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Abstract— Many remote powerlines do not have enough
wildfire surveillance to enable preventive or mitigation measures,
resulting in massive destruction in the incidence of wildfires hitting
powerlines. This project seeks to build a multi-sensor-based
embedded system that monitors wildfire-related weather conditions
to assess the risk and alert the appropriate fire management team,
via a wireless data transfer protocol in case of outbreaks. The design
of the system will prove useful at power stations where other safety
features are incorporated to reduce the occurrences of fires. The
embedded system works based on a HotDry-Windy index that
monitors fire weather conditions that directly affect the spread of
wildfires.
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1. INTRODUCTION

Wildfires have been a major source of destruction to property,
human lives, and livelihoods; many wildfire cases are
recorded yearly with varying forms of damage done. In 2018,
California suffered a total of 8,527 fires covering a land area
of 1.9 million acres (close to 2% of the entire land mass of the
State; 7,700km? [1]. In the United States, the average number
of fires recorded from 2001 to 2020 averaged 68,000 per year,
covering a land size of 7 million acres [2]. The tendency or
risk of wildfire outbreaks varies as the weather keeps
changing. Generally, weather conditions such as surface
windspeeds, relative humidity, and general fuel moisture all
have direct impacts on the outbreak of wildfires and their
spread across areas burned [3].

Decreasing fuel moisture and dry weather creates large areas
of dry fuels that are more likely to ignite and carry fire over a
longer period. The rising surface windspeeds also add to the
frequency of the outbreak as they can carry fire long distances
[4], [5]. These weather conditions are predominantly seen in
the summer each year with the highest annual temperatures
and lowest levels of precipitation annually.

Powerlines involved in wildfires are particularly devastating,
either directly causing them or being caught up in the spread
of the fires [6]. Powerlines belonging to Pacific Gas and

Electric (PG&E) caused over 1,500 fires in six years, among
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the deadliest fires recorded devastating hundreds of thousands of
acres, billions of dollars in financial impact, and impacting
hundreds of thousands of people [7]. There is a need to mitigate

the damage caused by these fires and by extension reduce the
incidences of these fires. We propose to develop systems that
monitor, prevent, and mitigate these wildfire outbreaks using
sensor networks. The sensor nodes are designed and developed
to prevent the occurrence of these fires but also to alert
stakeholders to control and contain them once they break. The
Wildfire Assessment Risk Management (WARM) System is a
multi-sensor-based system that monitors a variety of fire weather
conditions, assesses the risks, and provides prompt alerts in the
case of an outbreak.

II. STATE-OF-THE-ART COMPARISON AND
CHALLENGES

Wildfire monitoring has seen significant strides recently with
real-time imaging and sensing [8-12]. The most notable
techniques proposed include satellite surveillance, Unmanned
Acerial Vehicles (UAVs), and ground-based watchtower detection
systems.

Satellite Surveillance vs. Unmanned Aerial Vehicles vs.
Groundbased Watchtower Detection

The imaging techniques used in satellite surveillance help detect
fires and smoke in vast land areas, leading to its appeal to many
research groups. The limitations, however, are the poor spatial
resolution, high demand for data processing, and high
deployment demands that make it costly to implement [8], [9].
Satellite detection faces a unique challenge during the winter due
to the massive presence of clouds obscuring active fires on the
land [10]. The challenge persists despite the efforts made to
improve camera spatial resolution and artificial intelligence
techniques in data processing.

UAVs by far seem to be the most viable solution to wildfire
monitoring and mitigation. They do not experience the
limitations of satellite-based detection systems but can still
monitor vast terrain and detect fires [11]. They help reach areas
that are dangerous and unreachable for humans, but in continuous
landscape observation for the presence of fires, a challenge
arises. Since UAVs only require remote operation by a ground-
based human for task allocation, there is the problem of
discontinuity in fire monitoring. This method introduces times
when the system is not actively monitoring for the occurrence of
fires when the human operator is not present [12].

Ground-based watchtower detection has been used for many
years and continues to be used. They are constantly in operation
and do not encounter the challenges of satellite detection
systems or UAVs. Our WARM system cannot be used for
firefighting directly like UAVs but can be used continuously for
risk assessment and fire detection. Early detection is made
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possible by continuous surveillance and risk assessment. Our
two-tiered approach, which we will discuss later in the paper
allows us to achieve this easily and quickly.

III. THE WILDFIRE ASSESSMENT RISK MANAGEMENT SYSTEM

The WARM system is an embedded system that combines
multiple sensors and data transfer protocols to monitor and
evaluate the risk of fire outbreaks and send data to a base station
for further action (Fig. 1A). The main components of the current
system are the microcontroller unit and the sensors (Fig. 1B).
The system is intended for remote terrains that generally do not
have enough surveillance to detect fires rapidly. Hence, we have
designed the system to be self-sustaining in terms of energy
consumption by including a solar panel for energy harvesting.
The design includes the HDW indexing system which allows
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modulation of the sensitivity.

A three-cupped CALT windspeed sensor is ideal for windspeed
monitoring applications, (Fig 1C). It operates within the 0-45 m/s
range with analog output for data recording.

The Digital Humidity and Temperature (DHT 11) sensor records
both relative humidity and temperature data. It has a resistive
humidity measurement component and connects to a
highperformance 8-bit microcontroller. It has a humidity range
0of 20 — 90% RH, +5% RH accuracy, and a temperature range of
0-50°C +£2°C (32 — 122°F) + 3.6°F.

B. Tiered Sensor Approach

For deployment of the WARM system to remote areas, we have
integrated power harvesting capabilities using a solar panel to
eliminate the need for wired or battery power. We used a Voltaic
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Figure 1: WARM sensor suite (A) concept design, highlighting all capabilities of the device (B) photograph of the current prototype
with the included sensors and other components (C) sensors included in the prototype design.

for risk assessment.

We used multiple smoke and fire sensors to achieve fast
detection and wide-angle coverage. Three fire sensors were
placed 120° from each other while three smoke sensors were
placed in-between them at 120° from each other. This ensures
that each of the sensors is 60° apart.

The system uses a 16 MHz Arduino Mega Microcontroller Unit
(MCU) with an ATMEL AT Mega 2560 chip which supports SPI
and I12C communication protocols. The main parameters being
monitored include temperature, relative humidity, and wind
speed. In addition to these predictive parameters, smoke and fire
sensors detect the presence of fires.

A. Multimodal Sensing

The MQ7 gas sensor from Winsen Electronics is primarily used
for detecting carbon monoxide (Fig 1C). It operates using a
heating and cooling cycle. In the heating phase, it operates at 5V
and then cools down at 1.4V. The heating phase removes gas
particles on the plates through evaporation and then during the
cooling phase, it records data. The sensor is composed of a
micro aluminum oxide (A1,0;) ceramic tube, a tin dioxide (SnO,)
sensitive layer, a measuring electrode, and a heater. The IR
sensor, (Fig 1C) uses a photodiode with high resistance in the
absence of radiation and reduces the resistance when infrared

Systems waterproof, scratch-resistant, and UV-resistant panel
with an output of 6 V and up to 2 W, which contains 12

high-efficiency cells with a nominal 0.5 V per cell. The available
solar power is limited to daytime and may also be reduced due to
weather conditions. Due to these limitations, we have
implemented the system to reduce power using a tiered sensing
system. This system uses low-power devices to determine the
activation of the higher-tier sensors with greater power
consumption. The multi-tiered sensing approach enables
highprecision detection avoiding the higher power consumption
associated with the higher tier sensing. In this implementation,
we have divided the sensing into two groups—the Tier One and
Tier Two sensors.
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Figure 2: A block diagram showing the data flow within the
system. The ATMega coordinates the data acquisition and a local
SD Card stores data for redundancy and tracking data.

a) Tier 1 Sensors

This sensor group combines predictive sensors to ascertain the
weather conditions that are most likely to enable the spread of
fires; the temperature, relative humidity, and windspeed (Fig. 2).
This data, when collected, is computed to determine the HDW,
where arisk level is ascertained. This risk assessment metric then
evaluates the risk level of current weather conditions. When the
Tier 1 sensors indicate weather conditions are conducive to the
spread of fires, the second level of sensing, Tier 2 should be
activated (Fig. 3). The value obtained from the computation is
compared against a threshold and once the threshold is reached,
the Tier 2 sensors are called into action.

b) Tier 2 Sensors

This group of sensors determines the presence of actual fires.
They include the IR and the carbon monoxide sensors (Fig. 1).
This mode of operation enables fire detection along with wildfire
risk by combining these two sensor Tiers to optimize power
usage. Until the Tier 2 sensors are called, they operate in low-
power sleep mode. Once the threshold is reached, they are
activated and remain on until the risk level drops below the
threshold. In this case, it means there are no recorded parameters
that predict the presence of fires or danger of fire ignition and
spread. Figure 3 is a logic diagram for the system indicating the
activation and control of the Tier 1 and Tier 2 sensing modes.

C. Thresholding — HDW Indexing System

The HDW Index was developed to help determine conditions
under which there is a high risk of fire incidence and the
difficulty of managing it [13]. High values of the HDW index
indicate that conditions are favorable for the rapid spread of fires,
while low values indicate a lower risk of fire activity and spread.
It is calculated by multiplying the windspeed (U) in meters per
second (m/s) with the vapor pressure deficit (VPD) measured
within 500 m above the ground.
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Figure 3: The logic diagram for the WARM system which uses a
tiered sensing approach to enable fire detection with limited
access to power. The thresholding approach helps to minimize
power consumption while effectively monitoring weather

conditions that foster the occurrence and spread of fires.

HDW=U x VPD (T, q) (1)

This model is unique because the vapor pressure deficit does not
take into consideration the relative humidity, which is a ratio of
the vapor pressure (e) to the saturation vapor pressure (e,), but
rather the difference between the two variables. This difference
is believed to show practically how much water the atmosphere
can hold before precipitation occurs. Hence, a true measure of
whether there is enough moisture in the atmosphere to support or
inhibit fires will be the vapor pressure deficit [14], [15] given by:

VPD = ¢(T) - e(q) 2

e, = temperature-dependent vapor pressure (saturation vapor
pressure) measured in hPa and e = moisture content-dependent
vapor pressure measured in hPa.

The saturation vapor pressure is temperature dependent while the
vapor pressure is moisture content dependent, hence, each
variable is calculated for.

17.625TT

o e(T)=6.11 x ee
243.04+TT

17.625TTTT

e(q) = 6.11 x eeQaz.oa+r7TT)

(4) The temperature (T) in Celsius (C) is sampled from the
sensor while the dew point temperature (Td) which is the
temperature to which air must be cooled (at constant pressure)
to achieve a relative humidity of 100% is calculated where RH
is Relative Humidity.
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D. Sensor Results

An acrylic chamber wasbuilt with dimensions 20” x 20” x 16”
(Fig. 6). The temperature, humidity, and other sensor data in
the box chamber were collected. Using a small tabletop fan,
forced air was directed toward the anemometer to cause
rotation. The speed of the anemometer was controlled by
varying the speed of the tabletop fan. A portable pit fire is lit
and introduced into the chamber and the fan speed alternated
as shown in Fig. 4. Each time, sensor data was collected. As
shown in Fig. 4, the IR sensor data alternates between 1 and
0, because the sensor operated in digital mode.
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Figure 4: Various iterations to mimic weather conditions in the
field. All parameters varied progressively.
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Figure 5: This shows the risk levels based on the HDW
index. The HDW is compared against the reference HDW
for the day. This allows the system to determine the need to
engage the tier 2 sensors.

This HDW index becomes the reference index for the day.
High-risk feedback is produced once we get a value that either
equals or exceeds the reference index for the day (Fig 5).

Figure 6: Photograph of the acrylic chamber with the sensors
along with the small fire source, fan, and imaging. Suites
implemented in actual fire detection will not be placed in the
chamber; the system was used outdoors with the acrylic
chamber was used to ensure the small fires were contained
completely to maintain high safety standards.

The risk of fire occurrence depends on the moisture content in
the air and the presence of winds to support combustion and
carry fires along distances. The HDW indexing system allows
us to determine the risks of fires happening daily (Fig. 5). The
input data sampled from the sensor suite is fed into the model
which uses a cascading effect to calculate the highest HDW for
the day.

Wind speeds are often monitored by weather stations to inform
the public about storms to maintain safety. Using the WARM
system, once the windspeeds go beyond 47mph [16] threshold,
a dust storm or gale is reported. When the temperatures go
beyond the 100°F threshold, a heat wave is reported.

IV. LIMITATIONS/CHALLENGES

The HDW index was tested against a dataset obtained through
the Climate Forecast System Reanalysis (CFSR) from the
National Centers for Environmental Prediction (NCEP) which
covers 30 years [17]. This dataset shows that the indexing system
worked well in predicting the days on which fires would be
difficult to manage if they occurred. However, the testing of the
indexing system was limited to just four notable wildfires that
happened in the past in a few locations across the United States
[13]. More testing must be done to cement its operational
reliability.

The prototypical sensors and microcontrollers used do not allow
for a broader range of testing which will then inform the spatial
resolution of the system. The sensors, although functional, are
prone to errors, hence, an important upgrade that will push the
development of the system to the next level will be to move to a
more industry-standard sensor suite.

V. CONCLUSION

Most fire mitigation systems either manage fires when they occur
or perform continuous surveillance for early detection. By
combining both ideas, fire mitigation would be more effective.
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Although the project is designed to assess the risk of fires, we
target deployment along powerlines to limit the coverage area;
practically it would be very difficult to cover all uninhabited
areas. The use also power lines also target the most impactful
remote fire prevention and mitigation. Although the indexing
system used in the project has been accessed and proven for a
retrospective analysis, it needs to be tested on a large scale to gain
trust and reliability. The sensor suites will need to have little to
no maintenance required to demonstrate they are a viable
monitoring technology.

V1. FUTURE DIRECTION

The development of a broader dataset that contains fire outbreak
data for a variety of locations and the prevailing weather
conditions in those areas will be necessary to help us build a
robust indexing system that will improve the accuracy of the
system. The device will go through further benchmarking
processes to improve reliability.

A camera module will be added to the tier 2 sensor suite to
improve fire detection. These data samples will have to be
transmitted across a wireless network to the fire response team to
stay alert during high-risk seasons and provide a prompt response
during the incidence of fires. To achieve this, a Long Range
(LoRa) module will be incorporated into the design for data
transmission from the power stations and powerlines to the base
stations. A massive improvement in the sensor suite to a more
robust and reliable suite will also need to be included.
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