fifth percentiles.
The real-time limit is denoted with a horizontal dashed black line.

31

The exact threshold for what could be considered real-time performance is
dependent on the simulation step size, which, in turn, is dependent on the membrane
properties of neurons within the network. While all networks in this test were
simulated with the same step size for consistency, accurately simulating spiking
networks will generally require a finer simulation step than non-spiking networks.
In this test, an elapsed time of (.1 ms per step is considered real-time for the spiking
networks. A step size of 1 ms would suffice for the non-spiking networks tested
in this section, so their real-time limit is 1 ms. For non-spiking networks, this
means that networks up to about 3000 neurons can be simulated in real-time, and for

spiking networks the threshold is about 100-200 neurons.

A Dense Nor=Spiking B Sparse Non=Spiking

— MNumpy
—= Torch [CPU)
1p% o — Torch [GPU)
— Reralive
—=— ReakTime

Step Time (ms)
Step Time (ms)

10 10? 107 ot 107 10°
c Dense Spiking D Sparse Splking

Step Time (ms)
Step Time (ms)

10! 107 107 10t 107 107
Number of Neurans Number of Neurons

Figure 3.2: Comparison of wall-clock times to simulate a network for one simulation
time-step over varying network sizes, using the six software backends provided in
SNS-Toolbox. (A,B): Networks of non-spiking neurons, (C.D): networks of spiking
neurons. Left: Fully-connected networks, Right: Sparsely connected networks,
following the structure described in Section 3.4.2. Lines denote the mean over 1000
steps, shaded region denotes the area between the fifth and ninety-fifth percentiles.
The real-time limit is denoted with a horizontal dashed black line.

32

Benchmarking Alternative Software

The SNS-Toolbox is faster than the majority of similar neural simulators. We per-
form the same testing procedure presented in Section 3.4.2, and compare against
the behavior of similar simulators, namely Brian2 [51], Nengo [11], and ANNar-
chy [130]. For these other simulators, the neural and synaptic dynamics for basic
spiking and non-spiking neurons within SNS-Toolbox (see Sections 3.3.1 and 3.3.2)
were implemented and verified to match the behavior in SNS-Toolbox. In Brian2
and ANNarchy, this was completed via their built-in interfaces for interpreting cus-
tom behavioral strings. This process was less straightforward in Nengo, requiring a
custom Nengo process object which re-implemented the equations as performed in
SNS-Toolbox. As such, while the networks are able to successfully run in Nengo,
they are not fully compatible with the rest of the Nengo ecosystem. Since these
benchmarks are not being compared against biological recordings, validation is
completed by comparing the behavior of the neural models across simulators and
verifying that the simulation recordings are identical.

Results are shown in Figure 3.3. For clarity, simulators with multiple backends
or variants are condensed to show the best performing version for each network
size. The variants tested in Brian2? are the normal version on CPU, and the GPU-
accelerated Brian2CUDA [2], and ANNarchy was compiled using the CPU and
GPU paradigms. All SNS-Toolbox backends were tested. Across all network sizes
and structures, SNS-Toolbox is faster or within performance variance of Brian2
and Nengo. SNS-Toolbox is faster than ANNarchy for some densely-connected
non-spiking networks, but, in general, is slower but competitive across the test suite.

Suggestions for improving this speed discrepancy will be explored in the Discussion.

A Dense Non=5plking B Sparse Nen=5plking
i wd s
E E 10" - /_._.—"'
[T}) e
g £ 10 r /
F F
Z & 10-1 ==
& & 10 T 'l P A gad
10'2; ###### o i A
3 T T T T TTTT7T T T T T T TT1TT T T] T T T T T TT1TT T T T T TTTT7T
10t 107 107 107 10% 102
C Dense Splking D Sparse Spldng
; B O S -
_ 3 — sNsToolbox ~
2 g 1oty Brian2 o~
- - J ——— Nengo 7
i - afi
E E 100 o —— ANNarchy r.ﬂ
F = 3 —— ReakTlme ry
e B -1 S
& @ 107 g esS T
lﬂ_z ;f\._,_.../ r-_'-\._-—r-"‘.—o-.av-""‘-" e
7 T T T T TTTT7T T T T T T TT1TT T T 3 T T T T T TT1TT T T T T TTTT7T
10t 107 107 107 10% 107
Number of Neurons Number of Neurons

Figure 3.3: Comparison of wall-clock times for SNS-Toolbox to simulate a network
for one simulation time-step over varying network sizes, using SNS-Toolbox and
three other neural simulators (Brian2 [51], Nengo [11], and ANNarchy [130]).
For the following simulators, the time data presented are chosen as the best-
performing backend variant, Brian2, standard Brian2, and the GPU-accelerated
Brian2CUDA; SNS-Toolbox, all available variants; and ANNarchy, CPU-based
compilation, and GPU-based compilation. (A,B): Networks of non-spiking neu-
rons, (C,D): networks of spiking neurons. Left: Fully-connected networks, Right:
Sparsely connected networks, following the structure described in Section 3.4.2.
Lines denote the mean over 1000 steps, shaded region denotes the area between the
fifth and ninety-fifth percentiles. The real-time limit is denoted with a horizontal
dashed black line.

Performance on Embedded Hardware

The testing procedure presented in Section 3.4.2 is again repeated, testing the
performance of SNS-Toolbox on various embedded computing platforms. These
included a Raspberry Pi Model 3B (trademark Raspberry Pi Limited, Cambridge,
UK), Jetson Nano 4GB (trademark NVIDIA Corporation, Santa Clara, CA, USA),
and an Intel NUC SWNUC11PHKi7c00 (trademark Intel Corporation, Santa Clara,
CA, USA) with 32 GB of RAM. Due to the reduced available memory available on

the Raspberry Pi and Jetson, network size is varied logarithmically from 10 to 1000

34
neurons, instead of the 105000 neurons in Sections 3.4.2 and 3.4.2. Results are
shown in Figure 3.4; for clarity, all backends are condensed for each device such that
the best performing solution at each network size is presented. The Raspberry Pi
performs comparably with a Jetson Nano, with the Jetson exhibiting slightly better
performance across all network sizes. The amount of memory available on the
Raspberry Pi is the smallest of the three devices, so it is unable to simulate densely-
connected networks over approximately 900 neurons in size. The Intel NUC is a
significantly more powerful computing platform than the Raspberry Pi or the Jetson

Nano, and accordingly behaves more closely to desktop-level performance.

A Dense Non-Spiking B Sparse Non-5piking
] e] — nuc -
10t b ,--"’ ST L R Jetson Nano .a-""#
T E -~ A& S —— Rpise -~
E E -) E -
;' B N N ;' ——— Real-Time L
E 1073 T E 10°3 e
E JamEm=anEE . E d o —— -
& 107 —N’d//,/——/ & 107 ——//x/
T — T T T T T — T T T T — T T T T — T T T
1ot 104 10° 10t 1 104
C Dense Spiking D Sparse Spiking
5 10 o _",a’ & 10° #,,u
E 3 e E 3 =
Ewd - T Ewd B
g 1. i ,_/__/ g E p— . //——/
7 10- E-__-_-_-_-_“_’_._/ ’ o=t =_._-_________...-—"'f
T — T T T T T — T T T T — T T T T — T T T
1ot 104 10° 10t 1 104
Number of Meurons Number of Meurons

Figure 3.4: Comparison of wall-clock times to simulate a network for one simulation
time-step over varying network sizes, using SNS-Toolbox on three different embed-
ded computing platforms (Intel NUC, Raspberry Pi version 3b, and an NVIDIA
Jetson Nano). The time data presented are chosen as the best-performing backend
variant at each network size, with GPU-based backends excluded on the Raspberry
Pi. (A,B): Networks of non-spiking neurons, (C,D): networks of spiking neurons.
Left: Fully-connected networks, Right: Sparsely connected networks, following the
structure described in Section 3.4.2. Lines denote the mean over 1000 steps, shaded
region denotes the area between the fifth and ninety-fifth percentiles. The real-time
limit is denoted with a horizontal dashed black line.

35

3.4.3 Basic Demonstration

Using the SNS-Toolbox, we implemented a network which models an anatomical
circuit and performs a useful function, but would be complicated and tedious to
design by hand. In the Drosophila melanogaster nervous system, the optic lobe
contains circuits for processing motion in the visual field[12, 85]. The first two
layers of this visual system are the retina and the lamina, which perform two distinct
visual processing operations. Retinal neurons R1-R6 encode incoming photons as
changing neural activity[26], and the lamina primarily consists of two pathways:
the L2 neurons have an antagonistic center-surround receptive field, and L1 neurons
have a traditional center-surround receptive field[47]. Based on this structure,
modeling the retina and L1 cells results in a circuit which performs high-pass
filtering of an input image. Previous work has created a synthetic nervous system
model of the Drosophila optic lobe motion circuitry[110] using the Animatlab
software[28]. This model was constrained to one-dimensional images, in part due
to the difficulty of implementing the model. In this previous approach neurons
and synapses have to be placed and routed by hand, which is time-intensive and
tedious to produce a simplified model with 510 neurons and 1574 synapses for one-
dimensional images[110]. To demonstrate the effectiveness of the SNS-Toolbox, we
created a model of the retina and L1 cells of the optic lobe capable of processing two-
dimensional images, consisting of 2048 neurons and 8476 synapses and generated
in only 18 lines of Python code (see Figure 3.5A).

To ensure the network responds to input in a realistic (within simulation) time,
we examine the temporal properties of the Drosophila optic lobe. Based on flicker
fusion studies, the response rate of the fruit fly to visual stimuli is in the range of
60-100 Hz[87]. Approximating the settling time of each neuron to be 4 , the
maximum time constant of the entire visual processing system is 40-66.67 ms. Since
our two-layer circuit is not the entire visual system, we will reduce these estimates

by an order of magnitude and set the membrane time constant of each neuron in the

36

.|‘5{_. _ B. [npul Image Retina Population Lamina Population
TEE
Areuran_type = MonSpikisgHesron(|
At = Wetwori|nese="Visual Hetwark'|
E= R
T# add a Ja papulal LT ¥ I Lt A
Bret.add_population{neuran_type,shape. nases'Reting']

B8 add a /i Flarraned lsag

1Bt add_tnput|'Retina’, sizesflat_size, nsnes"Issge’)

12 ret add_sutput| Retina” nemes Reting Guiput')

13

Il Lol
15net.add_populationineuron_type, shape.nases’'Lasina’]
16

16 wx = 1
1Be in =
10k gz = 1
28k _in =
21«

e S N Fetina Oulput Lamina Qulput
2-; ax_in = (& _i=*Rif(del_e in-&_i=*H)
B sax_kernel = ng.areuyl[lg ke i, g_sax_Ln, g mak_in]
lg max_im, g mas ek, g eak_in]
lg_max a in, g _max_tn]

i

3Be_kernel = og.arrayi[le in, @_Ln, @ is
1 le_in, e_ex. e_in],
EF l# in, &_in, e_in]]}
3dconnection hpf = WoaSpikingPattersComection(g max kernel,e kernel)

3B net.add conrectioniconrection hpf,'Retlne’, ‘Lamina’ name='HFF')
BT# add a & sulpel From I

1 ¥ .
3Bnet.add cutput] Laming” nemes"Laning Quiput')
kL]

Al ret, render_graps{viewsTrue) @ vime 1

Figure 3.5: Using SNS-Toolbox to design a two-layer visual processing system.
A. Python code to generate the desired network. Image preprocessing and output
plotting are omitted. B. Network visual representation. An input image is converted
to stimulus current for a population of neurons, representing the insect retina. From
the retina, a 33 kernel of inhibitory (light blue) and excitatory (purple) synapses
is applied to create a high-pass filtering effect in the next layer, representing the
L1 insect lamina neurons. C. Output of retina and lamina neurons, respectively.
Voltages are mapped to grayscale intensities.

network as 5 ms.

We assume that input images are grayscale, because the retina neurons used
within the motion vision pathway only respond to a single light color (green)[25].
Since a single Drosophila eye consists of around 800 ommatidia arranged in 32-34
columns[75], we will also design for input images which are 32x32 pixels. As an
input transformation to the retina layer, pixel values are linearly scaled from their
original 0-255 to 0-R nA.

After creating two 32x32 populations of neurons and attaching an input source,
the last step is to define the connection between the retina and the lamina. Our
lamina model only consists of L1 neurons, so each neuron has center-on surround-

off receptive field. Since each L1 cell receives input from the directly adjacent

37

ommatidia, we can implement these receptive fields as a 3x3 connection kernel:

where and are the desired gains for inhibitory and excitatory synapses,
respectively. For desired behavior, these gains were chosen as !'; and 1.
These synaptic gains can be transformed into synaptic conductances and relative

reversal potentials using the method described in[121],
(3.34)

where all excitatory synapses usean of 160 mV and all inhibitory synapses use
an of -80 mV.

The results of simulating the network are shown in Figure 3.5. The output of
the lamina layer is as expected, and correctly implements a rudimentary high-pass

filter or edge-detector.

3.4.4 Mobile Robot Control

As a toy application example, we use SNS-Toolbox to control a simulated mobile
robot. A skid-steer Jackal robot (trademark Clearpath Robotics, Kitchener, ON,
USA) is placed in a navigational course resembling a figure-eight in the Gazebo
physics simulator [73] (Figure 3.6B), with the goal being to drive the robot around
the course without colliding with any of the walls or barriers. The simulated robot
is equipped with a planar LiDAR unit, and is controlled and operated using the
ROS software ecosystem [99]. We implement the neural control system as a ROS
node which subscribes to the angular distance readings from the laser scanner,
and publishes to the velocity controller onboard the robot.
The control network, shown in Figure 3.6A, implements a Braitenberg-inspired [16]

steering algorithm. The laser scan sends distance measurements for 720 points in a

38
270 arc around the front of the robot, and each neuron in a population of 720 non-
spiking neurons receives external current from a corresponding directional distance

scan. These currents are scaled and mapped by the following relationship,

B — (3.35)

such that each neuron has a steady-state voltage of 0 when the sensor distance is
at its maximum value , and increases to 1 when the distance is at its minimum
This population then excites two heading control neurons, with the left
360 neurons exciting the clockwise rotation neuron, and the right 360 exciting the
counter-clockwise rotation neuron. All synapses between the sensory and heading
control neurons share the same synaptic conductance. The difference between the
potentials of these two neurons is taken and scaled to generate the desired angular
velocity of the robot,
(3.36)

As the robot approaches a barrier, the system generates stronger rotational com-
mands to move away from the obstacle. All 720 sensory neurons also inhibit a speed

control neuron, which scales the linear velocity of the robot as
(3.37)

The speed control neuron also has a constant applied bias current of 1 nA. This
has the effect of dynamically slowing the robot as it becomes closer to obstacles,
allowing the rotational commands to correctly orient the robot. This controller
results in successful navigation of the driving course in 133.24 s, with minimal
tuning. Currently the velocity is updated with every neural step, however for
improved speed performance the velocity can be updated after multiple neural steps.
This allows the neural states to converge to a steady-state for each scan distance,
and reduces the amount of communication traffic.

Braitenberg-inspired [16] networks have been widely used for steering and lane-
keeping tasks in the past [70, 132, 135] to great success. The network designed in

39

- r’mW“\jUMngm

W
== amald

o s 100500 15, 6080 20,9090 25,0000 a0 25000
E]

Figure 3.6: LiDAR-based steering algorithm for a simulated mobile robot using
ROS. (A): Network diagram of the control network. Each distance measurement
angle of a simulated LiDAR is inverted, scaled, and mapped as the input to a
single input processing neuron. These are then summed onto directional neurons
corresponding to clockwise or counter-clockwise rotation, depending on which half
of the scanning field the neuron represents. All sensory neurons also connect to a
speed control neuron. The difference between the directional neurons is taken as the
rotational velocity, and the speed control neuron is scaled by the maximum speed
to control the linear velocity. (B): Overhead view of the simulation environment in
Gazebo [73]. Orange and white barriers act as boundaries of the course, the robot
trajectory is superimposed on top with a dashed blue line. (C): Neural activity of
the three command neurons during the generation of the trajectory shown above.

this section is intended as a proof of concept to showcase the ability to interface

SNS-Toolbox with ROS simulations, not as a state-of-the-art steering algorithm.

3.4.5 Musculoskeletal Dynamics

In Deng et al. [35], an SNS was designed to control a biomechanical simulation of rat
hindlimbs, with the network and body dynamics simulated using AnimatLab [28].
Here we reimplement this SNS using SNS-Toolbox and interface it with a new

biomechanical model implemented in the physics simulator Mujoco [127].

Neural Model

An overall network diagram can be found in Figure 3.7A. The general network
structure consists of a two-layer CPG with separate rhythm generation (RG) and
pattern formation (PF) layers [106], with each layer comprising of half-center (HC)
oscillators [19]. The RG network has two HC neurons which contain voltage-gated
ion channels (Equation (3.14)), which mutually inhibit one another via two non-
spiking interneurons (Equation (3.1)). This network generates the overall rhythmic
activity of the legs, and the global speed can be controlled via the level of mutual
synaptic inhibition [122].

The HC neurons of the RG network excite the corresponding HC neurons in the
PF networks, which are constructed in a similar manner to the RG network. Each PF
network shapes the phase from the RG network into the appropriate joint position
for a specific joint, with the knee and ankle joints sharing a PF network. The PF
networks are also presynaptic to a motor control network for each joint [63, 68],
where motoneurons (MN) drive the flexor and extensor muscles for each joint and

are adjusted by Ia and Ib feedback from the muscles.

Biomechanical Model

In Deng et al. [35], the rat hindlimbs were modeled in AnimatLab [28] using
simplified box geometry and a pair of linear Hill muscles for each joint. We replicate
this model in Mujoco [127] using a three-dimensional model of bone geometry [69]
and non-linear Hill muscles (shown in Figure 3.7C). Mujoco was chosen due to its
open-source availability, and its robust internal support for complex muscle-based
actuation with a lower computational overhead than OpenSim [34].

All muscles in the model share the same sigmoidal activation curve which

converts motoneuron activity to a muscle activation between 0 and 1. This is

B Acthatlan -] [E Hig PF F Knesifnile PF
- 56 r| 1 | —5% H |I —55
. l\] =i, | || \ — 1 \
; A g AW NN s= NN
!_ﬂ" —— HC &t = - — HC_ gt = - — H
IEE iR IR viR I
|
L AL E= AN 2
—a1 | —a1 | f1f
—si | ¥ ”Ir | II |I ¥ | II |I]
L T T T T T =4t T T T =5t T T T
] =50 Lles 4500 5000 Lles 450 5000 40fs} 4500 5000
Meuron Fotentlsl (mvi
M Knee MK 1 Arkle My
—ano —— Estargar | —40 ¥
e rhlqr \ N o | I.'\I |
1 | £ o1
1 Ml —— Extansor
—7 | | I e
—i | ! 1t |
—and L | - I |
(I | Ll
minp] = S| agpe] L
T T
A 4500 S00a A 4500 5000
K Erae Anphe L Bnide &ngle
e i =10 .I\' .ﬁ-
o
Eu.b -i—ln.?-
05 314
Foad | %
0.3 =LE
i W
T T T T T T
4000 A4S0 3000 4000 A4S0 S000
Tl s} Thrme (s}

Figure 3.7: SNS-Toolbox controls a musculoskeletal model of a rat hindlimb. (A):
Diagram of the neural control network. (B): Relationship between motor neu-
ron voltage and muscle activation. (C): The musculoskeletal model used in Mu-
joco [127]. (D): Neural activity from the half-center neurons in the central rhythm
generator. (E,F): Neural activity from the hip and knee/ankle pattern formation cir-
cuits. (G-I): Motor neuron activity in the motor circuits for the hip, knee, and ankle.
(J-L.): Joint angles of the hip, knee, and ankle. All recordings are shown for a period
of 1000 ms, after the model has finished initialization. Pictured are recordings from
the elements within the left leg.

calculated in the same manner as [139], with the activation sigmoid defined as

1

] (3.38)

where is the steepness of the sigmoid and is the motoneuron potential. The
exact curve is shown in Figure 3.7B.
Simulation Results

The network and mechanical model are simulated for 5000 ms, with data shown in

Figure 3.7. On each step, muscle tensions from Mujoco are first formatted as la and

42
Ib feedback for the SNS, then the outputs of the SNS are mapped via Equation (3.38)
into muscle activations for the Mujoco model. The network parameters are exactly
the same in this work as in Deng et al. [35], and result in oscillatory motor behavior.
The overall leg oscillation occurs at half the frequency of the original model, and the
joints exhibit scaled and shifted trajectories. The hip joint oscillates in the range
of 094 007 radians instead of 009 017 radians in the original model,
withthekneein 019 0 84 radiansinsteadof 047 009 radians and the ankle
in 176 097 radians instead of 092 026 radians. Further investigation
is needed to determine the sources of these discrepancies in behavior, however a

difference is to be expected given the difference in muscle modeling.

3.5 Discussion

In this work, we present SNS-Toolbox, an open-source Python package for simulat-
ing synthetic nervous systems. We focus on simulating a specific subset of neural
and synaptic models, which allows for improved performance over many existing
neural simulators. To the best of our knowledge, the SNS-Toolbox is the only neural
simulator available which meets all of the desired functionality for designing syn-
thetic nervous systems. The SNS-Toolbox is not tied to a dedicated graphical user
interface, allowing networks to be designed and simulated on embedded systems.
Heterogeneous networks of both spiking and non-spiking neurons, as well as chem-
ical and electrical synapses, can also be simulated in real-time on both CPU and
GPU hardware. All of these capabilities are also fully available across all major
operating systems, including Windows (trademark Microsoft Corporation), MacOS
(trademark Apple Corporation), and Linux-based systems.

We find that SNS-Toolbox can simulate networks with hundreds to thousands of
neurons in real-time on desktop hardware, and low hundreds of neurons on embedded
hardware. The performance is also competitive with other popular neural simulators.

Through a simple programming interface, it is relatively simple to combine networks

43
made in SNS-Toolbox with other software. Using ROS [99], we implemented a
Braitenberg-inspired [16] neural steering algorithm and controlled navigation of a
simulated mobile robot through an environment in Gazebo [73]. We also take an
existing SNS network which controlled a musculoskeletal model [35] implemented
in AnimatLab [28], and achieved cyclical limb motion after reimplementing the
network in SNS-Toolbox and interfacing with Mujoco [127].

One decision we made early in the design process was to provide a simplified
design and compilation interface, as well as to build SNS-Toolbox on top of widely
used Python numerical processing libraries in order to facilitate use across all
computing platforms. This has allowed multiple researchers with varying degrees
of programming experience within our laboratories to begin using SNS-Toolbox
successfully, as well as an instructional tool in pilot classes on neurorobotics. While
other tools, such as ANNarchy [130], achieve higher performance by direct code
generation in C++, they do so at the expense of easy cross-platform support. Future
work may explore adding additional build systems for different operating systems
in order to achieve comparable performance.

In order to allow network simulation on GPUs, multiple backends in SNS-
Toolbox are built on top of Py Torch [95]. However, PyTorch has a large infrastructure
of features which are currently not supported by the structure of the SNS-Toolbox
backend, such as layer-based organization of networks and gradient-based optimiza-
tion using automatic differentiation. Additionally, models built using the formal
PyTorch style are able to be compiled into the C++-adjacent Torchscript, allowing
improved simulation performance. Work is currently underway to restructure the
PyTorch backend within SNS-Toolbox to allow these benefits.

Previous SNS models have often been made using the software AnimatLab [28,
50, 64, 120], which uses a different workflow than SNS-Toolbox. Within AnimatLab,
users have an integrated GUI that contains a rigid-body modeler, canvas for dragging

and dropping neurons and synapses into a network, and a plotting window for

44
viewing simulation results. The SNS-Toolbox is designed to focus on the design
and simulation of the neural and synaptic dynamics, with the physics simulation
and plotting being relegated to external libraries. While this may be less convenient
for a user who is either a beginner or is migrating from AnimatlLab, we feel that
this separation is beneficial as it allows networks made using the SNS-Toolbox to
be more extensible to interfacing with other systems. When transitioning from
AnimatLab, the primary difference in workflow is that networks in the SNS-Toolbox
are described via code instead of drawn. If the transitioning user is familiar with
writing code in Python or another similar language, this change is easily managed.
The other difficulty when converting from AnimatLab to SNS-Toolbox is when using
MulJoCo [127] for physics simulation. As the native muscle model within MuJoCo
is different than Animatlab, we show in Section 3.4.5 that the same network with
the same parameter values will exhibit different behavior if not tuned to use the new
muscle model.

Throughout the design process of SNS-Toolbox, we chose to focus on im-
plementing specific sets of neural and synaptic dynamics. This brings enhanced
performance, however it does mean that there is no method for a user to add a
new neural or synaptic model to a network which has not been previously defined,
without editing the source code for the toolbox itself. One workaround to this issue
is to create more complicated models by treating individual non-spiking or spiking
neurons as compartments which are connected together as a multi-compartment
model, however, in general, we find that this is a limitation for the SNS-Toolbox at
this time.

The SNS-Toolbox is currently available as open-source software on GitHub
(trademark GitHub incorporated), and has an extensive suite of documentation
freely available online. In addition to installing from source, the SNS-Toolbox is
also available to install from the Python Package Index (PyPi). All of the features
within the toolbox are built on top of standard, widely used Python libraries. Aslong

45
as these libraries maintain backwards compatibility as they update, or the current
versions remain available, the functionality of SNS-Toolbox should remain into
the future.

Examples were shown using the SNS-Toolbox to interface with external software
systems, particularly ROS [99] and Mujoco [127]. While the primary goal of SNS-
Toolbox is a simplified interface which focuses on neural dynamics, other users
may find our interface mappings between SNS-Toolbox and other software useful.
As such, we intend to release supplementary Python packages which contain helper
logic to interface the SNS-Toolbox with other software as we develop them.

Many robots have been built which use SNS networks for control, although these
are usually tethered to an off-board computer [50, 64] or require non-traditional
computer hardware [3] to operate. With the release of SNS-Toolbox, we have
two forward-looking hopes. Firstly, that more researchers design and implement
synthetic nervous systems for robotic control, and that members of the robotics
community will find value in neural simulators which are capable of simulating

heterogeneous networks of dynamic neurons.

Chapter 4

A SYNTHETIC NERVOUS SYSTEM FOR ON AND OFF
MOTION DETECTION INSPIRED BY THE DROSOPHILA
MELANOGASTER OPTIC LOBE

Material in this chapter has been previously published in

» Nourse, W. R., Szczecinski, N. S., & Quinn, R. D. (2023, July). A Synthetic
Nervous System for on and Off Motion Detection Inspired by the Drosophila
melanogaster Optic Lobe. In Conference on Biomimetic and Biohybrid Sys-

tems (pp. 364-380). Cham: Springer Nature Switzerland.

Edits have been made to place this material into context with the rest of this disser-

tation.

4.1 Abstract

In this work, we design and simulate a synthetic nervous system which is capable
of computing optic flow throughout a visual field, inspired by recent advances
in the neural anatomy of Drosophila melanogaster found through connectomics.
We present methods for tuning the network for desired stimuli, and benchmark its
temporal properties and capability for directional selectivity. This network acts as a
stepping point towards visual locomotion control in a hexapod robot inspired by the

anatomy of Drosophila.

4.2 Introduction

A continuing goal in the robotics community is to develop robots with the dynamic
capabilities and resilience of animals. A particular focus is on adding the influence

of visual information to improve the adaptability of robotic systems [7, 140]. A

47
promising approach is to design robotic controllers using neuromorphic networks
of neurons with biologically inspired dynamics [6], also known as synthetic nervous
systems (SNS) [50, 64, 121].

Much is known about the circuitry within the Drosophila melanogaster optic
lobe, making it a convenient inspiration for robotic vision systems. For visual
motion processing in particular, the Drosophila nervous system contains many of
the same logical elements as that of mammals and vertebrates [26], but does so with
three orders of magnitude fewer neurons in the visual system [13, 80]. An additional
advantage of Drosophila over other model organisms is that extensive work has been
done in recent years to create a full connectome of their brains [107, 137], and the
visual system in particular has been extensively studied [112, 115, 125].

The motion vision pathway is extremely important for adaptive behavior in
Drosophila, aiding in estimation of body motion and enabling rapid response to
oncoming threats [1, 31, 48]. The structure is well documented, see Fig.4.1 for
a visual representation and refer to [13] for a more thorough review. Within the
Drosophila optic lobe, retinal and lamina cells convert changes in light intensity
into information used in the rest of the network. Of particular relevance to the
motion vision system are cells L1-L3, which perform spatiotemporal filtering of
input stimuli and separate information flow into two pathways: an On pathway for
encoding increases in brightness, and an Off pathway for encoding decreases in
brightness [112, 125]. From there, the transformed visual information is further
filtered in the medulla into a bank of unique filters (Mil, Tm3, Mi4, Mi9 for the On
pathway; Tm1, Tm2, Tm4, Tm9 for the Off pathway), each with slightly different
spatiotemporal characteristics [4, 40]. These are then combined nonlinearly (along
with the wide amacrine cell CT1 [86]) onto the elementary motion detector (EMD)
cells T4 and T35, and the resulting combination generates directional selectivity for
each point in the visual field [115] which can then be spatially integrated for more
complex behavior [13].

48

Previous work has adapted this circuitry to robotics [7] and SNS networks [110],
but these studies were performed before the wide breadth and depth of connectivity
information from connectomic analysis for Drosophila became available. In this
work, we design an 5NS network which measures optic flow for both rising and
falling brightness levels, using inspiration from the current body of knowledge about
connectivity and activity within the Drosophila optic lobe [13, 115]. As there is
less known about the exact operation of the Off EMD, we make some design-based
decisions in its construction. Using the capabilities of this network, we plan future

visual control of motion onboard the bio-inspired robot Drosophibot [50].

Al | B0

Medullal]

Figure 4.1: A: A circuit diagram of a single column within the Drosophila motion
vision pathway, adapted from [13, 115]. B: Reduced diagram used in this work.
Node colors in both diagrams are chosen to highlight their common functional
roles. Single circles designate neurons which behave as a low-pass filter, double
circles indicate a band-pass filter. Dark closed circles indicate inhibitory synapses,
open triangles indicate excitatory synapses. In panel B, ID and 5 neurons approx-
imate band-pass behavior by filtering the responses of the B neurons, for reduced
computational complexity.

49

4.3 Network Components

4.3.1 Neural and Synaptic Models

As this work is primarily focused on designing general network behavior instead of
exactly reproducing neural recordings, all neurons in the network are simulated as
non-spiking leaky integrators following [121], where the neural state is updated
as

(4.1)

where is the neural time constant, is any external input, and is a constant bias

term. is the synaptic input from any presynaptic neurons in the network,

(4.2)
with denoting a presynaptic neuron, and denoting the synaptic reversal
potential. In this work, all excitatory synapses have 5, 2 for

inhibitory synapses, and specific modulatory synapses have a reversal potential of
01 , where isthe primary range of neural activity in the network. For
numerical simplicity, 1 in this work so that most neurons communicate when
their state is between 0 and 1, with the exception of the synapse between neurons
and . has an effect roughly analogous to cholinergic synapses in Drosophila,
to GABAergic synapses, and to glutamatergic synapses. isa
monotonic function which describes the incoming synaptic conductance such that

0 where is the upper bound. In this work, we define

0 1 (4.3)

where and are the lower and upper threshold states of synaptic activity. For
most synapses in the network, we set 0, and . For the synapse between

neurons and ., we set . and 2 .

50
Steady State Formulation
For some design sections, we required solving for the steady state of the neuron

given steady inputs. As in [121], the steady-state response s

(4.4)

Synaptic Pathway Designs

When connecting components of our network, different pathways are tuned analyt-

ically based on their functional role. One common example is signal transmission,

where the desired steady-state value (see eq. 4.4) of the postsynaptic neuron is

the steady-state voltage of the presynaptic neuron multiplied by a transmission gain
. From [121], this can be solved as

(4.5)

where is for excitatory synapses, and for inhibitory synapses.
Another formulation which is used throughout this work comes from setting a

target state of the postsynaptic neuron, given a presynaptic steady-state and the

presence of other external or synaptic currents to the postsynaptic neuron. This is

derived from eq. 4.4 and written as

(4.6)

Finally, in some instances it is desirable for a presynaptic neuron to modulate
the sensitivity of a postsynaptic neuron to external and synaptic inputs. For this we
follow the derivation in [121], and use the modulatory reversal potential and

set the synaptic conductance as
1 4.7)

where the desired behavior is such that is divided by when . This

form of synapse is used within the On pathway between and On.

— Input Fa
41 f
209 ... Fast f
—= Slow i
L5+ — out [

1,0

Response

0,3

Figure 4.2: A: Circuit diagram of a band-pass subnetwork. Two neurons are tuned
as low-pass filters with different cutoff frequencies, and are subtracted to produce
a band-pass response. B: Response of each neuron within the subnetwork when
subjected to a time-varying input.

4.3.2 Neural Filters

Most neurons within the Drosophila motion vision pathway behave temporally
as either low or band-pass filters [13], and here we describe our methodology in
designing our network to behave accordingly. The process to tune our neurons as
low-pass filters is straightforward, as the leaky integrator is itself a low-pass filter
with a cutoff frequency (where the gain is -3dB) defined as f. = ﬁ

Common methods for implementing a neuron with band-pass temporal behavior
typically involve adding a second dynamic variable to the neuron model [66], such
as a voltage-gated ion channel [122] or adaptive spiking threshold [123, 126].
Inspired by the differentiation network in [121], we implement band-pass filters
in our network using a subnetwork of four non-spiking leaky integrators instead
of adding a new, more complex neural model. While this adds more neurons to
the network, we do this to reduce the computational complexity of our system in

anticipation of running it on embedded hardware. For a visual representation, please

52

see Fig. 4.2.
This network is designed as follows. Inputs to the subnetwork enter as a synaptic
input for neuron I, which then inhibits neurons Fast and Slow using inhibitory
transmission synapses (eq. 4.5) with reversal potential and a gain 1, to

arrive at a maximum synaptic conductance of

— (4.8)

Neurons [, Slow, and output neuron Qut all have the same time constant, which
approximately acts as the upper bound of the filter's passband. Neuron Fast has
a larger time constant and lower cutoff frequency than the other neurons, and the
corresponding cutoff frequency results in setting the lower bound of the passband.
Neuron Fast inhibits neuron Out with a gain-controlled inhibitory synapse (eq. 4.5),

and neuron Slow excites Out with a synapse designed to mirror , where

(4.9)

This results in the state of neuron Out being the difference between the original signal
in I being processed via two different low-pass filters, resulting in a band-pass effect.
In practice, the value of the transmission gain from Fast to Out is found using
the Brent method for scalar minimization [18] in SciPy [129] such that the change
in magnitude during a step input is -1. All neurons in this subnetwork additionally
have a constant bias input of , since the bandpass filters in our network need to
hyperpolarize during rising luminance levels, but omitting these bias terms and
swapping the inhibitory and excitatory synapses would result in a more traditional
band-pass filter [121].

4.4 Network Design

For a circuit diagram of the network described in this section, as well as the com-

parative structure present in the Drosophila optic lobe, please refer to Fig. 4.1.

33

4.4.1 Input Processing

When presented with a visual stimulus, each input node (denoted In in Fig. 4.1B)
acts as a temporal low-pass filter, performing an analogous operation to a Drosophila
photoreceptor cell [26]. As this initial stage sets an upper bound on the frequency
response for the rest of the circuit, we set the time constant for this filter

such that no frequencies in our desired input range are filtered out and our network
dynamics remain stable. In this work, we set this as 10 based on our

simulation timestep

4.4.2 Initial Filter Stage

Similar to the cells present in the Drosophila lamina, we apply temporal filters to
the output of the initial input filtering stage. While the primary lamina cells in
the Drosophila motion pathway have slight differences in temporal behavior [40],
for analytic simplicity both and have the same properties in this work. For
reduced analytic complexity, all spatial receptive fields are condensed into single
columns.

We apply a band-pass filter which hyperpolarizes to stimuli of increasing bright-
ness within each pathway to the output of the input stage, analogous to the behavior
of the L1 and L2 cells [13], and we refer to them as and . These are con-
structed in the manner described in Section 4.3.2, and the time constant of the fast
side is set to . For the slow side, we choose so that for the fastest input
stimulus, the response has time to settle to baseline over the course of a single input
period. Approximating the settling period for a leaky integrator as 5 , we write the

time constraint as

1
- 4.10
3 (4.10)

where is the spatial wavelength and is the fastest spatial velocity of the input

stimulus.

54

Figure 4.3: A: Ddagram of a three-arm Haag-Borst HR/BL EMD circuit [54]. B:
Schematic of the three-arm motion detectors in this work, for both On and Off
stimuli. PD denotes the preferred direction, NI denotes the not preferred (null)
direction. Nodes without color do not contribute to behavior in this direction of
motion.

Similar to the L3 neuron in Drosophila [13], we include an additional low-
pass filter (denoted as L in Fig. 4.1B) which is shared across both the On and Off
pathways. In order to preserve the range of temporal information available for later
processing, we set the time constant of L to 7y, causing this node to act as a

delayed and inverted copy of the input stimulus.

4.4.3 Motion Detectors

For the design of the elementary motion detectors (EMD) in the On and Off pathways,
we take inspiration from the Haag-Borst HR/BL three-arm EMD [54](Fig. 4.3A).
This structure has been shown to be capable of reproducing recordings from T4 [54]
and T'5 [55] cells, and connectomic analysis has found candidate cells for each input
arm of the model [115]. In this model, the output neuron of each EMD (On for the
On pathway, Off for the off pathway) receives input from three separate elements: a

35
direct input from the cell in the same column, an enhancement input which enhances
stimuli coming from the preferred direction, and a suppressor input which suppresses
stimuli coming from the null direction. In this work we choose to model the EMD
as a three-arm circuit instead of older models which used two arms to achieve
either preferred-direction enhancement [57] or null-direction suppression [8], as
the three-arm model generates finer directional selectivity and is less susceptible to
noise [54].

In Drosophila the inputs in each arm can come from multiple neurons, which
combine to create varied spatio-temporal properties [4, 13, 40]. For simplified
analysis and reduced computational complexity, each arm is represented as a single
neuron in this work. Additionally, while the cells in the medulla act as band-pass
and low-pass filters with a variety of time constants, for simplicity we represent
all of them as low-pass filters and reshape the activity from the higher-level filters
(., ,and). In this work, neurons which perform enhancement are named |,
direct stimulation . and suppression . Unless otherwise specified, all neurons
can be assumed to have a time constant of . This is only changed as needed for
behavioral reasons, which will be explained below.

On Pathway

Recent studies have focused on the behavior of T4 cells and found potential mech-
anisms which generate motion-detection and direction selectivity using the cells
which contribute to the On pathway [115], particularly in the work of Groschner
et al. [532]. In their work, they modeled the T4 pathway and found that multiplica-
tive behavior can occur during a period of low inhibition that creates a “window
of opportunity” [37]. We adapt a similar mechanism here based on our previous
work [121], with a circuit diagram in Fig. 4.3B and behavior shown in Fig. 4.4.
Neuron mimics the behavior of Mil and Tm3, the response of CT1, and

is analogous to Mi9.

36
Direct: Neuron receivesinputfrom viaan inhibitory transmission synapse
(eg. 4.5), and the gain is tuned via Brent’s method [18] such that the peak during a
step input is 1. It excites On with an excitatory transmission synapse, with the gain

tuned again via Brent’s method for an isolated peak response of 1.

Suppression: Unlike the other arms of the On EMD, receives input from

instead of the filtering stage. This is similar to CT1 receiving indirect input from
Mil [86, 115]. This creates a slight delay in the response, which improves the ability
of to suppress stimuli in the null direction. The connection between and On
is tuned as an inhibitory target synapse (eq. 4.6) which aims to bring the state of On

to zero when is signaling with peak strength.

Enhancement: Inour model, is responsible for the majority of the stimulus-
dependent behavior of the On EMD. Starting with the temporal response, we set the
neural time constant so that the state of settles during the time it takes the signal
to travel from one column to the next at the slowest desired velocity , Assuming

that the neuron settles after a time period of 5 (eq. 4.10). This is found with

5 (4.11)

where is the spatial resolution of the model (5 in this work). stimulates On
using a modulatory synapse with a division factor of 10 (eq. 6.7), and is stimulated

by using an excitatory transmission synapse (eq. 4.5) with unity gain.

Off Pathway

While studies have found the presynaptic neurons which generate direction selec-
tivity within the Off motion detector circuit [86, 115], current studies which model
the Off pathway either omit the role of CT1 in suppression [74] or do not model

chemical reversal potentials [76]. As such, we make some base assumptions based

57
on the connectivity in order to produce direction selectivity. Neuron implements

the role of Tml, Tm2, and Tm4, is analogous to CT1, and mimics Tm9.

Direct: receives stimulation from via an excitatory transmission synapse
(eq. 4.5) with a gain tuned such that the postsynaptic peak is 1 for a decreasing
step response in brightness, and and of and2 respectively. It stimulates
Off with an excitatory target synapse of target (eq. 4.6), with the conductance
multiplied by , where is the percentage of direct stimulation. In this work,
0 5. We found that the peak of is a primary factor in the magnitude of Off,
s0 we select the time constant so that the peak magnitude starts decreasing at
our slowest input velocity . We first find the frequency of our slowest input as
——, and scale that to get 10 . A scaling factor of 10 is chosen
because the gain of leaky integrators begins to decrease approximately 1 decade
below the cutoff frequency on a logarithmic scale.

Suppression: is tuned in a similar manner to , receiving an excitatory
transmission (eq. 4.5) input from that is optimized using Brent’s method [18]
for a peak magnitude of 1. inhibits Off via an inhibitory target synapse with the

same properties as the synapse between and On.

Enhancement: is tuned with the exact input and neural properties of for
simplicity. It stimulates Off with an excitatory target synapse (eq. 4.6) with target
, and the conductance scaled by =~ where is the percentage of enhancement

stimulation and is constrained so 1.

38

Preferred Dlrectlon Mull Directlon
l_lr _______ : 1 - |
| : I
I - : :
0 : I capsssiaises I...Z : o : I __I____I
1000 1100 1200 1300 1400] 200 400 600
1+ 3 1l F====== e ~
. : S
ﬂ._l I.....:-.‘.f'.l'..‘.:-.'r..—.l.—l.-.:-"-,.-.ln.-.nn [P D II
1000 1100 1200 1300 1400] 200 400 600
0.5 0.5
0.0+ —Il\‘ l{- 0.0+ — M
=0.5— T -0.5 T T

I I I
1000 1100 1200 1300 1400 o 200 400 600

t (ms) t {ms)
=== In (Left} —— In (Center} ------ In (Rlght) === Eg Dy == 55 —— Ong

Figure 4.4: Simulation of elements within the On pathway during a stimulus moving
in the preferred (Left) or null (Right) directions. Dashed green traces correspond
to Enhancement () signals, solid blue to Direct () signals, dotted pink to
Suppression () signals, and solid indigo for the On EMD (On). Top: Traces of
visual stimuli to the Enhancement, Direct, and Suppression columns of the motion
detector; Middle: Traces of the Enhancement, Direct, and Suppression neurons
which are presynaptic to the EMD neuron; Bortom: Trace of the final motion
detector, which depolarizes for stimuli traveling from left to right (On).

4.5 Results

4.5.1 Simulation Setup

All simulations are done using SNS-Toolbox [94], a Python package for design-
ing and simulating synthetic nervous systems (https://github.com/wnourse()5/SNS-
Toolbox). A of 0.1 ms is used as the simulation step. In all simulations, the
network was tuned for sensitivity to images with a spatial wavelength of 30
and a velocity between 10 and 180 across the visual field. Code to sim-
ulate the network and generate all of the figures presented here is available at
https://github.com/wnourse05/Motion-Vision-SNS.

https://github.com/wnourse05/Motion-Vision-SNS
https://github.com/wnourse05/SNS

Preferred Directlon Null Dlrectlon
1 e : 1+ —_————————————
: , :
I . I
| 1
I I
u_i._____l___ | | | u _i | -|| |
500 600 700 800 a00 500 600 700 800 a00
1_ -"'--J_-__-_--r_‘-:-'_ ----- 1_-\~'4\
/’f"’ h“'"“v-..;___
u .-I. E— E— | e | D_I...........I._.__._' I --——I—'-.H-__..,..._._._._
500 600 700 800 900 500 600 700 800 900
1 1
=1 T T T T =1 T T T T
500 600 700 800 900 500 600 700 800 900
t (ms) t (ms)
=== |n (Left} —— In (Center) ------ In (RIght) ——= E Dg ==e- L Offg

Figure 4.5: Simulation of elements within the Off pathway during a stimulus moving
in the preferred (Left) or null (Right) directions. Dashed green traces correspond
to Enhancement () signals, solid blue to Direct () signals, dotted pink to
Suppression () signals, and solid olive for the Off EMD (Off). For further
description refer to Fig. 4.4.

4.5.2 Individual EMD Stimulation

To verify the basic behavior of the EMD circuits, we applied square wave gratings
with a spatial wavelength of 30 and a velocity of 30 to 3 adjacent columns. We
focus on the behavior of the B channel neurons, which are tuned for sensitivity in
motion traveling from left to right.

Shown in Fig. 4.4, we examine the behavior of the On pathway. When stimuli
of increasing brightness move across in the preferred direction, receives the
stimulus change first and starts to hyperpolarize. In the time it takes for the stimulus
to continue to the central column, has decreased. This allows the direct stimulus
from toexcite On with reduced inhibition. As the stimulus continues to the right
column, exhibits a bout of further inhibition. The timing relationship between

and creates the speed-dependent behavior; as stimuli move more rapidly, the

60
offset in time between these columns decreases and more inhibition is applied to
On, causing a decrease in the activity caused by . When stimuli move in the
opposite direction, and are both activated while is strongly depolarized,
resulting in a significant reduction of peak magnitude in On.

Repeating the experiment for stimuli with decreasing brightness, as the off-edge
stimulus moves in the preferred direction in the Off pathway begins to depolarize.
This is accentuated by a later pulse from , followed by strong inhibition from
As stimuli move in the opposite direction, is either at rest or hyperpolarizing
towards rest, depending on the timing of prior stimuli. The off-edge first arrives at

which strongly inhibits Off, followed by a pulse in excitation from and then
a separate increase in excitation from . While the specifics of the mechanism are
different between the On and Off pathways, the net behavioral result is the same:
stimuli traveling in the preferred direction are enhanced to some degree, while

stimuli in the opposite direction do not have as strong a response.

4.5.3 Velocity Response

Square-wave stimuli with 30 are applied to a network which consisted of 49
columns, arranged in a 7x7 grid. The velocity of stimuli is varied from 10 to
360 , and data is recorded from the central EMD. As shown in Fig. 4.6, the peak
magnitude of both the On and Off pathways decreases as the velocity approaches
the maximum tuning range (180). The On pathway has a high dynamic range,
varying smoothly from 1 to near zero, and with peaks in the preferred direction
always greater than the null direction. Changes in the magnitude of the Off pathway
are more gradual as it approaches the desired maximum velocity, with a slow increase
slightly before this point. The ratio between the preferred and null directions
is always greater than 1, but to a lesser degree in the Off than the On pathway.
Behavior in the Drosophila T4 and T35 cells are more similar to the On results

shown in Fig. 4.6 than the Off results, with a peak response that decreases as the

61

[
[=]
]

Peak Magnitude
(=]
Ln
|

o ——————

Velocity (°/s)

Figure 4.6: Output behavior of the On (solid indigo) and Off (dashed olive) motion
detectors when subjected to a square wave, translating from 10 to 360 per second.
Target maximum velocity (180) shown with a vertical dashed line. Top: Peak
magnitude of the motion detector in the preferred direction; Botrom: Ratio between
the motion detector in the preferred direction and the null direction.

input velocity increases [82]. However, in Drosophila this decrease occurs as input

velocity is both increased and decreased from a peak velocity.

4.5.4 Directional Selectivity

Stimuli of a consistent wavelength and velocity are applied to the same network
described in Section 4.5.3 while the direction of travel is varied from 0 360 in
45 increments, with results shown in Fig. 4.7. The EMD for each cardinal direction
exhibits enhanced sensitivity to stimuli in the preferred direction, and reduced
sensitivity to the other directions. The On pathway is able to generate a finer level
of directional sensitivity than the Off pathway, due to its multiplicative window
of reduced inhibition. Further work is necessary to find a similar multiplication

mechanism for the Off pathway.

As the networks for each cardinal direction are mirrored versions of each other,

62

D!"IA DHB fo,:], foﬂ
an® an® an® an®
135° 45° 135° 45° 135° 45° 135° 45°
0.4 0.4 — —
0.2 0.2 - 0.5 05
180:=—"32% o° 180° <*%—0° 1802 | 0° 180° | o
-..____.__ { LS| —
2257 315° 2257 315° 2257 315° 2257 315°
270° 270° 270° 270°
One Ong Off¢ Offp
an® an® an® an®
135° 45° 135° 45° 135° N 45° 135° 45°
0.2 %4 0.2%4 ;/ \3_5 o
] 0]] 0.0] e |] e \]
180 0 180 0 180* | 0 180 | 1 0
b4 ___l '-_\ "__.'
2257 315° 2257 315° 2257 315° 2257 \fr 315°
270° 270° 270° 270°

Figure 4.7: Peak response of each motion detector in the On (Lefr) and Off (Right)
pathways to a square wave grating with 30 and 30 . Preferred direction
of each sub-type: A: right to left; B: left to right C: bottom to top; D: top to bottom.

the resulting responses are identical except for their orientation. This is different
than the tuning found in Drosophila, where the sensitivity of each cardinal direction
is slightly different [82]. The general shape of our On and Off responses most
closely matches the behavior of the T4b and T5b neurons in the animal, consisting
of a sharp triangular point in the preferred direction and a slight bump in the null
direction, however T5b is much more similar to T4b than our Off neurons are to the

n neurons.

4.6 Discussion and Future Work

In this work, we implement an SNS network which is a reduced model of the
Drosophila motion vision system. The network performs optic flow measurement
at each point in the visual field, and can be tuned for different ranges of input
stimuli in a parametric manner. While some parameters are found via numerical

optimization, most are chosen by hand via analytic rules. With further optimization,

63
we expect that the performance of the network could be tuned to detect particular
stimuli.

Compared to the circuit found in Drosophila, the model presented here is far
reduced in complexity. In particular, the animal uses more neurons as inputs to the
EMD cells, which allows for better temporal response and additional adaptation to
factors such as changing input contrast [40]. Adding more neurons into the motion
detection area in our network may be promising for future development. Another
simplification in our model is that the initial filter stage only receives visual input
within its own column. This is not the case for the lamina neurons in Drosophila,
which perform spatial filtering overa 15 20 radius for each column [13]. Future
work will extend our analysis to generate directional selectivity in the presence of
wider spatial receptive fields.

While our implementation of the On pathway is derived from detailed biological
models [52], less recordings and detail were available for the Off pathway. Our
model attempts to model direction selectivity using current information about the
structure of this system, but showcases some current gaps in understanding. In
particular, the neuron in our model which is intended to act analogously to Tm9
()does not provide a significant role in motion detection based on its connectivity.
This differs strongly from biological experiments, where the effect of Tm9 in Off
motion detection is greater than many of the other neurons combined [112]. As
such Tm9 may have additional functionality and roles, as discussed in [115].

Much work has been done to study the effect of the visual system on walking
control in Drosophila [31, 48]. We aim to continue development of the network
described in this work, so that it may be used to assist in the control of legged motion

onboard our Drosophila-inspired robot, Drosophibot [50].

Chapter 5

SNSTORCH: SIMULATION OF LARGE-SCALE SYNTHETIC
NERVOUS SYSTEMS

Some material in this chapter was presented in person as the tutorial "An Introduction
to Design and Simulation using SNS-Toolbox and SNSTorch" at the 2024 conference
on Neuro Inspired Computational Elements (NICE) on April 26, 2024.

5.1 Abstract

SNS-Toolbox is an open-source framework for designing and simulating networks
of bio-plausible neurons and synapses at moderate network scale with arbitrary con-
nectivity. Due to representing arbitrary networks as a single recurrent population
however, SNS-Toolbox experiences timing and memory issues for networks with
more than thousands of neurons. In this work we introduce SNSTorch, a com-
panion package to SNS-Toolbox which supports larger networks and layer-based
design. We benchmark the speed perfomance of SNSTorch against SNS-Toolbox
on a population-based task, and then demonstrate the optimization of SNS networks

on both regression and classification tasks.

5.2 Introduction

In the world of neural simulation software, there is a wide variety of systems
which are capable of simulating different aspects of neural computation [41, 42, 91,
141]. Some focus on smaller networks with detailed models of biophysical mech-
anisms [59], while others focus on larger networks with simple neural dynamics
but complex population interactions [15, 58]. In Chapter 3 we presented SNS-
Toolbox, an open-source neural simulator in Python which can simulate synthetic

nervous system (SNS) networks of hundreds to thousands of neurons in real-time

63
or faster [92]. While this scale of simulation is appropriate for modeling networks
in invertebrate locomotion [50] or population-level modeling of vertebrate loco-
motion [35, 64], it is difficult to simulate networks of higher scale such as those
used for visual processing [93, 110]. Additionally, SNS-Toolbox is not designed for
parameter optimization and is not optimized for layer-based structures.

In this work we present SNSTorch, a companion package to SNS-Toolbox for
larger networks. SNSTorch is built in PyTorch [95] to simulate the same non-
spiking neural dynamics as SNS-Toolbox, and does so in a layer-based manner
which is conducive to numerical optimization via automatic differentiation. As of
the writing of this manuscript, no other tool exists for simulating and optimizing

large networks with conductance-based synapses.

5.3 Methods

While there are a wide variety of neuronal and synaptic dynamics implemented
in SNS-Toolbox, we have initially focused on implementing non-spiking neurons
and their synapses in SNSTorch due to their reduced computational complexity and
faster simulation speed. Additionally, non-spiking neurons are more amenable to
training via gradient backpropagation than spiking neurons and synapses due to not
requiring a surrogate gradient. All of the implementations described in this section
are implemented using the PyTorch framework due to its popularity and ease of use,
and all of SNSTorch is compatible with the built-in autodifferentiation engine in
PyTorch for optimization.

5.3.1 Neural Dynamics

As in SNS-Toolbox, we base our implementation of non-spiking neurons after the

following dynamics,

_ (5.1

66
where is the membrane capacitance, the membrane conductance, and is
the resting potential of the neuron. is an injected current of constant magnitude,

is any external applied current, and is the current induced via synapses
from any presynaptic neurons.
For simulation, we discretize the dynamics in 5.1 via the forward-Euler approx-

imation as
1 1 . (5.2)

where is the state, is the time constant, is the leak rate, is the resting
state, is the constant bias, and is any input coming from outside the neuron.
In comparison to SNS-Toolbox, this parameterization was done for training to be

semi-independent of the specific simulation timestep.

5.3.2 Synaptic Connections

Three types of syanptic connections are currently supported in SNSTorch, all of
which are based on the dynamics of a non-spiking chemical synapse:

(5.3)

where is the synaptic reversal potential and is the instantaneous
synaptic conductance as a function of the presynaptic voltage . In theory any
PyTorch activation function can be used to define the synaptic conductance, although

the default function and the one exclusively used in this work is the piecewise sigmoid
0 —_— (5.4)

is the maximum synaptic conductance, and voltages and define the

range of presynaptic voltages where the synaptic conductance depends linearly on
the presynaptic neuron’s voltage.

These synapses are supported in three different permutations: dense, element-

wise, and convolutional. Each synapse type acts as a function which takes in the

67

A

B — SMSela {ORU)
Inpuk Image Fetina Population Lamina Populakion —— S SaTilivan HIPLY
10% — SHETarch (TR
- — SHETrch (68U
(=19
; 10*
a
g 1=
E
10 %_ﬁ"" ——
i 2 2* 2 2¢ 27

Network Size™™

Figure 5.1: Comparison in performance between SNS-Toolbox and SNSTorch. (A)
The network to be evaluated is the same structure as section, with two populations
being connected by a convolutional synapse. (B) This network was compiled and
then run in SNS-Toolbox and SNSTorch at increasing population size.

presynaptic and postsynaptic states and applies the dynamics in eq. 5.3, with each
applying the conductance and reversal potentials based on differing connectivities.
The dense connection implements a synapse from every presynaptic neuron to every
postsynaptic neuron, the elementwise connection only connects neurons with the
same index, and the convolutional connection reuses a local pattern that is tiled

across the population.

5.4 Results

To test SNSTorch, we first compare the performance of this system with SNS-
Toolbox. We then evaluate the functionality of SNSTorch on two separate optimiza-

tion tasks.

54.1 Comparison with SNS-Toolbox

Although SNSTorch simulates some of the same dynamics as SNS-Toolbox, in-
ternally they are structured differently. SNS-Toolbox makes no assumptions about
connectivity and represents the entire network as a single recurrent population,
which lends it well to densely recurrent networks with nested feedback loops such

as those in locomotion [68]. SNSTorch on the other hand is designed in the more

A B _

L

i

X 23

Cm - asd w L = -
::. — original |
mim ¢ Leamed |

= aial
- Euler Step = = =

Figure 5.2: Using SNSTorch for a parameter identification task. (A) We are trying
to match the behavior of a simple network of neurons, where one neuron receives
a random stimulus and excites the other neuron via an excitatory chemical synapse.
Using a ground truth model, the network learned the neural and synaptic properties
to replicate this behavior. We chose to focus on minimizing the mean-squared error
between the final state of the original and trained network. Shown in (B) is the
training loss over 1000 random stimuli, and in (C) we plot the trajectory of the
postsynaptic neuron in the original and trained networks.

conventional fashion in deep learning, where each population is represented and
evaluated individually as its own layer. While this means arbitrary connectivity is
more challenging, the payoff is in higher speed and reduced memory consumption
for large networks. To demonstrate this, we simulated the same network structure
using SNS-Toolbox and SNSTorch, running it on the CPU and GPU and varying
across large differences in network size. Results can be seen in Fig. 5.1. For small
networks, SNS-Toolbox runs faster than SNSTorch. As the network size increases,
SNSTorch quickly becomes the fastest solution (or only solution, as memory con-

sumption increases).

5.4.2 Parameter Tuning and Regression

As a toy example, we use SNSTorch for parameter tuning in a simple network
(shown in Fig. 5.2A). Two neurons are connected via a chemical synapse, and the
presynaptic neuron is stimulated with a constant input. In this task, we have two
versions of this network: one which acts as the target, and the other which must be

trained to match the target. This system has 12 parameters: , , , ,and 0 for

69
both neurons, and the synaptic conductance and reversal potential. For each batch
of random inputs, we evaluate the loss as the mean-squared error between the final

state of the destination neuron in both networks:

1

= ? (5.5
This loss is then passed through the network using backpropagation through time [136].
We used the Adam optimizer [72] for training, with a learning rate of 0 001.

Training converged relatively quickly to a near solution, with the training perfor-

mance shown in Fig. 5.2.

54.3 Sequential Classification

In order to showcase the optimization capabilities of SNSTorch, we expanded our
optimization problem to one with orders of magnitude more parameters. We trained
and evaluated a recurrent SNS on the row-wise sequential MNIST [36] hand-written
digit dataset, where the image is split into 28 rows and fed into the model sequentially.
The structure of the SNS (shown in Fig. 5.3A) is a single recurrent layer with 128
non-spiking neurons, which receives a synaptic current vector and input digit row
every step. For training we used the Adam optimizer with a learning rate of 0.001,
and evaluated the loss as the cross entropy between the maximally active output and
the target class. We compared this performance with a traditional RNN, which had
a hidden size of 177 in order to match the number of parameters in the SNS, and the
results are shown in Fig. 5.3. The SNS is able to learn up to 95 percent accuracy,

although it does converge more slowly than the traditional RNN.

5.5 Discussion and Future Work

In Chapter 3, we presented SNS-Toolbox as a tool for designing and simulating
networks of synthetic nervous systems of neurons and synapses with biologically

plausible dynamics. While SNS-Toolbox is effective in its role, it has difficulty

— RNN i
—— 5N53

MSE Loss
-]

Accuracy (%)

d

SNS Test Accuracy

- k] 4D = a w - m\ 4 50

Epoch Epoch

(2]

“ RMNM Tralnlng Accuracy
- RNN Test Accuracy
SNS Tralnlng Accuracy
Rl

Figure 5.3: Training an SNS for sequence classification. (A) We train an SNS
network to classify the row-wise sequential MNIST dataset [78], where each hand-
written digit is divided into 28 1x28 images. (B) The SNS network consists of
a single recurrent layer of non-spiking neurons, with the recurrence implemented
using chemical synapses. Training loss (C) and accuracy (D) of the SNS network
and an RNN with a similar number of parameters. Line denotes the mean across
five trials, the shaded area denotes the fifth and ninety-fifth percentiles.

when simulating large networks of neurons which could be structured based on
layers of populations. It is also primarily a tool for design, so it is not optimized for
optimizing parameters without recompiling the network. In this chapter, we present
SNSTorch as a companion software package to SNS-Toolbox. SNSTorch simulates
some of the same dynamics as SNS-Toolbox, while being able to simulate larger

networks and supporting optimization via automatic differentiation in PyTorch. We

71
demonstrated its efficiency compared to SNS-Toolbox on a two-layer convolutional
network, and then evaluated its ability to train on both regression and classification
tasks.

In its current state, SNSTorch only supports neurons and synapses with non-
spiking dynamics. In order to match some of the versatility of SNS-Toolbox, in
future work we will incorporate all of the neural and synaptic dynamics implemented
in SNS-Toolbox in SNSTorch. While some of these dynamics may be difficult or
ineffective to train with gradient backpropagation, there should still be a performance
improvement in SNSTorch over SNS-Toolbox for simulating these dynamics at scale
in the forward direction. Once all of these dynamics are supported, we will also
provide a conversion tool which will map each population in SNS-Toolbox into a
corresponding layer in SNSTorch.

One of the major differences between SNSTorch and SNS-Toolbox is its sup-
port for numerical optimization, particularly gradient backpropagation, which is
not natively integrated into the workflow for SNS-Toolbox. Even though gradient
backpropagation is a powerful technique for optimizing neural networks, it is in-
herently a mathematical solution which does not occur in biological brains. Due
to the flexibility of being able to design new connection layers, in future work we
will incorporate synapses with local and modulated learning rules such as timing-
dependent plasticity. This will enable designers to simulate SNS networks which

train and adapt online.

12
Chapter 6

FLYWHEEL: A MOBILE ROBOT FOR TESTING MODELS OF
FLY MOTION CONTROL

Material in this chapter is under review for the 13th Conference on Biomimetic and

Biohybrid Systems as

* Nourse, W. R. & Quinn, R. D. (2024). FlyWheel: A Robotic Platform for
Modeling Fly Visual Behavior.

Edits have been made to place this material into context with the rest of this disser-

tation.

6.1 Abstract

An ongoing problem in robotics is the calculation of body motion given motion in
the visual field, also known as ego-motion estimation. This is a problem which has
been solved in the visual system of most animals, including the fruit fly Drosophila
melanogaster. Here we present FlyWheel, an open-source robotic platform for
studying models of the visual motion-processing system in insects. We showcase a
dataset of rotational motion data in real-world conditions using the robot, and use
a simplified model of the motion pathway in Drosophila as a baseline for further

comparison and development.

6.2 Introduction

An important problem which must be solved for navigation in both robotic systems
and animals is visual ego-motion estimation, or the ability to use motion in the visual
field to calculate how the body is moving through a fixed world [71]. Calculating ego-

motion based on sequences of images has been a longstanding challenge in the field

13

Figure 6.1: FlyWheel, a mobile robot for testing models of motion control in flies.

of computer vision, with the majority of successful solutions being built off of either
measurements of optic flow or point correspondence. Initial methods estimated
rotation then translation based on changing flows of point triplets [98], followed by
methods which took the first derivative of image brightness in regions of interest [62].
Further methods were developed which used motion parallax between pairs of
images, either to compute changes in depth [103] or image deformation [128].
In recent years convolutional neural networks have also been used, either as an
end-to-end solution [30] or starting from an initial optical flow field [143].

An organism often studied for its motion-vision processing is the fruit fly
Drosophila melanogaster [112, 115, 125], due to having a nervous system with
significantly fewer neurons than vertebrates [13, 79] as well as recent efforts to
create a full brain connectome [108, 137]. Drosophila and other insects generate
an estimate of directional velocity throughout the visual field using the differences

in timing between adjacent neurons in response to changing amounts of brightness,

74
with sections being sensitive to increases in brightness and others to decreasing
brightness [13]. Initial models of this mechanism for directional selectivity con-
sisted of two-pixel (or arm) detectors which either enhanced motion in the preferred
direction [57] or suppressed motion in the opposite direction [8]. Many bio-inspired
algorithms have been developed which are based off of these two-pixel motion de-
tectors, and have been successfully used for applications including quadrotor flight
control [142] and target tracking [7]. It is also possible to estimate the velocity of
natural images by combining multiple of these two-pixel detectors which are tuned
to different spatial frequencies [21].

As more detailed information has become available about connectivity within the
Drosophila optic lobe, it has become clear that the motion detectors are implemented
as three-arm detectors, not two, allowing the combination of preferred-direction
enhancement and null-direction suppression within a single circuit [54, 115]. In the
work of Nourse et al. [93], a simplified version of this three-arm detector was used
to calculate the velocity of moving square-wave gratings using a network of neurons
with bio-inspired dynamics. Currently however, no three-arm detector system has
been used for any robotics application.

In this work, we present the open-source robot FlyWheel, a platform for testing
models of insect motion vision. We showcase a dataset of video clips collected
during rotation on the robot, and provide results of a neural three-arm motion

detector as a baseline for further improvement.

6.3 Robot Design

FlyWheel is built from three subsystems: central computation, a wheeled base, and
visual input. Each of these components was designed to be modular, and can be
removed and replaced on the robot. The robot body is fabricated using 3d-printed
PLA on a consumer-grade printer. The hardware and software for FlyWheel is

available at https://github.com/wnourse05/FlyWheel.

https://github.com/wnourse05/FlyWheel

——

Jetson Orin Nano

Neural Controller

ROS L
[Communication Interface)

2x Dynamixel | | OpenRB-150

Figure 6.2: System diagram of hardware and software components for FlyWheel.
There are three subsystems: visual input, central computation, and a wheeled base.
Each of these components is modular, and can be removed and replaced on the
robot. The visual input consists of two 160 degree FOV cameras, arranged to have a
similar stereo FOV as Drosophila melanogaster. The wheeled base provides power
to the system, and has two Dynamixel (Robotis Co. Ltd., Seoul, South Korea)
smart motors to provide propulsion. The central computing platform runs a ROS
framework on an NVIDIA Jetson Orin Nano (NVIDIA, Santa Clara, CA), with a
small wireless router as an external access point.

6.3.1 Central Computation

The Central Computation module onboard Fly Wheel is responsible for communicat-
ing with all of the sensors and actuators on the robot, as well as running any desired
control algorithms. We chose to use an NVIDIA Jetson Orin Nano (NVIDIA,
Santa Clara, CA) as our embedded computer due to its relative affordability and
support for GPU acceleration, although the mechanical design would support the
less expensive and less powerful Jetson Nano as well. For communicating with the
cameras, motors, and any external computers, the Jetson Orin Nano uses a custom
library built in the Robot Operating System (ROS) [99]. The combined camera feed
is published as a rostopic, along with the status of a wireless game controller and
commanded velocities for the motor system. Users can access the robot remotely

via a miniature wireless router onboard.

16

6.3.2 Wheeled Base

The wheeled base has two primary roles: to move the robot, and to provide power
to the embedded computer. Power comes from a lithium-ion battery bank, which
provides 5 volts DC for the wireless router, 19.5 volts DC for the Jetson Orin Nano,
and a 21-29 volts DC output which is regulated down to 12 volts DC for the motors.
The motors are a pair of Dynamixel XL430 (Robotis Co. Ltd., Seoul, South Korea)
smart motors, allowing precise control of the wheel rotational velocities. The
motors receive commands from the Jetson Orin Nano using a Robotis OpenRB-150
microcontroller board. This board also sends rotational velocity information to the
Jetson Orin Nano based on readings from a Bosch BNOO0535 inertial measurement
unit (Robert Bosch GmbH, Gerlingen, Germany). The wheels are positioned in
a unicycle-model configuration on either side of the robot, in order to reduce the

distance between the axis of rotation and the cameras.

6.3.3 Visual Input

Since FlyWheel is designed for testing models of insect vision, it is important that
the robot has a visual system which replicates that of the model insect as much
as possible. Each of Drosophila melanogaster’s eyes has a field-of-view (FOV)
of approximately 144 degrees [133], and are combined to produce an overall FOV
of 270 degrees with a stereo overlap of 17 degrees [117, 119]. To replicate this,
FlyWheel uses two 160 degree FOV IMX219 cameras from Yahboom (Yahboom,
Shenzhen, China). These cameras are arranged to produce a net FOV of 286 degrees
with a stereo overlap of 34 degrees as shown in Fig. 6.3.

Although flies are able to improve the resolution of their vision through vibrating
their photoreceptors [44], they still have a fairly small visual resolution compared to
modern camera sensors. Each eye consists of approximately 800 facets or omma-

tidia [75] arranged in a hexagonal pattern [20], each with a receptive angle of five

77

Figure 6.3: FlyWheel field of view (FOV). Each eye has a 160 degree FOV, and is
arranged to produce a net FOV of 286 degrees with a stereo overlap of 34 degrees.

degrees [13]. In total, each eye can be approximated as having a visual resolution
of 25x32 pixels. Additionally, most Drosophila melanogaster photoreceptors are
sensitive to green wavelengths of light [25, 116], although others are sensitive to
blue light [104, 114]. To replicate this on FlyWheel, we first strip the red and blue
channels from the images captured by the cameras. We then concatenate the stereo
pair of images side by side into a single image, and then downsample the image
using nearest-neighbor interpolation. While not as accurate as area-based interpo-
lation, the processing time of nearest-neighbor interpolation is significantly faster.
For a comparison of latency between both interpolation methods across different
final resolutions, please refer to Fig. 6.5A. The final resolution of the stereo image is
24x64 pixels, the dimensions which are closest to that of Drosophila melanogaster
while still having satisfactory performance. The entire image processing pipeline
runs at a rate of 30 frames per second (FPS), with a processing latency of 6 ms. For

a visual example of the final images, please refer to Fig. 6.4.

Figure 6.4: Example stereo video frames after processing. Stereo pairs are con-
catenated into a single image, converted to greyscale, then downsampled from the
native resolution of 1232x3280 to 24x64 pixels.

6.4 Motion Vision Dataset

A goal of FlyWheel is to test models of ego-motion estimation in Drosophila
melanogaster, specifically for lateral steering. We collected a dataset of rotational
motion data by placing the robot in multiple different interior locations with varied
lighting conditions and commanded it to spin in place while varying its rotational
speed between (0.1 and 0.5 radians per second. Using this paradigm, we created a
dataset of 2,646 one-second long clips which are labeled with their corresponding
rotational velocity, and where twenty percent of the clips are reserved for vali-
dation. Through data augmentation including spatial and temporal reversal, we
have expanded this set to 21,168 labeled clips. This dataset is freely available at
https://github.com/wnourse05/fly wheel-rotation-dataset.

6.5 Motion Processing Network

As a base system of performance, we implemented a motion vision processing
network in SNSTorch () based on the motion vision circuitry in the optic lobe of

the fruit fly Drosophila melanogaster. We used the same techniques as Nourse et

https://github.com/wnourse05/flywheel-rotation-dataset

A,

[= Mesri=t Haighbar T k
Eu--—r.::ul . If m"E
&, 1]
- s

¥ el

Eu- r I i E

] + I E

£ o] : oo

E Cems I E
1w ot -4 3 aT 28 2.3 =3p

Edduction Feckor Sbip Timé tmal

Figure 6.5: Timing performance of image formatting and processing execution
on target hardware. A: Latency in image processing as the target image reduces
in size. Two different interpolation methods are compared, with nearest-neighbor
interpolation shown in solid blue and area interpolation shown in dashed orange. A
vertical dashed line is present at the image resolution 24x64, the scaled dimensions
used in our dataset. B: Time per simulation step of our visual motion processing
network, in seconds, as the dimensionality of the input increases. Execution on the
Jetson Orin Nano CPU are shown in dotted green, and times for the Jetson Orin
Nano GPU are shown in solid red. Dark lines correspond to the average, the shaded
area corresponds to the 5th and 95th percentiles over 1000 steps. We use a vertical
dashed line to denote the dimensionality corresponding to an input image size of
24x64 pixels. C: Detailed timing of our network with an input dimensionality of
24x64 pixels. Shown is a histogram of time per simulation step in milliseconds,
over a testing run of 10,000 steps. A black dashed vertical line denotes the 95th
percentile of the distribution. Shown in dashed green, solid orange, and solid red
would be the time per step needed for 14, 13, or 12 simulation steps per video frame.
In this work we chose to use 13 steps per frame for our simulations.

al. [93], with some adjustments to account for the use of natural images instead of
simulated square gratings. The full network is shown in Fig. 6.6. In this section
we will begin with an overview of the neural modeling techniques employed, and
then will examine the design of each individual network section, emphasizing the
changes made in this work. The network and all remaining support code can be
found at https://github.com/wnourse()5/FlyWheelBaseline-LivingMachines2(024.

6.5.1 Neural Modeling

We choose to implement our motion-vision processing network as a Synthetic

Nervous System (SNS) of non-spiking leaky integrator neurons, where the neural

https://github.com/wnourse05/FlyWheelBaseline-LivingMachines2024

elele]

Lobula Plate

(—@ Inhibitory |
—— Excitatory
—) Modulatory

Figure 6.6: Visual motion processing network used in this work, inspired by the
anatomy of Drosophila melanogaster and adapted from [93]. Visual stimuli are
encoded into a neural representation in the retina. They are then spatiotemporally
filtered in the lamina, and temporally filtered again in the medulla. The lobula
combines the neural activity in the medulla into estimates of motion at each pixel,
and these estimates are summed across the entire visual field to generate a global
estimate of motion in the lobula plate.

state is updated as
(6.1)

where is the neural time constant, is any external input, and is a constant bias

term. is the synaptic input from any presynaptic neurons in the network,

(6.2)

with denoting a presynaptic neuron, and denoting the synaptic reversal

potential. Throughout the network, we design for neurons to communicate when

81

their state is between 0 and , with 1 in this work for numerical simplicity. All
excitatory synapses in our model have 5, 2 for inhibitory synapses,
and modulatory synapses have a reversal potential of 0. isa

monotonic function which describes the incoming synaptic conductance, defined as

0 1 (6.3)

where 0 and are the lower and upper threshold states of synaptic
activity.
Taking the model in equation 6.1, if we set to 0 we find the steady-state

response [121] as

(6.4)

Synaptic Pathway Designs

In the SNS network, we tune many of the synapses using one of three analytic rules.
The first is for signal transmission, where the target value of the postsynaptic neuron
from eq. 6.4 is the steady-state voltage of the presynaptic neuron multiplied by

a transmission gain . As seen in Szczecinski et al. [121], this can be solved as
(6.5)

where is either or depending on the role of the synapse.
An alternative formulation is to set a target state of the postsynaptic neuron,

depending on the presence of external inputs. This is shown in Nourse et al. [93] as

(6.6)

The other analytic synapse design in this work is a modulatory one, meant
to modulate the sensitivity of a postsynaptic neuron to external and synaptic in-
puts. This can be designed following Szczecinski et al. [121], setting the synaptic
conductance as

1 (6.7)

82
and using the modulatory reversal potential . In this formulation, the steady
state is divided by when

For simulating these dynamics, we discretized equations 6.1-6.3 into a forward-
euler formulation, and simulated them as individual layers in the Py Torch numerical

simulation software [95] in order to support execution on either a CPU or a GPU.

6.5.2 General Network Properties

QOur first step in adapting the network from Nourse et al. [93] to this task was to
determine how fast the network could run. To do this we evaluated the network
over multiple different input image dimensions, and recorded the execution time
for each simulation step over 1000 steps. We compared the step simulation time
with increasing image size to the image processing latency with decreasing image
size, and determined an input size of 24x64 pixels to be an appropriate balance of
processing speed and biorealism. From here, we simulated the network for that
input dimensionality for 10,000 steps in order to find a realistic time per step to base
our simulations upon. We found that 95 percent of all trials could be accounted for
with a timestep of 256 , equivalent to an update rate of 390 Hz or 13 steps

per input frame. These results can be seen in Fig. 6.5.

6.5.3 Retina

The Retina converts the image stream into a neural representation. To do this,
we create a layer of neurons the same size as the input image. For the temporal
properties, we set the time constant from equation 6.1 as small as possible while
maintaining numeric stability. We denote this as , and empirically found this

to be 15.4 ms.

. - . oS

107 -1 104
(ST

-5 By -5
s
5% 4 54 e
o

107 14 10+
EEL]

-1irT E3 3 L 1070 -1 -5 [3 50 Toe -1rT E3 [d Ed 10

Figure 6.7: Receptive fields of the second layer in our visual motion process-
ing network. The fields for Bg(A), L(B), and B#(C) are based on gaussian pa-
rameterizations of receptive fields between the retina and lamina in Drosophila
melanogaster [4]

0.5.4 Lamina

The Lamina takes the image representation from the retina and applies a bank of
spatiotemporal filters. The visual processing system is also first split into the On and
Off pathways, with each pathway having a bandpass network and sharing a lowpass

filter.

Spatial Filtering

The most significant change in this work over that of Nourse et al. is that we
implement the spatial filtering which was ommitted in that work. To perform spatial
filtering of the image representation in the retina, each of the lamina input neurons
integrates across a 5x5 grid of retinal neurons. Given that the retina encodes the
image brightness at each pixel as a neural state between zero and K, we want to
ensure that the inputs into the lamina layer remain stable. Specifically, we aim to
bound U/* € [0,R]. In the trivial case where all presynaptic neurons are at rest,

the steady-state postsynaptic voltage from eq. 6.4 is /" = B. When all presynaptic

84

neurons are at a maximum state of R, eq. 6.4 becomes

(6.8)

1
With the inputs to . . and , we are interested in the inhibitory case, where
0 and

0 6.9
N (6.9)

Rearranging, we find that the sum of the synaptic conductances multiplied by the

reversal potentials must be bounded by

(6.10)

To do this, we choose to parameterize the sum on the left hand side of eq. 6.10
as a probability density function (PDF) scaled by -R, as all PDFs by definition
have a combined sum of 1. Any PDF could be chosen, but in order to replicate
experimental results in Drosophila melanogaster we parameterize the sum as a

difference of gaussians

1 _ —_
— 2 —_— 2 (6.11)
2 2
where and are the standard deviations of the center and surround gaussians,
and 01 is ascaling coefficient [4]. As is constrained to a finite set of

choices, we divide equation 6.11 by the corresponding based on its sign to arrive

at

Temporal Filtering

Within the lamina, the On and Off pathway each have a bandpass filter network and
share a neuron acting as a lowpass filter. For the lowpass filter (), for simplicity
we set its membrane time constant to since it will be further filtered later on
in the Medulla. To implement a bandpass filter, we take the difference between two

non-spiking neurons of different time constants (and). We parameterize

85
both bandpass filters identically, with the fast pathway being set to and the slow

pathway being approximately five times slower.

6.5.5 Medulla

In the medulla, the spatiotemporal filtering performed in the lamina is temporally
filtered again. In both the On and Off pathways, there are three neurons responsible
for direct stimulation, suppression, and enhancement. The direct and enhancement
(and) neurons receive synaptic input from the bandpass and lowpass (and

) neurons, while the suppression () neuron receives input from the direct neuron.
Each of these neurons behaves as a lowpass filter, with the temporal properties tuned
following the procedure in Nourse et al. and assuming a spatial resolution of five

degrees and a rotational speed of (.1 to 0.5 radians per second.

6.5.6 Lobula

The role of the circuitry in the lobula is to convert the filtered representations in
each column of the medulla into an estimate of the velocity at each pixel. The
enhancement, direct, and suppression neurons from adjacent columns are combined
to behave as a three-arm elementary motion detector [54]. In the On pathway,

excites the motion detector whenever an increase in brightness passes over the
column. This excitation is dampened by a modulatory synapse from in the
precending column (eq. 6.7), and sharply inhibited by in the next column in the
preferred direction. The mechanism is nearly identical in the Off pathway, with the
only difference being that is excitatory instead of modulatory. As the velocity of
the stimuli increases, the magnitude of the response in the motion detector decreases

as the time between excitation and inhibition decreases.

36

Trafrlrg G
ALY . :
aain i ¥ 1 i " H 1
- S B L B B EEEE
w|l=lllif: 'iiu!ti':
- J— : i U B A | 1] 1 i
J—] H H H H
=haLs
i L] P [

™ J——

-
am
s
Wiy W""—‘H____,— e _———fﬂ__"‘ﬂ-...____/f
e . ——
- _ ~
?-ouu
T
e

s 1 [o [
=

Figure 6.8: Performance of the simple motion vision processing network on the
video clips in the test portion of the FlyWheel dataset. (A) Scatterplot of average
neuron state for the clockwise and counter-clockwise neurons for each image se-
quence. B. Curves denote the mean neural response of all trials at each velocity,
shaded area represents the 5th and 95th percentiles. All data is normalized to the
maximum of the 95th percentile across all velocities.

6.5.7 Lobula Plate

In the final layer, we extend the network presented in Chapter 4 to include an
approximation of the circuitry present in the Drosophila melanogaster lobula plate.
We add two horizontal sensitive neurons, and , one corresponding to
counter-clockwise rotation and the other to clockwise rotation. These neurons
receive synaptic input from every motion detector neuron in the lobula, with the
counter-clockwise sensitive detectors exciting and inhibiting . and the
inverse case for clockwise sensitive detectors [13]. These neurons have a time
constant of , and the synapses are tuned using eq. 6.5 such that the sum of all

the synaptic gains is one.

Figure 6.9: Activity within each population over the course of a horizontal grating
stimulus. Within each plot, the vertical axis represents the different neurons in the
population and the horizontal axis shows the progression of time. Brighter colors
denote higher neural state.

6.6 Resulis

Using the test portion of the dataset described in Section 6.4, we evaluated the
performance of the visual motion processing network described in Section 6.5. We
simulated the network with 5x5 pixel receptive fields, and for each sample clip we
let the network states stabilize to the first video frame and then recorded the neural
state of the readout neurons CCW and CW over the remaining frames. Across the
test set, the network correctly identified the direction of rotation 43% of the time,
with a preferential bias towards counter-clockwise rotation. Performance for each
velocity is shown in Fig. 6.8.

Using SNSTorch (Chapter 5), we attempted to improve the performance of our

38
motion processing network by training it using gradient backpropagation through
time (BPTT) [136]. These results are omitted, as the network with this architecture
did not converge to a classifier with a success rate of more than 50%. Additional
neurons were also added to better approximate the architecture seen in Fig. 6.6, but
did not improve performance. In order to validate the new elements in the network’s
lobula plate which were not implemented in Chapter 4, we trained the network on
a shifting square wave grating. Using autodifferentiation, the network successfully
trained the synaptic strengths between the lobula and the lobula plate as well as
between the medulla and the lobula. When the moving grating is applied to the
retina, the activity over time is filtered by the spatiotemporal filters in the lamina
and the temporal filters in the medulla. This results in the output layer converging
to one active neuron, representing translation in that direction. Example data from

one trial can be seen in Fig. 6.9.

6.7 Discussion

In this work, we present the robotic platform FlyWheel. FlyWheel is a wheeled
robot with a binocular camera system designed to mimic the FOV of the fruit fly
Drosophila melanogaster. We collected a dataset of video sequences across a range
of turning velocities, and then implemented a visual motion processing SNS network
to discriminate between counter-clockwise and clock-wise rotation over this dataset.
The hardware and software for FlyWheel are open-source along with the dataset,
and we believe that FlyWheel can be a valuable platform for benchmarking and
studing models of motion processing and navigation in Drosophila melanogaster
and other insects.

As implemented, our processing network had difficulty successfully identifying
the direction of global rotation in natural images, exhibiting a bias in sensitivity
towards counter-clockwise rotation. Additionally, this estimate does not allow the

discrimination of rotational speed. This is not surprising, given that the processing

39
network was adapted from one made for square-wave gratings with little additional
tuning. We provide this network as a base for comparison, but a goal of future work
will explore more complex architectures to better tune the network for natural image
sequences. Some elements which could be added to improve accuracy include
additional inputs to the motion detectors [21], recurrence and feedback within and
between layers [14], or synaptic feedback loops which are found within the Off
pathway in Drosophila [17]. This dense pattern of recurrent connectivity may be
the key to implementing such complex visual behavior in a comparatively small
network, with the recurrence suggested to improve contrast insensitivity [14].

Additionally, visual processing is not the only mechanism by which insects de-
termine their rotational velocity, with feedback coming from proprioception and
other sensory modalities influencing this calculation [111]. Due to the high vari-
ability of natural scenes with differing levels of depth and parallax, it is possible that
the visual system is only responsible for sending a corrective signal to the motor
nervous system when significant motion is presented relative to the animals current
rotational velocity. An area for future exploration is the integration of these sensory

systems in combination with other sources of feedback.

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Summary

In Chapter 3, I presented SNS-Toolbox as an open-source software package for
designing synthetic nervous systems (SNS) and simulating them on consumer-
grade hardware. SNS-Toolbox implements a wide variety of neural and synaptic
dynamics based on bio-plausible dynamics, including spiking neurons, chemical
synapses, and electrical synapses, and can simulate networks with hundreds to
thousands of neurons in real-time. This performance is competitive with all other
neural simulators which exhibit the same range of neural and synaptic dynamics
as SNS-Toolbox. In addition to simulation of neural and synaptic dynamics, I also
presented two examples of using SNS-Toolbox for the control of an external system:
one on controlling the navigation of a mobile robot in the Robot Operating System
(ROS), and the other on controlling a biomechanical system in the physics simulator
MulJoco.

In Chapter 4, I used SNS-Toolbox to design and simulate an SNS network for
processing visual motion. In this model, changes in visual stimuli are processed
into two pathways focusing on either increases or decreases in brightness. After
multiple layers of temporal filtering, these signals are combined across local pixel
groups to generate a local estimate of motion. This network was based on the
available connectomic information for the optic lobe in Drosophila melanogaster,
and serves as a minimal neural representation of the computation present in that
neuropil. A key feature of this network is the multiplicative effect of modulatory or
shunting inhibition, a computation which is not possible using purely weight-based

synapses. | evaluated this network on sequences of translating binary gratings, and

01
demonstrated local directional sensitivity across all cardinal directions.

Due to the computational considerations in scaling the network from Chapter 4
beyond a small group of pixels, in Chapter 5 I presented SNSTorch as a solution for
simulating large-scale SNS networks. SNSTorch is a layer-based simulator for neural
populations with chemical synaptic connections, which exhibits faster simulation
speed than SNS-Toolbox while exhibiting a lower memory overhead. Additionally,
it improves upon SNS-Toolbox through the more native support of optimization
tools. In support of this, I presented two examples of SNS networks being trained:
one example of regression-based parameter tuning in a tiny network, and the other
showcasing the training of a larger recurrent SNS for sequential classification.

Finally, in Chapter 6 I presented ongoing efforts to adapt the circuitry in the
Drosophila melanogaster optic lobe to estimate global motion based on sequences
of natural images. First I presented FlyWheel, a mobile robot which uses two wide-
angle cameras to approximate the stereo-visual properties of a fruit fly. I used this
robot to generate a dataset of natural image sequences which correspond to a range
of rotational velocities onboard the robot, and using data augmentation techniques
extended this dataset to contain over 21,000 labeled samples. Next I presented a first
attempt at using SNSTorch from Chapter 5 to simulate and optimize the network
developed in Chapter 4. While the network was able to estimate global rotation
direction on a simulated grating, further work is necessary to expand the network

such that it can process natural image sequences.

7.2 Impact and Future Work

The primary focus of this dissertation has been the development of SNS-Toolbox
and SNSTorch for designing and simulating SNS networks. SNS-Toolbox marks
the first time that it has been possible to simulate these heterogeneous networks at a
large enough scale to model interesting circuits found in animals for control while

being able to interact with a wide variety of systems in real-time or faster. This ease

92
of interaction with external systems, as well as the cross-platform compatibility
of the software, has facilitated the use of SNS-Toolbox across a wide variety of
research projects for both research and course projects (a selected list is presented
in Appendix B). The neural dynamics present in SNS-Toolbox expand what could
be modeled in the SNS framework as well, with the addition of electrical synapses
allowing the potential for implementing dendritic computing [23].

With the development of SNSTorch, I have developed the first software which
incorporates chemical synapses into large-scale neural networks compatible with
training via gradient backpropagation. This allows the capability for neural networks
to learn connections with modulatory or shunting inhibition, which as evidenced
in Chapter 4 is an important computation in biological nervous systems that is not
present in modern neural networks. One area of future expansion is the application
of this framework to other machine learning problems in order to investigate the
potential benefit of these reversal potentials, particularly reinforcement learning for
control problems.

As outlined in Chapter 6, further work is needed to train the insect-inspired
network for rotation estimation in natural image sequences. Part of the difficulty in
this task comes from the integration across multiple local motion detectors, as depth
and parallax changes mean that the same local motion at a group of pixels can imply
different rates of motion depending on the depth of that point in the visual scene.
Focusing the training on learning the weighting of these individual motion detectors
versus learning the entire network at once is a promising area of future expansion.

Additionally, while it has been shown that the insect nervous system clearly
computes changes in global motion based on changing velocity stimuli, it is still
unclear how much this response changes as the input stimulation pattern changes.
Future work can look at how the information from this network can be combined
with other sensory feedback such as leg proprioception within the insect nervous

system for context-dependent decision making, as implemented in neural structures

93
such as the insect central complex.

Finally, SNSTorch has been primarily used for simulating large networks of
non-spiking neurons and training them using gradient backpropagation. A short-
term area of future work is incorporating the full suite of neural and synaptic
dynamics from SNS-Toolbox into SNSTorch, although the capability of gradient
backpropagation to optimize such dynamics as bidirectional electrical synapses and
voltage-gated ion channels remains to be investigated. Once all of these dynamics
are implemented, a full converter could be constructed which takes a network de-
signed in SNS-Toolbox and migrates its populations to an SNSTorch representation.
Additionally, SNSTorch’s ease of expansion and compatibility with the rest of the
PyTorch ecosystem suggests it could support local online learning methods such as
short term synaptic plasticity. Integration and implementation of synaptic learning
rules is a currently active field of research in neural computation, and could be an

additional area of expansion for SNS-Toolbox and SNSTorch.

94
Appendix A

DATA AVAILABILITY

All of the work described in this document is freely open-source and available at

the following domains:
* SNS-Toolbox (Software): https://github.com/wnourse()5/SNS-Toolbox
* SNS-Toolbox (Documentation): https://sns-toolbox.readthedocs.io/en/latest/index.html

* Reduced model of visual processing: https://github.com/wnourse(5/Motion-
Vision-SNS

SNSTorch: https://github.com/wnourse03/SNSTorch

FlyWheel (Robot Information): https://github.com/wnourse(5/Fly Wheel

Rotational Dataset: https://github.com/wnourse05/flywheel-rotation-dataset

Initial Rotation Baseline: https://github.com/wnourse05/Fly WheelBaseline-
LivingMachines2024

SNSTorch Visual Motion Processing: https://github.com/wnourse(5/SNS-

for-Visual-Motion-Processing

https://github.com/wnourse05/SNS
https://github.com/wnourse05/FlyWheelBaseline
https://github.com/wnourse05/flywheel-rotation-dataset
https://github.com/wnourse05/FlyWheel
https://github.com/wnourse05/SNSTorch
https://github.com/wnourse05/Motion
https://sns-toolbox.readthedocs.io/en/latest/index.html
https://github.com/wnourse05/SNS-Toolbox

05
Appendix B

PROJECTS USING SNS-TOOLBOX

While I have used SNS-Toolbox in my own work, it has also been disseminated and
used by others for both research and coursework projects. A (non-exhaustive) list

of these projects is given below, with citations if the work has been published.

Control of peristaltic locomotion in a simulated compliant modular mesh

robot [101, 102]

Modeling and simulation of the capture response in a venus flytrap

Modeling and optimization of motor microcircuits for vertebrate muscle con-

trol using Markov-Chain Monte Carlo sampling [67]

Modeling of a sequence generation population for control of muscle coordi-

nation in quadruped locomotion

Control of locomotion in a set of simulated feline hindlimbs based on multi-

layer central pattern generator networks

Control of a simulated leg for a fruit-fly inspired robot

Control of sideways locomotion in a simulated robotic crab

[1]

2]

[3]

[4]

[5]

%6
BIBLIOGRAPHY

Jan M. Ache, Jason Polsky, Shada Alghailani, Ruchi Parekh, Patrick Breads,
Martin Y. Peek, Davi D. Bock, Catherine R. von Reyn, and Gwyneth
M. Card. “Neural Basis for Looming Size and Velocity Encoding in the
Drosophila Giant Fiber Escape Pathway”. In: Current Biology 29 (6 Mar.
2019), 1073-1081.e4. 1ssn: 09609822, por: 10.1016/j.cub.2019.01.079.

Denis Alevi, Marcel Stimberg, Henning Sprekeler, Klaus Obermayer, and
Moritz Augustin. “Brian2CUDA: Flexible and Efficient Simulation of Spik-
ing Neural Network Models on GPUs". In: Frontiers in Neuroinformatics
16 (Oct. 2022). 1s5n: 1662-5196. por: 10.3389/tninf.2022.883700. urL:
https://www._frontiersin.org/articles/10.3389/fninf.2022.883700/full.

Jérémie Allard, Stéphane Cotin, Francois Faure, Pierre-Jean Bensoussan,
Francois Poyer, Christian Duriez, Hervé Delingette, Laurent Grisoni, J Al-
lard, S Cotin, F Faure, P.-J Bensoussan, F Poyer, C Duriez, H Delingette, and
L Grisoni. “SOFA-an Open Source Framework for Medical Simulation™. In:
(2007). urw: https://hal.inria.fr/inria-00319416.

Alexander Arenz, Michael S. Drews, Florian G. Richter, Georg Ammer,
and Alexander Borst. “The Temporal Tuning of the Drosophila Motion
Detectors Is Determined by the Dynamics of Their Input Elements”. In:
Current Biology 27 (7 Apr. 2017), pp. 929-944. 1ssn: 09609822, por: 10.
1016/j.cub.2017.01.051.

Joseph Ayers and Jan Witting. “Biomimetic approaches to the control of
underwater walking machines”. In: Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 365 (1850
2007), pp. 273-295. 1ssn: 1364503X. por: 10.1098/rsta.2006.1910.

https://doi.org/10.1016/j.cub.2019.01.079
https://doi.org/10.3389/fninf.2022.883700
https://www.frontiersin.org/articles/10.3389/fninf.2022.883700/full
https://hal.inria.fr/inria-00319416
https://doi.org/10.1016/j.cub.2017.01.051
https://doi.org/10.1016/j.cub.2017.01.051
https://doi.org/10.1098/rsta.2006.1910

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

97
Joseph Ayers and Jan Witting. “Biomimetic approaches to the control of un-
derwater walking machines”. In: Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences 365.1850 (2007),
pp. 273-295.

Zahra M. Bagheri, Steven D. Wiederman, Benjamin S. Cazzolato, Steven
Grainger, and David C. O’ Carroll. “Performance of an insect-inspired target
tracker in natural conditions™. In: Bivinspiration and Biomimetics 12 (2 Feb.

2017). 1ssn: 17483190. por: 10.1088/1748-3190/aa5b48.

H B Barlow and William R Levick. “The mechanism of directionally selec-
tive units in rabbit’s retina.” In: The Journal of physiology 178 (3 1965),
p. 477.

Chiara Bartolozzi, Giacomo Indiveri, and Elisa Donati. “Embodied neuro-

morphic intelligence”. In: Nature Communications 13 (1 Dec. 2022). 1ssn:

20411723, por: 10.1038/541467-022-28487-2.

Randall D Beer and John C Gallagher. “Evolving Dynamical Neural Net-
works for Adaptive Behavior”. In: Adaptive Behavior 1 (1992), pp. 91-122.

Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence
C. Stewart, Daniel Rasmussen, Xuan Choo, Aaron Russell Voelker, and
Chris Eliasmith. “Nengo: A Python tool for building large-scale functional
brain models”. In: Frontiers in Neuroinformatics 7 (JAN Jan. 2014). 1ssn:
16625196.

Alexander Borst. Drosophila’s View on Insect Vision. Jan. 2009. por: 10.
1016/j.cub.2008.11.001.

Alexander Borst, Michael Drews, and Matthias Meier. The neural network

behind the eyes of a fly. Aug. 2020. por: 10.1016/j.cophys.2020.05.004.

https://doi.org/10.1088/1748-3190/aa5b48
https://doi.org/10.1038/s41467-022-28487-2
https://doi.org/10.1016/j.cub.2008.11.001
https://doi.org/10.1016/j.cub.2008.11.001
https://doi.org/10.1016/j.cophys.2020.05.004

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

08
Alexander Borst, Jiirgen Haag, and Alex S. Mauss. How fly neurons compute
the direction of visual motion. Mar. 2020. por: 10.1007/s00359-019-01375-
0.

James M Bower and David Beeman. The book of GENESIS: exploring re-
alistic neural models with the GEneral NEural SImulation System. Springer
Science & Business Media, 2012.

Valentino Braitenberg. Vehicles: Experiments in synthetic psychology. MIT
press, 1986.

Amalia Braun, Alexander Borst, and Matthias Meier. “Disynaptic inhibition
shapes tuning of OFF-motion detectors in Drosophila™. In: Current Biology
33 (11 June 2023), 2260-2269.e4. 1ssn: 18790445, por: 10.1016/j.cub.
2023.05.007.

Richard P Brent. Algorithms for minimization without derivatives. Courier

Corporation, 2013.

Thomas Graham Brown. “The intrinsic factors in the act of progression in
the mammal”. In: Proceedings of the Royal Society of London. Series B,
containing papers of a biological character 84 (572 1911), pp. 308-319.

Ross Cagan. “Chapter 5 Principles of Drosophila Eye Differentiation™. In:
Current Topics in Developmental Biology 89 (Jan. 2009), pp. 115-135. 1ssn:
0070-2153. por: 10.1016/S0070-2153(09)89005-4.

Benjamin P. Campbell, Huai Ti Lin, and Holger G. Krapp. “Weighting El-
ementary Movement Detectors Tuned to Different Temporal Frequencies
to Estimate Image Velocity™. In: Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics) 14157 LNAI (2023), pp. 398-410. 1ssn: 16113349, por:
10.1007/978-3-031-38857-6_29/FIGURES/6.

https://doi.org/10.1007/s00359-019-01375-9
https://doi.org/10.1007/s00359-019-01375-9
https://doi.org/10.1016/j.cub.2023.05.007
https://doi.org/10.1016/j.cub.2023.05.007
https://doi.org/10.1016/S0070-2153(09)89005-4
https://doi.org/10.1007/978-3-031-38857-6_29/FIGURES/6

[22]

[23]

[24]

[25]

[26]

[27]

[28]

99
Marie Claire Capolei, Emmanouil Angelidis, Egidio Falotico, Henrik Hau-
top Lund, and Silvia Tolu. “A biomimetic control method increases the
adaptability of a humanoid robot acting in a dynamic environment”. In:
Frontiers in Neurorobotics 13 (2019). 1ssn: 16625218, por: 10.3389/fnbot.
2019.00070.

Suma G Cardwell and Frances § Chance. “Dendritic computation for neuro-
morphic applications™. In: Proceedings of the 2023 International Conference

on Neuromorphic Systems. 2023, pp. 1-5.

Hillel J. Chiel and Randall D. Beer. “The brain has a body: adaptive behavior
emerges from interactions of nervous system, body and environment”. In:
Trends in Neurosciences 20 (12 Dec. 1997), pp. 553-557. 1ssn: 01662236.
por: 10.1016/50166-2236(97)01149-1.

Thomas R Clandinin, Chi-Hon Lee, Tory Herman, Roger C Lee, Annie
Y Yang, Shake Ovasapyan, and S Lawrence Zipursky. Drosophila LAR
Regulates RI1-R6 and R7 Target Specificity in the Visual System. 2001.

Damon A. Clark and Jonathan B. Demb. Parallel Computations in Insect
and Mammalian Visual Motion Processing. Oct. 2016. por: 10.1016/j.cub.
2016.08.003.

David Cofer, Gennady Cymbalyuk, William J. Heitler, and Donald H. Ed-
wards. “Control of tumbling during the locust jump”. In: Journal of Exper-
imental Biology 213 (19 Oct. 2010), pp. 3378-3387. 1ssn: 00220949. por:
10.1242/jeb.046367.

David Cofer, Gennady Cymbalyuk, James Reid, Ying Zhu, William J.
Heitler, and Donald H. Edwards. “AnimatlLab: A 3D graphics environment

for neuromechanical simulations™. In: Journal of Neuroscience Methods 187

(2 Mar. 2010), pp. 280-288. 1ssn: 01650270.

https://doi.org/10.3389/fnbot.2019.00070
https://doi.org/10.3389/fnbot.2019.00070
https://doi.org/10.1016/S0166-2236(97)01149-1
https://doi.org/10.1016/j.cub.2016.08.003
https://doi.org/10.1016/j.cub.2016.08.003
https://doi.org/10.1242/jeb.046367

100
[29] Gregory Cohen. “Gooaall!!!: Why we Built a Neuromorphic Robot to Play
Foosball”. In: IEEE Spectrum 59 (3 Mar. 2022), pp. 44-50. 1ss~: 0018-9235.

[30] Gabriele Costante, Michele Mancini, Paolo Valigi, and Thomas A. Cia-
rfuglia. “Exploring Representation Learning With CNNs for Frame-to-
Frame Ego-Motion Estimation™. In: IEEE Robotics and Automation Letters 1

(1Jan. 2016), pp. 18-25.1ssn: 23773766. por: 10.1109/LRA.2015.2505717.

[31] Matthew S. Creamer, Omer Mano, and Damon A. Clark. “Visual Control
of Walking Speed in Drosophila”. In: Neuron 100 (6 Dec. 2018), 1460-
1473.e6. 1ssn: 10974199, por: 10.1016/j.neuron.2018.10.028.

[32] George Cybenko. “Approximation by superpositions of a sigmoidal func-
tion”. In: Mathematics of control, signals and systems 2.4 (1989), pp. 303—
314.

[33] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yonggiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam,
Shweta Jain, et al. “Loihi: A neuromorphic manycore processor with on-chip
learning”. In: IEEE Micro 38 (1 2018), pp. 82-99.

[34] Scott L. Delp, Frank C. Anderson, Allison S. Arnold, Peter Loan, Ayman
Habib, Chand T. John, Eran Guendelman, and Darryl G. Thelen. “Open-
Sim: Open-Source Software to Create and Analyze Dynamic Simulations

of Movement”. In: IEEE Transactions on Biomedical Engineering 54 (11

Nov. 2007), pp. 1940-1950. 1ssn: 0018-9294.

[35] Kaiyu Deng, Nicholas S. Szczecinski, Dirk Arnold, Emanuel Andrada, Mar-
tin Fischer, Roger D. Quinn, and Alexander J. Hunt. “Neuromechanical
model of rat hind limb walking with two layer CPGs and muscle syner-
gies”. In: vol. 10928 LNAIL Springer Verlag, 2018, pp. 134-144. 1sen:
0783319959719.

https://doi.org/10.1109/LRA.2015.2505717
https://doi.org/10.1016/j.neuron.2018.10.028

[36]

[37]

[38]

[39]

[40]

[41]

[42]

101
Li Deng. “The mnist database of handwritten digit images for machine learn-
ing research”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141-
142.

Sophie Denéve and Christian K. Machens. Efficient codes and balanced
networks. Feb. 2016. por: 10.1038/nn.4243.

Travis DeWolf, Kinjal Patel, Pawel Jaworski, Roxana Leontie, Joe Hays, and
Chris Eliasmith. “Neuromorphic control of a simulated 7-DOF arm using
Loihi”. In: Neuromorphic Computing and Engineering 3 (1 Mar. 2023),
p. 014007. por: 10.1088/2634-4386/acb286.

Mikael Djurfeldt, Johannes Hjorth, Jochen M. Eppler, Niraj Dudani, Moritz
Helias, Tobias C. Potjans, Upinder S. Bhalla, Markus Diesmann, Jeanette
Hellgren Kotaleski, and Orjan Ekeberg. “Run-time interoperability between
neuronal network simulators based on the MUSIC framework™. In: Neuroin-
formatics 8 (1 Mar. 2010), pp. 43-60. 1ssn: 15392791. por: 10.1007/512021-
010-9064-z.

Michael S. Drews, Aljoscha Leonhardt, Nadezhda Pirogova, Florian G.
Richter, Anna Schuetzenberger, Lukas Braun, Etienne Serbe, and Alexander
Borst. “Dynamic Signal Compression for Robust Motion Vision in Flies”.
In: Current Biology 30 (2 Jan. 2020), 209-22].e8. 1ssn: 09609822, por:
10.1016/j.cub.2019.10.035.

Chris Eliasmith and Charles H Anderson. Neural engineering: Computation,

representation, and dynamics in neurobiological systems. MIT press, 2003.

Jason K. Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz,
Girish Dwivedi, Mohammed Bennamoun, Doo Seok Jeong, and Wei D. Lu.
“Training Spiking Neural Networks Using Lessons From Deep Learning™.
In: (Sept. 2021).

https://doi.org/10.1038/nn.4243
https://doi.org/10.1088/2634-4386/acb286
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1007/s12021-010-9064-z
https://doi.org/10.1016/j.cub.2019.10.035

[43]

[44]

[45]

[46]

[47]

102
Egidio Falotico, Lorenzo Vannucci, Alessandro Ambrosano, Ugo Albanese,
Stefan Ulbrich, Juan Camilo Vasquez Tieck, Georg Hinkel, Jacques Kaiser,
Igor Peric, Oliver Denninger, Nino Cauli, Murat Kirtay, Arne Roennau,
Gudrun Klinker, Axel Von Arnim, Luc Guyot, Daniel Peppicelli, Pablo
Mactinaz-Cafiada, Eduardo Ros, Patrick Maier, Sandro Weber, Manuei Hu-
ber, David Plecher, Florian Réhrbein, Stefan Deser, Alina Roitberg, Patrick
Van Der Smagt, Riidiger Dillman, Paul Levi, Cecilia Laschi, Alois C. Knoll,
and Marc Oliver Gewaltig. “Connecting artificial brains to robots in a com-
prehensive simulation framework: The neurorobotics platform”. In: Fron-

tiers in Neurorobotics 11 (JAN Jan. 2017). 1ssw: 16625218.

Lisa M. Fenk, Sofia C. Avritzer, Jazz L. Weisman, Aditya Nair, Lucas D.
Randt, Thomas L. Mohren, Igor Siwanowicz, and Gaby Maimon. “Muscles
that move the retina augment compound eye vision in Drosophila”. In:
Nature 2022 612:7938 612 (7938 Oct. 2022), pp. 116-122. 1ssn: 1476~
4687. por: 10.1038/s41586-022-05317-5.

Andreas K. Fidjeland, Etienne B. Roesch, Murray P. Shanahan, and Wayne
Luk. “NeMo: A platform for neural modelling of spiking neurons using
GPUs". In: 2009, pp. 137-144. 1sen: 9780769537320. por: 10.1109/ASAP.
2009.24.

David Fitzpatrick. “The Functional Organization of Local Circuits in Visual
Cortex: Insights from the Study of Tree Shrew Striate Cortex™. In: Cerebral
Cortex 6 (3 1996), pp. 329-341. 1ssn: 1047-3211. por: 10.1093/cercor/6.3.
320.

Limor Freifeld, Damon A. Clark, Mark J. Schnitzer, Mark A. Horowitz,
and Thomas R. Clandinin. “GABAergic Lateral Interactions Tune the Early
Stages of Visual Processing in Drosophila”. In: Neuron 78 (6 June 2013),
pp- 1075-1089. 1ssn: 08966273. por: 10.1016/j.neuron.2013.04.024.

https://doi.org/10.1038/s41586-022-05317-5
https://doi.org/10.1109/ASAP.2009.24
https://doi.org/10.1109/ASAP.2009.24
https://doi.org/10.1093/cercor/6.3.329
https://doi.org/10.1093/cercor/6.3.329
https://doi.org/10.1016/j.neuron.2013.04.024

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

103
Terufumi Fujiwara, Margarida Brotas, and M. Eugenia Chiappe. “Walking
strides direct rapid and flexible recruitment of visual circuits for course
control in Drosophila”. In: Neuron 110 (13 July 2022), 2124-2138.e8. 1ssn:
10974199. por: 10.1016/j.neuron.2022.04.008.

Marc-Oliver Gewaltig and Markus Diesmann. “Nest (neural simulation
tool)”. In: Scholarpedia 2 (4 2007), p. 1430.

C A Goldsmith, N S Szczecinski, and R D Quinn. “Neurodynamic modeling
of the fruit fly Drosophila melanogaster”. In: Bioinspiration & Biomimetics

15 (6 Sept. 2020), p. 065003. 1ssn: 1748-3190.

Dan Goodman and Romain Brette. “Brian: A simulator for spiking neural
networks in python”. In: Frontiers in Neuroinformatics 2 (NOV Nov. 2008).
1ssN: 16625196.

Lukas N. Groschner, Jonatan G. Malis, Birte Zuidinga, and Alexander Borst.
“A biophysical account of multiplication by a single neuron”. In: Nature 603
(7899 Mar. 2022), pp. 119-123. 1ssn: 14764687. por: 10.1038/s41586-022-
04428-3.

Chloe K. Guie and Nicholas S. Szczecinski. “Direct Assembly and Tuning of
Dyynamical Neural Networks for Kinematics™. In: vol. 13548 LNALI. Springer
Science and Business Media Deutschland GmbH, 2022, pp. 321-331. 1sen:
0783031204692. por: 10.1007/978-3-031-20470-8_32.

Juergen Haag, Alexander Arenz, Etienne Serbe, Fabrizio Gabbiani, and
Alexander Borst. “Complementary mechanisms create direction selectivity
in the fly”. In: eLife 5 (AUGUST Aug. 2016). 1ssn: 2050084X. por: 10.
7554/eLife.17421.001.

Juergen Haag, Abhishek Mishra, and Alexander Borst. “A common direc-

tional tuning mechanism of Drosophila motion-sensing neurons in the ON

https://doi.org/10.1016/j.neuron.2022.04.008
https://doi.org/10.1038/s41586-022-04428-3
https://doi.org/10.1038/s41586-022-04428-3
https://doi.org/10.1007/978-3-031-20470-8_32
https://doi.org/10.7554/eLife.17421.001
https://doi.org/10.7554/eLife.17421.001

[56]

[57]

[58]

[59]

[60]

[61]

104
and in the OFF pathway™. In: (2017). por: 10.7554/eLife.29044.001. urL:
https://doi.org/10.7554/eLife.29044.001.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian
Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten
H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernindez del Rio,
Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard,
Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and
Travis E. Oliphant. “Array programming with NumPy”. In: Nature 585
(7825 Sept. 2020), pp. 357-362. 1ssn: 14764687.

Bernhard Hassenstein and Werner Reichardt. “Systemtheoretische analyse
der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzep-
tion des riisselkifers chlorophanus™. In: Zeitschrift fiir Naturforschung B 11
(9-10 1956), pp. 513-524.

Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel, Darpan
T. Sanghavi, Hava T. Siegelmann, and Robert Kozma. “BindsNET: A ma-

chine learning-oriented spiking neural networks library in python”. In: Fron-
tiers in Neuroinformatics 12 (Dec. 2018). 1ssn: 16625196.

M L Hines and N T Carnevale. “NEURQON: A Tool for Neuroscientists™. In:
THE NEUROSCIENTIST T (2 2001). urw: http://www.neu.

Roger V. Hoang, Devyani Tanna, Laurence C. Jayet Bray, Sergiu M. Das-
calu, and Frederick C. Harris. “A novel CPU/GPU simulation environment
for large-scale biologically realistic neural modeling”. In: Frontiers in Neu-
roinformatics T (OCT Oct. 2013). 1ssn: 16625196. por: 10.3389/fninf.2013.
00019.

A. L. Hodgkin and A. F. Huxley. “A quantitative description of membrane

current and its application to conduction and excitation in nerve”. In: The

https://doi.org/10.7554/eLife.29044.001
https://doi.org/10.7554/eLife.29044.001
http://www.neu
https://doi.org/10.3389/fninf.2013.00019
https://doi.org/10.3389/fninf.2013.00019

[62]

[63]

[64]

[65]

[66]

[67]

[68]

105
Journal of Physiology 117 (4 Aug. 1952), pp. 500-544. 1ssn: 0022-3751.
por: 10.1113/jphysiol.1952.sp004764.

Berthold K.P. Horn and E. J. Weldon. “Direct methods for recovering mo-

tion”. In: International Journal of Computer Vision 2 (1 June 1988), pp. 51—
76. 1ss8: 09205691. por: 10.1007/BF00836281/METRICS.

H Hultborn, S Lindstrém, and H Wigstrém. “On the Function of Recurrent
Inhibition in the Spinal Cord”. In: Brain Res 37 (1979), p. 399403.

Alexander Hunt, Nicholas Szczecinski, and Roger Quinn. “Development
and training of a neural controller for hind leg walking in a dog robot™. In:
Frontiers in Neurorobotics 11 (APR Apr. 2017). 1ssn: 16625218.

Fadi A. Issa, Joanne Drummond, Daniel Cattaert, and Donald H. Edwards.
“Neural circuit reconfiguration by social status™. In: Journal of Neuro-
science 32 (16 Apr. 2012), pp. 5638-5645. 1ssn: 02706474, por: 10.1523/
JNEUROSCL5668-11.2012.

Eugene M. Izhikevich. Dynamical Systems in Neuroscience: The Geometry
of Excitability and Burtsing. 2007, p. 441. 1sen: 9780262090438. por: 10.
1017/50143385704000173.

Clayton Jackson, Matthieu Chardon, Y Curtis Wang, Johann Rudi, Matthew
Tresch, Charles J] Heckman, and Roger D Quinn. “Multimodal Parameter
Inference for a Canonical Motor Microcircuit Controlling Rat Hindlimb

Motion”. In: Conference on Biomimetic and Biohybrid Systems. Springer.

2023, pp. 38-51.

Clayton Jackson, William R.P. Nourse, C. J. Heckman, Matthew Tresch,
and Roger D. Quinn. “Canonical Motor Microcircuit for Control of a Rat
Hindlimb™. In: vol. 13548 LNAL Springer Science and Business Media
Deutschland GmbH, 2022, pp. 309-320. 1sen: 9783031204692. por: 10.
1007/978-3-031-20470-8_31.

https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1007/BF00836281/METRICS
https://doi.org/10.1523/JNEUROSCI.5668-11.2012
https://doi.org/10.1523/JNEUROSCI.5668-11.2012
https://doi.org/10.1017/S0143385704000173
https://doi.org/10.1017/S0143385704000173
https://doi.org/10.1007/978-3-031-20470-8_31
https://doi.org/10.1007/978-3-031-20470-8_31

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

106
Will L. Johnson, Devin L. Jindrich, Roland R. Roy, and V. Reggie Edgerton.
“A three-dimensional model of the rat hindlimb: Musculoskeletal geome-
try and muscle moment arms”. In: Journal of Biomechanics 41 (3 2008),

pp- 610-619. 1ssn: 00219290. por: 10.1016/j.jbiomech.2007.10.004.

Jacques Kaiser,] Camilo Vasquez Tieck, Christian Hubschneider, Peter
Wolf, Michael Weber, Michael Hoft, Alexander Friedrich, Konrad Woijtasik,
Arne Roennau, Ralf Kohlhaas, et al. “Towards a framework for end-to-end
control of a simulated vehicle with spiking neural networks”. In: 2016 IEEE
International Conference on Simulation, Modeling, and Programming for

Autonomous Robots (SIMPAR). IEEE. 2016, pp. 127-134.

Naila Habib Khan and Awais Adnan. “Ego-motion estimation concepts,
algorithms and challenges: an overview”. In: Multimedia Tools and Ap-
plications 76 (15 Aug. 2017), pp. 16581-16603. 1ssn: 15737721. por:
10.1007/S11042-016-3939-4/TABLES/2.

Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv: 1412.6980 (2014).

Nathan Koenig and Andrew Howard. “Design and use paradigms for Gazebo,
an open-source multi-robot simulator”. In: vol. 3. 2004, pp. 2149-2154.
isen: 0780384636. por: 10.1109/iros.2004.1389727.

Jessica R Kohn, Jacob P Portes, Matthias P Christenson, LF Abbott, and
Rudy Behnia. “Flexible filtering by neural inputs supports motion computa-
tion across states and stimuli”. In: Current Biology 31.23 (2021), pp. 5249
5260.

Justin P. Kumar. Building an ommatidium one cell at a time. Jan. 2012.

Janne K Lappalainen, Fabian D Tschopp, Sridhama Prakhya, Mason McGill,
Aljoscha Nern, Kazunori Shinomiya, Shin-ya Takemura, Eyal Gruntman,
Jakob H Macke, and Srinivas C Turaga. “Connectome-constrained deep

https://doi.org/10.1016/j.jbiomech.2007.10.004
https://doi.org/10.1007/S11042-016-3939-4/TABLES/2
https://doi.org/10.1109/iros.2004.1389727

[77]

[78]

[79]

[80]

[81]

[82]

[83]

107
mechanistic networks predict neural responses across the fly visual system
at single-neuron resolution”. In: bioRxiv (2023), pp. 2023-03.

“Lava Software Framework”. In: (2021). vrw: https://github.com/lava-

ncflava.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
based learning applied to document recognition™. In: Proceedings of the

IEEE 86(11 1998), pp. 2278-2323.1ssn: 00189219. por: 10.1109/5.726791.

G Leuba and R Kraftsik. Anatomy and Embryolo Changes in volume, surface
estimate, three-dimensional shape and total number of neurons of the human

primary visual cortex from midgestation until old age. 1994.

Genevieve Leuba and Rudolf Kraftsik. “Changes in volume, surface esti-
mate, three-dimensional shape and total number of neurons of the human

primary visual cortex from midgestation until old age™. In: Anatomy and
embryology 190 (1994), pp. 351-366.

Wolfgang Maass. “Networks of Spiking Neurons: The Third Generation of
Neural Network Models”. In: Neural Networks 10 (9 1997), pp. 1659-1671.

Matthew S Maisak, Juergen Haag, Georg Ammer, Etienne Serbe, Matthias
Meier, Aljoscha Leonhardt, Tabea Schilling, Armin Bahl, Gerald M Rubin,
Aljoscha Nern, et al. “A directional tuning map of Drosophila elementary
motion detectors”. In: Narure 500.7461 (2013), pp. 212-216.

Michael Mangan, Dario Floreano, Kotaro Yasui, Barry A Trimmer, Nick
Gravish, Sabine Hauert, Barbara Webb, Poramate Manoonpong, and Nicholas
Stephen Szczecinski. “A virtuous cycle between invertebrate and robotics
research: Perspective on a decade of Living Machines research”. In: Bioin-
spiration & Biomimetics (May 2023). 1ssn: 1748-3182. por: 10.1088/1748-
3190/acc223.

https://github.com/lava-nc/lava
https://github.com/lava-nc/lava
https://doi.org/10.1109/5.726791
https://doi.org/10.1088/1748-3190/acc223
https://doi.org/10.1088/1748-3190/acc223

[34]

[85]

[86]

[87]

[88]

[89]

[90]

108
Elisa Massi, Lorenzo Vannucci, Ugo Albanese, Marie Claire Capolei, Alexan-
der Vandesompele, Gabriel Urbain, Angelo Maria Sabatini, Joni Dambre,
Cecilia Laschi, Silvia Tolu, and Egidio Falotico. “Combining evolutionary
and adaptive control strategies for quadruped robotic locomotion™. In: Fron-
tiers in Neurorobotics 13 (2019), pp. 1-19. 1ssn: 16625218. por: 10.3389/
fnbot.2019.00071.

Alex S. Mauss and Alexander Borst. Motion Vision in Arthropods. Apr.
2019. por: 10.1093/oxfordhb/9780190456757.013.14.

Matthias Meier and Alexander Borst. “Extreme Compartmentalization in a
Drosophila Amacrine Cell”. In: Current Biology 29 (9 May 2019), 1545
1550.e2. 1ssn: 09609822, por: 10.1016/j.cub.2019.03.070.

R. C. MIALL. “The flicker fusion frequencies of six laboratory insects,
and the response of the compound eye to mains fluorescent ‘ripple’”. In:
Physiological Entomology 3 (2 June 1978), pp. 99-106. 1ssn: 0307-6962.
por: 10.1111/j.1365-3032.1978.tb00139.x.

Stefan Mihalas and Ernst Niebur. “A generalized linear integrate-and-fire
neural model produces diverse spiking behaviors”. In: Neural Computation
21 (3 Mar. 2009), pp. 704-718. 1ssn: 08997667.

Milad Mozafari, Mohammad Ganjtabesh, Abbas Nowzari-Dalini, and Tim-
othée Masquelier. “SpykeTorch: Efficient simulation of convolutional spik-

ing neural networks with at most one spike per neuron”. In: Frontiers in

Neuroscience 13 (JUL 2019). 1ssn: 1662453X.

Jim Mutch. “CNS: a GPU-based framework for simulating cortically-organized
networks”. In: CNS: a GPU-based framework for simulating cortically-

organized networks (2010).

https://doi.org/10.3389/fnbot.2019.00071
https://doi.org/10.3389/fnbot.2019.00071
https://doi.org/10.1093/oxfordhb/9780190456757.013.14
https://doi.org/10.1016/j.cub.2019.03.070
https://doi.org/10.1111/j.1365-3032.1978.tb00139.x

109

[91] Lars Niedermeier, Kexin Chen, Jinwei Xing, Anup Das, Jeffrey Kopsick,

Eric Scott, Nate Sutton, Killian Weber, Nikil Dutt, and Jeffrey L. Krichmar.

“CARLsim 6: An Open Source Library for Large-Scale, Biologically De-

tailed Spiking Neural Network Simulation™. In: vol. 2022-July. Institute of

Electrical and Electronics Engineers Inc., 2022. 1sen: 9781728186719. por:
10.1109/TJCNN55064.2022.9892644.

[92] William RP Nourse, Clayton Jackson, Nicholas S Szczecinski, and Roger
D Quinn. “SNS-Toolbox: An Open Source Tool for Designing Synthetic
Nervous Systems and Interfacing Them with Cyber—Physical Systems™. In:
Biomimetics 8.2 (2023), p. 247.

[93] William R.P. Nourse, Nicholas S. Szczecinski, and Roger D. Quinn. “A Syn-
thetic Nervous System for on and Off Motion Detection Inspired by the Drosophila
melanogaster Optic Lobe™. In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 14157 LNAI (2023), pp. 364-380. 1ssn: 16113349, por:
10.1007/978-3-031-38857-6_27/TABLES/2.

[94] William R.P. Nourse, Nicholas S. Szczecinski, and Roger D. Quinn. “SNS-
Toolbox: A Tool for Efficient Simulation of Synthetic Nervous Systems”.
In: vol. 13548 LNAL Springer Science and Business Media Deutschland
GmbH, 2022, pp. 32-43. 1sen: 9783031204692. por: 10.1007/978-3-031-
20470-8_4

[95] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury
Google, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf Xamla, Edward Yang, Zach
Devito, Martin Raison Nabla, Alykhan Tejani, Sasank Chilamkurthy, Qure
Ai, Benoit Steiner, Lu Fang Facebook, Junjie Bai Facebook, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning

https://doi.org/10.1109/IJCNN55064.2022.9892644
https://doi.org/10.1007/978-3-031-38857-6_27/TABLES/2
https://doi.org/10.1007/978-3-031-20470-8_4
https://doi.org/10.1007/978-3-031-20470-8_4

[96]

[97]

[98]

[99]

[100]

[101]

[102]

110
Library”. In: ed. by H Wallach, H Larochelle, A Beygelzimer, F d’alché Buc,

E Fox. and R Garnett. Curran Associates, Inc., 2019.

Donald H. Perkel and Brian Mulloney. “Motor Pattern Production in Recip-
rocally Inhibitory Neurons Exhibiting Postinhibitory Rebound™. In: Science
185 (4146 July 1974), pp. 181-183. 1ssn: 0036-8075. por: 10.1126/science.
185.4146.181.

Claire Plunkett and Frances Chance. “Modeling Coordinate Transformations
in the Dragonfly Nervous System”. In: Proceedings of the 2023 Annual

Neuro-Inspired Computational Elements Conference. 2023, pp. 6-10.

K. Prazdny. “Egomotion and relative depth map from optical flow”. In:
Biological Cybernetics 36 (2 Feb. 1980), pp. 87-102. 1ssn: 03401200. por:
10.1007/BF00361077/METRICS.

Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. “ROS: an open-source
Robot Operating System”. In: (2009). urL: http://stair.stanford.edu.

Magnus J.E. Richardson. “Effects of synaptic conductance on the voltage
distribution and firing rate of spiking neurons”. In: Physical Review E -

Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

69 (5 2004), p. 8. 1ssn: 1063651X. por: 10.1103/PhysRevE.69.051918.

Shane Riddle, Clayton Jackson, Kathryn A Daltorio, and Roger D Quinn.
“A Dynamic Simulation of a Compliant Worm Robot Amenable to Neural

Control”. In: Conference on Biomimetic and Biohybrid Systems. Springer.
2023, pp. 338-352.

Shane Riddle, William RP Nourse, Zhuojun Yu, Peter] Thomas, and Roger
D Quinn. “A synthetic nervous system with coupled oscillators controls peri-

staltic locomotion”. In: Conference on Biomimetic and Biohybrid Systems.

Springer. 2022, pp. 249-261.

https://doi.org/10.1126/science.185.4146.181
https://doi.org/10.1126/science.185.4146.181
https://doi.org/10.1007/BF00361077/METRICS
http://stair.stanford.edu
https://doi.org/10.1103/PhysRevE.69.051918

[103]

[104]

[105]

[106]

[107]

[108]

[109]

111
J. H. Rieger and D. T. Lawton. “Processing differential image motion”. In:
JOSA A, Vol. 2, Issue 2, pp. 354-359 2 (2 Feb. 1985), pp. 354-359. 1ssn:
1520-8532. por: 10.1364/JOSAA.2.000354.

Jens Rister, Claude Desplan, and Daniel Vasiliauskas. “Establishing and
maintaining gene expression patterns: insights from sensory receptor pat-
terning”. In: Development 140 (3 Feb. 2013), pp. 493-503. 1ssn: 0950-1991.
por: 10.1242/DEV.079095.

Guido Van Rossum et al. “Python Programming Language.” In: vol. 41.
2007, pp. 1-36.

Ilya A. Rybak, Natalia A. Shevtsova, Myriam Lafreniere-Roula, and David
A. McCrea. “Modelling spinal circuitry involved in locomotor pattern gen-
eration: Insights from deletions during fictive locomotion™. In: Journal of
Physiology 57T (2 Dec. 2006), pp. 617-639. 1ssn: 00223751. por: 10.1113/
jphysiol.2006.118703.

Louis K Scheffer, C Shan Xu, Michal Januszewski, Zhiyuan Lu, Shin-
ya Takemura, Kenneth] Hayworth, Gary B Huang, Kazunori Shinomiya,
Jeremy Maitlin-Shepard, Stuart Berg, et al. “A connectome and analysis of
the adult Drosophila central brain”. In: Elife 9 (2020), e57443.

Louis K. Scheffer et al. “A connectome and analysis of the adult drosophila
central brain”. In: eLife 9 (Sept. 2020), pp. 1-74. 1ssn: 2050084X. por:
10.7554/ELIFE.57443.

Malte Schilling and Holk Cruse. “neuroWalknet, a controller for hexapod
walking allowing for context dependent behavior™. In: PLoS Computational
Biology 19 (1 Jan. 2023). 1ssn: 15537358, por: 10.1371/journal . pcbi.
1010136.

https://doi.org/10.1364/JOSAA.2.000354
https://doi.org/10.1242/DEV.079095
https://doi.org/10.1113/jphysiol.2006.118703
https://doi.org/10.1113/jphysiol.2006.118703
https://doi.org/10.7554/ELIFE.57443
https://doi.org/10.1371/journal.pcbi.1010136
https://doi.org/10.1371/journal.pcbi.1010136

[110]

[111]

[112]

[113]

[114]

[115]

112
Anna Sedlackova, Nicholas S Szczecinski, and Roger D Quinn. “A synthetic
nervous system model of the insect optomotor response”. In: Biomimetic
and Biohybrid Systems: 9th International Conference, Living Machines
2020, Freiburg, Germany, July 28-30, 2020, Proceedings 9. Springer. 2020,
pp- 312-324.

Johannes D Seelig and Vivek Jayaraman. “Neural dynamics for landmark
orientation and angular path integration”. In: Nature 521.7551 (2015),
pp. 186-191.

Etienne Serbe, Matthias Meier, Aljoscha Leonhardt, and Alexander Borst.
“Comprehensive Characterization of the Major Presynaptic Elements to the
Drosophila OFF Motion Detector™. In: Neuron 89 (4 Feb. 2016), pp. 829—
841. 1ssn: 10974199, por: 10.1016/j.neuron.2016.01.006.

H. Sebastian Seung, Daniel D. Lee, Ben Y. Reis, and David W. Tank. “The
Autapse: A Simple Illustration of Short-Term Analog Memory Storage by

Tuned Synaptic Feedback™. In: Journal of Computational Neuroscience 9
(2 2000), pp. 171-185. 1ssn: 09295313. por: 10.1023/A:1008971908649.

Camilla R. Sharkey, Jorge Blanco, Maya M. Leibowitz, Daniel Pinto-Benito,
and Trevor J. Wardill. “The spectral sensitivity of Drosophila photorecep-
tors”. In: Scientific Reports 2020 10:1 10 (1 Oct. 2020), pp. 1-13. 1ssn:
2045-2322. por: 10.1038/s41598-020-74742-1.

Kazunori Shinomiya, Gary Huang, Zhiyuan Lu, Toufiq Parag, C. Shan
Xu, Roxanne Aniceto, Namra Ansari, Natasha Cheatham, Shirley Lauchie,
Erika Neace, Omotara Ogundeyi, Christopher Ordish, David Peel, Aya Shi-
nomiya, Claire Smith, Satoko Takemura, Iris Talebi, Patricia K. Rivlin,
Aljoscha Nern, Louis K. Scheffer, Stephen M. Plaza, and lan A. Mein-

ertzhagen. “Comparisons between the ON-and OFF-edge motion pathways

https://doi.org/10.1016/j.neuron.2016.01.006
https://doi.org/10.1023/A:1008971908649
https://doi.org/10.1038/s41598-020-74742-1

[116]

[117]

[118]

[119]

[120]

[121]

113
in the Drosophila brain”. In: eLife 8 (2019). 1ssn: 2050084X. por: 10.7554/
ELIFE.40025.

D G Stavenga. Insect Retinal Pigments: Spectral Characteristics and Phys-

iological Functions. 1995.

Tom Hindmarsh Sten, Rufei Li, Adriane Otopalik, and Vanessa Ruta. “Sexual
arousal gates visual processing during Drosophila courtship™. In: Nature
2021 595:7868 595 (7868 July 2021), pp. 349-553. 1ssn: 1476-4687. por:
10.1038/s41586-021-03714-w.

Beck Strohmer, Poramate Manoonpong, and Leon Bonde Larsen. “Flexi-
ble Spiking CPGs for Online Manipulation During Hexapod Walking”. In:
Frontiers in Neurorobotics 14 (June 2020). 1ssn: 16625218.

James A. Strother, Shiuan Tze Wu, Edward M. Rogers, Jessica L.M. Eliason,
Allan M. Wong, Aljoscha Nern, and Michael B. Reiser. “Behavioral state
modulates the on visual motion pathway of drosophila”. In: Proceedings of
the National Academy of Sciences of the United States of America 115 (1
Jan. 2018), E102-E111. 1ssn: 10916490, urc: https://www.pnas.org/doi/
abs/10.1073/pnas.1703090115.

Nicholas S. Szczecinski, Amy E. Brown, John A. Bender, Roger D. Quinn,
and Roy E. Ritzmann. “A neuromechanical simulation of insect walking and
transition to turning of the cockroach Blaberus discoidalis”. In: Biological
Cybernetics 108 (1 Feb. 2014), pp. 1-21. 1ssn: 03401200.

Nicholas S Szczecinski, Alexander J Hunt, and Roger D Quinn. “A func-
tional subnetwork approach to designing synthetic nervous systems that
control legged robot locomotion™. In: Frontiers in neurorobotics 11 (2017),

p. 37.

https://doi.org/10.7554/ELIFE.40025
https://doi.org/10.7554/ELIFE.40025
https://doi.org/10.1038/s41586-021-03714-w
https://www.pnas.org/doi/abs/10.1073/pnas.1703090115
https://www.pnas.org/doi/abs/10.1073/pnas.1703090115

[122]

[123]

[124]

[125]

[126]

[127]

[128]

114
Nicholas S. Szczecinski, Alexander J. Hunt, and Roger D. Quinn. “Design
process and tools for dynamic neuromechanical models and robot con-
trollers™. In: Biological Cybernetics 111 (1 Feb. 2017), pp. 105-127. 1ssn:
0340-1200. urc: http:/Mlink.springer.com/10.1007/s00422-017-0711-4.

Nicholas S. Szczecinski, Roger D. Quinn, and Alexander J. Hunt. “Extending
the Functional Subnetwork Approach to a Generalized Linear Integrate-and-
Fire Neuron Model”. In: Frontiers in Neurorobotics 14 (Mov. 2020). 1ssn:
16625218. por: 10.3389/fnbot.2020.577804.

Nicholas Stephen Szczecinski, Clarissa Goldsmith, William Nourse, and
Roger D Quinn. “A perspective on the neuromorphic control of legged
locomotion in past, present, and future insect-like robots”. In: Neuromorphic

Computing and Engineering (Mar. 2023). por: 10.1088/2634-4386/acc(4f.

Shin-Ya Takemura, Aljoscha Nern, Dmitri B Chklovskii, Louis K Scheffer,
Gerald M Rubin, and lan A Meinertzhagen. “The comprehensive connec-

tome of a neural substrate for ‘ON’ motion detection in Drosophila™. In:

(2017). por: 10.7554/eLife.24394.001.

Corinne Teeter, Ramakrishnan Iyer, Vilas Menon, Nathan Gouwens, David
Feng, Jim Berg, Aaron Szafer, Nicholas Cain, Hongkui Zeng, Michael
Hawrylycz, Christof Koch, and Stefan Mihalas. “Generalized leaky integrate-
and-fire models classify multiple neuron types”. In: Nature Communications

9 (1 Dec. 2018). 1ssn: 20411723, por: 10.1038/s41467-017-02717-4.

Emanuel Todorov, Tom Erez, and Yuval Tassa. “MuJoCo: A physics engine
for model-based control”. In: 2012, pp. 5026-5033. 1sen: 9781467317375.
por: 10.1109/IROS.2012.6386109.

Carlo Tomasi and Jianbo Shi. “Direction of heading from image deforma-
tions”. In: IEEE Computer Vision and Pattern Recognition (1993), pp. 422—
427. por: 10.1109/CVPR.1993.341096.

http://link.springer.com/10.1007/s00422-017-0711-4
https://doi.org/10.3389/fnbot.2020.577804
https://doi.org/10.1088/2634-4386/acc04f
https://doi.org/10.7554/eLife.24394.001
https://doi.org/10.1038/s41467-017-02717-4
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/CVPR.1993.341096

115
[129] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K.
Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, [lhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, lan Henriksen,
E. A. Quintero, Charles R. Harris, Anne M. Archibald, Ant6énio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy
1.0: Fundamental Algorithms for Scientific Computing in Python”. In: Na-
ture Methods 17 (2020), pp. 261-272. por: 10.1038/s41592-019-0686-2.

[130] Julien Vitay, Helge Dinkelbach, and Fred H. Hamker. “ANNarchy: A code
generation approach to neural simulations on parallel hardware™. In: Fron-
tiers in Neuroinformatics 9 (JULY July 2015). 1ssn: 16625196. por: 10.
3389/fninf.2015.00019.

[131] Thomas Voegtlin. “CLONES : a closed-loop simulation framework for body,
muscles and neurons™. In: BMC Neuroscience 12 (581 Dec. 2011). por:
10.1186/1471-2202-12-s1-p363.

[132] Cong Wang, Zaizheng Yang, Shuang Wang, Pengfei Wang, Chen-Yu Wang,
Chen Pan, Bin Cheng, Shi-Jun Liang, and Feng Miao. “A Braitenberg ve-

hicle based on memristive neuromorphic circuits™. In: Advanced Intelligent

Systems 2.1 (2020), p. 1900103.

[133] Sibo Wang-Chen, Victor Alfred Stimpfling, Pembe Gizem"ozdil, Gizem”
Gizem"ozdil, Louise Genoud, Femke Hurtak, and Pavan Ramdya. “Neu-
roMechFly 2.0, a framework for simulating embodied sensorimotor control
in adult Drosophila”. In: (). por: 10.1101/2023.09.18.556649.

[134] Barbara Webb. “Robots in invertebrate neuroscience”. In: Nature 417 (6886
May 2002), pp. 359-363. 1ssn: 0028-0836. por: 10.1038/41735%a.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.3389/fninf.2015.00019
https://doi.org/10.1186/1471-2202-12-s1-p363
https://doi.org/10.1101/2023.09.18.556649
https://doi.org/10.1038/417359a

[135]

[136]

[137]

[138]

[139]

[140]

[141]

116
Philipp Weidel, Mikael Djurfeldt, Renato C Duarte, and Abigail Morrison.
“Closed loop interactions between spiking neural network and robotic sim-
ulators based on MUSIC and ROS”. In: Frontiers in neuroinformatics 10
(2016), p. 31.

Paul J. Werbos. “Bacpropagation Through Time: WHat It Does and How to
Do It”. In: Proceedings of the IEEE 78 (10 1990).

Michael Winding, Benjamin D. Pedigo, Christopher L. Barnes, Heather G.
Patsolic, Youngser Park, Tom Kazimiers, Akira Fushiki, Ingrid V. Andrade,
Avinash Khandelwal, Javier Valdes-Aleman, Feng Li, Nadine Randel, Eliz-
abeth Barsotti, Ana Correia, Richard D. Fetter, Volker Hartenstein, Carey E.
Priebe, Joshua T. Vogelstein, Albert Cardona, and Marta Zlatic. “The con-
nectome of an insect brain”. In: Science (New York, N.Y.) 379 (6636 Mar.
2023), eadd9330. 1ssn: 10959203. por: 10.1126/science.add9330.

Esin Yavuz, James Turner, and Thomas Nowotny. “GeNN: A code genera-
tion framework for accelerated brain simulations™. In: Scientific Reports 6

(Jan. 2016). 1ssn: 20452322, por: 10.1038/srep18854.

Fletcher Young. “Design and Analysis of a Biomechanical Model of the
Rat Hindlimb with a Complete Musculature™. In: (2022). urc: http://rave.
ohiolink.edu/etdc/view Tacc_num=casel648154057237043.

Wenhao Yu, Deepali Jain, Alejandro Escontrela, Atil Iscen, Peng Xu, Erwin
Coumans, Sehoon Ha, Jie Tan, and Tingnan Zhang. Visual-Locomotion:

Learning to Walk on Complex Terrains with Vision.

Yury V. Zaytsev and Abigail Morrison. “CyNEST: A maintainable cython-
based interface for the NEST simulator”™. In: Frontiers in Neuroinformatics

8 (MAR Mar. 2014). 1ssn: 16625196.

https://doi.org/10.1126/science.add9330
https://doi.org/10.1038/srep18854
http://rave.ohiolink.edu/etdc/view?acc_num=case1648154057237043
http://rave.ohiolink.edu/etdc/view?acc_num=case1648154057237043

[142]

[143]

117
Lei Zhang, Tianguang Zhang, Haiyan Wu, Alexander Borst, and Kolja Khn-
lenz. “Visual flight control of a quadrotor using bioinspired motion detec-
tor”. In: International Journal of Navigation and Observation (2012). 1ssn:

16875990. por: 10.1155/2012/627079.

Baigan Zhao, Yingping Huang, Hongjian Wei, and Xing Hu. “Ego-Motion
Estimation Using Recurrent Convolutional Neural Networks through Optical
Flow Learning”. In: Electronics 2021, Vol. 10, Page 222 10 (3 Jan. 2021),
p. 222. 1ssn: 2079-9292. por: 10.3390/ELECTRONICS10030222.

https://doi.org/10.1155/2012/627079
https://doi.org/10.3390/ELECTRONICS10030222

A Dense Non=5Splking B Sparse Nen=5plking
10 B I L
E 100 .! 4 HI‘_.--"'f E 10" « ’,--"
= 3 ~ o "l
E ﬂ‘f.‘r E 107 & /
F - F
g -
& @ 107 mafmemnpnimen e
E i
11:!'2] ###### A e
10t 107 107 107 10% 102
C Dense Splking D Sparse Spldng
3 WES SR o
_ 3 — sNsToolbox ~
2 g 1oty Brian2 o~
= - 1 ——— HNenge m”
E E 100 —— ANNarchy :‘-*H
i E_ 3 —— ReakTlme 3
I DT o E— 5
w i 10 __'_____’_____._-F"'F ﬁh___ﬂ..r"
10-2 'i"\-.,—-../ RS B S = i
T T T T TTTT7T T T T T T TT1TT T T T T T T T T TT1TT T T T T TTTT7T
10t 107 107 107 10% 107
Number of Neurons Number of Neurons

Figure 3.3: Comparison of wall-clock times for SNS-Toolbox to simulate a network
for one simulation time-step over varying network sizes, using SNS-Toolbox and
three other neural simulators (Brian2 [51], Nengo [11], and ANNarchy [130]).
For the following simulators, the time data presented are chosen as the best-
performing backend variant, Brian2, standard Brian2, and the GPU-accelerated
Brian2CUDA; SNS-Toolbox, all available variants; and ANNarchy, CPU-based
compilation, and GPU-based compilation. (A,B): Networks of non-spiking neu-
rons, (C,D): networks of spiking neurons. Left: Fully-connected networks, Right:
Sparsely connected networks, following the structure described in Section 3.4.2.
Lines denote the mean over 1000 steps, shaded region denotes the area between the
fifth and ninety-fifth percentiles. The real-time limit is denoted with a horizontal
dashed black line.

Performance on Embedded Hardware

The testing procedure presented in Section 3.4.2 is again repeated, testing the
performance of SNS-Toolbox on various embedded computing platforms. These
included a Raspberry Pi Model 3B (trademark Raspberry Pi Limited, Cambridge,
UK), Jetson Nano 4GB (trademark NVIDIA Corporation, Santa Clara, CA, USA),
and an Intel NUC SWNUC11PHKi7c00 (trademark Intel Corporation, Santa Clara,
CA, USA) with 32 GB of RAM. Due to the reduced available memory available on

the Raspberry Pi and Jetson, network size is varied logarithmically from 10 to 1000

34
neurons, instead of the 105000 neurons in Sections 3.4.2 and 3.4.2. Results are
shown in Figure 3.4; for clarity, all backends are condensed for each device such that
the best performing solution at each network size is presented. The Raspberry Pi
performs comparably with a Jetson Nano, with the Jetson exhibiting slightly better
performance across all network sizes. The amount of memory available on the
Raspberry Pi is the smallest of the three devices, so it is unable to simulate densely-
connected networks over approximately 900 neurons in size. The Intel NUC is a
significantly more powerful computing platform than the Raspberry Pi or the Jetson

Nano, and accordingly behaves more closely to desktop-level performance.

A Dense Non=Spiking B Sparse Non=5piking

] =] — nuc]
_ 100 ",f" JRRET L M Jetson Nano ‘_’.-"'
= E - i 3 ——— Rpi3B e
.E,] - % 1 —- realTime -
E 1073 T E 10°3 St
F E = E -
E 1 &
i 10t g A 10'157//—/x’/

101 1 10* 10t 108 10

C Dense Spiking D Sparse Spiking

Z 10 L T 10° - -
E 3 o E 3 -
u] e o] e
Ewl S S D
e I B PR -

3 [= - n—
g 7 __—A§] A

10~ 5—._-_-_-_._“_’___/ 107! =_'_._.___.___...--"'/
T T T T T T

10! 1 10! 10t 107 1p*
Number of Neurons Number of Neurons

Figure 3.4: Comparison of wall-clock times to simulate a network for one simulation
time-step over varying network sizes, using SNS-Toolbox on three different embed-
ded computing platforms (Intel NUC, Raspberry Pi version 3b, and an NVIDIA
Jetson Nano). The time data presented are chosen as the best-performing backend
variant at each network size, with GPU-based backends excluded on the Raspberry
Pi. (A,B): Networks of non-spiking neurons, (C,D): networks of spiking neurons.
Left: Fully-connected networks, Right: Sparsely connected networks, following the
structure described in Section 3.4.2. Lines denote the mean over 1000 steps, shaded
region denotes the area between the fifth and ninety-fifth percentiles. The real-time
limit is denoted with a horizontal dashed black line.

Ajl'" B. Input Image Retina Population Lamina Popalation
T
Aneuros type = HosSpikingheurand)
Anet = Ratworkiname="¥isual Betecrk ')
Be A

Bnet . sad_population|neuron_type.shape, nemes Retina')
ABnet. s input('Reting', sizestist size sases' Image”)
Bl id BvwEtor owipur fraw e rETiee

A2 et a8d_eutput [‘Ratisa ', Aami='Reting Dutput’)

13

Me Lo
I5net.sad population|neurcn type.shape,names Lamina’)
16

We on = 1
ife_tn = -

1Mk a2 = 1 ¥

28k in = Lk

o1l ca & exel ratary ine T
:;U maK_ex = [k ex*Rlfidel g ex-k @R}

. Retina Output Lamina Cutput
g max_in = (k_inoR)/idel_e_in-k_invRp
g rax_kernel = np.arrayi||g max_in, g
7 [g_max_in)
m g rax_in, g max_im,
B A i ’ " : "
3Be kersel = npoarray[[e_tn, @ is, @_in],
|e_in, = ex, & in],
iz [#_kn, & if, &_Ln]l}
33s pat i ts a5 h: Filt
Meonnection_hpf = RonfpikingPattemConnectionig max_kersel.e kernel)
5. ¢ T to i
36 net . 5dd_connection|connection het, ‘Retisa’, Laming” , names"HPF' §
B¢ acd o F out fras The imds

3 net.add_owtput [‘Lamina ', Aame='Laglna Dutput” |
39

48 net. render_graphivles=Tree] & wise ©

Figure 3.5: Using SNS-Toolbox to design a two-layer visual processing system.
A. Python code to generate the desired network. Image preprocessing and output
plotting are omitted. B. Network visual representation. An input image is converted
to stimulus current for a population of neurons, representing the insect retina. From
the retina, a 33 kernel of inhibitory (light blue) and excitatory (purple) synapses
is applied to create a high-pass filtering effect in the next layer, representing the
L1 insect lamina neurons. C. Output of retina and lamina neurons, respectively.
Voltages are mapped to grayscale intensities.

network as 5 ms.

We assume that input images are grayscale, because the retina neurons used
within the motion vision pathway only respond to a single light color (green)[25].
Since a single Drosophila eye consists of around 800 ommatidia arranged in 32-34
columns[75], we will also design for input images which are 32x32 pixels. As an
input transformation to the retina layer, pixel values are linearly scaled from their
original 0-255 to 0-R nA.

After creating two 32x32 populations of neurons and attaching an input source,
the last step is to define the connection between the retina and the lamina. Our
lamina model only consists of L1 neurons, so each neuron has center-on surround-

off receptive field. Since each L1 cell receives input from the directly adjacent

41

A B drtheatlon -] G £ HE PP P Knesifoichs °F
10 —
—Emimimy Rhythm Generator e O N B I =14 |
P ——— o " \ \ =t1 |l 1 =6, []| \
I N AR AR NS S = NS N
3 : g .' 7 | —eet [gome] N —doem | momp] | — #ea
= 0+ | E 55 | oo E - | ';U: E - | :“-";
) | ¥ i i
i -0 _.-| |/l — |f|r’|/| s |f|r’|/|
-ad' |/ |/ L|'r s Il' ll" =0y Il' ll"
0 T T T - T T =i T T T =i T T T
—1z0 =50 M0 4500 5000 M0 4500 5000 M0 4500 5000
Meuron Fotentlsl (mvi
G Hp NN M Hnee MK 1 ansle My
] —ap — Estersor | —40 s
L1 [ppm— S L1 \ i
A TR o o=
S AN N .) T —sod Iy
— Extermer | — \ s —— Extansor
— Flewr =7 | 1 L ; T — Flesoe
| | |] 1 -] |
! —al o
|
| | | I
1l '| |I | -4 1 | 1 —ab || || I II
J e s LI e
T T T T T T T T T
4000 4500 5060 4000 4500 5000 4000 4500 5000
] Hip sngle K KEree Angle L Anile Angle
awd iR 8] it s A
\ . i | | |
8,74 Iy |
-, 2 |1 124 |/
T Eu.n- 'I i1 T L
= E [= 1
i—u& .;ﬂ.i- | | \ Il i—l-.d-l | ,I
£ —0E— .I | .' 'I f 3,4 I. 1 £ I
[. 10 =rs
= =0 \ 1}
) b ar4 W v V]
4DIW 45':-1 IDIW 4DIW 45'“1 IDIW 4DIW 45'“1 IDIW
Time (s} Tl s} Tiere (s}

Figure 3.7: SNS-Toolbox controls a musculoskeletal model of a rat hindlimb. (A):
Diagram of the neural control network. (B): Relationship between motor neu-
ron voltage and muscle activation. (C): The musculoskeletal model used in Mu-
joco [127]. (D): Neural activity from the half-center neurons in the central rhythm
generator. (E,F): Neural activity from the hip and knee/ankle pattern formation cir-
cuits. (G-I): Motor neuron activity in the motor circuits for the hip, knee, and ankle.
(J-L.): Joint angles of the hip, knee, and ankle. All recordings are shown for a period
of 1000 ms, after the model has finished initialization. Pictured are recordings from
the elements within the left leg.

calculated in the same manner as [139], with the activation sigmoid defined as

1

] (3.38)

where is the steepness of the sigmoid and is the motoneuron potential. The
exact curve is shown in Figure 3.7B.
Simulation Results

The network and mechanical model are simulated for 5000 ms, with data shown in

Figure 3.7. On each step, muscle tensions from Mujoco are first formatted as la and

61

Velocity (°/s)

Figure 4.6: Output behavior of the On (solid indigo) and Off (dashed olive) motion
detectors when subjected to a square wave, translating from 10 to 360 per second.
Target maximum velocity (180) shown with a vertical dashed line. Top: Peak
magnitude of the motion detector in the preferred direction; Botfom: Ratio between
the motion detector in the preferred direction and the null direction.

input velocity increases [82]. However, in Drosophila this decrease occurs as input

velocity is both increased and decreased from a peak velocity.

4.5.4 Directional Selectivity

Stimuli of a consistent wavelength and velocity are applied to the same network
described in Section 4.5.3 while the direction of travel is varied from 0 360 in
45 increments, with results shown in Fig. 4.7. The EMD for each cardinal direction
exhibits enhanced sensitivity to stimuli in the preferred direction, and reduced
sensitivity to the other directions. The On pathway is able to generate a finer level
of directional sensitivity than the Off pathway, due to its multiplicative window
of reduced inhibition. Further work is necessary to find a similar multiplication
mechanism for the Off pathway.

As the networks for each cardinal direction are mirrored versions of each other,

62

Onga Ong Offa Offg
90° 90° 90° 90°
135° 45° 135° 45° 135° 45° 135° 45°
0224 0294 s T
180:=—""" ° 180° CL—p° 1802 | 0° 180° | o
225° 315° 225 315° 225" 315° 225" 315°
270° 270° 270° 270°
Dﬂg OHE lefc Dﬁg
90 90 90° 90°
135° 45° 135° 45° 135° ,\ 45° 135° 45°
502 o4 0.002 o4 / o5 [~ es
180° 0° 180° O 0° 180° | " 0° 180° |) o°
'._________n' .I\\ '__.-".
225" 315° 225" 315° 225° 315° 225/ 315°
270° 270° 270° 270°

Figure 4.7: Peak response of each motion detector in the On (Left) and Off (Right)
pathways to a square wave grating with 30 and 30 . Preferred direction
of each sub-type: A: right to left; B: left to right C: bottom to top; D: top to bottom.

the resulting responses are identical except for their orientation. This is different
than the tuning found in Drosophila, where the sensitivity of each cardinal direction
is slightly different [82]. The general shape of our On and Off responses most
closely matches the behavior of the T4b and T5b neurons in the animal, consisting
of a sharp triangular point in the preferred direction and a slight bump in the null
direction, however T3b is much more similar to T4b than our Off neurons are to the

Jn neurons.

4.6 Discussion and Future Work

In this work, we implement an SNS network which is a reduced model of the
Drosophila motion vision system. The network performs optic flow measurement
at each point in the visual field, and can be tuned for different ranges of input
stimuli in a parametric manner. While some parameters are found via numerical

optimization, most are chosen by hand via analytic rules. With further optimization,

67

A

B — SMSelan {ORU)
Inpuk Image Fetina Population Lamina Populakion —— S SaTilivan [P
10% — SHETarch (TR
- — SHETrch (58U
(=19
; 10*
a
g 1=
E
10 %_ﬁ"" ——
i 2 2* 2 2¢ 27

Network Size™™

Figure 5.1: Comparison in performance between SNS-Toolbox and SNSTorch. (A)
The network to be evaluated is the same structure as section, with two populations
being connected by a convolutional synapse. (B) This network was compiled and
then run in SNS-Toolbox and SNSTorch at increasing population size.

presynaptic and postsynaptic states and applies the dynamics in eq. 5.3, with each
applying the conductance and reversal potentials based on differing connectivities.
The dense connection implements a synapse from every presynaptic neuron to every
postsynaptic neuron, the elementwise connection only connects neurons with the
same index, and the convolutional connection reuses a local pattern that is tiled

across the population.

5.4 Results

To test SNSTorch, we first compare the performance of this system with SNS-
Toolbox. We then evaluate the functionality of SNSTorch on two separate optimiza-

tion tasks.

54.1 Comparison with SNS-Toolbox

Although SNSTorch simulates some of the same dynamics as SNS-Toolbox, in-
ternally they are structured differently. SNS-Toolbox makes no assumptions about
connectivity and represents the entire network as a single recurrent population,
which lends it well to densely recurrent networks with nested feedback loops such

as those in locomotion [68]. SNSTorch on the other hand is designed in the more

A B

L

H

X samd

Cm - asd w L = -
::. — original |
o - - Leamed

= al
- Eulber Step a2 = =

Figure 5.2: Using SNSTorch for a parameter identification task. (A) We are trying
to match the behavior of a simple network of neurons, where one neuron receives
a random stimulus and excites the other neuron via an excitatory chemical synapse.
Using a ground truth model, the network learned the neural and synaptic properties
to replicate this behavior. We chose to focus on minimizing the mean-squared error
between the final state of the original and trained network. Shown in (B) is the
training loss over 1000 random stimuli, and in (C) we plot the trajectory of the
postsynaptic neuron in the original and trained networks.

conventional fashion in deep learning, where each population is represented and
evaluated individually as its own layer. While this means arbitrary connectivity is
more challenging, the payoff is in higher speed and reduced memory consumption
for large networks. To demonstrate this, we simulated the same network structure
using SNS-Toolbox and SNSTorch, running it on the CPU and GPU and varying
across large differences in network size. Results can be seen in Fig. 5.1. For small
networks, SNS-Toolbox runs faster than SNSTorch. As the network size increases,
SNSTorch quickly becomes the fastest solution (or only solution, as memory con-

sumption increases).

5.4.2 Parameter Tuning and Regression

As a toy example, we use SNSTorch for parameter tuning in a simple network
(shown in Fig. 5.2A). Two neurons are connected via a chemical synapse, and the
presynaptic neuron is stimulated with a constant input. In this task, we have two
versions of this network: one which acts as the target, and the other which must be

trained to match the target. This system has 12 parameters: , , , ,and 0 for

70
A B t t+1

|

—— RNN e
“ —— SNS
13|
(2]
10
Fu
g T =
I
w g
g 3
o
.11 & m
o
“ —— RNN Tralnlng Accuracy
- —— RMN Test Accuracy
—— SNS Tralnlng Accuracy
oo —— 5N5 Test Accuracy
o Rl - k] 4D = = a w - m\ 4 50
Epoch Epoch

Figure 5.3: Training an SNS for sequence classification. (A) We train an SNS
network to classify the row-wise sequential MNIST dataset [78], where each hand-
written digit is divided into 28 1x28 images. (B) The SNS network consists of
a single recurrent layer of non-spiking neurons, with the recurrence implemented
using chemical synapses. Training loss (C) and accuracy (D) of the SNS network
and an RNN with a similar number of parameters. Line denotes the mean across
five trials, the shaded area denotes the fifth and ninety-fifth percentiles.

when simulating large networks of neurons which could be structured based on
layers of populations. It is also primarily a tool for design, so it is not optimized for
optimizing parameters without recompiling the network. In this chapter, we present
SNSTorch as a companion software package to SNS-Toolbox. SNSTorch simulates
some of the same dynamics as SNS-Toolbox, while being able to simulate larger

networks and supporting optimization via automatic differentiation in PyTorch. We

s
m

e —u;:umd-bm] T T
E [_'Ir ““;_I:Mnnl :
F 2o I . 1 ™
e 1 |E I »
3 S I i p
5§ ' 1 i E 1
E ' [1
] ‘ I g] 1
i‘:|.|1 L : ;m-ug i
E 7" 5"]
T —h'--';"-‘._-“—_P’f.hh }
]] 1
s e A . P e
Eaduction Fecior Sbip Tima fmazl

Figure 6.5: Timing performance of image formatting and processing execution
on target hardware. A: Latency in image processing as the target image reduces
in size. Two different interpolation methods are compared, with nearest-neighbor
interpolation shown in solid blue and area interpolation shown in dashed orange. A
vertical dashed line is present at the image resolution 24x64, the scaled dimensions
used in our dataset. B: Time per simulation step of our visual motion processing
network, in seconds, as the dimensionality of the input increases. Execution on the
Jetson Orin Nano CPU are shown in dotted green, and times for the Jetson Orin
Nano GPU are shown in solid red. Dark lines correspond to the average, the shaded
area corresponds to the 5th and 95th percentiles over 1000 steps. We use a vertical
dashed line to denote the dimensionality corresponding to an input image size of
24x64 pixels. C: Detailed timing of our network with an input dimensionality of
24x64 pixels. Shown is a histogram of time per simulation step in milliseconds,
over a testing run of 10,000 steps. A black dashed vertical line denotes the 95th
percentile of the distribution. Shown in dashed green, solid orange, and solid red
would be the time per step needed for 14, 13, or 12 simulation steps per video frame.
In this work we chose to use 13 steps per frame for our simulations.

al. [93], with some adjustments to account for the use of natural images instead of
simulated square gratings. The full network is shown in Fig. 6.6. In this section
we will begin with an overview of the neural modeling techniques employed, and
then will examine the design of each individual network section, emphasizing the
changes made in this work. The network and all remaining support code can be
found at https://github.com/wnourse()5/FlyWheelBaseline-LivingMachines2(024.

6.5.1 Neural Modeling

We choose to implement our motion-vision processing network as a Synthetic

Nervous System (SNS) of non-spiking leaky integrator neurons, where the neural

Lobula Plate

(—@ Inhibitory |
—q Excitatory
—0 Modulatory

Figure 6.6: Visual motion processing network used in this work, inspired by the
anatomy of Drosophila melanogaster and adapted from [93]. Visual stimuli are
encoded into a neural representation in the retina. They are then spatiotemporally
filtered in the lamina, and temporally filtered again in the medulla. The lobula
combines the neural activity in the medulla into estimates of motion at each pixel,
and these estimates are summed across the entire visual field to generate a global
estimate of motion in the lobula plate.

state is updated as
(6.1)

where is the neural time constant, is any external input, and is a constant bias

term. is the synaptic input from any presynaptic neurons in the network,

(6.2)

with denoting a presynaptic neuron, and denoting the synaptic reversal

potential. Throughout the network, we design for neurons to communicate when

36

Talplrg &
ALY , :
T . . \
s . H .
=EEEEERERE BEEEEEEE
aEEEEEEEER NN
I L f :
L] “
=haLs
i L] P [
L4 J———
—=
am
au
Wi W""—‘H____,— e _———fﬂ__"‘ﬂ-...____/f
e . ——
—a1n T = — - — =
?-ouu
T
rn
s 1 H-lLaI.r-h [[

Figure 6.8: Performance of the simple motion vision processing network on the
video clips in the test portion of the FlyWheel dataset. (A) Scatterplot of average
neuron state for the clockwise and counter-clockwise neurons for each image se-
quence. B. Curves denote the mean neural response of all trials at each velocity,
shaded area represents the 5th and 95th percentiles. All data is normalized to the
maximum of the 95th percentile across all velocities.

6.5.7 Lobula Plate

In the final layer, we extend the network presented in Chapter 4 to include an
approximation of the circuitry present in the Drosophila melanogaster lobula plate.
We add two horizontal sensitive neurons, and , one corresponding to
counter-clockwise rotation and the other to clockwise rotation. These neurons
receive synaptic input from every motion detector neuron in the lobula, with the
counter-clockwise sensitive detectors exciting and inhibiting . and the
inverse case for clockwise sensitive detectors [13]. These neurons have a time
constant of , and the synapses are tuned using eq. 6.5 such that the sum of all

the synaptic gains is one.

	List of Tables
	List of Figures
	Acknowledgements
	Abstract
	Introduction
	Background
	Synthetic Nervous Systems
	Neural Simulation Software
	Visual Motion Processing
	Drosophila melanogaster
	Algorithmic Solutions

	SNS-Toolbox: An Open Source Tool for Designing Synthetic Nervous Systems
	Abstract
	Introduction
	Materials and Methods
	Neural Models
	Connection Models
	Inputs and Outputs
	Software Design and Workflow

	Results
	Specifications
	Performance Benchmarking
	Basic Demonstration
	Mobile Robot Control
	Musculoskeletal Dynamics

	Discussion

	A Synthetic Nervous System for On and Off Motion Detection Inspired by the Drosophila melanogaster Optic Lobe
	Abstract
	Introduction
	Network Components
	Neural and Synaptic Models
	Neural Filters

	Network Design
	Input Processing
	Initial Filter Stage
	Motion Detectors

	Results
	Simulation Setup
	Individual EMD Stimulation
	Velocity Response
	Directional Selectivity

	Discussion and Future Work

	SNSTorch: Simulation of Large-Scale Synthetic Nervous Systems
	Abstract
	Introduction
	Methods
	Neural Dynamics
	Synaptic Connections

	Results
	Comparison with SNS-Toolbox
	Parameter Tuning and Regression
	Sequential Classification

	Discussion and Future Work

	FlyWheel: A Mobile Robot for Testing Models of Fly Motion Control
	Abstract
	Introduction
	Robot Design
	Central Computation
	Wheeled Base
	Visual Input

	Motion Vision Dataset
	Motion Processing Network
	Neural Modeling
	General Network Properties
	Retina
	Lamina
	Medulla
	Lobula
	Lobula Plate

	Results
	Discussion

	Conclusion and Future Work
	Summary
	Impact and Future Work

	Data Availability
	Projects Using SNS-Toolbox
	Bibliography

