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Abstract

To what extent do large language models learn
abstract representations as opposed to more su-
perficial aspects of their very large training cor-
pora? We examine this question in the context
of binomial ordering preferences involving two
conjoined nouns in English. When choosing a
binomial ordering (radio and television vs tele-
vision and radio), humans rely on more than
simply the observed frequency of each option.
Humans also rely on abstract ordering pref-
erences (e.g., preferences for short words be-
fore long words). We investigate whether large
language models simply rely on the observed
preference in their training data, or whether
they are capable of learning the abstract order-
ing preferences (i.e., abstract representations)
that humans rely on. Our results suggest that
both smaller and larger models’ ordering pref-
erences are driven exclusively by their experi-
ence with that item in the training data. Our
study provides further insights into differences
between how large language models represent
and use language and how humans do it, partic-
ularly with respect to the use of abstract repre-
sentations versus observed preferences.

1 Introduction

Large language models have progressed at an in-
credible rate in the last few years. Their rise in
popularity and sometimes surprising capabilities
have raised many questions about what exactly
these models learn and how they represent lin-
guistic knowledge. One interesting question that
has been examined is whether certain capabilities
emerge once models reach a certain size. Although
models of different sizes appear to generate flu-
ent language, it is unclear to what extent different
models rely on superficial characteristics of their
immense training corpora, such as word frequency
and co-occurrences, and to what extent they learn
abstract representations that generalize in ways that
are similar to what humans do with far less linguis-

tic input. For example, in addition to learning that
some binomial orderings are more frequent than
others (e.g., bread and butter is more frequent than
butter and bread), humans also learn abstract or-
dering preferences (e.g., short words before long
words; Morgan and Levy, 2016a).

In the present study we examine binomial order-
ing preferences in English in eight large language
models with number of parameters ranging from
124M to 70B. Specifically, we ask whether ordering
preferences in these models are determined entirely
by the observed preferences of binomials in corpus
data, or whether the language models also learn
abstract ordering preferences. Further, we examine
whether large language models, similar to humans,
show stronger effects of observed ordering prefer-
ences in high frequency items. If large language
models are just reproducing superficial characteris-
tics of the training data, we should see no effects of
abstract ordering preferences, and only see effects
of observed ordering preferences. On the other
hand, if language models are doing more than just
memorization, then we may see effects of abstract
ordering preferences in addition to effects of ob-
served ordering preferences, and these may change
as a function of the binomial’s frequency.
Our specific contribution is an investigation of

how large language models use abstract knowledge
vs. observed preferences through a binomial or-
dering preference task, along with a discussion
about how this differs from language use by hu-
mans. We show that language models rely more
on the surface-level statistics of their input (e.g,
n-gram frequency) than humans do, adding to our
understanding of how large language models repre-
sent and generate language.

1.1 Evidence for Abstractions in LLMs
Large language models have demonstrated incred-
ible breakthroughs in the last few years, showing
impressive capabilities across a wide variety of
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tasks. Despite this, previous research has demon-
strated mixed results with respect to their abilities
to learn abstract representations (e.g., McCoy et al.,
2023; LeBrun et al., 2022; Pan and Bergen, 2025).
Specifically, it remains unclear to what extent large
language models are simply copying their training
data as opposed to learning something more ab-
stract. For example, Haley (2020) demonstrated
that many of the BERT models are not able to reli-
ably determine the plurality of novel words at the
same level as humans.
On the other hand, Wei et al. (2021) demon-

strated that BERT can generalize well to novel
subject-verb pairs. Specifically, they tested BERT’s
subject-verb agreement ability on novel sentences
that it’s never seen before and found that BERT
seems to learn abstract representations of subject-
verb agreement (as evidenced by the fact that it
performs well on items it wasn’t trained on).
Additionally, there’s evidence that transformer

models trained on an amount of data comparable
to humans can also learn abstract knowledge about
the language (Misra and Mahowald, 2024; Yao
et al., 2025). For example, Misra and Mahowald
(2024) examined whether a language model trained
on a comparable amount of data as humans can
learn article-adjective-numeral-noun expressions
(a beautiful five days). Specifically, without having
a great deal of experience with them, humans learn
that a beautiful five days is perfectly natural, but
a five beautiful days is not. Misra and Mahowald
(2024) demonstrated that language models learn
this even if they have no AANNs in their training
data. They further demonstrated that they do this
by generalizing across similar constructions, such
as a few days.

Further, Yao et al. (2025) examined whether lan-
guage models trained on a comparable amount to
humans can learn the length and animacy prefer-
ences that drive dative alternations (e.g., give the
ball to her vs give her the ball) in humans. Specifi-
cally, dative alternations show a length and animacy
bias (Yao et al., 2025). In order to examine whether
language models can learn these biases from other
constructions, they manipulated the training data
to remove the length and animacy bias from the da-
tive alternations in the training data of the language
model. They found that the model can learn these
biases even without exposure to them in the da-
tive alternation. These results suggest that in some
cases language models can learn generalizations
without a great amount of data.

In order to investigate large language models’
ability to learn abstract representations, it is useful
to compare them to human Psycholinguistic data.
Unlike large language models, humans don’t have
access to corpora with trillions of tokens. Despite
this, humans’ capacity for language is unparalleled,
in part due to our incredible ability to learn abstract
representations (Berko, 1958; Kapatsinski, 2018).

1.2 Evidence for Abstractions in Humans
Humans are remarkable in our ability to learn and
produce language, often producing and process-
ing sentences that we’ve never encountered before.
This is largely enabled by our unique ability to
not simply memorize language, but to learn more
abstract generalizations. For example, humans de-
velop abstract ordering preferences for how to lin-
earize the message we want to convey (i.e., decid-
ing on which order to say the words that convey the
meaning we want to express). One illustration of
this comes from the literature on binomial construc-
tions, where there are two conjoined nouns (e.g.,
cats and dogs, Morgan and Levy, 2015, 2016a,b;
Benor and Levy, 2006). Binomial constructions
often convey the same meaning regardless of the
order (e.g., radio and television vs television and
radio). Despite this, however, humans sometimes
have very strong preferences for one order over
the other (e.g., bread and butter overwhelmingly
preferred over butter and bread).
While these preferences are driven in part by

experience with the binomial (i.e., which binomial
ordering is encountered more often), there are also
other factors, such as phonological or semantic
constraints, that affect ordering preferences. In
other words, human ordering preferences are driven
in part by observed preferences in corpus data (i.e.,
the observed preference in their previous language
experience, Morgan and Levy, 2016a) and in part
driven by abstract ordering preferences based
on abstract constraints (e.g., a preference for short
words before long words, or a preference for male-
coded words before female-coded words, Benor
and Levy, 2006).
In order to capture the abstract ordering pref-

erences of humans across binomial constructions,
Morgan and Levy (2016a) developed a model to
quantify the abstract ordering preference of a given
binomial in English. They demonstrated that the
model’s predicted abstract ordering preferences are
not the same as the observed preferences in corpus
data. The model combines multiple phonological
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and semantic constraints that have been shown to
affect binomial ordering preferences into a single
abstract ordering preference value for each bino-
mial. They further demonstrated that human or-
dering preferences for low-frequency items are pri-
marily driven by this abstract ordering preference
value, and preferences for high-frequency items
are driven primarily by the observed preferences in
corpus data. They operationalized frequency using
the overall frequency of a binomial, i.e. the total
frequency in both possible orders (i.e., the number
of times the binomial occurs in alphabetical order-
ing plus the number of times the binomial occurs
in nonalphabetical ordering). This provides a mea-
sure of expression frequency that is not confounded
with the frequency of a specific order.

Since human ordering preferences deviate from
the observed preferences (i.e., humans aren’t sim-
ply reproducing binomials in the same order that
they heard them; Morgan and Levy, 2024), order-
ing preferences thus present a useful test case for
large language models. If large language models
learn representations beyond simply memorizing
the training dataset or superficially reproducing
word co-occurrences, they may learn abstract or-
dering preferences similar to humans, and this may
be reflected in their binomial ordering preferences.

2 Methods

2.1 Dataset

In order to examine the ordering preferences of
binomial constructions in large language models,
we use a corpus of binomials from Morgan and
Levy (2015). The corpus contains 594 binomial
expressions which have been annotated for various
phonological, semantic, and lexical constraints that
are known to affect binomial ordering preferences.
The corpus also includes:

1. The estimated abstract ordering preference
for each binomial representing the ordering
preference for the alphabetical ordering (a rel-
atively unbiased reference form), estimated
from the above constraints (independent of
frequency). The abstract ordering preferences
take a value between 0 and 1, with 0 being
a stronger preference for the nonalphabetical
form, and 1 being a stronger preference for
the alphabetical form. The abstract ordering
preferences were calculated using Morgan and
Levy (2015)’s model.

2. The observed binomial orderings which are
the proportion of binomial orderings that are
in alphabetical order for a given binomial,
gathered from the Google n-grams corpus
(Lin et al., 2012). The Google n-grams cor-
pus is magnitudes larger than the language
experience of an individual speaker and thus
provides reliable frequency estimates. A value
of 1 indicates the binomial occurs exclusively
in the alphabetical ordering while a value of 0
indicates that the binomial occurs exclusively
in the nonalphabetical ordering.

3. The overall frequency of a binomial expres-
sion (the number of times the binomial occurs
in either alphabetical or non-alphabetical or-
der). Overall frequencies were also obtained
from the Google n-grams corpus (Lin et al.,
2012).

2.2 Language Model Predictions

In order to derive predictions for large language
models, we used the following models from the
GPT-2 (Radford et al., 2019) family, the Llama-
2 (Touvron et al., 2023) family, Llama-3 fam-
ily (https://github.com/meta-llama/llama3), and the
OLMo (Groeneveld et al., 2024) family. From
smallest to largest in number of parameters: GPT-
2 (124M paramters), OLMo 1B (1B parameters),
GPT-2 XL (1.5B parameters), Llama-2 7B (7B pa-
rameters), OLMo 7B (7B parameters), Llama-3
8B (8B parameters), Llama-2 13B (13B param-
eters), and Llama-3 70B (70B parameters). For
each model, we calculated the ordering preferences
of the alphabetical form for each binomial in the
dataset. The predicted probability of the alpha-
betical form was calculated as the product of the
model’s predicted probability of each word in the
binomial. In order to accurately calculate the prob-
ability of the first word in the binomial, each bi-
nomial was prepended with the prefix "Next item:
". Thus the probability of the alphabetical form, A
and B is:

Palphabetical = P (A|Next item :)

× P (and|Next item : A)

× P (B|Next item : A and)

(1)

where A is the alphabetically first word in the bi-
nomial and B is the other word. Additionally, the
probability of the nonalphabetical form, B and A
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is:

Pnonalphabetical = P (B|Next item :)

× P (and|Next item : B)

× P (A|Next item : B and)
(2)

Finally, to get an overall ordering preference for
the alphabetical form, we calculated the (log) odds
ratio of the probability of the alphabetical form to
the probability of the nonalphabetical form:

LogOdds(AandB) = log(
Palphabetical

Pnonalphabetical
) (3)

2.3 Analysis
The data was analyzed using Bayesian linear re-
gression models, implemented in brms (Bürkner,
2017) with weak, uninformative priors. For each
model, the dependent variable was the log odds of
the alphabetical form to the nonalphabetical form.
The fixed-effects were abstract ordering preference
(represented as AbsPrefbelow), observed prefer-
ence (ObservedPref ), overall frequency (Freq), an
interaction between overall frequency and abstract
ordering preference (Freq:AbsPref ), and an interac-
tion between overall frequency and observed pref-
erence (Freq:ObservedPref ). The model equation
is presented below:

LogOdds(AandB) ∼ AbsPref

+ObservedPref

+ Freq

+ Freq : AbsPref

+ Freq : ObservedPref
(4)

Frequency was logged and centered, and abstract
ordering preference and observed preference were
centered such that they ranged from -0.5 to 0.5
(instead of from 0 to 1). Note that since abstract
ordering preference and observed preference are on
the same scale, we can directly draw comparisons
between the coefficient estimates for these fixed-
effects in our regression model.

3 Results

Our full model results are presented in the appendix
(Table 1) and visualized in Figure 1. For each
model, the figure shows the values for each of the
coefficients from the model in Equation 4, repre-
senting how strongly each language model relies
on observed preference, abstract ordering prefer-
ence, overall frequency, the interaction between

abstract ordering preference and overall frequency,
and the interaction between observed preference
and overall frequency.
Our results are similar across all the large lan-

guage models we tested. Specifically, we find no
effect of abstract ordering preferences and no inter-
action effect between abstract ordering preference
and overall frequency. We do find an effect of ob-
served preference suggesting that the models are
mostly reproducing the ordering preferences found
in their training. We also find an interaction effect
between observed preference and overall frequency,
suggesting that the effect of observed frequency is
stronger for high-frequency items.

4 Conclusion

In the present study we examined the extent to
which abstract ordering preferences and observed
preferences drive binomial ordering preferences in
large language models. We find that their ordering
preferences are driven primarily by the observed
preferences. Further, they rely more on observed
preferences for higher frequency items than lower
frequency items. Finally, they don’t seem to be
using abstract ordering preferences at all in their
ordering of binomials.
Our results give us insight into the differences

between humans and large language models with
respect to the ways in which they trade off be-
tween abstract and observed preferences. For exam-
ple, our dataset contains low-frequency binomials
(e.g. alibis and excuses), including binomials that
a college-age speaker would have heard only once
in their life. Due to their low frequency, humans
rely substantially on abstract ordering preferences
to process these lower frequency items (Morgan
and Levy, 2024). This is not the case, however,
for large language models, which rely exclusively
on observed preferences for these items. This is
true even for the smallest models we tested, such as
GPT-2. We conclude that, although large language
models can produce human-like language, they ac-
complish this in a quantitatively different way than
humans do: they rely on observed statistics from
the input in at least some cases when humans would
rely on abstract representations.

5 Limitations

There are a few important limitations in our study.
The first limitation is that we don’t know exactly
how many times each of the large language models
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Figure 1: Results for each beta coefficient estimate from each model. Models are arranged from smallest to largest
from left to right. The x-axis contains each coefficient and the y-axis contains the predicted beta coefficient of the
respective model. Error bars indicate 95% credible intervals.

has seen each binomial tested. We can approximate
the binomial’s frequency using corpus data, which
gives us an indication of the frequency of the bi-
nomial in a language model’s training set, but it
is possible that the large language models saw the
binomials more than we expect. Thus, the current
study can’t differentiate between a model that has
learned abstract ordering preferences but doesn’t
use it for binomials that it has seen, and a model
that simply hasn’t learned abstract ordering pref-
erences. Although, there is some hope with the
recent development of open access large language
models, such as OLMo (Groeneveld et al., 2024),
where the training data is publicly available. We
have future plans to examine the ordering prefer-
ences of novel binomials in the OLMo series of
models to determine whether LLMs have learned
ordering preferences at all.

Additionally, the binomials tested here are only
3 words and relatively fixed in the sense that vari-
ations such as bread and also butter are not very
common. Thus these are potentially easier for the
large language models to memorize compared to
longer or less-fixed strings, which could be tested
in future work.

Further, while we examined language models of

various sizes and determined that the number of
parameters does not seem to play a role in whether
these models employ abstract ordering preferences
for binomials, our analysis was not designed to
investigate the effect of training set size.
Finally, our experiments deal only with binomi-

als in English.
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GPT-2 GPT-2XL
Est. Err. 2.5 97.5 Est. Err. 2.5 97.5

Intercept -0.10 0.10 -0.30 0.10 0.05 0.09 -0.13 0.23
AbsPref -0.52 0.64 -1.81 0.69 -0.89 0.63 -2.17 0.29
Observed 4.62 0.50 3.66 5.59 5.34 0.46 4.45 6.25
Freq -0.04 0.06 -0.15 0.07 -0.01 0.05 -0.11 0.09
AbsPref:Freq 0.10 0.39 -0.66 0.86 -0.17 0.36 -0.87 0.53
Observed:Freq 0.96 0.24 0.49 1.43 1.01 0.21 0.59 1.43
Llama-2 7B Llama-2 13B

Est. Err. 2.5 97.5 Est. Err. 2.5 97.5
Intercept 0.22 0.13 -0.03 0.47 0.12 0.08 -0.04 0.27
AbsPref 1.11 0.84 -0.40 2.91 0.32 0.54 -0.72 1.38
Observed 3.07 0.64 1.81 4.31 5.25 0.40 4.46 6.05
Freq 0.04 0.07 -0.10 0.17 -0.08 0.04 -0.16 0.01
AbsPref:Freq -0.32 0.47 -1.24 0.59 -0.02 0.32 -0.64 0.60
Observed:Freq 0.23 0.28 -0.33 0.78 0.72 0.19 0.34 1.09
Llama-3 8B Llama-3 70B

Est. Err. 2.5 97.5 Est. Err. 2.5 97.5
Intercept 0.15 0.09 -0.03 0.33 0.04 0.05 -0.06 0.14
AbsPref 0.23 0.59 -0.92 1.42 0.10 0.38 -0.63 0.85
Observed 5.64 0.46 4.75 6.54 5.00 0.27 4.49 5.52
Freq -0.07 0.05 -0.17 0.03 -0.05 0.03 -0.11 0.00
AbsPref:Freq 0.07 0.36 -0.63 0.78 -0.11 0.21 -0.52 0.30
Observed:Freq 0.60 0.22 0.18 1.03 0.65 0.12 0.41 0.89
OLMo 1B OLMo 7B

Est. Err. 2.5 97.5 Est. Err. 2.5 97.5
Intercept 0.06 0.08 -0.09 0.22 0.04 0.07 -0.10 0.18
AbsPref 0.69 0.54 -0.33 1.79 -0.86 0.51 -1.88 0.11
Observed 4.36 0.39 3.58 5.12 5.37 0.36 4.67 6.08
Freq 0.06 0.04 -0.02 0.14 0.01 0.04 -0.07 0.08
AbsPref:Freq -0.12 0.31 -0.73 0.47 0.10 0.28 -0.47 0.64
Observed:Freq 0.81 0.19 0.44 1.17 0.70 0.17 0.37 1.04

Table 1: Model results for each language model. The Estimate is given in the "Est." column, the standard deviation
of the posterior is given in the "Err." column. The columns labeled 2.5 and 97.5 represent the lower and upper
confidence interval boundaries. AbsPref is the abstract ordering preferences, Observed is the observed preference in
corpus data, and Freq is the overall frequency of the binomial.

B Quantization Issue

In addition to these results, we did find a
meaningful effect of abstract ordering pref-
erences for a quantized model of Llama-
2 13B (https://huggingface.co/TheBloke/
Llama-2-13B-GPTQ). However, upon further in-
spection, the model’s preferences did not match
the preferences of the non-quantized model. For
example, the quantized model’s strongest prefer-
ence was for schools and synagogues which had
an estimated log odds of over 33. Further, the es-
timated log odds for error and trial was about 1.
In other words, the model had a slight preference

for error and trial over trial and error, and had
a strong preference for schools and synagogues
over synagogues and schools. Upon inspecting the
non-quantized model, we found that the original
model showed different (but expected) preferences,
with a strong preference for trial and error (log
odds of -15) and no real preference for schools and
synagogues (log odds of 1).

Further, in assessing the quality of the quantized
model, text-generation revealed poor performance.
For example, given the Prompt: "Describe your
dream house", the model returned this response:

<s> Tell me about your dream house. The
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house I grew up in was on the edge of a
forest. It was a big, old house with a big,
old house with a big, old house with a
big, old house with a big, old house with
a big, old house with a big, old house
with a big, old house with a big, old
house with a big, old house with a big,
old house with a big, old house with a
big, old house with a big, old house with
a big, old house with a big, old house
with a big, old house with a big, old
house with a big, old house with a big,
old house with a big, old house with a
big, old house with a big, old house with
a big, old house with a big, old house
with a big, old house with a big, old
house with a big, old house with a big,
old house with a big, old house with a
big, old house with a big, old house with
a big, old house with a big, old house
with a big, old house with a big, old
house with a big, old house with a big,
old house with a big, old house with a
big, old house with a big, old house with
a big, old house with a big, old house
with a big, old house with a big, old
house with a big, old house with a big,
old house with a big, old house with a
big, old house with a big, old house with
a big, old house with a big, old house
with a big, old house with a big, old
house with a big, old house with a big,
old house with a big, old house with a
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Given the output of the quantized model, we
suspected an issue occurred during the quantization
process, resulting in a poorly performing model.
We thus decided to exclude the quantized model

and use the results for the non-quantized model.
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