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Abstract— Many remote powerlines do not have enough 

wildfire surveillance to enable preventive or mitigation measures,  

resulting in massive destruction in the incidence of wildfires hitting 

powerlines. This project seeks to build a multi-sensor-based 

embedded system that monitors wildfire-related weather conditions 

to assess the risk and alert the appropriate fire management team, 

via a wireless data transfer protocol in case of outbreaks. The design 

of the system will prove useful at power stations where other safety 

features are incorporated to reduce the occurrences of fires. The 

embedded system works based on a HotDry-Windy index that 

monitors fire weather conditions that directly affect the spread of 

wildfires.   
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I. INTRODUCTION    

Wildfires have been a major source of destruction to property, 

human lives, and livelihoods; many wildfire cases are 

recorded yearly with varying forms of damage done. In 2018, 

California suffered a total of 8,527 fires covering a land area 
of 1.9 million acres (close to 2% of the entire land mass of the 

State; 7,700km2 [1]. In the United States, the average number 

of fires recorded from 2001 to 2020 averaged 68,000 per year, 

covering a land size of 7 million acres [2].  The tendency or 

risk of wildfire outbreaks varies as the weather keeps 

changing. Generally, weather conditions such as surface 

windspeeds, relative humidity, and general fuel moisture all 

have direct impacts on the outbreak of wildfires and their 

spread across areas burned [3].    

Decreasing fuel moisture and dry weather creates large areas 

of dry fuels that are more likely to ignite and carry fire over a 

longer period. The rising surface windspeeds also add to the 
frequency of the outbreak as they can carry fire long distances 

[4], [5]. These weather conditions are predominantly seen in 

the summer each year with the highest annual temperatures 

and lowest levels of precipitation annually.  

  

Powerlines involved in wildfires are particularly devastating, 

either directly causing them or being caught up in the spread 

of the fires [6]. Powerlines belonging to Pacific Gas and  

Electric (PG&E) caused over 1,500 fires in six years, among  
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the deadliest fires recorded devastating hundreds of thousands of 

acres, billions of dollars in financial impact, and impacting 

hundreds of thousands of people [7]. There is a need to mitigate 

the damage caused by these fires and by extension reduce the 

incidences of these fires.  We propose to develop systems that 

monitor, prevent, and mitigate these wildfire outbreaks using 

sensor networks. The sensor nodes are designed and developed 

to prevent the occurrence of these fires but also to alert 

stakeholders to control and contain them once they break. The 
Wildfire Assessment Risk Management (WARM) System is a 

multi-sensor-based system that monitors a variety of fire weather 

conditions, assesses the risks, and provides prompt alerts in the 

case of an outbreak.  

      

II. STATE-OF-THE-ART COMPARISON AND 

CHALLENGES  

Wildfire monitoring has seen significant strides recently with 

real-time imaging and sensing [8-12]. The most notable 

techniques proposed include satellite surveillance, Unmanned 
Aerial Vehicles (UAVs), and ground-based watchtower detection 

systems.   

  
Satellite Surveillance vs. Unmanned Aerial Vehicles vs. 

Groundbased Watchtower Detection  

The imaging techniques used in satellite surveillance help detect 

fires and smoke in vast land areas, leading to its appeal to many 

research groups. The limitations, however, are the poor spatial 
resolution, high demand for data processing, and high 

deployment demands that make it costly to implement [8], [9]. 

Satellite detection faces a unique challenge during the winter due 

to the massive presence of clouds obscuring active fires on the 

land [10]. The challenge persists despite the efforts made to 

improve camera spatial resolution and artificial intelligence 

techniques in data processing.   

  

UAVs by far seem to be the most viable solution to wildfire 

monitoring and mitigation. They do not experience the 
limitations of satellite-based detection systems but can still 

monitor vast terrain and detect fires [11]. They help reach areas 

that are dangerous and unreachable for humans, but in continuous 

landscape observation for the presence of fires, a challenge 

arises. Since UAVs only require remote operation by a ground-

based human for task allocation, there is the problem of 

discontinuity in fire monitoring.  This method introduces times 

when the system is not actively monitoring for the occurrence of 

fires when the human operator is not present [12].   

  
Ground-based watchtower detection has been used for many 

years and continues to be used. They are constantly in operation 

and do not encounter the challenges of satellite detection 

systems or UAVs. Our WARM system cannot be used for 

firefighting directly like UAVs but can be used continuously for 

risk assessment and fire detection. Early detection is made 
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possible by continuous surveillance and risk assessment. Our 

two-tiered approach, which we will discuss later in the paper 

allows us to achieve this easily and quickly.   

  

III. THE WILDFIRE ASSESSMENT RISK MANAGEMENT SYSTEM   

The WARM system is an embedded system that combines 

multiple sensors and data transfer protocols to monitor and 

evaluate the risk of fire outbreaks and send data to a base station 

for further action (Fig. 1A). The main components of the current 

system are the microcontroller unit and the sensors (Fig. 1B). 

The system is intended for remote terrains that generally do not 
have enough surveillance to detect fires rapidly. Hence, we have 

designed the system to be self-sustaining in terms of energy 

consumption by including a solar panel for energy harvesting. 

The design includes the HDW indexing system which allows 

for risk assessment.  

We used multiple smoke and fire sensors to achieve fast 
detection and wide-angle coverage. Three fire sensors were 

placed 120º from each other while three smoke sensors were 

placed in-between them at 120º from each other. This ensures 

that each of the sensors is 60º apart.   

  

The system uses a 16 MHz Arduino Mega Microcontroller Unit 

(MCU) with an ATMEL AT Mega 2560 chip which supports SPI 

and I2C communication protocols. The main parameters being 

monitored include temperature, relative humidity, and wind 

speed. In addition to these predictive parameters, smoke and fire 

sensors detect the presence of fires.   

A. Multimodal Sensing  

The MQ7 gas sensor from Winsen Electronics is primarily used 

for detecting carbon monoxide (Fig 1C). It operates using a 

heating and cooling cycle. In the heating phase, it operates at 5V 

and then cools down at 1.4V. The heating phase removes gas 

particles on the plates through evaporation and then during the 

cooling phase, it records data.   The sensor is composed of a 

micro aluminum oxide (Al2O3) ceramic tube, a tin dioxide (SnO2) 

sensitive layer, a measuring electrode, and a heater.  The IR 

sensor, (Fig 1C) uses a photodiode with high resistance in the 
absence of radiation and reduces the resistance when infrared 

radiation is detected. The trim pot on top allows for simple 

modulation of the sensitivity.  

A three-cupped CALT windspeed sensor is ideal for windspeed 

monitoring applications, (Fig 1C). It operates within the 0-45 m/s 

range with analog output for data recording.    

The Digital Humidity and Temperature (DHT 11) sensor records 

both relative humidity and temperature data. It has a resistive 

humidity measurement component and connects to a 

highperformance 8-bit microcontroller. It has a humidity range 

of 20 – 90% RH, ±5% RH accuracy, and a temperature range of 

0 - 50oC ± 2oC (32 – 122oF) ± 3.6oF.   

  

B. Tiered Sensor Approach  

For deployment of the WARM system to remote areas, we have 

integrated power harvesting capabilities using a solar panel to 

eliminate the need for wired or battery power. We used a Voltaic 

Systems waterproof, scratch-resistant, and UV-resistant panel 

with an output of 6 V and up to 2 W, which contains 12   

  

high-efficiency cells with a nominal 0.5 V per cell. The available 

solar power is limited to daytime and may also be reduced due to 

weather conditions. Due to these limitations, we have 

implemented the system to reduce power using a tiered sensing 

system. This system uses low-power devices to determine the 

activation of the higher-tier sensors with greater power 
consumption. The multi-tiered sensing approach enables 

highprecision detection avoiding the higher power consumption 

associated with the higher tier sensing. In this implementation, 

we have divided the sensing into two groups—the Tier One and 

Tier Two sensors.   

  

  
Figure 1: WARM sensor suite (A) concept design, highlighting all capabilities of the device (B) photograph of the current prototype 

with the included sensors and other components (C) sensors included in the prototype design. 
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Figure 2: A block diagram showing the data flow within the 

system. The ATMega coordinates the data acquisition and a local 

SD Card stores data for redundancy and tracking data.    

  

a) Tier 1 Sensors   

This sensor group combines predictive sensors to ascertain the 
weather conditions that are most likely to enable the spread of 

fires; the temperature, relative humidity, and windspeed (Fig. 2). 

This data, when collected, is computed to determine the HDW, 

where a risk level is ascertained. This risk assessment metric then 

evaluates the risk level of current weather conditions. When the 

Tier 1 sensors indicate weather conditions are conducive to the 

spread of fires, the second level of sensing, Tier 2 should be 

activated (Fig. 3). The value obtained from the computation is 

compared against a threshold and once the threshold is reached, 
the Tier 2 sensors are called into action.   

  

b) Tier 2 Sensors   

This group of sensors determines the presence of actual fires. 

They include the IR and the carbon monoxide sensors (Fig. 1). 

This mode of operation enables fire detection along with wildfire 

risk by combining these two sensor Tiers to optimize power 
usage. Until the Tier 2 sensors are called, they operate in low-

power sleep mode. Once the threshold is reached, they are 

activated and remain on until the risk level drops below the 

threshold. In this case, it means there are no recorded parameters 

that predict the presence of fires or danger of fire ignition and 

spread. Figure 3 is a logic diagram for the system indicating the 

activation and control of the Tier 1 and Tier 2 sensing modes.  

   

C. Thresholding – HDW Indexing System   

The HDW Index was developed to help determine conditions 
under which there is a high risk of fire incidence and the 

difficulty of managing it [13]. High values of the HDW index 

indicate that conditions are favorable for the rapid spread of fires, 

while low values indicate a lower risk of fire activity and spread. 

It is calculated by multiplying the windspeed (U) in meters per 

second (m/s) with the vapor pressure deficit (VPD) measured 

within 500 m above the ground.    

  

                    
Figure 3: The logic diagram for the WARM system which uses a 

tiered sensing approach to enable fire detection with limited 
access to power. The thresholding approach helps to minimize 

power consumption while effectively monitoring weather 

conditions that foster the occurrence and spread of fires.   
   

  HDW = U × VPD (T, q)         (1)   

   
This model is unique because the vapor pressure deficit does not 

take into consideration the relative humidity, which is a ratio of 

the vapor pressure (e) to the saturation vapor pressure (es), but 

rather the difference between the two variables. This difference 

is believed to show practically how much water the atmosphere 

can hold before precipitation occurs. Hence, a true measure of 

whether there is enough moisture in the atmosphere to support or 

inhibit fires will be the vapor pressure deficit [14], [15] given by:    

  

  VPD = es(T) – e(q)         (2)   
   

es = temperature-dependent vapor pressure (saturation vapor 

pressure) measured in hPa and e = moisture content-dependent 

vapor pressure measured in hPa.   

   

The saturation vapor pressure is temperature dependent while the 

vapor pressure is moisture content dependent, hence, each 
variable is calculated for.    

  
17.625𝑇𝑇 

()                       es(T) = 6.11 × 𝑒𝑒 
243.04+𝑇𝑇                                   (3)  

17.625𝑇𝑇𝑇𝑇 

                      e(q) = 6.11 × 𝑒𝑒(243.04+𝑇𝑇𝑇𝑇)                                   

(4) The temperature (T) in Celsius (C) is sampled from the 
sensor while the dew point temperature (Td) which is the 

temperature to which air must be cooled (at constant pressure) 
to achieve a relative humidity of 100% is calculated where RH 

is Relative Humidity.     
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  Td = 17243.625.04− [𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼[  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅100100+−(1717.625.625𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥243243.04.04++𝑥𝑥𝑥𝑥)]] 

    (5)   

D. Sensor Results    

An acrylic chamber was built with dimensions 20” x 20” x 16” 

(Fig. 6). The temperature, humidity, and other sensor data in 
the box chamber were collected. Using a small tabletop fan, 

forced air was directed toward the anemometer to cause 

rotation. The speed of the anemometer was controlled by 

varying the speed of the tabletop fan. A portable pit fire is lit 

and introduced into the chamber and the fan speed alternated 

as shown in Fig. 4. Each time, sensor data was collected. As 

shown in Fig. 4, the IR sensor data alternates between 1 and 

0, because the sensor operated in digital mode.   

  

  
Figure 4: Various iterations to mimic weather conditions in the 

field. All parameters varied progressively.  

  
Figure 5: This shows the risk levels based on the HDW 

index. The HDW is compared against the reference HDW 
for the day. This allows the system to determine the need to 

engage the tier 2 sensors.  

This HDW index becomes the reference index for the day. 

High-risk feedback is produced once we get a value that either 

equals or exceeds the reference index for the day (Fig 5).   

  
Figure 6: Photograph of the acrylic chamber with the sensors 

along with the small fire source, fan, and imaging. Suites 

implemented in actual fire detection will not be placed in the 

chamber; the system was used outdoors with the acrylic 

chamber was used to ensure the small fires were contained 

completely to maintain high safety standards.  

The risk of fire occurrence depends on the moisture content in 

the air and the presence of winds to support combustion and 

carry fires along distances. The HDW indexing system allows 

us to determine the risks of fires happening daily (Fig. 5). The 

input data sampled from the sensor suite is fed into the model 
which uses a cascading effect to calculate the highest HDW for 

the day.  

  
Wind speeds are often monitored by weather stations to inform 

the public about storms to maintain safety. Using the WARM 

system, once the windspeeds go beyond 47mph [16] threshold, 

a dust storm or gale is reported. When the temperatures go 

beyond the 100°F threshold, a heat wave is reported.     

   

IV. LIMITATIONS/CHALLENGES   

The HDW index was tested against a dataset obtained through 

the Climate Forecast System Reanalysis (CFSR) from the 

National Centers for Environmental Prediction (NCEP) which 

covers 30 years [17]. This dataset shows that the indexing system 
worked well in predicting the days on which fires would be 

difficult to manage if they occurred. However, the testing of the 

indexing system was limited to just four notable wildfires that 

happened in the past in a few locations across the United States 

[13]. More testing must be done to cement its operational 

reliability.   

The prototypical sensors and microcontrollers used do not allow 

for a broader range of testing which will then inform the spatial 

resolution of the system. The sensors, although functional, are 

prone to errors, hence, an important upgrade that will push the 

development of the system to the next level will be to move to a 

more industry-standard sensor suite.   

V. CONCLUSION   

Most fire mitigation systems either manage fires when they occur 

or perform continuous surveillance for early detection. By 

combining both ideas, fire mitigation would be more effective.  
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Although the project is designed to assess the risk of fires, we 

target deployment along powerlines to limit the coverage area; 

practically it would be very difficult to cover all uninhabited 

areas. The use also power lines also target the most impactful 

remote fire prevention and mitigation. Although the indexing 

system used in the project has been accessed and proven for a 

retrospective analysis, it needs to be tested on a large scale to gain 
trust and reliability. The sensor suites will need to have little to 

no maintenance required to demonstrate they are a viable 

monitoring technology.     

VI. FUTURE DIRECTION   

The development of a broader dataset that contains fire outbreak 

data for a variety of locations and the prevailing weather 

conditions in those areas will be necessary to help us build a 

robust indexing system that will improve the accuracy of the 

system. The device will go through further benchmarking 
processes to improve reliability.  

A camera module will be added to the tier 2 sensor suite to 

improve fire detection. These data samples will have to be 
transmitted across a wireless network to the fire response team to 

stay alert during high-risk seasons and provide a prompt response 

during the incidence of fires. To achieve this, a Long Range 

(LoRa) module will be incorporated into the design for data 

transmission from the power stations and powerlines to the base 

stations. A massive improvement in the sensor suite to a more 

robust and reliable suite will also need to be included.    
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