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Braiding groups of automorphisms
and almost-automorphisms of trees

Rachel Skipper® and Matthew C. B. Zaremsky

Abstract. We introduce “braided” versions of self-similar groups and Rover-Nekrashevych groups,
and study their finiteness properties. This generalizes work of Aroca and Cumplido, and the first
author and Wu, who considered the case when the self-similar groups are what we call “self-
identical” In particular, we use a braided version of the Grigorchuk group to construct a new group
called the “braided Rover group,” which we prove is of type Foo. Our techniques involve using so-
called d-ary cloning systems to construct the groups, and analyzing certain complexes of embedded
disks in a surface to understand their finiteness properties.

1 Introduction

In this paper, we introduce and study braided versions of self-similar groups of tree
automorphisms and Rover-Nekrashevych groups of tree almost-automorphisms. A
subgroup of the group of automorphisms of an infinite rooted regular tree is called
“self-similar” if it is “built out of copies of itself” in some sense (see Definition 2.2).
The Rover-Nekrashevych group associated with a self-similar group is the group
of self-homeomorphisms of the boundary of the tree that locally “look like” the
self-similar group (see Definition 3.4). The first example, now called the “Réver
group,” was constructed by Rover in [R6v99], using the Grigorchuk group constructed
by Grigorchuk in [Gri80, Gri84]. In [Nek04], Nekrashevych constructed Réver—
Nekrashevych groups in general, starting with an arbitrary self-similar group.

The braided variants of Rover—-Nekrashevych groups we construct here were pre-
viously considered by Aroca and Cumplido [AC22] in the special case when the self-
similar groups are what we call “self-identical” (Definition 2.3), and these examples
were also studied by the first author and Wu in [SW]. These papers are part of a
large body of recent work devoted to “braiding” groups in the extended family of
Thompson’s groups. The original braided Thompson group brV was introduced inde-
pendently by Brin [Bri07] and Dehornoy [Deh06], as a braided version of the classical
Thompson group V. Thompson’s group F also has a braided counterpart brF, first
considered in [BBCS08]. Thompson’s group T has a number of different “braidings,
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found, e.g., in [FK08, FK11, Witl9]. Braided versions of the Brin-Thompson groups
from [Bri04] were recently constructed by Spahn [Spa]. Finally, Houghton’s groups,
which are related to Thompson’s groups, have braided variants due to Degenhardt
[Deg00]. The braided Houghton groups along with the braided versions of T from
[FK08, FK11] are also studied in [GLU22].

In this paper, we “braid” arbitrary self-similar groups and arbitrary Roéver—
Nekrashevych groups. In particular, we get a new group that we call the braided Rover
group, which is a braided variant of the Réver group, i.e., the Rover-Nekrashevych
group specifically arising from the Grigorchuk group. (A torsion-free version of the
Grigorchuk group that could be called a “braided” version was previously constructed
by Grigorchuk in [Gri85]; the braided Grigorchuk group we construct here is slightly
different.) To construct braided self-similar groups, we work inside an infinitely iter-
ated wreath product of braid groups, and impose conditions arising from a “braided
wreath recursion” on elements (see Definition 2.5). To construct braided Rover—
Nekrashevych groups, we use the framework of d-ary cloning systems, developed
by the authors and Witzel in [SZ21, WZ18]: we use the braided wreath recursion to
produce a d-ary cloning system associated with any braided self-similar group, and
then the braided Réver—Nekrashevych group is the resulting Thompson-like group
that arises from the d-ary cloning system (see Definition 3.6).

As often happens with new Thompson-like groups, for example, in many of the
aforementioned references, it is of interest to understand their finiteness properties. A
group is of typeF,, if it has a classifying space with finite n-skeleton, where a classifying
space is a connected CW-complex whose fundamental group is the group in question
and whose higher homotopy groups are all trivial. Thus, type F; is equivalent to
finite generation and type F, is equivalent to finite presentability. We say typeF,
for type F, for all n. The classical Thompson’s groups F, T, and V, and the Brin-
Thompson groups nV, are all of type Fo, [BG84, Bro87, FMWZI13], as are all their
aforementioned braided variants [BFM+16, GLU22, Spa, Witl9. There is also a “ribbon
braided” variant of V that is of type Fo, [Thul7]. The Rover group along with some
related Rover-Nekrashevych groups are of type Fo, as well [BMl6, FHI5, SZ21].
In particular, this includes Rover—Nekrashevych groups arising from self-identical
groups [FH15]. Réver-Nekrashevych groups also afforded the first known examples
of simple groups of type F,,_; but not F,, for arbitrary », in [SWZ19]. Here, we analyze
finiteness properties of braided Rover-Nekrashevych groups, and prove two main
results.

Theorem 4.1 Let G < brAut(T,;) be braided self-similar. If G is of type F,, then so is
br Vd (G)

Theorem 5.1 The braided Rover group is of type F.

When G is braided self-identical, Theorem 4.1 was proved by the first author
and Wu in [SW], where it was proved that the converse also holds. We prove that
the braided Grigorchuk group is (like the original Grigorchuk group) not finitely
presentable (Proposition 2.14), so Theorem 5.1 shows that the converse of Theorem 4.1
is not true in general. We remark that it remains an interesting problem for n > 2 to
find explicit examples of G for which Theorem 4.1 applies but the results in [SW]
do not, i.e, G is braided self-similar but not braided self-identical. (For example,

https://doi.org/10.4153/50008414X23000159 Published online by Cambridge University Press



Braiding groups of automorphisms and almost-automorphisms of trees 557

when n =1, see Example 2.5 using Z ¢ Z.) In another direction, for G a braided self-
similar group and 7(G) its corresponding (non-braided) self-similar group, it would
be interesting to try and relate the finiteness properties of G to those of 7(G), and
the finiteness properties of brV;(G) to those of V;(7(G)); we leave this for future
investigation.

This paper also rectifies a gap in the literature, namely we construct the so-called
Stein-Farley complex for a general d-ary cloning system. When d = 2, this was done by
Witzel and the second author in the original cloning systems paper [WZ18], but for
general d-ary cloning systems, introduced in [SZ21], the Stein-Farley complex was
only constructed for a special case involving self-similar groups. Here, we officially
construct the Stein-Farley complex for an arbitrary d-ary cloning system (Section 4.1).
The construction is straightforward, and works essentially by combining the ideas
from the two aforementioned special cases, but had not technically been done before.
These complexes are a key tool in proving Theorem 4.1.

In order to prove Theorem 5.1, we introduce a new type of complex defined on a
surface, which we call the “(2,5/2)-disk complex” (see Definition 5.8). A vertex of
this complex is an isotopy class of an embedded disk, enclosing two marked points
in its interior and either 0 or 1 marked points in its boundary, and a collection of
vertices span a simplex whenever the disks are pairwise disjoint or nested. The higher
connectivity properties of the descending links in the Stein-Farley complex for the
braided Réver group turn out to be informed by those of the (2,5/2)-disk complex,
and this complex seems to be of interest in its own right, given its connection to
(braided versions of) the Grigorchuk and Réver groups.

This paper is organized as follows: In Section 2, we recall the background on
self-similar groups, and define braided self-similar groups. In Section 3, we recall
the background on d-ary cloning systems and Rover-Nekrashevych groups, and
define braided Réver-Nekrashevych groups, including the braided Réver group. In
Section 4, we construct Stein-Farley complexes for arbitrary d-ary cloning systems
(which has technically not been done before), and then focus on the case of braided
Rover-Nekrashevych groups to prove Theorem 4.1. Finally, in Section 5, we prove
Theorem 5.1, that the braided Réver group is of type Fo.

2 Braiding groups of automorphisms of trees

Let d € N with d > 2, let X be a set with d elements, called an alphabet, and let X* be
the set of all finite words in X (including the empty word, denoted &). The infinite
rooted d-ary tree, denoted T, naturally has X* as its vertex set. The root is &, and
given a vertex v, the children of v are the vertices of the form vx for x € X.

Definition 2.1 (Automorphism) An automorphism of T is a bijection X* — X* that
preserves incidence (and so in particular fixes &). The group of all automorphisms of
Ty is denoted Aut(Ty).

We will be interested in certain subgroups of Aut(T,), called self-similar groups.

A vast amount of information about self-similar groups can be found in [Nek05].
To define them, we need to view Aut(T,;) as an infinitely iterated wreath product,
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namely
Aut(Ty) = Sqex (Sq2x (Saex -++))s

as we will now begin to explain.

Our convention for wreath products is that S 2x G := S; x G¥, i.e., the group doing
the acting is written on the left. We write the subscript X in 2x to emphasize that this is
the permutation wreath product coming from S, := Symm(X) acting on X. We may

also sometimes identify X with {1,...,d} so that elements of GX can be conveniently
written as tuples (g1, . . ., g4). We will also sometimes write Sy % Sy for Sy 2x (S4 2x
(Sd i v ))

Now let us be more rigorous about infinitely iterated wreath products. Let S; 2% S4
be the n-times-iterated wreath product, e.g.,

Sa % Sa = Sa»
Sd 2;( Sd = Sd 15°¢ Sd,

Sd Zg( Sd = Sd X (Sd X Sd),

and so forth. For each n € N, we have an epimorphism S, 2% S4 — Sq 2% ' S4 given by
“forgetting the rightmost factor”; for example, Sy 2% Sq — Sz 2 Sy is the map

(o, ((t1, (V). .., 00))s s (2 (Vo s 0)))) = (0, (71205 7).

This forms a projective system, and the infinitely iterated wreath product S; % Sy
is the projective limit of this system. It is clear that this is isomorphic to Aut(T).
The point is that an automorphism of T; can be viewed as first shuffling the d many
children of the root, then independently for each child of the root shuftling its 4 many
children, then shuffling their children, and so on.

Thanks to this viewpoint, we see that Aut(T;) = S; :x Aut(T;). Hence, an element
f € Aut(T,;) can be decomposed as f = p(f)(fi,- .-, fa), where

P AU(T4) > S,

is the natural epimorphism coming from the wreath product, and f; € Aut(7;). This
is called the wreath recursion. This produces a function (not a homomorphism)
v: Aut(T;) — Aut(T,)* sending f to

y(f):=(foroos fa),

so the wreath recursion of f is f = p(f)y(f). For any subgroup G < Aut(T,), the
image y(G) is a subset of Aut(T,;)*, and this leads us to the definition of self-similar.

Definition 2.2 (Self-similar) A subgroup G < Aut(T,) is called self-similar if
v(G) c GX.

The easiest example of a self-similar subgroup of Aut(T,) is given by a certain
action of the symmetric group S; on T;. This kind of example will come up a lot, so
we will actually give it its own name.
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Definition 2.3 (Self-identical) A subgroup G < Aut(T) is called self-identical if

y(g)=(g-8)
forall g e G.

Example 2.1 (Subgroups of the symmetric group) For o € S5 = Symm(X), we can
define an element of Aut(T,), also denoted o, by declaring that ¢ sends the vertex
v = x1 -+ x to the vertex (v) := 0(x;) - - - 0(xx ). Note that the wreath recursion of @
iso=0(0,...,0).In particular, (o) = (0,...,0), and so viewing S; as a subgroup
of Aut(T,) in this way we see that S;, and indeed any subgroup of S, is self-identical
(hence self-similar). Every self-identical subgroup occurs in this way.

Example 2.2 (Grigorchuk group) The Grigorchuk group, introduced by Grigorchuk
in [Gri80], is the subgroup Grig < Aut(7,) generated by elements @, b, ¢, and d defined
by the following wreath recursions. (These are usually denoted by g, b, ¢, and d, but
we will be writing those for the braided version, so we will write @, b, ¢, and d here.)
First, @ = (1 2)(id, id), where we identify X with {1,2}. Next, b = (@,¢), ¢ = (@, d),
and d = (id, b), where the lack of a symbol in front of the ordered pair indicates that
b, ¢, and d fix the children of the root. The Grigorchuk group was the first example of
a finitely generated group that has intermediate growth, and that is amenable but not
elementary amenable [Gri84].

2.1 Braiding groups of automorphisms

Now we describe a braided version of all of the above. Let B; be the d-strand braid
group. Via the standard projection B; — S;, we get an action of B; on X. Hence, we
can consider finitely iterated wreath products B, % B, take the projective limit, and
get the infinitely iterated wreath product

Bd X (Bd X (Bd x )),
which we may also write as B; 5 By.

Definition 2.4 (Braided Aut(7;)) Call the above infinitely iterated wreath product
the braided automorphism group of T4, denoted

brAut(‘J'd) =By Z? B,.

Note that brAut(T;) = B, 2x brAut(T;), and so just like with Aut(T,;), we get a
“braided wreath recursion™ any f € brAut(T,;) decomposes as f = ¢(f)(f1,--., fa)s
where

¢:brAut(T,) - By

is the natural epimorphism coming from the wreath product, and f; € brAut(7y).
Also, note that the epimorphism B; — S; induces an epimorphism

m:brAut(T,) — Aut(Ty).
For any f € brAut(7Ty), define

y(f)=(foreos fa)s
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Figure I: 'The braid (.

where f=¢(f)(fi>..., fa) is the braided wreath recursion. In particular, for any
subgroup G < brAut(T,), the image y(G) is a subset of brAut(T;)*. This leads us
to the following.

Definition 2.5 (Braided self-similar) A subgroup G < brAut(Jy) is called braided
self-similar if y(G) ¢ GX.

Definition 2.6 (Braided self-identical) A subgroup G < brAut(Ty) is called braided
self-identical if w(g) = (g,...,g) forall g € G.

Note that the image in Aut(T,;) under 7 of any braided self-similar group is a self-
similar group (with an analogous statement for self-identical).

Remark 2.3 In terms of being able to construct these variants of self-similar groups,
there is nothing particularly special about braid groups. More generally, given any
group T acting on any set Y, one can form the iterated wreath products I 2} T, take
the projective limit to get T' 2y (T'2y ([2y ---)), and then consider subgroups G for
which the associated wreath recursion of any element of G involves only elements of
G. One could call these “(T, Y)-self-similar” Our focus here is on braided versions, so
we will not pursue this degree of generality here.

Example 2.4 (Subgroups of the braid group) This example is the “braided” version
of Example 2.1. For 8 € By, we can define an element of brAut(T; ), also denoted f, via
the braided wreath recursion = (3, ..., f8). In particular, viewing B, as a subgroup
of brAut(7;), in this way, we see that B;, and indeed any subgroup of By, is braided
self-identical (hence braided self-similar).

Before the next example, let us fix a generator { of B, = Z, which will also be useful
in all that follows. We will use the braid where the strand on the left crosses over the
strand on the right as the strands go down, as in Figure 1.

Example 2.5 (Z:Z) As a nice example that is braided self-similar but not braided
self-identical, we can use Z:Z. Take elements a and b whose braided wreath
recursions are a = {(1,a) and b = (3(1,b). A computation shows that a**ba=2k =
C3(1,a*ba %) and a®*'ba~ D = 2(a*ba*,1) for all k € Z, so an induction argu-
ment shows that all the b,, := a"ba™" pairwise commute. Hence, we get a well-defined
epimorphism Z: Z — (a, b), and we claim that it is an isomorphism. It suffices to show
that if (b;)P*---(b;,)P*a9 =1 for iy < --+ < iy, then p; = -+ = py = g = 0. Hitting
(a, b) with 7, since b € ker(7) and one can check that a maps under 7 to an infinite
order element of Aut(73 ), we see that g = 0. Now, applying braided wreath recursions
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and using induction on the p;, we see that the only possibility is p; = --- = p, =0,
as desired.

Before discussing our main example of the braided Grigorchuk group, let us pin
down the kernel of the map m:brAut(T,) — Aut(Ty), i.e., m: By § Bs — Sq % Sa.
First, note that the kernel of m: By — S; is the pure braid group PB,;. The action of
PB, on X is trivial, so PB, % PB, is simply a direct product of copies of PB;, namely
1+d+d*+ - +d" many copies. This equals the kernel of the natural map B, ¥
By — S4 % S4. Now we get the following.

Lemma 2.6 The kernel of m: By By — Sq % Sa is PB4 PBy, which is a direct
product of infinitely many copies of PB,.

Proof Viewing the projective limit B, ;X By as a subgroup of the direct product of
the factors B, 2% By in the projective system, and similarly S; ¥ S, as a subgroup of
the direct product of the S; 2% S, the map 7 is the restriction of the analogous map
between these direct products. The kernel of the map on the direct products is clearly
the direct product of the PB, 2% PB,. This shows that the kernel of 7 is the intersection
of By ¥ B, with the direct product of the PB,; 2% PB,, which is PB; ¥ PB,. Since
PB, acts trivially on X, this is just a direct product of copies of PB,. [ ]

Corollary 2.7  The kernel of m:brAut(T,) — Aut(T3) is abelian.

Proof By Lemma 2.6, the kernel is a direct product of copies of PB; = Z. [ ]
2.2 The braided Grigorchuk group

Now we construct a braided version of Grig. Denote by a the element of brAut(75)
defined by the braided wreath recursion a = {(1,1). Now define b, ¢, and d via the
braided wreath recursions b = (a,c), ¢ = (a”',d),and d = (1, b).

Definition 2.7 (Braided Grigorchuk group) The braided Grigorchuk group brGrig is
the subgroup of brAut(7,) defined by

brGrig:=(a, b, c,d).

The reason for using ¢ = (a™',d) rather than ¢ = (a,d) is so that we get the
pleasant-looking relation bcd = 1 that holds analogously in the Grigorchuk group, as
the proof of the next result shows.

Lemma 2.8 The subgroup (b, c,d) of brGrig is isomorphic to 7.

Proof First, we claim that bcd = 1. Applying braided wreath recursions to bed
produces (1, cdb), then (1, (1, dbc)), and so forth, which shows that indeed bcd = 1.
A similar argument shows cbd = 1. In particular, b and ¢ commute and d = (bc) ™.
It remains to show that b and ¢ admit no nontrivial relations of the form b¥c? = 1.
Applying braided wreath recursions, we get b*c’ = (a***, (a*, d*b")), which equals 1
only if k + ¢ = 0 and k = 0, so indeed no nontrivial such relations hold. [ ]

Lemma 2.9 The restriction of n: brAut(T,) — Aut(T3) to brGrig yields an epimor-
phism from brGrig onto Grig.
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Proof First, note that 71: B, - S, sends ( to (1 2). Thus, 7: brAut(T,) — Aut(7T>)
sends a to the element a of Grig. It follows immediately that b, ¢, and d, respectively,
map under 7 to b, ¢, and d. ]

Corollary 2.10  The braided Grigorchuk group brGrig is amenable.

Proof By Lemma 2.9, we have an epimorphism 7: brGrig — Grig. The kernel is
abelian by Corollary 2.7. Hence, brGrig is abelian-by-amenable, so amenable. |

Momentarily, we will prove that the braided Grigorchuk group is not finitely
presented. The proof is inspired by the proof for the Grigorchuk group with some
modifications, and we (roughly) follow this proof as given in [dIHO00]. First, we need
some setup.

By Lemma 2.8, we see that there is a canonical epimorphism from F := Z * Z? onto
brGrig by mapping the generator of the first copy of Z to a and mapping the generators
of Z? to b and c. Thus any element in brGrig can be written (non-uniquely) as

k k
21872y a4 Zgyns

where the z; are of the form b™ic" for some m;, n; € Z and are nontrivial except
possibly when i =1 or ¢ + 1. Call an expression of this form reduced. For a reduced
expression as above, declare the length, denoted |zlaklzz ceakez |, to be the number
of terms in the alternating product, so the length is 2¢ — 1, 2¢, or 2/ + 1 depending on
whether z, and/or z;,; are equal to 1. Similarly, define |z1a*z, - - - a¥zg,1|, = T4, ki
i.e., the sum of the exponents on the a terms.

Given any word w in the generators a, b, ¢, and d and their inverses, one can obtain
a new word in reduced form by iteratively applying the following reductions and the
analogous ones for their inverses:
(1) g'g/=g'tiforge{a,b,c,d}.
(2) d7!=be.
(3) ¢b = bc.

Call the resulting word w4,

Lemma 2.11 Let w be a reduced expression for an element of brGrig. Consider the
braided wreath recursion w = $(w) (w1, wy). Then
[w| +1 J
o
Proof Using the braided wreath recursion and applying the reductions, we get

wied| <|

{"(akm b=mck=m),if nis even,

l’)k my n _
(b} {("(bmckm,akm), if nis odd.

Thus, each pair z;a* in the alternating product contributes at most one term to w;
and at most one term to w,. The result now follows. [ ]
Lemma 2.12  The braided Grigorchuk group has solvable word problem.

Proof Letw be an expression in reduced form. To decide if w represents the identity,
proceed as follows.
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(1) Determine if |w|, = 0.
(a) If |w|, # 0, thenw # 1.
(b) If |w|, = 0 and the length of w is 0, then w = 1.
(c) If |w|, = 0 and the length of w is at least 1, then apply y to obtain y(w) =
(w1, wy) and go to (ii).

(2) Compute wid and wi*? and return to (i) which should be checked for both wred
and wied.
It follows from Lemma 2.11 that the procedure terminates. [ ]

Let W™ be the set of reduced words, so we can identify W™ with F = Z + Z2.
For w e W™ and for ji, ..., j, € {1,2}, let w}'led . j, denote the reduced word defined
inductively by

d dyred
Wiee g = (Wi ) )5S

Let ¥: F — brGrig be the canonical epimorphism.
Definition 2.8 For each n > 0, let K,, denote the subset of F given by

K,={weF|we ker(‘}’),w;lefl. .j, =1forall ji,..., jn, € {1,2}}.

Lemma2.13 Wehave{l} =Ky <K; <K, < -+ < U K, = ker ¥. Moreover, each K,
n=0

is normal in F and all the inclusions are strict.

Proof It is clear that K, < K,,;1. The fact that U K,, = ker ¥ follows from the fact
n=0

that the procedure in Lemma 2.12 terminates. It remains to show that each K, is

normal and that the inclusions are strict.

It is clear that K, is normal in F and so we proceed by induction. Observe that
Ky={weF||wl,=0and wd, wi*d e K,_;}.

Let w € K,,. We claim that any conjugate of w by one of the generators is again in K.
For a™'wa, this follows from the fact that |a'wal, = |w|, and that (a”'wa), = w, and
(a"'wa), = w,. For the remaining cases, we see that [b~'wb|, = |c'wc|, = |d"'wd|, =
|w|,, and moreover

(b7'wb), = a”'wya, (b7'wb), = ¢ twac,
(¢c'we)y = awya™, (c'we)y = d 7 'wad,

(d7'wd), = wi, (d7'wd), = b wyb.

Now normality follows from the induction hypothesis.

Finally, we verify that the inclusions are proper. Let ¢ be the endomorphism of
F defined by 0(a) =a'ca,0(b) =d,o(c) = b, and 6(d) = c. Observe that o takes
reduced words to reduced words, and moreover if |w|, = 0 then |o(w)]|, = 0. Also,
note that o(a); =d ™', 0(d), =a™*, 0(a); = a,and 0(d), = d. Now fix

w=[a,d][a’,d"]=a'd  'adada™"d
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and
w=[d"a"[d,a] =dad'a'd'a  da.

We claim that ¢” (w) and ¢" (W) are in K,,; but not K,,. For the base cases, one easily
checks that wand w are both in Kj but not in K. Now note that 6 (w); = W, o(w), = w,
o(W); = w,and 6(W), = W, so using the base case, we get that 0 (w) and o (#) are both
in K, but not K;. Continuing in this way, the result follows by induction. ]

Proposition 2.14  The braided Grigorchuk group brGrig is not finitely presented.

Proof Suppose brGrig is finitely presented. As it is a quotient of F, it has a presenta-
tion of the form

(a,b,c,d | bed, b ¢ be,ry, 1o 1k),s

giving brGrig = F/R where R = ker(¥) is the normal closure of r, ..., 7 in F. As each
r; is contained in some K,,, this contradicts Lemma 2.13. [ |

Anthony Genevois has pointed out to us that Proposition 2.14 also follows from
[BGdIH13, Theorem 1.6], which implies that no finitely presented amenable group has
Grig as a quotient.

Remark 2.15 Our braided Grigorchuk group brGrig is similar to the torsion-free
group of intermediate growth constructed by Grigorchuk in [Gri85, Section 5]; see
[All21] for a similar construction (which in discussions with Daniel Allcock we have
determined is isomorphic to the group in [Gri85]). The difference is that, phrased in
our language, it seems likely that that group would use the braided wreath recursions
b=(a,c),c=(a,d),andd = (1,b). We chose c = (a™*, d) so that we would get bcd =
1, which makes brGrig feel more closely related to Grig. We will leave it as a question
for future investigation whether brGrig is isomorphic to the group from [All21, Gri85
], and so in particular whether brGrig has intermediate growth.

3 Braiding groups of almost-automorphisms of trees

In this section, we discuss groups of almost-automorphisms of trees, and introduce
braided versions. We will use the framework of d-ary cloning systems from [SZ21],
which generalize cloning systems from [WZI8]. Very loosely, d-ary cloning systems
provide a way to construct new Thompson-like groups, and have proved useful in a
variety of recent work, for example, on decision problems [BZFG+18], orderability
[Ish18], von Neumann algebras [BZ], and the so-called Jones technology [Bro21]. Let
us recall the relevant background.

3.1 Cloning systems

Definition 3.1 (d-ary cloning system) Let d > 2 be an integer, and let (G, ) ey be
a family of groups. For each n €N, let p,,: G, - S, be a homomorphism to the
symmetric group S,, called a representation map. For each 1< k <n, let k] : G, —
Gu1d-1 be an injective function (not necessarily a homomorphism), called a d-ary
cloning map. We write p, to the left of its input and ] to the right of its input, for
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id f  f

Figure 2: An example of 2-ary cloning on brW,. Here, f € brAut(7,) satisfies the braided
wreath recursion f = {(f, f). The picture shows that ({(id, f))x3 = ({)93¢® (f)(id, f, f).

We use thick lines to indicate the strand getting cloned and the resulting strands.

reasons of visual clarity. Now we call the triple

((GH)HGN’ (PH)HGN’ (KZ)kSn)

a d-ary cloning system if the following axioms hold:
(C1): (Cloning a product) (gh)x} = (g)mzn(h)k(h)nz.
(C2): (Product of clonings) k) o k™47 = k1 o 1471,
(C3): (Compatibility) ppra-1((g)x})(i) = (pn(g))sp(i) for all i+ k,k+1,...,k+
d-1

Here, we alwayshavel < k < £ < nand g, h € G,,,and ¢} denotes the standard d-ary
cloning maps for the symmetric groups.

The maps ¢} are explained in [SZ21, Example 2.2], and we will review them in
Example 3.2.

Remark 3.1 For an illustration of a cloning map in the special case G, =brW,
(defined in Section 3.3), we direct the reader to Figure 2.

Given a d-ary cloning system on a family of groups (G, ) nen, 0ne gets a Thompson-
like group, denoted .7;(G. ), which can be viewed as a sort of “Thompson limit” of
the G,,. Let us recall the construction of .J;(G. ). First, a d-ary tree is a finite rooted
tree in which each nonleaf vertex has d children, and a d-ary caret is a d-ary tree with
d leaves. An element of 7;(G.,) is represented by a triple (T_, g, T, ) where T, are
d-ary trees with the same number of leaves, say #, and g is an element of G,,. There is
an equivalence relation on such triples, and the equivalence classes are the elements of
Z4(G.). The equivalence relation is given by expansion and reduction: an expansion
of (T_, g, T ) is a triple of the form (T”, (g)x}, T, ) where T} is T, with a d-ary caret
added to the kth leaf and T’ is T_ with a d-ary caret added to the p,,(g)(k)th leaf. A
reduction is the reverse of an expansion. Now declare that two triples are equivalent if
we can get from one to the other via a finite sequence of expansions and reductions,
and write [T_, g, T, ] for the equivalence class of (T_, g, T} ).
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Definition 3.2 (Thompson-like group) The Thompson-like group 7;(G.) is the set
of equivalence classes [T_, g, T. ].

We have not explained the group operation on .7;(G.). The idea is that given
any two elements [T_, g, T, ] and [U_, h, U, ], up to expansions, we can assume that
T, = U_. This is because any pair of d-ary trees have a common d-ary tree obtainable
from either of them by adding d-ary carets to their leaves. Now the group operation
on 7;(G,) is defined by

[T—ag) T+][U—1 h) U+] = [T—aghs U+]

when T, = U_. The cloning axioms ensure that this is a well-defined group opera-
tion. The identity is [T,1, T] (for any T) and inverses are given by [T_,g, T,]|™" =
[T+a g_la T—]

Example 3.2 (Cloning permutations) The most fundamental example of a d-ary
cloning system is on the family (S, ),en of symmetric groups. Take p,:S, - S, to
be the identity, and let

CZ 1Sy = Spraa

be the function described as follows. Visualize o € S, by drawing arrows going up,
from a line of labels 1 to n for the domain to another line of labels 1 to n for the range,
with an arrow from i to (i) for each i. Now (0)¢} € S,.4-1 is obtained by replacing
the arrow from k to o (k) by d parallel arrows, and relabeling everything appropriately.
For a (complicated) rigorous formula, see [SZ21, Example 2.2]. It turns out that this
defines a d-ary cloning system, with d-ary cloning maps ¢};. The Thompson-like group
4(S.) that arises from this d-ary cloning system is (isomorphic to) the Higman-
Thompson group V.

Example 3.3 (Cloning braids) The braided version of the above example is a d-ary
cloning system on the family (B, ) ey of braid groups. Take p,:B, — S, to be the
natural projection of B, onto S,, and let

91? :By = Buya

be the function described as follows. Visualize 8 € B,, as an n-strand braid diagram,
counting the strands 1to 7 at the bottom. Now (f3) 9} € B, 41 is obtained by replacing
the kth strand (counting at the bottom) by d parallel strands. As discussed in [WZ18,
Remark 2.10], in the d = 2 case, this really defines a cloning system (this was essentially
already shown by Brin in [Bri07], before cloning systems had been introduced, using
the language of Zappa-Szép products), and it is easy to see that in the arbitrary d case,
it defines a d-ary cloning system. The Thompson-like group .7;(B.) that arises from
this d-ary cloning system is (isomorphic to) the braided Higman-Thompson group
brV, considered previously by Aroca and Cumplido in [AC22], and the first author
and Wu in [SW].

3.2 Almost-automorphisms

Every automorphism of T, induces a self-homeomorphism of the boundary 07,
which is a d-ary Cantor space. The idea behind almost-automorphisms of T is
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to consider self-homeomorphisms of 07T, that locally “look like” they came from
Aut(T). Far more detail and rigor can be found, for example, in [LB17] and [SZ21,
Section 1.3]. For our purposes here, we will use the isomorphism in [SZ21, Theorem
2.6] to simply define the group of almost-automorphisms of T, as the Thompson-like
group arising from the following cloning system.

Forn e N,let W, := S, 2 Aut(T,) (in [SZ21], this was denoted A, but here we will
use W,,). Here, the wreath product has no subscript, and so this should be interpreted
as meaning there are n copies of Aut(7T;) and S, acts on {1,...,n} in the standard
way. Following [SZ21, Section 2.2], we will define a d-ary cloning system on (W, ) yen.
Let p,,: W, — S, be the natural epimorphism onto the S, term, i.e.,

pu(0(fis-oos fu)) = 0.

To define the d-ary cloning maps xf:W, - W,.4_;, we need some notation.
Given o(fi,...,fn) € W, and 1<k <n, write the wreath recursion of fi as

Fe=p(fe)(fl s f). Also, write p®)(f) € S,4q-1 for the image of p(fi) € Sy
under the (k-dependent) monomorphism S; - S,.4-; induced by the inclusion
{1,...,d} - {1,...,n} sending j to k + j — 1. Now we can define } as follows:

(0(forev s i)k = (@) i) (fio oo fiots fio oo Sils frrnse s f).

As proved in [SZ21, Proposition 2.4], these p,, and }; define a d-ary cloning system
on the W,,.

Definition 3.3 (Group of almost-automorphisms) The group of almost-
automorphisms AAut(T;) of Ty is

AAut(Ty) := Ty(Wy),
where (W,,) nen is equipped with the above d-ary cloning system.

Now, for self-similar G < Aut(J;), consider the family (S, 2 G) en. Thanks to self-
similarity, the restriction of x} to S,, 2 G lands in S, 4_; 2 G, which means that the d-
ary cloning system on the W,, = S,,  Aut(7) restricts to a d-ary cloning system on
S,.:G.

Definition 3.4 (Rover—Nekrashevych group) For a self-similar group G < Aut(7y),
the Rover-Nekrashevych group for G is

Va(G) := Z4(8+ 1 G),
where (S, G)nen is equipped with the above d-ary cloning system.

This definition agrees with the usual definition first given by Nekrashevych
[Nek04], thanks to [SZ21, Corollary 2.7].

Definition 3.5 (Rover group) 'The Réver group is the group V,(Grig).

The Rover group V,(Grig) was first constructed by Rover in [R6v99], and general-
ized by Nekrashevych in [Nek04] to the full family of Réver-Nekrashevych groups
Vi(G). Réver proved that V,(Grig) is isomorphic to the abstract commensurator
of Grig, and is a finitely presented simple group [R6v02, R6v99]. Belk and Matucci

https://doi.org/10.4153/50008414X23000159 Published online by Cambridge University Press



568 R. Skipper and M. C. B. Zaremsky

[BM16] proved that it is even of type Fo,. Analogous results for certain V;(G) were
proved by Nekrashevych [Nek04], Farley and Hughes [FHI5], and the authors [SZ21].

3.3 Braiding groups of almost-automorphisms

Now we will introduce braided Rover—Nekrashevych groups. Starting with self-
identical groups, this was previously done by Aroca and Cumplido in [AC22], but for
self-similar groups that are not self-identical, to the best of our knowledge, this has not
been done. In particular, using the braided Grigorchuk group to construct a braided
Rover group is new. As a remark, Aroca and Cumplido’s constructions could have
been phrased in the language of cloning systems, as they mention in their introduction
(though they did not use this framework outside their introduction), so one can view
our approach here as a direct generalization of theirs.

Convention: The notation B, 2 G, i.e., with no subscript on the 2, will always mean
,,,,, ny G defined via the action of the braid group B, on {I,...,n} coming from
the natural projection B,, - S,.

Recall that brAut(Ty) = B4 % Bg, and let brW,, := B, : brAut(T,). We want to
define a d-ary cloning system on (brW,),ey. We will use the notation p, and &}
like we did in the nonbraided case for the cloning system on (W, ),en, and no
confusion should arise. Let p,, : brW,, - S,, be the composition of br W,, - W, with
W, — S, where the first map is induced by the standard epimorphism B, — S,
together with 7: brAut(T;) — Aut(T,;), and the second map is the p,, epimorphism
from the nonbraided case. To define the d-ary cloning maps «} : brW,, — brW, 4,
we need some notation. Given S(f1,..., f,) € brW, and 1 < k < n, write the braided
wreath recursion of fi as fy = ¢(fi) (fi, ..., f2). Also, write $¥)(fi) € B,,, 4, for the
image of ¢( f) € B, under the (k-dependent) monomorphism B; — B,,,4-1 induced
by adding k — 1 new unbraided strands on the left and n — k new unbraided strands
on the right. Now we can define «}, as follows:

BUfure- s )i = (BYOES O (Fi) fro oo fiots fibo v os fis fiwtn s f)-

Note that xJ is injective, since 9} is injective and f is uniquely determined by its
braided wreath recursion. See Figure 2 for example.

Proposition 3.4 ((brW,,) e (Pn)nes (K} )1<ken) is a d-ary cloning system.

Proof The proof is similar to that of [SZ21, Proposition 2.4] about the nonbraided
situation, and some parts work in exactly the same way. Hence, in the course of
this proof, we will sometimes just state that a certain step works analogously to the
corresponding step in [SZ21, Proposition 2.4]. First, we prove (C1) (cloning a product).
Let f=B(fi,..->fn) and g=7v(g1,...,8n) be elements of brW,, so the product
fg equals By(fy1)&>---> fy(n)&n)- Here, B, acts on {1,...,n} via the projection
B, — S,, and the notation y(i) indicates this action. Similar to the proof of [SZ21,
Proposition 2.4], the left-hand side of (Cl) is

(fo)rr = (By) 9k ™ (£, 8x)

d
< (Frg- - Sy @i S8 g LGVl o grens o Frongn)
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\ K \ ¢(fy(3))

Figure 3: An example of the last step of the verification of (Cl) in the proof of Proposition 3.4.
Here,d =3,k =3,and n = 5.

Here, the braided wreath recursions of f,x) and gr are fy )=

¢(fy(k))(f;(k),...,f)fl(k)) and gx = ¢(gk)(gh.-.&¢), so the braided wreath
recursion of f,x) g is

d
fyx) &k =¢(fy(k)gk)(fy¢((kg)k)(1)gk,.. f;b(kg)k)( ).

Now we need to show that the right-hand side of (C1), which is (f )m;’( 0 (g)K}>equals
the same thing. One can compute (similar to the proof of [SZ21, Proposition 2.4]) that
this equals

(B)9y 87V (£00) (1) 95 ™) (g

n (k)
X (fir-- > Fyk)=0 Fogiy - > Fiiys Syysts - oo f) D587 (80)
x (g1 ,gk-l,g}(, . ,g;j,gkﬂ, e 8n)s

where the superscript indicates conjugation in brW, . 4_;. By the same argument as
in the proof of [SZ21, Proposition 2.4], the “tuple parts” of the left- and right-hand
sides of (Cl) are the same, so we only need to show that the “braid parts” are the
same, i.e. that (By)976%) (fyigk) = ()97 67 (f6)) (7) 9769 (g5). Since
we already know the 9}’ define a d-ary cloning system on braid groups, we know
(By)9; = ()9 o (y)Sk , and since ¢ is a homomorphism, this means that it suffices
to show that (y)9”¢(k)(f k) = </>(V(k))(f ()) ()9} To see this, note that the kth
to (k +d —1)st strands of (y)9; are all parallel to each other, and these are the only
strands of ¢(F) ( fy(x)) that can braid nontrivially (see Figure 3).

Next, (C2) follows by an exactly analogous argument to the proof of [SZ2],
Proposition 2.4].

Finally, we turnto (C3).Let B(fi,..., fu) ebrW,andi # k,k+1,...,k+d - 1. We

need to show that p,,a_1((B(fi>-..» fu))6}) () = (Pu(B(fis-- -5 fu)))E(i). Setting
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Figure 4: An element of the braided Rover group. Here, we draw a triple (T—, 8(fi, ... fm ), T+)
with T, upside down so that § is a braid from the leaves of T_ to the leaves of T4, and the f;
label the strands. The element equals [A, (a,b), A], for A the tree with one caret. As indicated
in the picture, after expansions, this is the same element as [T, (1,1, a,c), T] for T the result
of adding a caret to each leaf of A and § € By the braid crossing the first strand over the second.

o = (), the right-hand side just equals (0)¢} (7). The left-hand side equals

Prrd-1((BYOROE () (fir- s ficts fio o or fils frrn o f)) (0

which is 7((8)92¢®) (fi))(i). Since m(¢*)(fi))(i) =i (by virtue of i # k, k +
L,...,k+d-1), this equals 7((B)9})(i). Since 7 plays the role of p, in the d-ary
cloning system on the braid groups using the d-ary cloning maps 97, by (C3) for that
d-ary cloning system, we know 7((f)9}) (i) = (o)} (i) as desired. ]

The Thompson-like group .7 (br W, ) is abraided version of 7;( W,.) = AAut(T,),
and we will denote it by brAAut(7;).

Now, for braided self-similar G < brAut(T;), consider the family (B, : G)pen.
Thanks to braided self-similarity, the restriction of x} to B, : G lands in B,,.4-1 2 G,
which means that the d-ary cloning system on the brW,, = B,, 2 brAut(T;) restricts to
a d-ary cloning system on the B, : G.

Definition 3.6 (Braided Rover-Nekrashevych group) For a braided self-similar
group G < brAut(T;), the braided Réver-Nekrashevych group for G is

brV;(G) := Z;(B.:G),
where (B, 2 G) ,en is equipped with the above d-ary cloning system.
Our main example is the following.

Definition 3.7 (Braided Rover group) We define the braided Rover group to be the
group brV, (brGrig).

See Figure 4 for an example of an element of the braided Rover group.

There is an obvious relationship between braided Rover-Nekrashevych groups and
(nonbraided) Rover-Nekrashevych groups, analogous to how the braided Thompson
group brV surjects onto Thompson’s group V. Given a braided Réver-Nekrashevych
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group brV,;(G), we get a well-defined epimorphism
m:brVy(G) - Vu(n(G)),

where 7(G) is the image of G under 7: brAut(T;) — Aut(7T,). This epimorphism
(which by abuse of notation we are also denoting by m) is given by sending

[T-,B(fir-- o> fu)> Tu] to [T-, w(B)(m(fi), ..., 7(fu)), T+ ]. The d-ary cloning sys-
tems on (B, : G) yeny and (S, 2 1(G) ) en are clearly respected by 7, so this map really

is well defined.

Remark 3.5 The kernel of m:brV (G)— Vi(n(G)) consists of all
[T,B(f1>.-->fn), T] such that B is pure and each f; lies in the kernel of
7: brAut(T,) — Aut(T,;). By Lemma 2.6, each of these kernels is a direct product of
copies of PB,. Overall, this means that the kernel of 7: brV;(G) — V4 (n(G)) is a
direct limit of direct products of pure braid groups PB, with infinitely many copies
of PB, with the direct limit informed by the cloning maps.

4 Finiteness properties

In this section, we inspect finiteness properties of braided Rover—Nekrashevych
groups. The main result of this section is the following theorem.

Theorem 4.1 Let G < brAut(T,) be braided self-similar. If G is of type F,, then so is
brVd (G)

The case when G is braided self-identical was already proved in [SW], where it was
shown that for braided self-identical G, the converse of Theorem 4.1 is also true. (In
general, the converse of Theorem 4.1 is not always true, as our Theorem 5.1 will show.)

4.1 Stein-Farley complexes

The starting point for deducing finiteness properties for a Thompson-like group is
often to construct a so-called Stein-Farley complex on which the group can act. For
groups of the form %3(G.), i.e., those arising from (2-ary) cloning systems, this was
done in [WZ18]. For groups of the form .7;(S. : G), i.e., Rover-Nekrashevych groups,
the Stein-Farley construction was done in [SZ21]. For arbitrary groups of the form
Z4(G,), i.e., those arising from d-ary cloning systems in general, the Stein-Farley
construction has not technically been done in the literature, but it is easy to mimic
the 2-ary construction, and this is the goal of this subsection. Also, see [Zar21] for
an introductory take on the situation when d =2 and G,, = {1} for all m, i.e., for
Thompson’s group F. The name Stein-Farley complex pays homage to Stein [Ste92]
and Farley [Far03], who constructed complexes like these for the classical Thompson
groups and some close relatives.

Given a d-ary cloning system ((Gm)mens (Pm)meN> (K] ) k<m)> we will construct
a cube complex, denoted by 2Z;(G.), called the Stein-Farley complex for the d-ary
cloning system. This is done in a number of steps.

A groupoid: First, we consider the set of equivalence classes [ F-, g, F, |, where F_ is
ad-ary forest, say with m leaves (and some number of roots), g is an element of G, and
F, isa d-ary forest with m leaves (and some number of roots). The equivalence relation
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on such triples is given by the expansion and reduction moves, as with elements
of 7;(G.). This set is a groupoid; two elements [F_, g, F.] and [E_, h, E,] can be
multiplied whenever the number of roots of F, equals the number of roots of E_. In
this case, up to expansions, we can assume that F, = E_, and the multiplication in this
groupoid works analogously to the multiplication in .7;(G. ). Multiplication is well
defined in the groupoid for all the same reasons that it is well defined in 7;(G.).
Denote this groupoid by 4,;(G..).

A poset: Now we restrict to equivalence classes of triples of the form [T-, g, F, ]
for T_ a d-ary tree, and mod out an additional equivalence relation given by right
multiplication by elements of the form [1, g, 1], for 1 a trivial forest with some number
of roots, m, and g’ € G,,. Denote the resulting equivalence classes by [T-, g, F |6, and
write #;(G.) for the set of all of them. Given [T_, g, F, | € Z4(G.), say with F,
having m roots, and a groupoid element of the form [F, 1,1] for F a d-ary forest with m
roots, it makes sense to consider the product [T-, g, F, ][F,1,1] and the equivalence
class [T, g, F,][F,1,1]. We define a partial order < on 2;(G.) by declaring

[T-,g,F.]¢ <[T-, g F.][F,1,1]c.
(Note that thanks to the equivalence relation, in fact, we have

[Tfsg)F+:|G < [T—)g:F+:||:17gly 1:||:Fs 1)1]G

for any relevant g'.) It is easy to see that < is reflexive, transitive, and antisymmetric,
and hence really is a partial order. It is also clear that £, (G. ) with <isa directed poset,
since for any [T-, g, F,]c we have [T_,¢,F,]¢ <[T-, ¢ 1] = [T-,1,1]g, and any
two [T-,1,1]g and [T”,1,1] have an upper bound. Hence, the geometric realization
|24(G.)| is contractible.

A cube complex: Now we construct the Stein-Farley complex 2;(G, ), which
is a cube complex having a natural subdivision identifiable with a certain subcom-
plex of |Z2,(G.)|. The vertex set of Z;(G,) is the whole vertex set of | 22;(G.)|,
namely &;(G,). Let E be a d-ary forest whose trees each have at most one d-
caret; call such a d-ary forest elementary. If E is an elementary d-ary forest with
one nontrivial tree and with the same number of roots as F., we can consider the
product [T, g, F.][E,1,1] in the groupoid ¥;(G.). We declare that the vertices
[T-,g,F.]g and [T-,g,F,][E,1,1]g span an edge in Z4(G.). If [T_,g,F.]c <
[T-, g, F.][E,1,1]¢ for E elementary, write

[T—)g; F+]G < [T,,g, F+][E1 1) I]G'

More generally, if E is any elementary d-ary forest with the same number of roots as
F,, then all the vertices of the form [T, g, F. ][E’,1,1]g, for E’ obtained from E by
replacing some number of d-carets with trivial trees, span the 1-skeleton of a cube in
Z4(G.), and we declare that there is a cube in 2 (G.) with this 1-skeleton. All of
this is well defined up to the equivalence relation. Any nonempty intersection of cubes
is a common face of each of them, so 2 (G, ) really is a cube complex. Within a given
cube, the geometric realization of the finite subposet of %2, (G. ) given by the vertices
of the cube is naturally a subdivision of the cube. Hence, there is a natural subdivision
of Z;(G.) that is identifiable with a subcomplex of | 22, (G.)|.
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A Morse function: Let
h: %d(G*)(O) - N

be the function sending [T_, g, F; ] to the number of roots of F,, and call this the
number of feet of this vertex. Note that adjacent vertices have distinct / values. By the
construction of Zy(G.), it is clear that & can be extended to a map h: 2,(G,) - R
that restricts to an affine map on each cube. Hence, h satisfies all the requirements to
be a discrete Morse function, in the sense of Bestvina of Brady [BB97]. In particular,
we will be allowed to use discrete Morse theory when it comes up later. The function h
also comes into play when proving that 27 (G. ) is contractible, which we do shortly.

Upward-local finiteness: The main advantage of 2 (G.) over |%2;(G.,)| is that
the former is what we will call “upward-locally finite,” as we now explain. Note that
there are only finitely many elementary d-ary forests with a given number of roots.
Also, note that for any [1, g,1], [F,1,1] € 4;(G. ) such that the product [1, g,1][F, 1,1]
makes sense, there exist F’ and g’ such that [1, g,1][F,1,1] = [F’,1,1][1, &', 1]. More
precisely, F and g’ are such that upon expanding we get [1, g,1] = [F', ¢, F], and then

(L& 1[F.L1] = [F, ¢, FI[F,1,1] = [F', ¢',1] = [F, L1][1, &', 1].

In particular, given any vertex x = [T_, g, F, | of Z;(G.), every vertex y with x < y
is of the form y = [T_, g, F,][E,1,1]g for some elementary d-ary forest E. (Indeed,
a priori y is of the form [T_, g, F.][1, h,1][E, 1,1] s, but the above shows that we can
ignore the [1, h,1] factor for the purposes of characterizing y.) We conclude that for
any x, there exist only finitely many y with x < y. We refer to this property by saying
that 2 (G.) is upward-locally finite.

Contractibility: To see that 27;(G.) is contractible, we will show that the inclu-
sion 24(G.) = |Z4(G.)| is a homotopy equivalence. Using the usual notation
of open and closed intervals in posets, every simplex of |%2;(G.,)| that is not in
Z4(G.) lies in the realization of a closed interval [x, y] for x = [T, g, F:]g <y =
[T-, g, F.][F,1,1]¢ with F a nonelementary d-ary forest. Hence, it suffices to show
that we can build up from 2;(G.) to | Z4(G.)| by gluing in the realizations of such
closed intervals in some way that never changes the homotopy type. Using the above
notation, the order we will use is in increasing order of the quantity h(y) — h(x).
Thus, when we glue in |[x, y]|, we do so along |[x, ¥)| U |(x, ¥]|. This is the suspension
of |(x, y)|, so it suffices to see that |(x, y)| is contractible. For this, we can mimic the
proof of [WZ18, Lemma 4.7], which is the d = 2 case. Recall that a poset (Y,c) is
called conically contractible if there is a yo in Y and a poset map g : Y — Y such that
zt g(z) 2 yo for all z in Y. A consequence of a poset being conically contractible is
that its geometric realization is contractible. Since a poset and its opposite poset have
isomorphic geometric realizations, we can also use the criterion z 3 g(z) E yo. See the
discussion in [Qui78, Section 1.5] for more details. Now, given any z € (x, y], define
£(2) to be the largest element of [x, z] such that x < g(z) (the idea is to replace any
d-ary forest with its unique largest elementary subforest). By our hypothesis, g(z) is in
[x, y) and itis also clearly in (x, y], so we have g(z) € (x, y). Let yo = g(»). Note that
for any z € (x, y), we have g(z) < yo. Therefore, z > g(z) < yo and (x, y) is conically
contractible.

https://doi.org/10.4153/50008414X23000159 Published online by Cambridge University Press



574 R. Skipper and M. C. B. Zaremsky

Action and stabilizers: The group .7;(G.) acts on Z;(G.) by left multiplication,
which is well defined since the equivalence relation defining vertices of 2;(G.) and
the partial order dictating which vertices span cubes are both given by right multi-
plication. Note too that 4 is invariant under this action. We claim that the stabilizer
of a vertex with h value m is isomorphic to G,,. Given such a vertex [T-, g, F | and
an element [U_, h, U, ] of Z4(G.), we have [U_,h, U, ][T-,¢, Fi]c = [T-. & F+]c
if and only if [F,, g™, T_][U-, h, U, ][T-, g, F+] = [L, W', 1] for some h’ € G, (since
F, has m roots, the “1” here is the trivial forest with m roots, and h’ € G,,). Thus,
[U_,h,U,] — h' provides the desired isomorphism from the vertex stabilizer to G,,.
Now we claim that any cube stabilizer is a finite index subgroup of a vertex stabilizer.
Consider a cube in 2 (G. ), say with x its unique vertex with minimum 4 value and y
its unique vertex with maximal h value. Since the action preserves h, the cube stabilizer
lies in the stabilizer of the vertex x (and that of y). Since Z;(G.) is upward-locally
finite, Symm({z | x < z}) is finite, so the kernel of Stab(x) — Symm({z | x < z}) has
finite index in Stab(x). This kernel clearly fixes our cube pointwise, so we conclude
that the stabilizer of the cube has finite index in the stabilizer of x.

Cocompactness: Let 2 (G.)"<™ be the full subcomplex of 2 (G.) spanned by
vertices with at most m feet. Since h is invariant under the action of 7;(G.), all the
Z4(G,)"=™ are stabilized by this action. Given vertices [T_, g, F, ] and [U_, h, E, ]
with the same h value, the product [U_, h, E, ][F,, g™*, T_] exists, lies in .7;(G. ), and
takes [T-, g, Fy ]G to [U-, h, E; |- Hence, 7;(G.) is transitive on vertices of a given
h value. Since 2;(G.) is upward-locally finite, and since the vertices of any given
Z4(G,)"™ only have finitely many & values, this shows that the action of 7;(G.)
on any 2;(G,)"<™ is cocompact.

Let us summarize all of the above.

Proposition 4.2 The group F;(G.,) acts on the contractible cube complex 2Z4(G.)
with cube stabilizers isomorphic to finite index subgroups of the G,,. The action on each
Z4(G)M=™ is cocompact.

Remark 4.3 In [SZ21], there is a more general construction given for a self-similar
group G, called the H-Stein-Farley complex for H < G, with the H = G case recovering
the original Stein-Farley complex. One could also fully generalize the H-Stein-Farley
complexes from [SZ21] as we have just done in the H = G case, to some sort of (H. )-
Stein-Farley complexes for H,, < G,,. This would be quite technical and tedious in
general, and besides getting the braided Rover group to be Fo, it is unclear what this
would buy us at the moment. Hence, we will do this (in the following subsection) just
for the braided Rover group, where we can follow the comparatively easier road map
from [BMI6].

4.2 Descending links

In this subsection and the next, we prove Theorem 4.1. In a now-standard approach,
we will combine Proposition 4.2 with Brown’s Criterion and discrete Morse theory to
reduce the problem to an analysis of descending links.

First, let us recall some background on discrete Morse theory and descending links
in general. Let Y be an affine cell complex, in the sense of [BB97]. Let h: Y - Rbe a

https://doi.org/10.4153/50008414X23000159 Published online by Cambridge University Press



Braiding groups of automorphisms and almost-automorphisms of trees 575

map such that the image of the vertex set of Y is a closed, discrete subset of R. If the
restriction of /i to every positive-dimensional cell is a nonconstant affine map, then we
call h a Morse function. These conditions ensure that for every cell, there is a unique
vertex at which / achieves its maximum value on that cell. The descending star st'v of
a vertex v is the subcomplex of Y consisting of all cells for which v is this vertex with
maximum h value. The descending link Ik*v of v is the link of v in st*v, i.e., the space
of directions out of v along which & strictly decreases. (One could analogously define
ascending stars and links, but here we will only use the descending version.)

The point of Morse theory is that an understanding of the descending links
can translate to an understanding of the whole complex. The following essentially
combines the Morse Lemma from [BB97] with Brown’s Criterion from [Bro87], to
produce a sufficient condition for a group to be of type F,,. See [SZ21, Lemma 3.1] for
an F, version of the following, which works exactly analogously for F,,.

Citation 4.4 (Brown’s Criterion plus discrete Morse theory) Let I be a group acting
cellularly on an (n —1)-connected CW complex X. Suppose that the stabilizer of any p-
cell is of type F,,_p,. Let h: X — R be a T-invariant Morse function such that the sublevel
complexes X"<™ are T-cocompact for each m € R. If there exists t € R such that for all
x € X with h(x) > t, we have that Ik*x is (n —1)-connected, then T is of type F,,.

Now let us discuss descending links in 27 (G. ). Since Z;(G.) is a cube complex,
the link of a vertex v is a simplicial complex, with a k-simplex for each (k +1)-cube
containing v. The descending link is the subcomplex whose simplices correspond to
cubes for which the vertex is the one with maximum / value, i.e., the most feet. Thus, a
k-simplex in Ik*v, say with h(v) = m, is represented by v[1, g, E]g, for g some element
of G,, and E some elementary d-ary forest with m leaves and k +1 carets. The face
relation is given by removing carets from E. Note that the barycentric subdivision of
Ik*v is naturally a subcomplex of | 2,4 (G. )|, namely the full subcomplex spanned by
all the v[1, g, E]g.

There is a convenient model for the descending links. Note that, up to the action
of 7;(G.), Ik*v only depends on h(v). Thus, the following complex is isomorphic to
every descending link of a vertex with m feet:

Definition 4.1 (Model for descending link) Let .Z}"(G. ) be the simplicial complex
with a k-simplex for each [1, g, E]g for g € G, and E an elementary d-ary forest with
m leaves and k + 1 carets, with face relation given by removing carets from E.

The culmination of Sections 4.1 and 4.2 is the following, which holds for any d-ary
cloning system.

Proposition 4.5  Suppose that G, is of type F,, for all m and that " (G..) is (n —1)-
connected for all but finitely many m. Then F;3(G.) is of type F,,.

Proof We look at .7;(G,) acting on 2;(G.), with the Morse function h, and
verify the requirements from Citation 4.4. By Proposition 4.2, 2 (G.) is contractible
(hence (n — 1)-connected), the stabilizer of any p-cube is isomorphic to a finite index
subgroup of some G, so is of type F,, (hence F,,_,) by assumption, and the sublevel
complexes are all cocompact. Since .Z" (G.) is (n —1)-connected for all but finitely
many m, the statement about descending links holds, and so we are done. [ ]
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4.3 Descending links in the braided case

Now we return to the special case from Section 3.3. We have a braided self-similar
group G < brAut(7,) of type F,,, and need to prove that brV;(G) = .7;(B. 1 G) is of
type F,,. As indicated by Proposition 4.5, the key thing to show is that " (B, : G)
is (n — 1)-connected for all but finitely many . To analyze the higher connectivity of
2L (B, 2 G), we will use a strategy that essentially comes from [BFM+16] in the case
when G = {1} and d = 2, and more generally from [SW] in the case when G is braided
self-identical.

The idea is to map .Z" (B, 2 G) to a complex that is easier to understand. We will
use the following complex, considered in [SW].

Definition 4.2 (d-marked point disk complex) Let Sg be a surface with b bound-
ary components m marked points, and genus g. 'Ihe "d-marked- -point-disk complex
Dg(85 ) is the simplicial complex defined as follows. A k-simplex is an isotopy class
of k +i disjointly embedded disks such that each disk encloses precisely d marked
points in its interior and has no marked points in its boundary. (Here, whenever we
say “isotopy; it is implicit that all the intermediate maps in the isotopy must satisfy
these rules as well, e.g., marked points cannot drift out of the interior of the disk and
then back in.) The face relation is given by taking subsets.

Remark 4.6  This complex is related to the curve complex first defined by Harvey in
[Har81], namely, outside some low-complexity cases, Dy (Sg ) can be viewed as a full
subcomplex of the curve complex. Indeed, given a disk enclosmg d marked points, we
can take its boundary curve, which “usually” gives a vertex in the curve complex. This
fails if the boundary curve bounds a disk, a punctured sphere, or an annulus on the
other side, which can only happen if m < d + 1. It might also happen that two disks
are disjoint up to isotopy, but their boundary curves are isotopic, which can happen
when m = 2d.

Our next goal is to map .Z}" (B« G) to Dg(8},,) in a certain way. First, we
describe a useful alternate viewpoint of elementary d-ary forests. Let L,,_; be the linear
graph with m vertices, that is, the graph with m vertices labeled 1 to m, and m — 1 edges,
one connecting i to i + 1 for each 1 < i < m. Call a subgraph of L,,_; a d-matching on
Ly if each of its connected components is a subgraph of length d — 1. The set of
d-matchings forms a simplicial complex called the d-matching complex, denoted by
M4(Ly-1), where a matching forms a k-simplex whenever it consists of k + 1 disjoint
paths, and the face relation is given by inclusion. Observe that there is a bijection
between the set of elementary d-ary forests with m leaves and the set of d-matchings
on L,_;. Under the identification, d-carets correspond to paths of length d — 1. See
Figure 5 for example.

LetS8,, = 87, be the unit disk with m marked points given by fixing an embedding
Ly—1 = 8, of the linear graph with m — 1 edges into 8, (so the marked points are
the images of the vertices). The braid group B,, on m strands is isomorphic to the
mapping class group of the disk with m marked points [Bir75], so we have an action
of B, onDy(8,,), which will be convenient to take to be a right action.

Define a map p:.Z)" (B, 2 G) - D4(8,,) as follows. For [1, B(fi,..., fm),E]c a
simplex in .Z}" (B, ¢ G), first view the elementary d-ary forest E as a d-matching in
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Figure 5: An example of the bijective correspondence between elementary 3-ary forests with
nine leaves and simplices of M3 (Lsg).

M4 (L,,-1) as above. Then take a disk tubular neighborhood of the d-matching, call it
Dg, to obtain a simplex in Dy(8,,). Forget the labels (fi, ..., fm ), and then act on Dg
by applying 7! on the right. In this way, we obtain a simplicial map

u: L (B 2G) > Da(Sm)
[LB(fis---> fm), El = (DE)B -
Lemma 4.7 The map u is well defined.

Proof Say E has q roots. Let y(gi,...,&4) € B4 G, so

(LS5 fm) Bl = [LB(fis s fn) EN[Ly(815 -+ 89)- -
Lety'(gl...»&m) € B42 G and E’ be such that

(LLE][Ly(g---»89)- 1] = [LY' (g1 > &)> UL L E'].
Then

[LB(fos- s ) EJL (815> 80)> 16 = [LBY' (fis- - fan) (8-> ) UL L E' T

for some f/, so u sends this to (Dg/)(fy’) . We need to show that this equals
(Dg)B7Y, or equivalently that (Dg:)(y")™! = Dg, ie, (Dg)y’ = Dgr. Note that y’ is
obtained by taking y, turning each strand corresponding to a root of E with a d-
caret on it into d parallel strands (call this intermediate braid y”’), and then on each
such collection of d parallel strands applying some ¢(g;) € B, to it (where ¢ is as in
Section 2.1). When acting on D though, since each of these local copies of the ¢(g;) is
supported in the interior of one of the disks in the disk system, they do not change the
(equivalence class of the) disk system. It is clear that (Dg)y"” = D, so we conclude
that also (Dg)y’ = Dg'. ]

One can visualize y as taking [L, (fi, ..., fn), E]G, viewing it as the braid  with
strands labeled by the f; at the bottom and with E serving to “merge” strands together,
and then forgetting the labels f;, considering the merges as d-matchings, enlarging
them to disks, “combing straight” the braid, and seeing where the disks are taken. See
Figure 6 for example. Note that the resulting simplex (Dg)B™" of D4(8,,) has the
same dimension as the simplex [L, B(fi> ..., fm), E]c of £]" (B4 2 G), so in particular
u is simplexwise injective. Also, note that if d > 2, then the ¢(g;) from the proof of
Lemma 4.7 could change the d-matchings, but cannot change their corresponding
disks, hence why we use disk complexes instead of, say, arc complexes.
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\ \

Y

Figure 6: Anillustration of 4 : .25 (B+ 2 G) — D3(8s). The successive pictures show the process
of flattening to a 3-matching, expanding the matching to disks, forgetting the labels, and
“combing straight” the braid.

In the following proofs, we will need a useful tool introduced by Hatcher and Wahl
called the complete join [HW10].

Definition 4.3 (Complete join [complex) | A surjective simplicial map v: Y — X is

called a complete join if it satisfies the following properties:

(1) v is simplexwise injective.

(2) For each k-simplex o of X, say with vertices vy, ..., vk, the fiber v™!( o) equals the
join v (vp) * + -+ x v(wg).

In this case, we call Y a complete join complex over X.

Definition 4.4 (Weakly Cohen-Macaulay) A simplicial complex X is called weakly

Cohen-Macaulay (wCM) of dimension n if X is (n —1)-connected and the link of

each k-simplex of X is (n — k — 2)-connected. (Note that X need not necessarily be
n-dimensional.)

The main result regarding complete joins that we will use is the following.

Citation 4.8 [HW10, Proposition 3.5]  If Y is a complete join complex over a complex
X that is wCM of dimension n, then Y is also wCM of dimension n.

Now we would like to use the map y:.Z}"(B.:G) - Dy(8},,) to prove higher
connectivity of .Z" (B, ¢ G), and hence of the descending links in the Stein-Farley
complex. First, we need the following, which is proved in [SW].
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Citation 4.9 [SW] For any d > 2, the complex Dy (Sf)m) is ( lz'”tllJ - 2)-connected.

Corollary 4.10 For any d > 2, the complex Dy (Sf,m is wCM of dimension | 2 | - 1.

Proof Since D (8% bom) 1S ([2";:” - 2)-connected by Citation 4.9, we just need

2d-1
{Dy. ..., Dy} be a k-simplex in D4 (85 ). Let S’ be the surface obtained from 83
by removing the interiors of the D;, 1nclud1ng the d(k + 1) many marked pomts in
their interiors, leaving k + 1 new boundary components. Since the D; are pairwise
disjoint, S’ is connected, and hence is of the form Sb+(k+1) m—d(k+1)" The link of

), which is ( [—m ‘i(dkT)HJ - 2)—

to prove that the link of any k-simplex is ([m“ J -k —3)-connected Let 0 =

o is, therefore, isomorphic to Dy (8b+(k+1) m—d(k+1))>

connected by Citation 4.9. Since if{ktl) > —(k +1), this is also ([Z'"HJ k- 3)

connected, so we are done. ]

Proposition 4.11  For any d > 2 and any m € N, the complex £} (B, ¢ G) is wCM of

dimension | 245X | — 1, so in particular is (| 2551 | - 2)-connected.

Proof Since D4(8},,) is wCM of dimension | 222 | — 1 by Corollary 4.10, it suffices
by Citation 4.8 to prove that y: £}" (B, 1 G) - Dg(8] ) is a complete join. We know
that p is surjective and simplexwise injective. Now we need to show that the fiber
under y of any simplex in Dg(87,,) is the join of the fibers of its vertices. Clearly,
the fiber of the simplex lies in the join of the vertex fibers, so we need to prove the
reverse inclusion. This means that we need to prove that any collection of k + 1 vertices
in £]"(B.1G) whose images under y span a k-simplex in D4(8,,) themselves
span a k-simplex in .Z/" (B, : G). We induct on k. The base case k = 0 is trivial, so
assume k > 1. Let vo,..., v, be k +1 vertices in .Z}"(B, : G) whose images under
p span a k-simplex in D4(8? ). By induction, vi,..., vk span a (k —1)-simplex,
call it 0. Now u(0) is a collection of k pairwise disjoint disks, and u(vo) is a disk
disjoint from all the disks in p(0). Up to the left action of B,, 2 G on .Z)" (B, ¢ G),
we can assume without loss of generality that ¢ is of the form [1,1, E]¢ for some
E. Now say vo = [L, S(f1,---> fm)-€]c for some B(fi,..., fm) € B, G and e some
elementary d-ary forest with exactly one d-caret. Since y(o) = D is disjoint from
p(vo) = (D.)B ", we know that [L, B(fi, -, fm)> E]lG = [L,1, E]g. Setting E equal to
the elementary d-ary forest obtained as the union of E and e, we therefore have that
[LA(fi,---> fm), E']G is a k-simplex containing both ¢ and vy. ]

Now we can prove Theorem 4.1.

Proof of Theorem 4.1 We have a braided self-similar group G < brAut(T;) of type
F,, and need to prove that brV;(G) = 7;(B. 1 G) is of type F,,. Note that G being of
type F,, implies each B,, ¢ G is of type F,,, since a direct product of finitely many type
F, groups is of type F,, and an extension of a type F, group (like B;) by a type F,
group is type F, (see, e.g., [Geo08, Theorem 7.2.21]). Hence, by Proposition 4.5, we
just need to prove that .£" (B, 2 G) is (n —1)-connected for all but finitely many m.
This follows from Propos1t1on 4.11, since | 2% 2 goes to oo with m. ]

2d- 1J
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5 Finiteness properties of the braided Rover group

This section is entirely about the braided Réver group brV,(brGrig). For brevity, let
us write brR for the group, and we will also introduce other concise notation as we go.
The main result of this section is the following.

Theorem 5.1 The braided Rover group brR is of type Foo.

Note that brGrig is not even finitely presented (Lemma 2.14) much less Fo, so
Theorem 4.1 does not apply. In particular, brR shows that the converse of Theorem 4.1
is not true in general, in contrast to the braided self-identical case done in [SW]. Our
road map is Belk and Matucci’s proof that the Réver group V,(Grig) is of type Fo,
[BM16]. We will also make use of the constructions from Section 4.

To begin, we return to the groupoid ¥ := %, (B, :brGrig) of elements of the form
[F-, g, F.], for F, forests with m leaves and g € B,, : brGrig. (In this section, all trees
and forests are binary.) As before, consider elements of the form [T-, g, F, | (for T_ a
tree), and mod out an equivalence relation given by right multiplication by elements
of the form [1, g’, 1], but this time only do so for g = B(f1,. .., fin) with

fis-o s fm € Z:={(b,c,d) < brGrig.
The reason for doing this is that Z = Z? is of type Fo., unlike brGrig itself. Write
[T— > g) F+ :| V4

for the resulting equivalence classes, and write ~ for the equivalence relation.

As before, define a partial order on these equivalence classes [7]; (for T a triple
of the form 7= (T_, g, F,)) by declaring that [7]z < [7][F,1,1]z for any forest F
with m roots. Note that we must account for changing representatives up to ~,
so we moreover have [7]z < [7][L ¢',1][F,1,1]z for any g’ € B,, 2 Z. This is not
transitive as defined, since we must account for changing representatives up to ~z,
so we actually take the transitive closure. Thus, an upper bound of [7]; looks like
[7][Fi, g{>1] - - - [Fk> g4» 1]z for F; some forests and g; elements of the relevant braid
groups wreathed with Z (not with all of brGrig, to reiterate). Write 92, (B, 2 brGrig)
for this poset, or &2 for short.

Lemma 5.2 For any g € B, brGrig, there exists a forest F such that 1, g,1][F,1,1] =
[F',¢',1] for some F' and some g' not only in B, :brGrig but even in B,, : Z for
appropriate m.

Proof Intuitively, this means that we can apply successive braided wreath recursions
to g until all the “a”s are gone.

First, note that if g € By, then the result holds for any F, not just some F, so without
loss of generality g has no “braid part’, i.e., g € [, brGrig (and at this point the desired
F’ will be F). Now, clearly, without loss of generality, g = 1, so g € brGrig, and we are

looking for a tree T such that [1, g,1][T,1,1] = [T, g’,1] for ¢’ € B,,, : Z. Write
g=na"z--a"zp,

for z; € Z and k; € Z, as a reduced expression in the sense of Lemma 2.11. We will
induct on the length of this expression. If the length is 1 and g € Z, we can just take T
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to be trivial, and if the length is 1 and g is a power of a, then we can take T to be a single
caret. Now assume that the length is greater than 1. Let A be the tree with one caret,
50 [1,g,1] = [A, (g)k}, A]. We have that (g)«! is of the form (¥ (gy, g,) for some k € Z
and g, g, € brGrig, and by Lemma 2.11 the length of each of g; and g, is less than that
of g. By induction, we can therefore choose a tree T such that [1, g,1] = [T, g’, T] with
g’ € B,y 1 Z for some m. Now [1, g, 1][T,1,1] = [T, g’,1] as desired. ]

Corollary 5.3 The poset Py is directed, so its geometric realization is contractible.

Proof Let[T_,g,F.]z and [U_,h, D, ]z be elements of &2;. Up to taking upper
bounds, we can assume that F, and D, are trivial. Now observe that thanks to
Lemma 5.2, there exist forests F and F’ such that 1, g,1][F,1,1] = [F’, ¢’,1] for g’ not
only in B,, 2 brGrig (for appropriate m) but even in B,, 2 Z. Hence, [1, g,1][F,1,1]z =
[F’,1,1]z. This shows that, up to taking upper bounds, we can assume that g and h are
trivial. At this point, our elements are [ T_,1,1]z and [U_, 1,1] z, which clearly have an
common upper bound. u

Our next goal is to construct an analog of the Stein-Farley complex. It will no longer
have a cubical structure, but it will have a polysimplicial structure. First, we need some
definitions and notation.

Definition 5.1 (Direct sum) Given braids 8 € B,, and 8’ € B,,s, the direct sum & f/
is the element of B, obtained by setting  and 8 next to each other, so the first
m strands braid according to 8, and the last m’ strands braid according to f’. Given a
forest F with g roots and a forest F' with g roots, the direct sum F & F' is the forest with
q + q’ roots whose first g trees comprise F and whose last g’ trees comprise F’. Now let
[F-,g. F ), [F., ¢, F.1€¥.Sayg=B(f1i,..., fm)and g = B'(f,..., f1,). Let F” =
F oF letF/=F,@oF, letf’'=pepf, andlet ¢ =B"(fi,. o’ for fi>--s fonr)-
Then the direct sum [F-, g, F.] & [F., g, F}] is the element [F”, ¢", F] of 4.

Definition 5.2 (Splitting, simple splitting) ~Call an element of ¢ of the form
A =[F,g,1]- - [Fy, g 1]

for g; € By, 2 Z (for appropriate m;) a splitting, so in the poset &2z we have [7]z <
[7]Az for any splitting A. Call this a one-head splitting if F, is a tree. A simple splitting
is one that is ~z-equivalent to a direct sum of finitely many copies of 1 together with
a one-head splitting A. Intuitively, a splitting is simple if only one “head” actually gets
split. Note that every splitting is a product of simple splittings.

Definition 5.3 (Weakly elementary) Write A for the tree with one caret. Write A2
for the tree obtained from A by adding a caret to its left leaf. Call a splitting weakly
elementary if it is ~z-equivalent to a direct sum of finitely many splittings, each of
which is of one of the following forms:

[1,1,1], [A, (a¥,1),1] for some k € Z, or [A%,1,1].

Let us abuse notation and write 1=[1,1,1], A(a*,1) = [, (a*,1),1], and A% =
[A2,1,1], so the weakly elementary splittings are those that are ~-equivalent to direct
sums of copies of 1, A(a¥,1) (k € Z), and A%
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Note that the splitting [1,b%,1][A, (L, c7¥),1] equals [A, (a¥,c*), A][A,
(1, c7%),1] = A(a*,1), so A(a¥,1) really is a splitting. Also, note that any weakly
elementary simple splitting is ~z-equivalent to a direct sum of finitely many copies of
1 together with a single splitting of the form 1, A(a*,1) for some k € Z, or A2.

For [7]z € &7 and A a splitting such that the product [ 7]A makes sense, so [7]z <
[t]Az, write [7]; 2 [t]Az if A is weakly elementary. Call a simplex in |&?;|weakly
elementary if it is of the form xy < --- < x; with x; < x; for all i < j. The weakly
elementary simplices form a subcomplex of |#?z|. We will denote this subcomplex
by 23(B. :brGrig)z, or 27 for short, and call it the Z-Stein-Farley complex for the
braided Rover group. (Later we will identify .27 with a polysimplicial complex that
is more akin to the Stein-Farley cube complexes constructed earlier for general d-ary
cloning systems.)

Proposition 5.4  The Z-Stein-Farley complex 27 is contractible.

Proof We can follow the argument in Section 4.1 that the usual Stein-Farley complex
for a d-ary cloning system is contractible, in exactly the same way, and reduce the
problem to proving that the realization |(x, y)| is contractible, for any x < y in &,
with x ¢ y. This in turn will follow by the same argument as in Section 4.1, provided
we can show that for any x < y with x 4 y there exists a unique largest y, € (x, y) such
that x < yo. Without loss of generality, x = 1. Analogously to the proofs of Lemma 4.7
and Proposition 4.8 of [BM16] (for the Rover group), it suffices to prove that if we
have both A(a¥,1)7 < y and A(a%,1); < y for some k # £, then A < y. Let A and
A" be splittings such that A(a¥,1)Az = y and A(a%,1)AU); = y, so A(a¥,1)Az =
A(a’,1)Al) . Thus, A7 (a*%,1)A € B, : Z for appropriate m (identifying B, 2 Z
with its image in & under g+~ [1, g,1]). Now note that if A% ¢ y, then we have
A=z®Aand A=z @A for some z,z’ € Z and some splittings A and A (that is,
neither A nor A’ can involve “splitting the first head”). But then, A™'(a**,1)A” is the
direct sum of z7'a* ¥z’ with some element of B,,_; 2 Z, which implies z'at % ez,
a contradiction since a‘~* ¢ Z. We conclude that A2 < y. [ ]

5.1 Polysimplicial structure

Now let us describe the polysimplicial structure on 2. A polysimplex is a euclidean
polytope that is a product of simplices. A polysimplicial complex is an affine cell
complex whose cells are polysimplices, and such that any two cells intersect in a
(possibly empty) common face of each. Polysimplicial complexes are a simultaneous
generalization of simplicial and cubical complexes. The polysimplicial structure on
Z 7 is built out of the following pieces.

Definition 5.4 (Basic polysimplex, bottom vertex) Let [7]z be a vertex in 27, say
with h([7]z) = m (here h is the “number of feet” function from before). For each
1< i< m,letS; be one of the following sets:

{1}, {1, A(a*,1)} for some k € Z, {1, A*}, or {1, A(a¥,1), A?} for some k € Z.
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Then the corresponding basic polysimplex poly([7]; S1, . . ., Sm ) is the full subcomplex
of & spanned by the vertex set

{[T](Al ®--- D Am)Z | A; € Sl}
The bottom vertex of this basic polysimplex is [7]z.

Note that poly([7];Si,...,Sm) is a subdivision of a product of simplices, one
for each S;, where the dimension of the simplex corresponding to S; is |S;|— 1. In
particular, it makes sense to view this as a polysimplex.

It is clear that every weakly elementary simplex lies in some basic polysimplex,
so the basic polysimplices cover Z7. To see that the basic polysimplices form a
polysimplicial complex with 2 as a simplicial subdivision, it remains to show that
any intersection of two basic polysimplices is a common face of each. Before proving
this, we need a definition.

Definition 5.5 (Depth, nonexpanding) For a forest F, the depth of a leaf is
the distance from the leaf to the root of the tree in F containing the leaf. Let
[F-,B(g1,.-->gm)>F+] € 4. Call this groupoid element nonexpanding at the jth foot
if for every leaf of the jth tree of F,, say it is the ith leaf of F,, we have that the depth
of the ith leaf in F, is at most the depth of the 7(f)(i)th leaf of F_. (Note that this
property is invariant under expansions and reductions, so is well defined on elements
of ¢4.) If an element is nonexpanding at the jth foot for all j, call it nonexpanding.

The terminology “nonexpanding” is inspired by the nonbraided case, as in [BM16],
where groupoid elements are homeomorphisms between disjoint unions of copies of
the Cantor set.

Lemma 5.5 Any intersection of two basic polysimplices is a common face of each.

Proof The proof of Lemma 5.3 of [BM16] for the Réver group can almost be copied
verbatim for the braided case (up to changing notation and some left/right conven-
tions), with just one step requiring justification, which we will point out when we reach
it. Let P = poly([7]; S1,...,Sm) and Q = poly([w]; T3, . .., T;) be basic polysimplices.
Each S; has a natural total order, consistent with < in &7, when considered up to the
“mod Z” equivalence relation, so it makes sense to take the minimum of a collection
of elements of a given S;. Define a binary operation Ap on the vertices of P via

[7](Ar® - @A)z rp[t](A1® - @A)z
:=[7](min(A;, A]) ® -+ - @ min(A,, A))z.

Define Aq analogously. If P n Q = @, we are done, so suppose not. Let v,v' e Pn Q,
and we claim v Ap v/ = v Ag v'. Without loss of generality, v Ap v/ = [7]z and v Aq
v/ = [w]z. Choose A;, A} € S; and Q;, Q} € T; such that

V= [T](AIGB @Am)Z = [a)](01® @Qq)z
andv' = [7](Aj@ - ©AL)z = [w](Q@ - © Q)2

Now, for appropriate rand p, choose 8 € B, f’ € By,and z1,. .., 21, 2, ..., Z,, € Z such
that
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[r](A@ - @A) =[w](Q1® - ®Qy)B(21,...,2)
and [7](Aj@ --- @ A},) = [0](Q1 @ - ©Q))B(2. .., 7).

(As before, we identify B, 2 Z and B, ¢ Z with their images in ¢ under g — [1, g,1].)
Solving for [w]™'[7] in each equation yields

[0] [r] = (@ - Q)21 2 ) (A1 & - D A) ™"
=(Qie - eQ)p(z,....2,) (A @ - @A)

We want to conclude that [7]z = [w]z, and this is the one step that cannot be
copied verbatim from the nonbraided case. However, it does work analogously, using
the above definition of nonexpanding. Since v Ap v/ = [7], we either have A; =1 or
A, = 1for each i. This shows that [@]![7] is nonexpanding. Analogously, [7]™'[w] is
nonexpanding. The only way this can happen, given the options for the A; and Q;, is
ifevery A; and Q; is trivial. We conclude that [7]z = [w]z, so Ap and Aq agree when
restricted to P n Q. By the exact same argument as in the proof of [BMI16, Lemma
5.3], this shows that without loss of generality, [7] = [w], and P n Q = poly([7]; $1 n
Ti,...»Sm N Ty ), which is a common face of both P and Q. [ |

At this point, we can view .2 either with its simplicial structure, or with this new
polysimplicial structure. We will write 27 for both, and no confusion should arise.

Lemma 5.6  Any stabilizer in brR of a polysimplex in Z7 is of type Fe.

Proof First, note that the stabilizer of any vertex in 2 with h value m is isomorphic
to By, 1 Z, by the same argument as in Section 4.1 for 2;(G.). Since 27 is not
upward-locally finite (thanks to the weakly elementary splittings A (a¥, 1) for arbitrary
k € Z), a polysimplex stabilizer need not have finite index in a vertex stabilizer, so
we need to be more careful now. Let P = poly([7];S;,...,Sm) be a polysimplex.
Write Staby,(P) for the pointwise stabilizer of P, so Stabp (P) is a finite index
subgroup of Staby,r(P). Since the bottom vertex [7]z is the only vertex of P with
m feet, any element stabilizing P must fix [7]. Thus, we have inclusions Staby,  (P) <
Stabp,r (P) < Staby,r ( [T]Z)-

Note that B,, 2 Z = Staby,,z ([ 7] ), and analogously to the argument in Section 4.1,
this isomorphism can be realized as

n:B(z1,....zm) > [T][L B(z1, .. zm ) 1][7] 7L

If 8 is pure, then for any A; € S;, we have [1,5,1](A1@ - ®Ap)z=(A1® --- &
Apm)z. Hence, the restriction of # to PB,, lands in Staby, (P). The standard projec-
tion B,, 2 Z > B,, induces, via #, an epimorphism 0: Staby,r([7]z) = B.,. We have
shown that the image of Staby, z (P) under 6 contains PB,,, and so has finite index in
By The kernel of 6 is isomorphic to Z™. Since any finite index subgroup of B,, is of
type Fo, and since any subgroup of Z™ is finitely generated free abelian, hence type
Fo., we conclude that Staby, , (P) is of type Fo., being an extension of a type Fo, group
by a type Fo. group. Since Staby,  (P) has finite index in Stabyg (P), we are done. m

The failure of 27 to be upward-locally finite not only makes the stabilizer argument
harder, but also makes the cocompactness argument harder. Let 2™ be the full
subcomplex of 2 spanned by all vertices with at most m feet.
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Lemma 5.7 For each m €N, the sublevel complex 2)<™ is cocompact under the
action of brR.

Proof By the same argument as in Section 4.1 for 27;(G. ), the action is transitive
on vertices with a given number of feet, so in 2™ there are finitely many (in fact
exactly m) vertex orbits. However, since we no longer have upward-local finiteness,
we need to do more work to see that there are finitely many polysimplex orbits. It
suffices to prove that for any vertex [ 7], there are finitely many Staby,r ([ 7]z )-orbits
of polysimplices with [ 7] as their bottom vertex. Let P = poly([7];S1,...,Sm) be a
polysimplex with [7]7 as its bottom vertex. As in the proof of Lemma 5.6, we have
B, 2 Z = Staby,r ([ 7]2) via the isomorphism

v:B(z1,....zm) ~ [T][L Bz, .. Szm)>1][7] 7N

Note that for any k € Z, we have

Moreover,
[L 675 1][A% 1] = [A% (CF(L1), ), A2 (A%, 1,1],
= (A2 (R 1), )1,
= A% 1,1]2.

(Recall that { is our chosen generator of B,  Z, with a = {(1,1).) Define the sig-
nature ||S;|| of S; to be 1if S; = {1}, 2 if S; = {1, A(a¥,1)} for some ke Z, 3 if
Si = {1, A%}, and 4 if S; = {1, A(a*,1), A%} for some k € Z. Extrapolating using direct
sums, the above calculations show that the Staby,r ([7]2)-orbit of P includes every
poly([z]; Ti, ..., T ) with || T;|| = ||Si|| for each 1 < i < m. Since there are only finitely
many (four) possibilities for each ||S;||, we are done. ]

Combining Proposition 5.4 and Lemmas 5.6 and 5.7, we get the following.

Corollary 5.8 The group brR acts on the contractible complex 2 with cell stabilizers
of type Foo, and with cocompact sublevel complexes 2}<™.

5.2 Descending links

By Citation 4.4 and Corollary 5.8, to get brR to be of type F, it remains to prove
that descending links get arbitrarily highly connected. (Note that h is affine on
polysimplices, so it really is a Morse function.) Much of the work in this subsection
will be inspired by [BM16, Section 6] and [SZ21, Section 4.3].

Since 27 is a polysimplicial complex, the link of a vertex v is a simplicial com-
plex, with a k-simplex for each (k + 1)-dimensional polysimplex containing v. If the
polysimplex achieves its maximum h value at v, then the corresponding simplex in the
link of v is even in the descending link. Note that vertices with the same number of
feet have isomorphic descending links, so just like the complexes .Z}" (B, : G) from
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Section 4.3, we can denote by .Z" the simplicial complex that is isomorphic to the
descending link of any vertex with m feet.

Definition 5.6 (Merging) Call an element Y of & a merging if Y™' is a splitting. Call
it simple or weakly elementary if its inverse is, as a splitting. If v = [ 7] is a vertex in
Z7 and Y is a merging such that the product [7]Y makes sense, then we call [7]Y; a

merging of v.

For Y a merging, write Y(") for the merging 1@ --- ® 16 Y®1@® --- @1, where
Y is the ith direct summand. We see that the vertices of the descending link Ik*v of v
are precisely the nontrivial, weakly elementary, simple mergings of v. Writing v := A™%,
this means that to obtain a vertex of Ik'v, we choose a representative [7] of v = [1],
take Y to be either (a*,1)v for some k € Z or v2, and then take [T]Yéi) for some i. If
we already have a fixed representative [ 7] of v, then in addition to all of the above, we
first multiply [ 7] on the right by an element of B,, 2 Z, where m = h(v) (to account for
potentially changing representatives). In all that follows, we will often identify B, : Z
with its image in ¢ under g ~ [1, g,1].

We can denote vertices of .Z}" by gYéi) for g € B, 2 Z, Y equal to either (a*,1)v
for some k € Z or v, and i some appropriate number. If Z}" is representing k7],

then gYéi) represents [ 7] gYéi).

Definition 5.7 (Type, mass) Let [7]z be a vertex of 27 with h([7]z) = m. Consider
a vertex of k[ 7], which is a nontrivial, weakly elementary, simple merging of [7],
so one of the form [T]gYé'), for g = B(z1,...,2m) € By 2 Z, Y of the form (a*,1)v for
some k € Z or v2, and some i. Define the type of this merging to be Y, so the type is
either (a*,1)v for some k € Z or V2. Define the mass of this merging to be 2 if it is of
type (a¥,1)v for some k € Z, and 3 if it is of type V2 (so the mass is the “number of
feet” that Y is merging together).

In order to understand .7}, we will map it to a certain complex of disks, defined
as follows.

Definition 5.8 ((2,5/2)-disk complex) Let 8§ be a surface with b boundary
components, m marked points, and genus g. The (2 5/2)-marked-point-disk complex
D, 5 /2( ) is the simplicial complex defined as follows. A vertex is an isotopy class
of an embedded disk enclosing precisely two marked points in its interior and either
0 or 1 marked points in its boundary. If a disk has zero marked points in its boundary,
call it a 2-disk, and if it has one marked point in its boundary, call it a 5/2-disk (two
points inside plus one point “halfway inside” equals two and a half points inside, hence
the name 5/2-disk). A k-simplex in D, 5/, (Si,m) is an isotopy class of k + 1 (pairwise
nonisotopic) embedded disks such that each one is either a 2-disk or a 5/2-disk, and
any two of them are either disjoint or nested. The face relation is given by taking
subsets.

Here, when we call two isotopy classes “disjoint” or “nested,” we of course mean that
they admit disjoint or nested representatives. If one disk is nested in a (nonisotopic)
second disk, then necessarily the former is a 2-disk and the latter is a 5/2-disk.
Similar to how the usual disk complex can be viewed as a subcomplex of the curve
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Figure 7: An example of a I-simplex in Dz,s/z(s?,s)- The disk bounded in red is a 2-disk, the
disk bounded in blue is a 5/2-disk, and they are nested.

complex (outside some pathological cases), this (2, 5/2)-marked-point-disk complex
can usually be viewed as a subcomplex of the arc-and-curve complex: the boundary of
a 2-disk is a curve and the boundary of a 5/2-disk is an arc. See Figure 7 for example.
(The astute reader may wonder why we are using 5/2-disks instead of 3-disks; the
answer is that the analog of Proposition 5.11 would not hold if we used 3-disks.)

Now let us map .£}" to D, 5/,(8 ), where 8,,, = 87 . To start, we will just define
the map on the vertices. A vertex of .Z}" is of the form f(z, ..., zm)Yg), where
B(zi...,2Zm) € By 2 Z, Y is of the form (a*,1)v for some k € Z or v2, and i is some
number. Define

P‘:(gzm)(o) - Dz,s/z(gm)(o)
as follows. If Y = (a¥,1)v for some k, then define D(Y(?) to be a 2-disk that is a
tubular neighborhood of the 2-matching {i,i + 1} (recall from before that we fix an
embedding of the linear graph into the surface, and so matchings make sense). If
Y = V2, then define D(Y()) to be a 5/2-disk that is obtained by taking a tubular
neighborhood of the subset obtained from the 3-matching {i, i + 1, i + 2} by removing
a small disk centered at i + 2, in such a way that i + 2 lies precisely on the boundary
of the neighborhood. For example, in Figure 7, if we label the marked points 1-5 from
left to right, then (up to isotopy) the disk bounded in blue is D ((vz)(z) ) Now define
U via
wiB(zis- s zm)YS) > (D(YD))B,
Lemma 5.9 The map u is well defined on vertices.

Proof The proof is similar to that of Lemma 4.7. Let y(y1,...,yq) € B42 Z for
appropriate g, so

B(z,... ,zm)Yg) =Bzt s zm) YDy (31, ... 3 ¥q)z-
Lety'(9,..., ) € By 2 brGrig and i’ be such that
YOy yg) =Y Oy Y
Note that the y’ might not lie in Z, but the only way this could happen is when j = i’,

and then only if Y has mass 2, so ¥}, is a power of a. In this case, we can let Y’ be
Y = (a*,1)v with k changed appropriately, and (changing the definition of /) get

YOy y0) =¥ e V) (X))

with all % in Z. Now we have

B(zis. s zm) YD y(y1s e 90)z = BY (2 s 2 ) (P s i) (X))
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for some zje Z. Since all the z; and y} are in Z, this maps under y to

(D((Y")())(By")™". We need to show that this equals (D(Y (")), or equivalently
that (D(Y(D))y’ = D((Y')()). If Y (and hence Y’) has mass 2, then this follows by
the same argument as in the proof of Lemma 4.7. Now suppose Y = Y’ = v2. Then
y" is obtained from y by replacing the ith strand (counting from the top) with three
parallel strands—call this intermediate braid y”’—and possibly braiding the first two
of these around each other some number of times (depending on the braided wreath
recursion of y;-, which has some power of a in its left entry and some element of Z in
its right entry). When acting on D(Y ("), this braiding of the first two strands does
not affect the (equivalence class of the) 5/2-disk, so (D(Y()))y" = (D(Y())y" It is
clear that (D(Y()))y” = D((Y")()), so we are done. ]

Now we want to extend y to all simplices of Z". We need to show that if vertices
Wo, ..., Wk span a simplex in .£", then their images under g span a simplex in
D;,5/2(8m)- Since D, 5/,(8,,) is a flag complex by construction, it suffices to do this
for k =1, i.e., to show the following.

Lemma 5.10 (Extends to simplices) Iftwo vertices w and u span an edge in ", then
their images under y span an edge in D, 5/, (8,).

Proof View .Z}" as lk'v for some vertex v = [7] of 2 with h(v) = m, so wand u
are adjacent vertices to v with h(w), h(u) < m. The fact that w and u span an edge in
Ik'v means that there is a two-dimensional polysimplex, i.e., a square or a triangle, in
Z 7 containing v, w, and u. First, suppose that it is a square. Then there is a merging
of v of the form [7]fB(z1,...,2m) Yz for f(z1,...,2m) € By 2 Z and

Y=1¢- ---®leoY el ---dleoY,d],

say with Y; in the i;th spot and Y; in the i,th spot, such that the following holds:
if ¥; is Y with Y; replaced by an appropriate number of copies of 1, then w =
[7]B(z1, - zm)(W1)z and u = [7]B(215 ..., 2m ) (¥2) z. Clearly, D(\¥;) and D(¥;)
are disjoint; hence so are u(w) = (D(¥,))B " and u(u) = (D(¥,))B". Now sup-
pose that the two-dimensional polysimplex containing v, w, and u is a triangle.
This means that there we can choose [7'], k, and i such that v, w, and u are
the vertices of the polysimplex poly([7'];S1,...,Sm-2), where S; = {1} for all j#
i and S; = {1,A(a¥,1), A%}. Say w has mass 3 relative to v (and u has mass 2),
sow=[7]z, u= [T’](/\(ak,l))(Zi), and v = [T’](/\Z)(Zi). Without loss of generality,
[7] = [Z1(A*)D, s0 u = [7](va") ) = [7]({*V)§) and w = [7](v?) . Now u(u) =
(D(v(i))) (((k)("))_1 =D(v()) and u(w) = D ((vz)(i)), and the former is nested
in the latter as desired. u

At this point, we have a simplicial map
p:y — DZ,S/Z(Sm)'

Our next goal is to prove that it is a surjective complete join. It is clearly surjective on
vertices, and is simplexwise injective, so it suffices to show the following.
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Proposition 5.11 Let wy, ..., wy be vertices of ' whose images under y span a k-
simplexinDy 5/, (8). Thenwy, ..., wi span a k-simplex in . Hence, y is a complete
join.

Proof If k =0, then there is nothing to show, so assume that k > 0. By induction,
Wi, ..., Wk span a simplex in £, call it . The image u(o) is represented by k
disks that are pairwise disjoint or nested, and such that the disk p(wy) is disjoint
or nested with each of them. If u(wy) is disjoint from all the disks in p(o), then
the argument in the proof of Proposition 4.11 shows that wy, ..., wy span a simplex
in .ZJ". Now assume that this is not the case, so without loss of generality wy has
mass 2, wy has mass 3, y(wy) is nested in y(w;), and both u(wy) and p(w,) are
disjoint from p(w;) for all 2 <i < k. Now view Z}" as Ik'v for a vertex v =[]
with h(v) = m, so ¢ is represented by a polysimplex containing v, wy, ..., wy, with
v as its vertex maximizing h. Write this polysimplex as poly([7'];S1,...,S;), so v =
[7'](max(S;) ® -+ ® max(S,))z. We can assume that [7] = [7](max(S;) & -+ &
max(S,)). Without loss of generality, S; = {1, A*} and

wi = [7'](1® max(S,) & - - ® max(S,))z = [T](vz)(Zl).

Now say wo = [7]S(z1,. .. ,zm)((ae,l)v)(zi) for some f(z1,...,2m) € By 2 Z, some
¢, and some i. Up to ~z, we can actually assume ¢ =0, e.g., right multiply by
(=D Then u(wo) = (D(v(i)))ﬂ’l, and this is disjoint from p(wy),..., u(wg)
and contained in y(w;). By the above equation for w;, we have y(w;) = D ((vz)(l) ),
so p(wp) = D(\/(l)); hence D(v(i)) = (D (v(l)))ﬁ. This shows that, in fact,

wo = [T](Ce\/)(zl) for some ¢; hence,

wo = [7'](max(8;) @ - - ® max($,))({V) .

L

Since max(S;) = A2 and A{%V = a’, we conclude that

wo = ['](A(a"1) @ --- @ max(S,)) ({'V) ).

Now  setting S/ ={1,A(a’,1),A%}, we see that the polysimplex
poly([7']; S, Sz, ..., S;) contains wy. Since it has poly([7']; S1,...,S,) as a face, it
also contains v, wy, . . ., Wi, so we conclude that wy, . .., wy span a simplex in k'v. =m

Now that we know y is a complete join, we can understand higher connectivity of
" by analyzing higher connectivity of D, 5/, (8.).
Proposition 512 The complex D 5/,(83 ) is wCM of dimension | "5 | - 1.
Proof First, we show that D, 5/, (Sf’m) is homotopy equivalent to ]DJZ(S‘E,M ). Given
a k-simplex 0 = {Dy,..., Dy} in ]D)z,5/2(8‘g)m), let 115/, (0') be the number of D;’s that
are 5/2-disks. Define a Morse function on the barycentric subdivision D, 5/, (Sf’m)’
by sending a k-simplex ¢ to the ordered pair (#5/,(0),~dim(0¢)). This takes on
finitely many values in R x R, so viewed lexicographically, the values are a finite totally
ordered set, and adjacent (i.e., properly incident) simplices have different values, and
hence this really can be viewed as a Morse function. The sublevel complex of all
o with (ns/,(0), —dim(c)) < (0,0) equals Dz(Sf’m). In particular, if we can show
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that the descending link of any o with (n5/,(0), -dim(0)) > (0,0) is contractible,
then Morse theory will tell us that the inclusion of ID)Z(Si,m) into Dz,s/z(s‘g,m) is
a homotopy equivalence. (Intuitively, we attach the missing vertices in increasing
order with respect to the Morse function, and at each stage we do so along a
contractible descending link, so the homotopy type never changes.) To this end,
suppose (#5/,(0),~dim(c)) > (0,0), and we need to prove the descending link of
o is contractible. The descending link is a join, of the descending face link spanned
by all faces 0¥ < o with ns/,(0") < n5/,(0), and the descending coface link spanned
by all proper cofaces ¢ > o with n5/,(0") = ns,(0). For any 5/2-disk D, there is a
unique 2-disk contained in it, which we will denote by 8(D). Let 0 = { D, ..., Dx}.
First, suppose that some D; is a 5/2-disk such that §(D;) ¢ 0. Then o U {8(D;)} is
a descending proper coface of o, and moreover for any descending proper coface
" of g, we have that 0" U {§(D;)} is also a descending proper coface. The map
"~ 0" u{8(D;)}, thus, induces a homotopy equivalence from the descending
coface link to the (contractible) star of 0 U {§(D;)}, so the descending coface link
is contractible (see, e.g., [Qui78, Section 1.5]). Now suppose that whenever D; is a
5/2-disk, 8(D;) € 0. Let gy < 0 be the (nonempty) face of o consisting of all 2-disks
in ¢. This is a descending face, and given any descending face ¢" < o, we have that
0" U gy is again a descending face of o. Hence, the map ¢ — ¢" U gy induces a
homotopy equivalence from the descending face link to the (contractible) star of oy,
so the descending face link is contractible.

We have shown that D, 5/5(85 ,,) is homotopy equivalent to D,(8§ ), which is

( [mT“J - 2)—c0nnected by Citation 4.9. Since higher connectivity of links is not nec-

essarily preserved under homotopy equivalence, we have more work to do before we
can conclude that D, 5, (S‘g’ ) is wCM of dimension [ m“J LLeto ={Dy,..., D¢}
bea k-simplexinD, 5/,(83 ), and consider itslink L := Ik o inD, 55 (85 ). Working
with the barycentric subdivision as in the first paragraph, we can view L as the
subcomplex spanned by all proper cofaces 7 of ¢. If some D; is a 5/2-disk such that
d(D;) ¢ o, then the map 7~ tU{8(D;)} induces a homotopy equivalence from
L to the star of the proper coface o U {8(D;)} in L, and hence L is contractible.
Now assume that whenever D; is a 5/2-disk, §(D;) € 0. Call D; and 8(D;) paired
in this case. If D; is a vertex of ¢ that is not paired, call it solitary (and note that
the solitary vertices must be 2-disks). Say 2p is the number of paired vertices in
0, s0 k —2p +1 is the number of solitary vertices. Consider the surface 85, pom=3p
obtained by cutting along the boundary and removing the interior (and unmarking the
marked point on the boundary) of each 5/2-disk in 0. Let @ be the (possibly empty)
(k - 2p)-simplex in D, 5/, (85, 3 p) whose vertices are the solitary vertices of o,

now viewed as disks in 85 It is clear that L is isomorphic to the link of ¢ in
p,m=3p’

D,,5/2(83, pom—3p ) (which if ¢ is empty means the whole complex). If the desired result

holds for ¢ and 8b+p then the link of o in D, 5/, (8¢

L)is ([MJ - (k- 2p) - )—connected and hence ( ["’“J k- 3) connected,

ie., the desired result holds for o and 85 . Thus, it remains only to prove the result
in the case when all the vertices of o are sohtary

bt pom— 3p) (and hence also
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) O

Figure 8: An example of the last case in the proof of Proposition 5.12 (for the surface 8g). The
disks bounded in red comprise o, and the disks bounded in blue comprise 7\o. Hence, o is
a 2-simplex and T is a 4-simplex in D, 5/,(8g) containing o, so 7 represents a 1-simplex in
L=1ko.

Since we have reduced to a case where all the vertices of ¢ are 2-disks, we can
consider the subcomplex L, of L that is the link of ¢ in the subcomplex D, (Sf’ m

of Dy 5/2(85 ,,)- Since D(8; ) is wCM of dimension ['”T“J -1 by Corollary 4.10,

we know that L, is ( ['"T“J - k- 3)—connected. Now we will build up from L, to L by

gluing in the missing simplices 7. We can again use the Morse function (n5/;, — dim),
now restricted to L, since L, is precisely the sublevel complex of L defined by
(n5/2, —dim) < (0,0). If we can show that the descending link of any simplex in

L\L, is (["’T“J - k- 4)—connected, then discrete Morse theory (see, e.g., [BB97,

3

The argument from the first paragraph works in exactly the same way to show that the
descending link in L of a simplex 7 in L\L, is contractible, except in one case, namely
when every disk in 7\o is a 5/2-disk that is paired with a 2-disk in ¢ (see Figure 8 for
a visualization of this situation). In this case, the descending face link of 7 in L is the
entire boundary of 7 (since removing any proper subset of disks in 7\ is a descending
move), so if 7is an £-simplexin L (i.e.,a (k + £ + 1)-simplexin D, 5/, (Sf’m) containing
the k-simplex o), then the descending face link of 7 in L is an (£ —1)-sphere, hence
(¢ - 2)-connected. In this case, we can also understand the descending coface link of
7 in L: it is isomorphic to the 2-disk complex on the surface obtained by cutting out
all the disks in 7. Since each disk in 7\o contains a disk in o, this produces k + 1 new
boundary components and eliminates 2(k +1) + (£ + 1) = 2k + £ + 3 marked points,
so this surface is 8¢ The 2-disk complex of this surface, and hence the

b+k+1,m-2k—0-3"
(m—2k—€—3)+1J
3

Corollary 2.6]) will tell us that L is ( [m—“J -k- 3)—c0nnected and we will be done.

descending coface link of 7, is ([ - 2)—c0nnected. Joining this with the

descending face link, which is (¢ — 2)-connected, we get that the descending link of 7

is (lWJ +0 - 2)-connected. We need it to be (l”‘T“J -k- 4)-connected,

so it suffices to prove that [”’T”J -k-1< [mT” - @J + £. This is indeed true by the
following calculation:

{WHIJ m+1 3k+3
-k-1= -
3 | 3 3 ]
m+1 2k—2£J
< _
3 3
m+1 2k+/
< - + 4.
3 3 ] u
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Now we can prove the main result of this section, that brR is of type F.

Proof of Theorem 5.1 By Citation 4.4 and Corollary 5.8, it suffices to prove that the
descending links of vertices in .2 get arbitrarily highly connected as their number of
feet goes to oo. This follows from Citation 4.8 and Propositions and 5.12. ]
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