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ABSTRACT
Vector mosquitoes are well-adapted to habitats in urban areas, including belowground infrastructure such as stormwater sys-
tems. As a major source of larval habitat in population centers, control of larval populations in stormwater catch basins is an 
important tool for control of vector-borne disease. Larval development and adult phenotypes driving vectorial capacity in mos-
quitoes are modulated by the larval gut microbiota, which is recruited from the aquatic environment in which larvae develop. 
Laboratory studies have quantified microbe-mediated impacts on individual mosquito phenotypes, but more work is needed to 
characterise how microbiota variation shapes population-level outcomes. Here, we evaluated the relationship between habitat 
microbiota variation and mosquito population dynamics by simultaneously characterising microbiota diversity, water quality, 
and mosquito productivity in a network of stormwater catch basins in the Chicago metropolitan area. High throughput sequenc-
ing of 16S rRNA gene amplicons from water samples collected from 60 basins over an entire mosquito breeding season detected 
highly diverse bacterial communities that varied with measures of water quality and over time. In situ measurements of mos-
quito abundance in the same basins further varied by microbiota composition and the relative abundance of specific bacterial 
taxa. Altogether, these results illustrate the importance of habitat microbiota in shaping ecological processes that affect mosquito 
populations. They also lay the foundation for future studies to characterise the mechanisms by which specific bacterial taxa im-
pact individual and population-level phenotypes related to mosquito vectorial capacity.

1   |   Introduction

Mosquito-transmitted diseases are a major cause of mortality 
and morbidity worldwide, with up to 700 million people infected 
each year (Caraballo and King  2014). Viruses transmitted by 
mosquitoes include Dengue, Yellow Fever, Zika, and West Nile 
Virus, and these all rely on a bite from an infected mosquito for 
transmission to a new host. Before they reach the biting adult 
stage, all mosquitoes begin their life cycle as eggs laid in water. 

Larvae hatch and moult through four aquatic instars, feeding 
on detritus and environmental microbes (Merritt, Dadd, and 
Walker  1992; Clements and Clements  2008) before pupating 
and emerging from the water's surface. Larvae utilise a wide 
range of habitats, including wetlands, pools, tree holes, and ar-
tificial containers such as water tanks and discarded tires (Yee 
et al. 2012). However, most widespread vector species, such as 
Aedes aegypti and Culex pipiens, have a particular affinity for 
container habitats. A great deal of attention has therefore been 
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given to examining aboveground container habitats for their 
characteristics relating to mosquito productivity (Leisnham 
et al. 2007; Noori, Lockaby, and Kalin 2015; Karki et al. 2016; 
Omolade 2018; Reinhold, Lazzari, and Lahondère 2018; Hessou-
Djossou et al. 2022).

In urban environments, mosquitoes also take advantage of 
larval habitat in belowground infrastructure, and a growing 
body of literature supports a role for belowground habitats as 
important niches in the shifting global distribution of mosquito 
species (Haba and McBride 2022). Compared to conditions out-
side, belowground habitats maintain less extreme temperature 
ranges and stay warmer during the winter (Arsenault-Benoit, 
Greene, and Fritz 2021). In this way, the sheltered environments 
provided by underground structures can sustain local mosquito 
populations through dry or cold periods when conditions on the 
surface are less favourable and/or serve as reservoirs for species 
expanding into areas with surface temperatures outside of their 
normal range (Harbison, Metzger, and Hu  2011; Arsenault-
Benoit, Greene, and Fritz 2021). Such habitats further support 
stable populations of belowground-adapted ecotypes (Haba and 
McBride 2022) and may even confer an advantage to invading 
species that are more common in belowground habitat than na-
tive species (Metzger, Harbison, and Hu 2011).

A key belowground structure supporting mosquitoes is storm-
water catch basins (Calhoun et  al.  2007; Manrique-Saide 
et  al.  2013; Arana-Guardia et  al.  2014; Hamer et  al.  2014; 
Harbison et  al.  2014; Ocampo et  al.  2014; Gao et  al.  2018; 
Valdelfener et al. 2019). Stormwater systems carry runoff water 
from roads and other impervious surfaces to outflows to a body 
of water. Catch basins collect the water into sumps, from which 
excess water flows into mains that lead to discharge points. In 
addition to the water necessary for oviposition (i.e., egg-laying), 
basins also retain debris and sediment, and this organic matter 
provides forage for both mosquito larvae and the bacteria that 
larvae eat. Additional nutrients and microbes are also assem-
bled to catch basins from the various origins of runoff water 
(McLellan, Fisher, and Newton 2015) or, in municipalities with 
combined stormwater and sewer systems, from sewage lines 
during periods of high flow. However, the assembly and diver-
sity of catch basin-associated microbial communities and how 
they associate with different basin characteristics and mosquito 
productivity are unknown. The potential for basin-associated 
microbiota to shape the efficacy of larvicide-based mosquito 
control, which is commonly employed by urban municipalities 
to reduce mosquito populations in catch basins and the sur-
rounding environment, is also largely unexplored.

The microbiota associated with different larval habitats have 
been demonstrated to have profound impacts on mosquito bi-
ology (reviewed in Cansado-Utrilla et  al.  2021). Habitat mi-
crobiota, in addition to serving as a primary food resource for 
developing larvae (Cansado-Utrilla et  al.  2021), are the source 
of the larval gut microbiota (Cansado-Utrilla et al. 2021), which 
provision photosensitive B vitamins and other metabolic prod-
ucts that affect larval growth and consequently the size and 
quality of emerging adults (Valzania et  al.  2018; Wang, Eum 
et  al.  2021). Habitat microbiota derived via transstadial trans-
mission from the larval stage and/or feeding from the water's 
surface after emergence are also a strong determinant of the 

adult gut microbiota, which modulate adult traits related to 
pathogen transmission (Cansado-Utrilla et  al.  2021). There is 
therefore a growing interest in improving our understanding of 
how microbiota variation shapes individual and population fit-
ness outcomes in mosquitoes. However, almost all studies to date 
have focused on studying phenotypes in individuals colonised 
by only one or several lab-derived microbial isolates that are not 
representative of the taxonomic or functional diversity of micro-
biota present in the field (Cansado-Utrilla et al. 2021).

Here, we evaluated the relationship between habitat microbiota 
variation and mosquito population dynamics—including the 
success of mosquito control treatments designed to interfere 
with larval development to the adult stage—by simultaneously 
characterising microbiota diversity, water quality, treatment out-
comes, and overall mosquito productivity in a network of public 
health-monitored stormwater catch basins in the Chicago met-
ropolitan area. 16S rRNA gene amplicon sequencing was used 
to characterise bacterial communities in basins at eight time 
points throughout a single mosquito breeding season. Models 
were then employed to identify associations between patterns of 
microbiota assembly and community composition and weekly 
in situ measurements of water quality and mosquito abundance 
in the same basins.

2   |   Materials and Methods

2.1   |   Environmental Variables, Larval Abundance, 
and Microbiota Sampling

Sixty catch basins were monitored weekly during an entire mos-
quito season (June–September 2021) in the jurisdiction of the 
Northwest Mosquito Abatement District in Wheeling, IL, in 
the Chicago metropolitan area (Figure 1 and Table S1). Thirty 
of the monitored basins are in combined sewer systems, and 
the remaining 30 are in separated sewer systems. Basins were 
assigned to flow groups based on connectivity of the storm 
sewer mains each basin flows into, as assessed by the Village 
of Arlington Heights using the GIS Water Utility Tool. Basin 
water conditions (pH, temperature, conductivity, dissolved oxy-
gen, salinity) were measured using a Horiba U-10 water quality 
checker. Rainfall measurements were obtained from the NOAA 
National Environmental Satellite, Data, and Information Service 
station at Chicago O'Hare International Airport (41.9602°N, 
−87.9316°W), 13 km away from the study area.

Basins were treated with Altosid extended release 150-day 
briquets (Wellmark International, Schaumburg, IL, USA) con-
taining methoprene, an insect growth inhibitor that limits pop-
ulations by preventing larvae from developing to later stages 
and emerging as adults. Basins were treated once for the sea-
son between 6/7 and 6/24. Treatment outcomes in each basin 
were subsequently monitored weekly by dip sampling as de-
scribed in (Harbison et al. 2019). If late instar larvae or pupae 
were not present, the basin treatment was automatically scored 
as a “pass”. Late instar larvae or pupae present in basins during 
the monitoring period may indicate unsuccessful treatment or 
movement from a different location after reaching the observed 
developmental stage. To test treatment efficacy in these basins, 
water and at least 10 larvae/pupae were sampled and monitored 
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in the lab at 22°C for 4 days. Treatment was scored as a “pass” 
if adults did not emerge from the basin sample and scored as a 
“fail” if any adults emerged.

The occurrence and abundance of pupae in each basin was 
monitored with two dips of a standard 350 mL dipper. We 
chose to focus on the presence and abundance of pupae as 
the closest indicator of overall productivity for three reasons. 
First, the abundance of pupae in catch basins has previously 
been shown to be associated with adult abundance (Harbison 
et al. 2014). Second, since many larvae do not survive to the 
pupal and/or adult stage due to competition, larval abundance 
at a particular source is not reflective of the adults that will 
be produced. Third, the basins in our study area were treated 
with methoprene, which as previously mentioned controls 
mosquito populations by preventing larvae from developing to 
the pupal and/or adult stage. Because methoprene-affected lar-
vae remain in the habitat but do not continue development, the 
number of larvae does not reflect the number of viable adults 

that will develop from said pool of larvae. In contrast, individ-
uals that are not impacted by treatment are able to develop to 
pupal and adult stages; thus, pupal (but not larval) abundance 
in aquatic habitat more directly reflects adult abundance in 
the surrounding area.

2.2   |   Microbiota Sample Preparation 
and Sequencing

Basin-associated microbiota were isolated from 50 mL of water 
collected in sterile 50 mL centrifuge tubes dipped into the 
basin. The middle of the water column was sampled because 
these are the communities the resident larvae, predominantly 
Culex spp., are most exposed to as they filter feed (Merritt, 
Dadd, and Walker  1992). A total of 240 water samples from 
20 separated and 22 combined basins were processed for mi-
crobiota sequencing: 204 collected from 39 to 42 basins on 
each of five sampling dates (6/11, 6/25, 8/6, 8/27, 9/17), and 36 

FIGURE 1    |    Locations of collection sites and overall study design. (A) Sixty catch basins were monitored weekly throughout an entire mosquito 
breeding season (June-September 2021) in the jurisdiction of the Northwest Mosquito Abatement District in Wheeling, IL USA, in the Chicago met-
ropolitan area. (B) Thirty of the monitored basins are in combined sewer systems, and the remaining 30 are in separated sewer systems. “Combined” 
sewer basins collect stormwater runoff and sewage water (wastewater) in a shared system, while “Separated” sewer basins carry surface run-off 
and wastewater separately. Flow group indicates the type of connection of the storm sewer mains each basin flows into, as assessed by the Village 
of Arlington Heights using the GIS Water Utility Tool. Symbols are coloured by flow group (Donald-Banta, red; Gibbons, yellow; Mayfair-Carlyle, 
green; Miner-Evanston-Rammer, blue; Stratford, pink). Basin type is designated by symbol shape (“Combined”, circles; “Separated”, triangles). (C) 
Basins were visited on a total of 18 sampling dates—one prior to the start of the mosquito breeding season (4/15) and at ~7-day intervals thereafter 
from 6/4 through 9/24. At the beginning of the season (between 6/7-6/24), most basins (= 59/60) were also visited to apply a briquet formulation of 
the insect growth inhibitor methoprene to control mosquito populations. Basin water conditions (pH, temperature, conductivity, dissolved oxygen, 
salinity), as well as the occurrence and abundance of any mosquito pupae, were measured on all sampling dates, while water was collected from 
methoprene-treated basins on only a subset of sampling dates (occurring between 6/11-9/24) to assess treatment efficacy via standard laboratory 
assays (see “Materials and Methods”). Water was also collected for 16S rRNA gene amplicon sequencing to characterise bacterial communities in 
all basins (both methoprene-treated and untreated) on eight sampling dates before and throughout the season (4/15, 6/11, 6/25, 7/9, 7/23, 8/6, 8/27, 
9/17). Figure created with BioRender.com.
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collected from a subset of 12 basins on each of three additional 
sampling dates (4/15, 7/9, 7/23) (Figure  1; Table  S2). A pre-
season sampling date (4/15) was included to provide a base-
line characterisation of bacterial communities present in the 
network of catch basins prior to any influence of mosquitoes, 
and to capture baseline measures of environmental variables 
(described above) (Figure 1).

To pellet cells, water samples were centrifuged at high speed 
(21,130 × g) for 20 min. Total genomic DNA was then isolated 
from each cell pellet using a Qiagen DNeasy Blood & Tissue 
Kit (Qiagen, Germantown, MD, USA) following the manufac-
turer's protocol for purification of total DNA from animal tis-
sues, with pre-treatment for Gram-positive bacteria and a final 
elution volume of 40 mL. DNA concentrations were quantified 
using a Quantus fluorometer (Promega, Madison, WI, USA) 
prior to storage at −20°C. Negative controls for DNA extraction 
followed the same protocol using only extraction reagents.

The V4 region of the bacterial 16S rRNA gene was amplified 
using a one-step PCR protocol from (Kozich et  al.  2013) with 
25 mL reactions containing ~10 ng of template DNA, 12.5 mL of 
2X HotStart ReadyMix (KAPA Biosystems, Wilmington, MA, 
USA), and 5 pmol of each primer, and the following cycling 
conditions: 95°C for 3 min; 25 cycles of 95°C for 30 s, 55°C for 
30 s, and 72°C for 30 s; and 72°C for 5 min. PCR reactions with-
out the addition of DNA served as negative controls. PCR am-
plification was confirmed by visualising 5 μL of each product 
on 1% agarose gels prior to purification using a MagJET NGS 
Cleanup and Size Selection Kit (Thermo Scientific, Waltham, 
MA, USA). Concentrations of purified libraries were quantified 
using a Quantus fluorometer and the resulting purified libraries 
were pooled in equimolar amounts prior to paired-end sequenc-
ing (2 × 250 bp) on an Illumina MiSeq at the DNA Sequencing 
Facility at the University of Wisconsin-Madison.

2.3   |   Analysis of 16S rRNA Gene Amplicon 
Sequences

Demultiplexed sequences were processed using DADA2 
(Callahan et al. 2016) in QIIME 22021.2 (Bolyen et al. 2019) and 
default parameters to filter for quality, merge paired end reads 
and remove chimeras. Taxonomy was assigned at a percent iden-
tity cut-off of 98% using TaxAss (Rohwer et al. 2018), which as-
signs taxonomy from an aquatic-specific bacterial database and 
Silva (v138) (Quast et al. 2012). The following ASVs and samples 
were then filtered from the dataset: (i) ASVs flagged as likely 
contaminants following both prevalence and frequency-based 
procedures in the R package “decontam” (Davis et al. 2018), (ii) 
ASVs classified as Archaea, chloroplasts, or mitochondria, and 
(iii) samples with fewer than 1000 reads. After denoising, read 
merging, and filtering, a total of 9,463,114 reads from 19,840 
ASVs in 233 samples were retained. A phylogenetic tree was 
then built using FastTree (Price, Dehal, and Arkin 2009) from 
a multiple sequence alignment made in MAFFT (Katoh and 
Standley  2013), and the ASV table, taxonomy, and phylogeny 
outputs from QIIME, along with all sample metadata, were 
finally imported into R (http://​www.​r-​proje​ct.​org/​) using the 
package “phyloseq” (McMurdie and Holmes  2013) for down-
stream analyses.

Estimates of alpha diversity (measured as ASV richness and 
Shannon's H index) were calculated in “vegan” (Oksanen 
et  al.  2020), while beta diversity (measured as the Euclidean 
distances between samples in PhILR transformed space) was 
calculated using the R package “philr” (Silverman et al. 2017). 
The significance of sample clustering by sampling date, fixed 
basin characteristics (basin type, flow group), and differ-
ent water quality and mosquito productivity measures (tem-
perature, pH, salinity, conductivity, dissolved oxygen, pupal 
occurrence/abundance) was analysed by permutational multi-
variate analysis of variance (PERMANOVA) or permutational 
distance-based redundancy analysis (dbRDA) with basin iden-
tifier as a blocking factor, using the vegan function adonis(). 
Permutational analyses with fixed basin characteristics were 
performed using data aggregated by basin (i.e., reads summed 
over the entire season for each basin), while analyses with 
water quality and mosquito productivity measures used com-
munity composition from each basin observation without ag-
gregation. The instance of variance-driven significant results 
was then assessed using PERMDISP (permutational analysis of 
multivariate dispersions) using the vegan function betadisper(). 
Bacterial community biotypes were identified by PAM cluster-
ing using the R package “BiotypeR” (Arumugam et al. 2011). 
Decision trees were constructed using the R package “tree” 
(Ripley 2022). Taxa associated with fixed basin characteristics 
(basin type, flow group) and different water quality and mos-
quito productivity measures were identified using Wilcoxon 
Rank Sum tests implemented using the R package “ALDEx2” 
(Fernandes et al. 2013).

2.4   |   Model Estimation

Simple linear regression models were used to identify rela-
tionships between microbiota diversity, water quality, and 
mosquito productivity using (i) data aggregated by basin (i.e., 
measures averaged over the entire season for each basin), (ii) 
data aggregated by sampling date (i.e., measures averaged 
across basins for each sampling date), or (ii) unaggregated 
data including all individual observations of basins. Linear 
mixed-effects models were used to identify relationships be-
tween microbiota diversity, water quality, and mosquito pro-
ductivity using (i) unaggregated data with basin observations, 
or (ii) unaggregated data with observations only included 
from basin visits where pupae were present. Exchangeable 
autocorrelation structures were used to account for autocor-
relation between samples taken at different times from the 
same basin, while maximising use of the available data. For 
models including water quality and mosquito productivity 
measures, the resulting datasets included up to 18 weeks of 
monitoring records from up to 60 basins. For models includ-
ing microbiota diversity and mosquito productivity measures, 
the resulting datasets included up to eight microbiota samples 
from 42 basins. Linear regressions were fit using base R, while 
linear mixed-effects models were fit using R packages “nlme” 
(Pinheiro et al. 2022), “lme4” (Bates et al. 2015), and “lmerT-
est” (Kuznetsova, Brockhoff, and Christensen 2017). ANOVA 
tables from a subset of linear and linear mixed-effects models 
were generated using the base R function anova(), with asso-
ciated statistics reported as results from one-way or repeated 
measures ANOVAs, respectively. No spatial autocorrelation 
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was detected for any of the response variables we examined 
(Table S3).

2.5   |   Other Statistical Analyses

One-way analysis of variance (ANOVA) was used to compare 
aggregated measures of microbiota diversity and mosquito pro-
ductivity across sampling dates and basins assigned to differ-
ent basin types (combined versus separated) and flow groups 
(Donald-Banta, Gibbons, Mayfair-Carlyle, Miner-Evanston-
Rammer, Stratford). Logistic regression (implemented using the 
lme4 function glmer() and the base R function glm()) was used 
to model the relationship between basin type and biotype as-
signment across all individual basin observations. Relationships 
between different mosquito productivity measures were esti-
mated via Pearson correlations.

3   |   Results

3.1   |   Mosquito Productivity Is Shaped by Water 
Quality

Pupae were detected in the vast majority (59/60) of the catch 
basins we monitored, although both the occurrence and abun-
dance of pupae among basins fluctuated throughout the sea-
son (Figure S1 and Table  S1). Basins with high average pupal 
abundance were those that had the highest frequency of pupae 
over time (Pearson's correlation; r = 0.79, p < 0.0001) (Table S1). 
Over the course of the season, peaks in pupal abundance gen-
erally corresponded to when pupae were widespread among 
basins (Figure S1; Table S1). Pupal abundances were also gen-
erally higher later in the season (repeated measures ANOVA; 
F1,913 = 5.53, p = 0.019) (Table S1).

Fixed basin characteristics (basin type, flow group) did not 
determine mosquito productivity. In both combined and sep-
arated basins, larvae were present during less than 50% of the 
season and both the season-wide frequency and abundance of 
pupae did not significantly differ between basins as a function 
of basin type (one-way ANOVA; pupal occurrence: F1,58 = 2.91, 
p > 0.05, pupal abundance: F1,58 = 0.56, p > 0.05) or flow group 
(one-way ANOVA; pupal occurrence: F4,55 = 0.73, p > 0.05, 
pupal abundance: F4,55 = 0.30, p > 0.05) (Figure  S2A,B and 
Table  S1). Combined and separated basins further had sim-
ilar changes in productivity through time (Figure  S2C and 
Table S1).

How frequently pupae appeared in a given basin over the en-
tire season correlated with pH and conductivity, with more 
pupae present in more acidic basins and basins with higher 
measures of conductivity (Tables  1A and S1). Seasonal dy-
namics in the occurrence and abundance of pupae across all 
basins over time were further predicted by measures of dis-
solved oxygen, conductivity, and salinity (Tables 1B and S1). 
Among individual basin observations where pupae were pres-
ent, pupal abundance was also greater at higher conductivity 
(Table 1C and S1).

3.2   |   Methoprene Treatment Reduces Mosquito 
Productivity

As expected, treatment success predicted area-wide and 
season-wide mosquito productivity (Table  S4) and most ob-
servations with pupae present were when treatment failed 
(Table  S1). However, pupae still appeared in some basins 
scored as successfully treated based on laboratory assays, 
with pupae present in 89 of the 496 successfully treated ob-
servations (227 of the 293 observations of treatment failure 
had pupae present) (Table S1). While season-wide treatment 
success did not differ between combined and separated basins 
(one-way ANOVA; F1,57 = 2.12, p > 0.05) or among basin flow 
groups (one-way ANOVA; F4,54 = 1.05, p > 0.05) (Table S1), the 
season-wide success rate of treatment in individual basins 
was predicted by pH, with basins with higher average pH val-
ues associated with higher treatment success rates (Tables S1 
and S5).

3.3   |   Catch Basin Microbiota Are Highly Diverse, 
and Cluster Into Early- and Late-Season Biotypes

Bacterial 16S rRNA gene amplicon sequences from catch basins 
represented 19,840 ASVs from 1515 genera, 728 families, and 
59 phyla. The most abundant phyla in the catch basins included 
those that have previously been reported in natural aquatic envi-
ronments harbouring mosquito larvae, such as Proteobacteria, 
Cyanobacteria, Bacteroidota, Verrucomicrobia, Actinobacteria, 
and Firmicutes (Coon, Brown, and Strand 2016). Among these, 
Proteobacteria, Bacteroidota, Actinobacteria, and Firmicutes 
are also common in wastewater sludge (McLellan et al. 2010) 
and have been found to be dominant in other stormwater sys-
tems (Lee et al. 2020). Other abundant phyla in the catch basins 
included Campilobacterota, members of which are commonly 
detected in sewage (Domínguez et  al.  2021), Spirochaetota, 
members of which have previously been detected in mosquito 
larvae (Scolari et al. 2021), and Desulfobacterota, members of 
which are widespread across freshwater and terrestrial systems 
(Murphy et  al.  2021). Proteobacteria was the most dominant 
phylum across all basins and sampling dates and was the most 
abundant phylum in 91.85% of basin water samples (Figure 2A 
and Table S2), consistent with previous studies of catch basin 
microbiota (Zaheer et al. 2019). Other phyla that dominated in-
dividual basin samples included Campilobacterota (most abun-
dant in 3.43% of samples), Firmicutes (2.58%), and Bacteroidota 
(2.15%) (Figure  2A and Table  S2). The most dominant genera 
were C39 (family Rhodocyclaceae; most abundant genus in 
33.05% of samples), betI-A (order Burkholderiales; 10.30%), 
Pseudarcobacter (family Arcobacteraceae; 9.87%), and betVII-A 
(order Burkholderiales; 9.44%) (Figure 2B and Table S2).

Early-season basin microbiota were characterised by high di-
versity, with rare genera (< 1% relative abundance) account-
ing for an average of 53.18% relative abundance in aggregate 
per sample (Table  S2). Late-season communities contained 
high relative abundances of genus C39, which accounted for 
up to 96.94% relative abundance per sample (Figure 2C,D and 
Table S2).

 1365294x, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17614 by U
niversity O

f W
isconsin - M

adison, W
iley O

nline Library on [12/08/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



6 of 17 Molecular Ecology, 2025

Catch basin microbiota grouped into two biotypes based on 
PAM clustering using PhILR community distances calcu-
lated at the ASV level (hereafter referred to as “Biotype A” 
and “Biotype B”) (Table  S2). Early-season basins had a dis-
tinct community type, while late-season basins tended to have 
a different community type but occasionally reverted to the 
early season community structure (Table S2). All 89 samples 
from the 4/15, 6/11, and 6/25 sampling dates were categorised 
as Biotype A, while samples from 7/9 and later were 77.08% 

Biotype B and 22.92% Biotype A (Table  S2). Sample micro-
biota categorised as Biotype A were characterised by higher 
overall diversity, with on average 47.31% relative abundance 
accounted for by rare genera (< 1% relative abundance), and 
a higher relative abundance of taxa within the Firmicutes 
as compared to those categorised as Biotype B (Figure  3; 
Table  S2). In contrast, sample microbiota categorised as 
Biotype B′ were characterised by higher relative abundances 
of the genus C39 as compared to those categorised as Biotype 

TABLE 1    |    Effects of water quality on mosquito productivity.

Outcome Predictor Estimate
Standard 

error p value

(A) Linear regression analyses with data aggregated by basin

Pupal occurrence (presence/absence) pH −0.16 0.05 0.0052*

Temperature −0.00 0.03 0.99

Conductivity 0.12 0.12 0.31

Dissolved oxygen −0.03 0.10 0.78

Salinity 1.16 1.46 0.43

Pupal abundance (pupae per dip) pH −1.68 0.67 0.015*

Temperature −0.08 0.34 0.82

Conductivity 3.51 1.40 0.015*

Dissolved oxygen −0.45 1.20 0.71

Salinity 29.43 17.40 0.096

(B) Linear regression analyses with data aggregated by sampling date

Pupal occurrence (presence/absence) pH 0.21 0.17 0.23

Temperature −0.03 0.03 0.38

Conductivity 0.35 0.25 0.18

Dissolved oxygen 1.65 0.76 0.046*

Salinity 1.33 2.49 0.60

Rainfall −0.15 0.17 0.39

Pupal abundance (pupae per dip) pH 1.22 1.43 0.41

Temperature −0.35 0.24 0.17

Conductivity 6.47 1.38 0.00029*

Dissolved oxygen 16.80 5.71 0.010*

Salinity 60.38 13.73 0.00052*

Rainfall −0.71 1.41 0.62

(C) Linear mixed-effects models with unaggregated data (observations only where pupae were present)

Pupal abundance (pupae per dip, square-root 
transformed)

pH −0.01 0.11 0.94

Temperature −0.04 0.04 0.25

Conductivity 0.70 0.16 < 0.0001*

Dissolved oxygen 0.11 0.20 0.57

Salinity 1.16 1.11 0.30

*p value significant at the ≤ 0.05 level.
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A (Figure 3 and Table S2). Classification tree analysis further 
revealed that microbiota biotype assignment was driven pri-
marily by sampling date, followed by dissolved oxygen and 
pH (Figure S3 and Table S2). Late-season samples largely fell 
into Biotype B, unless dissolved oxygen levels were greater 

than 0.74 mg/L or dissolved oxygen was below 0.74 mg/L and 
pH was less than 6.115 (Figure S3 and Table S2). Basin type 
did not affect biotype assignment, as most basins switched 
between biotypes at some point in the season (binomial glm; 
estimate = −0.10, p > 0.05) (Table S2).

FIGURE 2    |    Bacterial diversity in water sampled from study catch basins. (A) Relative abundance of bacterial phyla. Each bar presents the pro-
portion of sequencing reads assigned to a given bacterial phylum. Low abundance phyla (< 1%) are represented by the “Other” category. (B) Relative 
abundance of bacterial genera. Each bar presents the proportion of sequencing reads assigned to a given bacterial genus. Low abundance genera 
(< 3%) are represented by the “Other” category. Water libraries for each basin were pooled to produce the bar graphs in (A) and (B). Panels (C) and (D) 
present the same data pooled by sampling date. Basin IDs and sampling dates (x-axes) follow those provided in Tables S1 and S2.
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3.3.1   |   Basin Conditions Predict Both Alpha and Beta 
Diversity of Associated Microbial Communities

Alpha diversity in basins (as measured by Shannon's H index) 
differed among sampling dates (repeated measures ANOVA; 
F7,49 = 11.88, p < 0.0001), with diversity increasing from the be-
ginning of the season until 6/25, and late-season diversity being 
lower on average than at the beginning of the season (Figure S4 
and Table S2). Certain water quality metrics (pH and conduc-
tivity) also significantly predicted Shannon index values among 
individual basin observations (Table S2 and Table S6). In con-
trast, both separated and combined basins, as well as basins 
assigned to different flow groups, harboured bacterial commu-
nities characterised by Shannon index values that varied some-
what unpredictably but were overall statistically similar to one 
another over the season (repeated measures ANOVA; by basin 
type: F1,6 = 0.74, p > 0.05; by flow group: F4,3 = 0.99, p > 0.05) 
(Figure S4; Table S2).

With respect to inter-basin beta diversity, early season sam-
pling dates (April–June) and late season sampling dates (July–
September) exhibited different dynamics, with early-season 
samples clustering more strongly by date than late-season 
samples (Figure S5). Climatic conditions likely contributed to 
the community shift mid-season. Air and water temperatures 

increased steadily until 6/18, after which temperatures fluc-
tuated through the rest of the season (Figure  S6). A June 
sampling date (6/25) was the highest rainfall day of the sea-
son (Figure  S6), and this heavy rainfall event likely flushed 
away any accumulated sediment or nutrients that supported 
the existing bacterial community. Biotic drivers of the early-
season assemblage would have also been flushed away, initiat-
ing a new process of succession and the assembly of divergent 
communities.

Community composition also varied by environmental variables 
and basin characteristics. Community beta diversity differed sig-
nificantly by sampling date, temperature, conductivity, and salin-
ity, as indicated by PERMANOVA and dbRDA tests using PhILR 
Euclidean distances as a measure of beta diversity and basin identi-
fier as a blocking variable to account for correlation of community 
composition between samples collected from the same basin over 
time (Table 2A and Table S7). Fixed basin characteristics also dif-
ferentiated basin communities aggregated across the whole season, 
with communities differing between combined and separated ba-
sins but not among flow groups (Table 2B and Table S7). Combined 
basins were enriched in Campilobacterota compared to separated 
basins (Figures 2A and 4), reflecting a greater presence of human 
gut-associated bacteria where sewer systems are connected. In con-
trast, separated basins were enriched in Patescibacteria, members 

FIGURE 3    |    Catch basin microbiota biotypes identified by PAM clustering. (A) Relative abundance of bacterial phyla in sample microbiota cate-
gorised as Biotype A versus Biotype B. Each bar presents the proportion of sequencing reads assigned to a given bacterial phylum. Low abundance 
phyla (< 1%) are represented by the "Other" category. (B) Relative abundance of bacterial genera in sample microbiota categorized as Biotype A versus 
Biotype B. Each bar presents the proportion of sequencing reads assigned to a given bacterial genus. Low abundance genera (< 1%) are represented 
by the "Other" category. Samples were pooled by biotype to produce the bar graphs in Panels A & B, irrespective of basin type of sampling date. (C, 
D) Alpha diversity in sample microbiota categorized as Biotype A versus Biotype B as measured by ASV richness (C) and Shannon's H index (D). 
Box-and-whisker plots show high, low and median values, with lower and upper edges of each box denoting first and third quartiles, respecitvely. 
Asterisks (***) indicate significant differences between biotypes (repeated measures ANOVA; ASV richness: F1,190 = 33.00, p < 0.0001, Shannon's H 
index: F1,190 = 43.30, p < 0.0001). (E, F) Relative abundance of bacterial taxa principally responsible for the separation of biotypes. Box-and-whisker 
plots show high, low and median values, with lower and upper edges of each box denoting first and third quartiles, respectively. Asterisks (***) in-
dicate significant differences between biotypes (repeated measures ANOVA; C39: F1,190 = 45.58, p < 0.0001, Firmicutes: F1,190 = 42.00, p < 0.0001).
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of which are commonly detected in groundwater and lake envi-
ronments (Herrmann et  al.  2019; Tian et  al.  2020) and, in this 
system, were also associated with basins with high pH (Figure 4). 
Basins with low dissolved oxygen measures were enriched in 
Gemmatimonadota and Myxococcota (Figure 4). Several common 
lake phyla were overrepresented in low-pH and low-conductivity 
basins, including Acidobacteria, Bacteroidota, Bdellovibrionota, 
Campilobacterota, Chloroflexi, Desulfobacterota, Fibrobacterota, 
Fusobacteriota, Myxococcota, and Verrucomicrobiota. Among 
these, members of the Acidobacteria, Bacteroidota, Chloroflexi, 
and Verrucomicrobiota are also commonly detected in sewer 

environments, lakes and wastewater systems (Newton et al. 2011; 
Zhang, Shao, and Ye 2012). Basins with high dissolved oxygen and 
salinity measures were also enriched in Firmicutes, which appear 
in high abundance in influent sewage (Cai, Ju, and Zhang 2014).

3.4   |   Microbial Diversity Associates With 
Mosquito Productivity

Community profiles from sampled catch basins supported a rela-
tionship between habitat microbiota and mosquito productivity. 

TABLE 2    |    Effects of sampling date, water quality, and mosquito productivity on microbiota diversity. Results from PERMDISP analyses of 
significant explanatory variables can be found in Table S7.

(df1, df2) R2 Pseudo-F p value

(A) PERMANOVA and dbRDA tests using PhILR distances between samples (unaggregated data)

Sampling date (7, 222) 0.46 27.06 0.0010*

pH (137, 92) 0.60 1.01 0.47

Temperature (°C) (75, 154) 0.39 1.29 0.0060*

Conductivity (196, 33) 0.90 1.51 0.0020*

Dissolved oxygen (77, 152) 0.35 1.05 0.37

Salinity (19, 210) 0.14 1.78 0.0010*

Pupal occurrence (presence/absence) (1, 215) 0.07 17.25 0.0010*

Pupal abundance (pupae per dip) (22, 194) 0.17 1.85 0.0010*

(B) PERMANOVA tests using PhILR distances between samples aggregated by basin

Basin type (combined/separated) (1, 40) 0.05 2.18 0.041*

Flow group (Donald-Banta, Gibbons, Mayfair-Carlyle, Miner-
Evanston-Rammer, Stratford)

(4, 37) 0.14 1.54 0.053

*p value significant at the ≤ 0.05 level.

FIGURE 4    |    Bacterial taxa significantly associated with different catch basin variables. Heatmap showing bacterial phyla that significantly 
changed in relative abundance in response to basin type, pupal presence/abundance, and water quality variables that were significantly associated 
with mosquito productivity (pH; dissolved oxygen, DO; conductivity, Cond; salinity, Sal) (ALDEx2, p < 0.05; FDR, p < 0.05). Colours represent stan-
dardised effect sizes for each phylum (red, high; blue, low).
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Basins with lower estimates of alpha diversity (measured by 
both ASV richness and Shannon's H index) were more likely 
to have pupae present and tended to have higher pupal abun-
dances (Tables  3 and S2 and Figure  5A,B). Community beta 
diversity also significantly differed by pupal occurrence and 
abundance, as indicated by PERMANOVA and dbRDA tests 
(Table 2A and Table S7).

Proteobacteria were abundant in samples across basins and 
over the season, and they were enriched in basins with pupae 
present (Figure  5C and Table  S2). In basins with pupae, a 
large proportion of the Proteobacteria present were from the 
genus C39 (Figure 5D and Table S2). C39 was widespread in 
basins throughout the season but was particularly abundant 
in the second half of the season (Figure 2C,D and Table S2), 
and season-wide relative abundances of C39 predicted season-
wide measures of pupal occurrence across individual basins 
(Table 3 and Table S2). However, the highest pupal counts ap-
peared with low C39 (Figure 5E and Table S2), indicating that 
multiple factors were instrumental in supporting high pupal 
abundance in addition to C39 abundance. Several strains 
(ASVs) of C39 were also present throughout the season, but 
the late-season C39 that accounted for on average greater than 
75% relative abundance was represented by a single strain 
(Figure 5F). Several other genera in the Proteobacteria were 
significantly associated with pupal occurrence, including 
Thorsellia (Wilcoxon Rank Sum test; Benjamini-Hochberg-
corrected p = 0.0079), Nevskia (p = 0.024), and Aeromonas 
(p = 0.00090). Thorsellia spp. are dominant members of the 
adult Anopheles gambiae gut microbiota (Briones et al. 2008), 
and Thorsellia and Nevskia spp. have been reported from the 
water surface of rice paddies and freshwater ditches, respec-
tively (Wotton and Preston  2005). Aeromonas strains have 
been detected in Culex and Anopheles mosquitoes (Terenius 
et al. 2008). Taxa associated with basins without pupae also in-
cluded several phyla commonly reported in lake epilimnia and/
or wastewater effluent, namely Acidobacteria, Chloroflexi, 
Fusobacteriota, Gemmatimonadota, Planctomycetota, and 
Spirochaetota (Figure  4) (Newton et  al.  2011; Zhang, Shao, 
and Ye 2012).

4   |   Discussion

The existing literature on microbial communities associated 
with mosquito habitats largely consists of descriptive studies 
of bacterial diversity in aboveground habitats that do not con-
nect measures of bacterial diversity with measures of mosquito 
fitness. Recent studies further support that belowground hab-
itats such as stormwater catch basins can serve as important 
reservoirs for urban mosquito populations. However, the mi-
crobiota associated with different belowground habitats and 
their relationship with mosquito productivity has to date been 
unexplored. In this study, we addressed these knowledge gaps 
by characterising microbiota diversity, water quality, and mos-
quito productivity in a network of catch basins treated with 
methoprene over an entire mosquito breeding season. We then 
used these data to assess whether specific bacterial taxa and/
or measures of total alpha and beta microbial diversity were as-
sociated with the presence and abundance of pupae over time.

As in previous studies in Chicago area catch basins, we found that 
mosquito productivity was higher later in the season (Jackson 
et  al.  2013; Harbison, Runde et  al. 2018) and impacted by sev-
eral factors, including methoprene treatment and water quality. 
Methoprene treatment during the present study was effective 
62.5% of the time, which is consistent with previously reported 
rates of 36%–75% (Harbison, Nasciet et al. 2018; Harbison, Runde 
et al. 2018) and the inability of monitoring methods to distinguish 
between larvae/pupae resulting from newly colonised popula-
tions and those potentially dispersed from other basins, derived 
from late instar larvae that were not methoprene-sensitive at the 
time of treatment, or already present in the basin pre-treatment. 
In addition to treatment impacts, basins with higher dissolved 
oxygen, conductivity, and temperature measures were associated 
with higher pupal occurrence and abundance values, while basins 
with higher pH measures were associated with lower measures 
of mosquito productivity. This is overall consistent with previous 
field studies reporting similar relationships between mosquito 
population outcomes and dissolved oxygen (Dejenie, Yohannes, 
and Assmelash 2011; Pinault and Hunter 2012; Botello et al. 2013; 
Vanlalruia, Senthilkumar, and Gurusubramanian  2014; 

TABLE 3    |    Effects of microbiota diversity on mosquito productivity.

Linear regression analyses with data aggregated by basin

Outcome Predictor Estimate
Standard 

error p value

Pupal occurrence (presence/absence) Shannon's H index −0.12 0.04 0.012*

ASV richness −0.00 0.00 0.051

Relative abundance (C39) 0.52 0.20 0.013*

Relative abundance (Proteobacteria) 0.28 0.34 0.41

Pupal abundance (pupae per dip) Shannon's H index −2.11 1.04 0.049*

ASV richness −0.00 0.01 0.47

Relative abundance (C39) 9.21 4.65 0.054

Relative abundance (Proteobacteria) −0.27 7.67 0.97

*p value significant at the ≤ 0.05 level.
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Cepeda-Palacios et  al.  2017; Ranathunge et  al.  2020), conduc-
tivity (Low et  al.  2012; Yadav et  al.  2012; Kipyab et  al.  2015; 
Arcos et al. 2018), and temperature (Gardner et al. 2012; Kipyab 
et  al.  2015; Cepeda-Palacios et  al.  2017; Zimmerman  2019; 
Ranathunge et  al.  2020) and the observation that low oxygen 
levels and temperatures reduce larval survival and developmen-
tal rates in the lab (Ciota et al. 2014; Silberbush, Abramsky, and 
Tsurim  2015; Reinhold, Lazzari, and Lahondère  2018). In con-
trast, previous field studies have reported variable relationships 
between mosquito productivity and pH (Leisnham et  al.  2007; 
Low et al. 2012; Gardner et al. 2013; Vanlalruia, Senthilkumar, 
and Gurusubramanian 2014; Bashar et al. 2016; Garcia-Sánchez, 
Pinilla, and Quintero 2017). However, lab-based studies indicate 
that, while pH does not directly impact development, it can shape 
other water quality variables and biological assemblages in the 
habitat that affect larval growth and moulting, including micro-
bial communities (MacGregor 1929). In sewer pipes, both pH and 
dissolved oxygen levels are shaped by heterotrophic activity by 
bacteria (Gudjonsson, Vollertsen, and Hvitved-Jacobsen  2002), 
so productivity changes associated with pH and/or oxygen level 
differences may be an indirect product of processes modulating 
microbial community assemblages and metabolic interactions.

Bacterial communities sampled from catch basins were diverse, 
and included taxa previously described in mosquito habitats, 
aquatic environments, and sewer systems. Catch basin sam-
ples were comprised of 40–1477 ASVs per sample, which is 
slightly less diverse than discrete household containers report-
ing 981–3408 ASVs per sample (Scolari et al. 2021). The catch 
basin dataset further contained a total of 1516 genera, which 
is higher than the 693 (Caragata et al. 2022) and 254 (Zouache 
et al. 2022) genera reported in studies of container water with 
mosquito larvae present, although per-basin diversity may be 
more comparable, since this study included a larger number of 
samples and more opportunities to find rare genera. Prior work 
has shown overlap in taxa present in stormwater and untreated 
sewage influent (Fisher et al. 2015), and the present study re-
covered many of the same taxa.

Catch basin-associated bacterial communities varied most 
notably over time, with alpha diversity and community com-
position differing significantly by sampling date, and the 
two community biotypes splitting mainly into early and late 
season. Seasonal successional dynamics have been reported 
in other aquatic environments (Jeffries et  al.  2016; Scolari 

FIGURE 5    |    Bacterial community differences by pupal occurrence. (A, B) Alpha diversity of microbiota in basins in the absence and presence of 
pupae as measured by ASV richness (A) and Shannon's H index (B). Box-and-whisker plots show high, low and median values, with lower and upper 
edges of each box denoting first and third quartiles, respectively. Asterisks (***) indicate significant differences as a function of pupal occurrence (re-
peated measures ANOVA; ASV richness: F1,177 = 31.32, p < 0.0001, Shannon's H index: F1,177 = 57.52, p < 0.0001). (C, D) Relative abundance of bacteri-
al taxa principally responsible for the separation of basins by pupal occurrence (ALDEx2, p < 0.05; FDR, p < 0.05). Box-and-whisker plots show high, 
low and median values, with lower and upper edges of each box denoting first and third quartiles, respectively. Asterisks (***) indicate significant 
differences as a function of pupal occurrence (repeated measures ANOVA; Proteobacteria: F1,177 = 5.92, p = 0.016, C39: F1,177 = 20.62, p < 0.0001). (E) 
Pupae per dip in each sampled basin (square-root transformed, y-axis) by the relative abundance of genus C39 in the same basin (x-axis). (F) Relative 
abundance of each of 11 C39 ASVs detected across all sampled basins (y-axis) by sampling date (x-axis). Box-and-whisker plots show high, low and 
median values, with lower and upper edges of each box denoting first and third quartiles, respectively.
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et  al.  2021) and in container larval habitats (Shelomi and 
Lin 2021). Here, diversity increased early in the season then, 
following a heavy rainfall event, remained lower in the late 
season. Rainfall has been shown to shift microbial commu-
nities of rivers connected to stormwater flows (Chaudhary 
et  al.  2018). Changes in precipitation have also been found 
to affect the relative abundances of specific taxa in stormwa-
ter after heavy rainfall (Lee et al. 2020). Elevated flow rates 
reset residence time in water bodies (Tang et al. 2020), which 
can differentially affect the relative abundances of persistent 
versus transient taxa (Bouchali et  al.  2022), and residence 
time has been shown to shape community variation in rivers 
and lakes (Tang et al. 2020). In catch basins, residence times 
would be highly variable throughout the season, as inputs to 
the system are dependent on precipitation. The 2 km radius 
around the study area reported here has a total elevation 
change of only 15 m. Owing to this flat topography, runoff 
management in this area depends heavily on the stormwater 
system and any rainfall would likely affect all basins in the 
area equally. In contrast, catch basins in more topographically 
variable areas may experience greater variability in water res-
idence time, leading to differences in successional dynamics 
across elevation gradients. For this reason, future studies in 
the catch basin system may benefit from tracking flow rate or 
turnover in the basins. Shifts in biotype and mosquito produc-
tivity from early to late season could also be related to shifts in 
the concentration of bioactive methoprene present in individ-
ual catch basins, due to degradative capacities of associated 
bacterial communities, dilution from rainfall, and/or the im-
pact of other abiotic factors that we measured, including pH. 
Future studies are therefore also needed to better understand 
how different biotic and abiotic factors shape the long-term 
persistence and efficacy of methoprene against different mos-
quito species.

While differences in alpha diversity were linked to pH and 
conductivity measures in individual basins, community com-
position (i.e., beta diversity) was found to differ by basin type, 
basin flow group, salinity, and conductivity. Previous studies 
have found that dissolved oxygen, pH, conductivity, salinity, 
dissolved organic carbon, and silica levels affect microbial com-
position in lakes (Núñez Salazar et  al.  2020; Somers, Strock, 
and Saros 2020). Salinity in particular has been characterised 
as an important environmental variable for microbial commu-
nity composition among lakes (Yang et al. 2016), and at a global 
scale (Lozupone and Knight 2007). pH has cross-cutting effects 
on community composition by altering the efficiency of meta-
bolic processes because of its impact on the kinetics of reactions 
and bioavailability of nutrients (Núñez Salazar et al. 2020). Taxa 
in this study associated with low pH included Actinobacteria, 
Proteobacteria, and Bacteroides, all of which are dominant in 
stormwater (Lee et al. 2020). Basins with high pH and separated 
basins were enriched for Patescibacteria, which are associated 
with oligotrophic conditions (Herrmann et  al.  2019) and have 
been reported in Aedes (Qing et al. 2020).

Both pupal occurrence and abundance were positively asso-
ciated with basins with lower alpha diversity. A study survey-
ing microbiota in natural and man-made mosquito breeding 
sites found that lower bacterial diversity was associated with 
higher densities of Culex pipiens and Aedes albopictus larvae, but 

lower densities of Culex tritaeniorhynchus larvae (Wang, Wang 
et al. 2021), indicating that the relationship with microbial di-
versity may differ by the assemblage of mosquitoes present. 
Heterogeneity in microbial impacts among different mosquito 
species is important to keep in mind for vector control, as dif-
ferential effects on larval development in shared habitats may 
impact the relative proportion of species in adult populations 
in addition to total abundance, and human contact rates with 
vectors of different degrees of competence for various pathogens. 
In the present study, we focused on bulk pupal occurrence and 
abundance without separating by species primarily because 
accurate species identification at the pupal stage is difficult, 
and even at the larval stage, 86% of larvae were not able to be 
identified to species. Secondarily, because pupal occurrence is 
low, splitting records by species would further reduce statistical 
power. However, future studies would benefit from comparison 
of microbiota effects on population fitness of sympatric mosquito 
species, both with respect to competitive outcomes in the field 
and physiological outcomes through laboratory experiments.

Basin microbiota composition (or beta diversity) also differed by 
pupal occurrence and abundance, as has been reported in other 
environments (Dada et al. 2013; Mosquera et al. 2021; Hessou-
Djossou et  al.  2022). For example, the presence of larvae has 
been demonstrated to alter the relative abundance of certain 
bacterial taxa in domestic water containers, while other taxa, 
including members of the Proteobacteria, appear unaffected 
(Nilsson et al. 2018). In this study, Proteobacteria were present 
in basins with and without pupae, but were enriched in basins 
with pupae present. This pattern was most notable for the genus 
C39, which has previously been reported from mosquito larvae 
(Alfano et al. 2019) and highly polluted aquatic environments, 
including early in the process of phytoremediation of sew-
age from lake water (Chen, Huang et al. 2019), in association 
with higher levels of perfluoroalkyl acid pollution in seawater 
(Chen, Tsui et al. 2019), and in polluted urban river water (Zhou 
et  al.  2017). The results herein do not provide information to 
definitively support a causal relationship between mosquito 
productivity and the relative abundance of C39 and/or other 
members of the Proteobacteria; however, follow-up laboratory 
assays to characterise the effects of C39 isolates on mosquito 
physiology may provide valuable insight into processes connect-
ing sewage contamination and mosquito productivity in urban 
infrastructure.

Variation in basin-associated microbial communities may itself 
be caused by larval processes selecting for different taxa or alter-
ing different water quality variables (Murrell and Juliano 2008). 
Mosquitoes alter the microfauna of their habitat by grazing 
(Walker, Kaufman, and Merritt  2010), and both field stud-
ies and mesocosm experiments have shown that the presence 
of larvae shifts the bacterial composition of water (Kaufman 
et al. 1999; Xu et al. 2008; Muturi, Dunlap, and Cáceres 2020; 
Scolari et al. 2021). The highly alkaline conditions in the midgut 
of larval stage mosquitoes (Boudko et al. 2001), which aid in di-
gestion of the tannin-rich plant detritus that larvae feed on, also 
have the potential to inhibit growth of many bacteria and may 
further influence water nutrient levels (Clements 2013; Muturi, 
Dunlap, and Cáceres 2020) and microbial metabolism of nitro-
gen (Kaufman et al. 1999). Adult female mosquitoes may further 
act as a source of microbial dispersal among aquatic habitats, 
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by introducing microbes into water during oviposition (Coon 
et  al.  2014; Arellano and Coon  2022; Mosquera et  al.  2023) 
and/or selecting oviposition sites that harbour specific bacteria 
(Trexler et al. 2003; Lindh et al. 2008).

Habitats in the field are also affected by additional variables that 
we did not include in this study. Previous studies have found 
larval abundance associated with dissolved nutrients includ-
ing nitrate, phosphate, and ammonium (Leisnham et al. 2007; 
Gardner et al. 2013; Noori, Lockaby, and Kalin 2015; Onchuru 
et  al.  2016; Rydzanicz et  al.  2016). The assemblages of fungi, 
microscopic metazoa, algae, and macrofauna such as fish and 
other insect juveniles are also important to consider as compet-
itors, prey, and pathogens of mosquito larvae (Ranasinghe and 
Amarasinghe  2020). Furthermore, relationships identified in 
this study may be particular to the conditions in the study area. 
Catch basin sites in this study were relatively uniform with re-
spect to shade cover, distance to buildings, and land use, which 
all have been found to affect mosquito density (Bashar et al. 2016; 
Dida et al. 2018; Wang, Wang et al. 2021). Mosquito habitat water 
has also been found to lead to different developmental outcomes 
in laboratory experiments compared to the field (Wang, Zhou 
et al. 2021) and can show similar effects on mosquito develop-
ment despite very different microbial and water characteristics 
(Chitolina et al. 2016). Yet unknown is how context-dependent 
water quality and microbial effects on mosquito populations are, 
and the geographic and temporal scales at which this varies. 
However, our results suggest that future studies on mosquito-
microbe-environment dynamics would be best equipped to max-
imise power to capture variation in each variable by targeting 
deep sampling at one time point, or finer temporal monitoring. 
Effects of the microbiota from disparate sites could also be iso-
lated from location-specific environmental conditions by testing 
their effects in laboratory settings. Such efforts will undoubtedly 
be facilitated by our recently developed approaches for microbi-
ota isolation, cryopreservation, and transplantation in mosqui-
toes, which have been validated using microbiota derived from 
both the laboratory and field (Coon, Hegde, and Hughes 2022; 
Zhao, Hughes, and Coon 2022). Finally, community-wide metag-
enomic and metatranscriptomic surveys–both in situ and under 
controlled conditions in the laboratory–could provide insights 
into mechanisms underlying patterns in mosquito productivity 
observed in the field, and identify candidate pathways for ma-
nipulating mosquito habitats, microbiota, phenotypes, and pop-
ulations for novel innovations in vector control.

5   |   Conclusions

In this study, we investigated the relationship between habi-
tat microbiota variation and mosquito population dynamics 
by simultaneously characterising microbiota diversity, water 
quality, and mosquito productivity in a network of urban storm-
water catch basins over an entire mosquito breeding season. 
Our results support roles for both water quality and microbi-
ota in shaping mosquito population fitness outcomes within 
belowground habitats in the field. Abiotic effects on mosquito 
productivity appear to be driven—at least in part—by impacts 
on microbiota diversity. Even more novel is our identification 
of specific microbial taxa that are associated with positive 
mosquito population outcomes, and that may be enriched in 

habitats over time by mosquito-mediated impacts on microbial 
community assembly. Altogether, these findings highlight the 
importance of microbiota as an environmental factor shaping 
host ecology in natural populations. They also have important 
implications for efforts to optimise efficacy of larval-based mos-
quito control strategies in the field.
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