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1. Introduction

For a noetherian scheme X let Db
coh(X) denote the derived category of

complexes of OX -modules with bounded and coherent cohomology sheaves.
Let X and Y be varieties over a field k, admitting an equivalence

ΦP : Db
coh(X) → Db

coh(Y )

given by a complex P ∈ Db
coh(X × Y ). The equivalence ΦP preserves many

natural structures: the canonical ring, the automorphism scheme of the
identity functor, etc. This suggests that there are often natural morphisms
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f : X → T and g : Y → T with a common target that should be somehow
respected by ΦP . The simplest way to “respect T” would be for P to be in
the image of the natural pushforward map Db

coh(X ×T Y ) → Db
coh(X × Y ),

and it is natural to ask for conditions ensuring this holds. It is that question
that we study here.

The typical way in which one would use such a thing is as the natural
generalization of the seminal result of Bondal and Orlov [4]: two derived
equivalent varieties X and Y are relatively equivalent over isomorphisms of
their canonical and anti-canonical models (see §3). This particular idea also
appeared in a slighlty different form in [16].

In general, it appears to be a difficult question to decide when a com-
plex that is set-theoretically supported on a closed subscheme X0 ⊂ X is
the pushforward of a complex from X0. Analogous questions about affine
morphisms X ′ → X have an interesting history. As shown in [13, Theorem
8.1], even for base change by field extensions, it is unusual for a complex
with an X ′ structure to be pushed forward from X ′. For kernels of derived
equivalences, however, we have additional tools at our disposal. First, on
the level of ∞-categories a very satisfactory solution was given by Ben-Zvi,
Francis, and Nadler [1, 4.7]. Second, to get results on the level of derived
categories, rather than ∞-categories, we use variations of the gluing results
of Beilinson, Bernstein, and Deligne developed in [10].

Our main technical results are not restricted to derived equivalences and
we state them in more general form. Let S be a scheme (in practice this will
often be the spectrum of a field) and let

f : X → T, g : Y → T

be morphisms of S-schemes with T/S separated and flat. Let

d0, d1 : X ×S Y → X ×S T ×S Y

be the morphisms given on scheme-valued points

d0(x, y) = (x, f(x), y), d1(x, y) = (x, g(y), y).

We also consider the maps

d
(1)
i : X × T × Y → X × T 2 × Y, i = 0, 1, 2,

given on scheme-valued points by

d
(1)
0 : (x, t, y) 7→ (x, f(x), t, y),
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d
(1)
1 : (x, t, y) 7→ (x, t, t, y),

d
(1)
2 : (x, t, y) 7→ (x, t, g(y), y).

Observe that d
(1)
0 ◦ d0 = d

(1)
1 ◦ d0, d

(1)
1 ◦ d1 = d

(1)
2 ◦ d1, and d

(1)
0 ◦ d1 = d

(1)
2 ◦

d0.
We consider a pair (P,φ) where P ∈ Dqcoh(X ×S Y ) is an object of the

derived category of complexes with quasi-coherent cohomology sheaves on
X ×S Y and

φ : d0∗P → d1∗P

is an isomorphism in Dqcoh(X ×S T ×S Y ) such that the diagram

(1.0.1) d
(1)
0∗ d0∗P

d
(1)
0∗ ϕ

//

≃

��

d
(1)
0∗ d1∗P ≃ d

(1)
2∗ d0∗P

d
(1)
2∗ ϕ

// d
(1)
2∗ d1∗P

≃

��

d
(1)
1∗ d0∗P

d
(1)
1∗ ϕ

// d
(1)
1∗ d1∗P

commutes (we refer to this commutativity as the cocycle condition).
Note that if

ϵ : X ×T Y → X ×S Y

is the natural inclusion then d0 ◦ ϵ = d1 ◦ ϵ and therefore for a complex P0 ∈
Dqcoh(X ×T Y ) the pushforward ϵ∗P0 admits a natural such isomorphism φ
over X ×S T ×S Y .

Theorem 1.1. Assume that either f or g is flat and that (P,φ) is a pair
as above. Assume further that P is a perfect complex and that the derived
pushforward

Rpr1∗RHom(P, P )

lies in D≥0(X). Then there exists a pair (P0, λ), unique up to unique iso-
morphism, consisting of a complex P0 ∈ Db

qcoh(X ×T Y ) and λ : ϵ∗P0 ≃ P
identifying φ with the canonical isomorphism between the pushforwards of
P0.

Remark 1.2. As indicated above the proof of this theorem given in sec-
tion 2 has two steps. The first step is to identify the derived category
D−

qcoh(X ×T Y ) with the quasi-coherent objects of the total topos of a cer-
tain cosimplicial scheme E(f, g)• (see theorem 2.6). The second step is to
apply the results of [10] to lift (uniquely) the object (P,φ) to this total
topos.
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In this paper, we will also discuss two main applications of Theorem 1.1.

1.3 (Canonical fibration). Let X and Y be smooth projective varieties
over a field k related by a derived equivalence Φ : Db

coh(X) → Db
coh(Y ) given

by a complex P ∈ Db
coh(X × Y ). Let RX := ⊕n≥0Γ(X,K⊗n

X ) (resp. RY :=
⊕n≥0Γ(Y,K

⊗n
Y )) denote the canonical ring ofX (resp. Y ) so we have rational

maps

cX : X //❴❴❴ Proj(RX) , cY : Y //❴❴❴ Proj(RY ) .

It is well-known (this is stated explicitly in [16, 4.4] and attributed to [11]
in [6, 6.1]) that Φ induces a canonical isomorphism

(1.3.1) τ̃ : RX → RY ,

and therefore also an isomorphism of schemes

τ : Proj(RX) ≃ Proj(RY ).

Let UX ⊂ X (resp. UY ⊂ Y ) be the complement of the base locus of
{K⊗n

X }n≥0 (resp. {K⊗n
Y }n≥0), so cX (resp. cY ) is a morphism on UX (resp.

UY ). Also, for an open subset A ⊂ Proj(RY ) let UX,A (resp. UY,A) denote
the preimage of A under τ ◦ cX (resp. cY ).

Theorem 1.4. There exists a dense open subset A ⊂ Proj(RY ) such that
the restriction of P to UX,A × Y is isomorphic to the the image of an object

P0 ∈ Db
coh(UX,A ×τ◦cX ,A,cY UY,A)

whose support is proper over both UX,A and UY,A.

Remark 1.5. (i) The above generalizes earlier work of Toda [16, 1.1].
(ii) Over fields of characteristic 0 the canonical ring is known to be

finitely generated. Over fields of positive characteristic, however, this is not
known so a little more care is needed in the arguments presented below.

(iii) We also prove a version of the above theorem replacing UX with the
maximal open subset WX over which the morphism cX extends.

1.6 (Albanese fibration). Let X be a smooth projective variety over a
field k, let Pic0X (resp. Aut0X) denote the connected component of the identity
of the Picard scheme of X (resp. the automorphism group scheme of X),
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and set

R0
X := Pic0X ×Aut0X .

As we recall in section 4, if

Φ : Db
coh(X) → Db

coh(Y )

is a derived equivalence given by a complex P ∈ Db
coh(X × Y ), then Φ in-

duces an isomorphism

ΦR0 : R0
X ≃ R0

Y .

Let

cX : X → T0
X , cY : Y → T0

Y

be the Albanese torsors of X and Y (see section 4 for more discussion). For
an open subset U ⊂ T0

X let XU denote c−1
X (U), and similarly for Y .

Theorem 1.7 (Theorem 4.9). Assume that Pic0X and Pic0Y are reduced
and that ΦR0 sends Pic0X to Pic0Y and therefore defines an isomorphism

ΦPic0 : Pic
0
X → Pic0Y .

Then Φ induces an isomorphism of schemes

ΦT0 : T0
X → T0

Y

compatible with the actions of the Picard schemes, and there exists a dense
open subset A ⊂ T0

Y such that

P |X
Φ
−1

T0
(A)

×YA

is isomorphic to the image of an object in Db
coh(XΦ−1

T0 (A) ×A YA).

Remark 1.8. (a) The assumption that the groups schemes Pic0X and Pic0Y
are reduced holds for example if k has characteristic 0.

(b) The assumption that ΦR0 preserves the Picard schemes frequently
holds. For example, it holds if the automorphism group schemes are affine.
Varieties for which the automorphism group scheme has a nontrivial abelian
variety as quotient can be classified; see [12, 2.4].

1.9. The body of the article is divided into three sections. Section 2 is de-
voted to the proof of 1.1. As noted above the key ingredient is 2.6, which



✐

✐

“8-Olsson” — 2025/8/11 — 15:52 — page 902 — #6
✐

✐

✐

✐

✐

✐

902 M. Lieblich and M. Olsson

reduces the proof to a problem of gluing in the derived category of a cosimpli-
cial scheme. Theorem 1.1 is obtained from this and a variant of the BBD glu-
ing lemma for cosimplicial schemes. Section 3 is concerned with the canonical
fibration. In this section we prove, in particular, theorem 1.4. In addition to
the results of section 2 we use in a key way the Beilinson resolution of the
diagonal of projective space. Finally in section 4 we apply a similar analysis
to the Albanese fibration proving 1.7.

2. Support of complexes and relativization of equivalences

2.1. Complexes on fiber products

For the convenience of the reader we review the result [1, 4.7] using the more
classical language of derived categories.

2.2. We fix a base scheme S, a flat S-scheme T/S, and consider two sepa-
rated morphisms of S-schemes

f : X → T, g : Y → T.

Let γf : X → X ×S T (resp. γtg : Y → T ×S Y ) be the maps given on
scheme-valued points by

γf (x) = (x, f(x)), γtg(y) = (g(y), y).

We then get a cosimplicial scheme

E(f, g)•

by the following variant of the bar construction. Set

E(f, g)n = X ×S T×n ×S Y,

where T×n denotes the n-fold fiber product of T with itself over S and we
make the convention that T 0 = S so E(f, g)0 = X ×S Y . Define maps

d
(n−1)
i : E(f, g)n−1 → E(f, g)n, i = 0, . . . , n

by

d
(n−1)
0 = γf × idT×(n−1)×Y , d(n−1)

n = idX×T×(n−1) × γtg,
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and, for i = 1, . . . , n− 1,

d
(n−1)
i = idX×T×(i−1) ×∆T × idT×(n−i−1)×Y .

Note that with our earlier notation we have di = d
(0)
i and the above notation

is consistent with that of the introduction. Define maps

s
(n)
i : E(f, g)n+1 → E(f, g)n, i = 0, . . . , n,

by the formula

s
(n)
i (x, t1, . . . , tn+1, y) = (x, t1, . . . , t̂i+1, . . . , tn+1, y)

on scheme-valued points.

Lemma 2.3. The maps d
(n−1)
i and s

(n)
i satisfy the cosimplicial identities

[15, Tag 016K] and therefore define a cosimplicial scheme E(f, g)•.

Proof. This is immediate from the definitions. □

2.4. We have an augmentation

ϵ : X ×T Y → E(f, g)•,

that is, a map from X ×T Y to E(f, g)0 compatible with each map in the
cosimplicial structure. Writing

ϵn : X ×T Y → E(f, g)n

for the induced map in degree n, the map ϵn is given on scheme valued points
by

(x, y) 7→ (x, f(x), . . . , f(x), y).

Note that since f(x) = g(y) we could also write this formula using g(y).
One can also think of the augmentation as a morphism from the constant
cosimplicial scheme on X ×T Y .

2.5. Let Mod(E(f, g)•) denote the category of systems ({Fn}, φδ), where
Fn is a sheaf of OE(f,g)n-modules on the étale site of E(f, g)n and for every
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morphism δ : [n] → [m] with associated morphism d : E(f, g)n → E(f, g)m

we have a morphism

φδ : Fm → d∗Fn,

and these morphisms are compatible with compositions. The category
Mod(E(f, h)•) is abelian, with kernels and cokernels defined level-wise. In
particular, restriction to any particular E(f, g)n is an exact functor. We let

D(E(f, g)•)

denote the associated derived category and

D(−)(E(f, g)•) ⊂ D(E(f, g)•)

the subcategory of complexes whose restriction to each E(f, g)n is bounded
above.

For an object P ∈ D(E(f, g)•) we let Pn denote its restriction to
E(f, g)n. For a morphism d : E(f, g)n → E(f, g)m associated to a morphism
δ in ∆ we have a map

φδ : Pm → Rd∗Pn

in the derived category of E(f, g)m. We write

Dqcoh(E(f, g)•) ⊂ D(E(f, g)•)

for the subcategory of complexes for which the sheaves H
i(Pm) are quasi-

coherent and the maps φδ are all isomorphisms, and

D−
qcoh(E(f, g)•) := D(−)(E(f, g)•) ∩Dqcoh(E(f, g)•).

Pushforward along the augmentation defines a functor

(2.5.1) ϵ∗ : D
−
qcoh(X ×T Y ) → D−

qcoh(E(f, g)•).

Theorem 2.6. If either f or g is flat then the functor (2.5.1) is an equiv-
alence.

Remark 2.7. It seems likely that one can formulate and prove a version of
this result without the flatness assumption replacing X ×T Y by a suitable
derived fiber product.

The proof will be in several steps.
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2.8. The functor

ϵ∗ : Mod(X ×T Y ) → Mod(E(f, g)•)

has a left adjoint ϵ∗: For ({Fn}, {φδ}) ∈ Mod(E(f, g)•) the pullbacks ϵ∗nFn

form a simplicial object in Mod(X ×T Y ) and ϵ∗({Fn}, {φδ}) is given by the
coequalizer of the two maps ϵ∗1F1 ⇒ ϵ∗0F0. Deriving this left adjoint we get
a functor

Lϵ∗ : D−
qcoh(E(f, g)•) → D−

qcoh(X ×T Y ).

We show that the functors

Lϵ∗ϵ∗ : D
−
qcoh(X ×T Y ) → D−

qcoh(X ×T Y )

and

ϵ∗Lϵ
∗ : D−

qcoh(E(f, g)•) → D−
qcoh(E(f, g)•)

are isomorphic to the respective identity functors by the adjunction maps.
Note that the functors and natural transformations are all compatible with
restriction to open subschemes. In particular, we can check whether the
adjunction maps are isomorphisms locally on X ×S Y .

2.9. We reduce to the case when X, Y , S, and T are all affine as follows.
Since T/S is separated the maps d0, d1 : X ×S Y → X ×S T ×S Y are

closed immersions. Indeed, the morphisms γf and γtg are closed immersions
being sections of separated morphisms, and therefore d0 and d1 are also
closed immersions being obtained by base change from these maps. For P ∈
D−

qcoh(E(f, g)•) we have

(2.9.1) d0(Supp(P0)) = Supp(P1) = d1(Supp(P0)).

Now observe that if U ⊂ T is an open subset then

d−1
1 (d0(f

−1(U)×S Y )) = f−1(U)×T g−1(U).

Combining this with (2.9.1) we find that if T = ∪iTi is an open covering of
T and if

fi : Xi → Ti, gi : Yi → Ti

are the restrictions of f and g then P is supported on

∪iE(fi, gi)
• ⊂ E(f, g)•,
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and it suffices to verify that our adjunction maps are isomorphisms for
D(fi, gi)

•. We may therefore assume that T is affine, say T = SpecR, and
that the map T → S factors through an affine open subset Spec(k) ⊂ S for
a ring k. Replacing S by Spec(k) we are reduced to the case when S and T
are affine.

Having made this reduction, we can then cover X and Y by affines and
verify that the adjunction maps are isomorphisms over corresponding open
subsets.

We may therefore assume that X = Spec(A) and Y = Spec(B) for R-
algebras A and B.

2.10. In this case E(f, g)• is given by the simplicial ring A• (with tensor
products taken over k)

· · ·A⊗R⊗R⊗B
//
//
// A⊗R⊗B

//

//oo
oo A⊗B.oo

Lemma 2.11. The augmentation A• → A⊗R B induces a quasi-
isomorphism on the associated normalized complexes.

Proof. Let A′
• → R be the simplicial ring with augmentation obtained from

the above construction taking A = B = R.
Since the maps

d∗i : A⊗R⊗n ⊗B → A⊗R⊗(n−1) ⊗B

are A⊗B-linear, the normalized complex of A• is isomorphic to the complex
obtained from the normalized complex of A′

• tensored over R⊗R with A⊗
B. Note also that A

′
• is term-wise flat over R⊗R. It follows that if we

show that A
′
• → R induces a quasi-isomorphism on associated normalized

complexes, then the map

A• ≃ A
′
• ⊗R⊗R (A⊗B) → R⊗L

R⊗R (A⊗B) ≃ A⊗R B

also induces a quasi-isomorphism (using the flatness of one of f or g). We
are therefore reduced to the case when A = B = R.

In this case it follows from direct calculation that the maps

hn : R⊗(n+2) → R⊗(n+3), a0 ⊗ · · · ⊗ an+1 7→ a0 ⊗ · · · ⊗ an+1 ⊗ 1

define a homotopy between the identity and 0. □
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2.12. From this and [7, I, 3.3.4.6] we see that if P ∈ D−(A⊗R B) then the
adjunction map

Lϵ∗ϵ∗P = (A⊗R B)⊗L

A•
P → P

is an isomorphism in the derived category.
To verify that the adjunction

(2.12.1) P → ϵ∗Lϵ
∗P

is an equivalence for P ∈ D−
qcoh(E(f, g)•), note that since all the transition

maps in E(f, g)• are affine, and therefore have exact pushforwards, and ϵ∗

is right exact we get by descending induction that it suffices to consider
the case when P is a module concentrated in degree 0. In this case P is
given by an A⊗B-module for which the two induced actions of A⊗R⊗B
are equal. That is, P is given by an A⊗B-module on which the R-actions
coming from the two factors are the same implying that the A⊗B-module
structure descends to an A⊗R B-module structure. So in this case P is, in
fact, of the form ϵ∗P0 for a A⊗R B-module P0 and we have

ϵ∗Lϵ
∗ϵ∗P0 ≃ ϵ∗P0

by the case already considered. This isomorphism identifies (2.12.1) with the
identity map (in the derived category), and therefore (2.12.1) is an isomor-
phism. This completes the proof of 2.6. □

Example 2.13. Let X = Spec(R) be an affine scheme over a field k and
let f ∈ R be an element defining an effective Cartier divisor Z →֒ X. Let

F : X → A1
k

be the morphism defined by f so that F−1(0) = Z. We can then apply our
setup with T = A1

k, Y = Spec(k), and g the zero section Spec(k) →֒ A1
k. The

two maps

d0, d1 : X = X × Y → X × T × Y = X ×A1
k

are then given by

d0 = (idX , F ), d1 = (idX , 0);

that is, d0 = γF is the graph of F and d1 = γ0 is the graph of the zero map.
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2.14. Proof of 1.1

Theorem 2.6 reframes the problem of descending a complex P ∈ Db
qcoh(X ×S

Y ) to Db
qcoh(X ×T Y ) to one of extending P to an object of D(E(f, g)•),

the derived category of the cosimplicial scheme E(f, g)•. This is, fundamen-
tally, a problem of gluing objects of the derived category (though not in the
classical setting of a covering in a site but instead in the setting of gluing
objects in a cosimplicial topos) and we apply the results of [10].

For m ≥ 0 let γi : [0] → [m] (0 ≤ i ≤ m) be the morphism in ∆ sending
0 to i. For a morphism δ : [n] → [m] in ∆ let Eδ : E(f, g)n → E(f, g)m be
the corresponding morphism, and let

αδ : [1] → [m]

be the map sending 0 to 0 and 1 to δ(0) so we have

Eγ0
= Eαδ

◦ d0, Eγδ(0)
= Eαδ

◦ d1.

2.15. Consider again the setup of 2.2. Let P ∈ Db
qcoh(X ×S Y ) be a complex

equipped with an isomorphism

φ : d0∗P
∼
→ d1∗P

on X ×S T ×S Y such that the diagram (1.0.1) commutes. We show that
under the assumptions of 1.1 there exists a unique pair (P0, λ), where P0 ∈
Db

qcoh(X ×T Y ) is a complex and λ : ϵ0∗P0 ≃ P is an isomorphism identifying
φ with the canonical isomorphism between the pushforwards of P0.

2.16. Define Pn ∈ Db
qcoh(E(f, g)n) to be the pushforward of P along the

morphism X ×S Y → E(f, g)n given by the map [0] → [n] sending 0 to 0.
For every morphism δ : [n] → [m] we then get an isomorphism

φδ : Pm = REαδ∗d0∗P
ϕ

// REαδ∗d1∗P ≃ REδ∗Pn.

The maps φδ are compatible with composition. For maps

[n]
δ // [m]

ρ
// [k]

we get by applying REρ∗ to the diagram (1.0.1) an equality

REρ∗(φδ) ◦ φρ = φρδ.
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Lemma 2.17. Let δ : [n] → [m] and ρ : [t] → [m] be morphisms in ∆. Then

ExtiE(f,g)m(REρ∗Pt,REδ∗Pn) = 0, for i < 0.

Proof. We have REδ∗Pn ≃ Pm ≃ REρ∗Pt, so it suffices to show that

ExtsE(f,g)m(γ0∗P, γ0∗P ) = 0

for s < 0.
Let

t : X → X ×S Tm

be the map given on scheme-valued points by

x 7→ (x, f(x), . . . , f(x)).

Then γ0 is obtained by taking the product of t with Y . By adjunction, and
using the fact that P is perfect, we have

ExtsE(f,g)m(γ0∗P, γ0∗P )

≃ Hs(X × Y,RHom(Lγ∗0γ0∗OX×Y ,OX×Y )⊗RHom(P, P )).

Let R denote the complex

RHom(Lt∗t∗OX ,OX).

Then we have

Rpr∗1R ≃ RHom(Lγ∗0γ0∗OX×Y ,OX×Y ).

We conclude that

(2.17.1) R⊗L Rpr1∗RHom(P, P )

≃ Rpr1∗(RHom(Lγ∗0γ0∗OX×Y ,OX×Y )⊗RHom(P, P )).

Since R is locally represented by a complex of projective OX -modules con-
centrated in degrees ≥ 0 and Rpr1∗RHom(P, P ) is concentrated in degrees
≥ 0 the complex (2.17.1) is in D≥0(X). In particular, its cohomology is zero
in negative degrees. □
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Theorem 1.1 now follows from the lemma and the BBD gluing lemma for
a D-topos [10, 1.5 and 1.7]. In our situation these results give the following.
With notation of loc. cit. we take D = ∆op so that E(f, g)• defines a functor

Dop = ∆ → (schemes).

Informally (or formally if one works with appropriate ∞-categories) this
defines a functor

Dop = ∆ → (triangulated categories), [n] 7→ D(E(f, g)n,OE(f,g)n).

Let Γ (notation consistent with [10, 1.4]) denote the category of systems

({Mn}[n]∈∆, {φδ})

as follows:

(i) For each [n] ∈ ∆ we are given an object Mn ∈ Db(E(f, g)n,OE(f,g)n).

(ii) For each morphism δ : [n] → [m] in ∆ we are given a morphism φδ :
Mm → REδ∗Mn.

(iii) The maps φδ are compatible with composition in the sense that for a
composition in ∆

[n]
δ // [m]

δ′ // [k]

the diagram

Mk

ϕδ′δ

++❱❱
❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

❱

ϕδ
// REδ∗Mm

REδ∗(ϕδ′ )
// REδ′∗REδ∗Mn

≃

��

REδ′δ∗Mn

commutes.

There is a functor

π : Db(E(f, g)•) → Γ

sending a complex M to the system given by the restrictions Mn of M
to each E(f, g)n with the natural transition maps. Let Γ′ ⊂ Γ be the full
subcategory of systems for which the following additional conditions hold:
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(iv) There exists integers a < b such that Mn ∈ D[a,b](E(f, g)n,OE(f,g)n)
(the category of complexes with cohomology supported in the interval
[a, b]).

(v) For any two morphisms δ : [n] → [m] and ρ : [t] → [m] in ∆ with com-
mon target we have

ExtiE(f,g)m(REρ∗Mt,REδ∗Mn) = 0, for i < 0.

Let Γ̃′ ⊂ Db(E(f, g)•) be those complexes K with π(K) ∈ Γ′. Then [10, 1.5
and 1.7 (i)] imply that the functor Γ̃′ → Γ′ is an equivalence of categories.

Lemma 2.17 is therefore the necessary input needed to apply the results
of [10] yielding Theorem 1.1. □

3. Canonical fibration

3.1. For a smooth projective variety X over a field k let

RX := ⊕n≥0Γ(X,K⊗n
X )

be its canonical ring. Over fields of characteristic 0 this ring is known to be
finitely generated [3].

For an integer n ≥ 1 for which HX,n := Γ(X,K⊗n
X ) is nonzero we get a

rational map

πn : X //❴❴❴ PHX,n .

We then get open subsets

UX,n ⊂ WX,n ⊂ X,

where UX,n is the maximal open subset over which HX,n generates K⊗n
X and

WX,n is the maximal open subset over which πn is a morphism. Since X is
normal the complement of WX,n in X has codimension ≥ 2 and since X is
smooth the invertible sheaf π∗

nOPHX,n
(1) extends uniquely to an invertible

subsheaf

π∗
nOPHX,n

(1) →֒ K⊗n
X

over all of X for which there is a map

HX,n → Γ(X,π∗
nOPHX,n

(1))

whose image generates π∗
nOPHX,n

(1) over WX,n.
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For an open subset A ⊂ PHX,n we write UX,n,A (resp. WX,n,A) for the
preimage of A in UX,n (resp. WX,n).

3.2. If X and Y are two smooth projective varieties over k related by a
derived equivalence

Φ : Db
coh(X) → Db

coh(Y )

then Φ induces an isomorphism

(3.2.1) HX,n ≃ HY,n

for all n; in particular, Φ induces an isomorphism of canonical rings RX ≃
RY . This is due to Bondal and Orlov [4].

Let us recall the argument. For an integer n ∈ Z define a functor

Sn : Db
coh(X) → Db

coh(X), F 7→ F⊗K⊗n
X .

Define SKX
to be the category whose objects are the functors Sn and for

which the morphisms Sm → Sn are given by elements of H0(X,K
⊗(n−m)
X ).

So SKX
is a subcategory of the category End(Db

coh(X)) of endofunctors of
Db

coh(X).

Lemma 3.3. Let X and Y be smooth projective varieties over a field k
and let Φ : Db

coh(X) → Db
coh(Y ) be an equivalence of triangulated categories.

Then the induced functor

(3.3.1) End(Db
coh(X)) → End(Db

coh(Y )), F 7→ Φ ◦ F ◦ Φ−1

sends SKX
to SKY

.

Proof. The fact that conjugation by Φ matches up the objects of the cate-
gories SKX

and SKY
is due to Bondal and Orlov [4]. Let P ∈ Db

coh(X × Y )
be a complex defining Φ. For an integer n and SX,n ∈ End(Db

coh(X)) (resp.
SY,n ∈ End(Db

coh(Y ))) given by tensoring with K⊗n
X (resp. K⊗n

Y ) we have
Φ ◦ SX,n given by P ⊗ p∗XK⊗n

X and SY,n ◦ Φ given by P ⊗ p∗Y K
⊗n
Y , where pX

and pY are the projections. The result therefore follows from the standard
fact [6, 5.22] that

P ⊗ p∗XK⊗n
X ≃ P ⊗ p∗Y K

⊗n
Y .

Since these subcategories are not full, however, a bit more is required
to get the compatibility on morphisms. Following [17], let Lperf (X) (resp.
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Lperf ) denote the dg-category of perfect complexes of quasi-coherent sheaves
on X. The kernel P then defines an equivalence

Φ̃ : Lperf (X) → Lperf (Y ).

Let SX : Db
coh(X) → Db

coh(X) be the Serre functor of X. By the uniqueness
part of Orlov’s theorem, as well as Toën’s representability result in [17, 8.15]
the functor has a lift

S̃X : Lperf (X) → Lperf (X)

which is unique up to equivalence of dg functors (in the sense of [17]).
In fact, S̃X is given by ∆X∗ωX [dim(X)] ∈ Lperf (X ×X). For integers n

and m it therefore makes sense to consider the subspace

Hom′
End(Db

coh(X))(S
n
X , Sm

X ) ⊂ HomEnd(Db
coh(X))(S

n
X , Sm

X )

of morphisms of functors Sn
X → Sm

X which admit liftings to morphisms of dg

functors S̃n
X → S̃m

X . By [17, 8.9] the set Hom′
End(Db

coh(X))(S
n
X , Sm

X ) consists

precisely of those morphisms induced by sections of K
⊗(m−n)
X . Now for a lift

S̃X the functor

Φ̃ ◦ S̃X ◦ Φ̃−1 : Lperf (Y ) → Lperf (Y )

is a dg lift of the Serre functor SY of Y . From this it follows that (3.3.1) sends
the subset Hom′

End(Db
coh(X))(S

n
X , Sm

X ) to Hom′
End(Db

coh(Y ))(S
n
Y , S

m
Y ) which im-

plies the lemma. □

Theorem 3.4. Let X and Y be smooth projective varieties over k and let

Φ : Db
coh(X) → Db

coh(Y )

be a derived equivalence given by a complex P ∈ Db
coh(X × Y ). Let n ≥ 1 be

an integer such that HX,n (and therefore also HY,n) is nonzero.
(a) The support of P |UX,n×Y (resp. P |WX,n×Y ) is contained in UX,n ×

UY,n (resp. WX,n ×WY,n).
(b) There exists a dense open subset A ⊂ PHX,n such that P |WX,n,A×Y

is isomorphic to an object in the image of

Db
coh(WX,n,A ×A WY,n,A) → Db

coh(WX,n,A × Y ).
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(c) There exists a dense open subset A ⊂ PHX,n such that P |UX,n,A×Y

is isomorphic to an object in the image of

Db
coh(UX,n,A ×A UY,n,A) → Db

coh(UX,n,A × Y ).

Here we somewhat abusively write UY,n,A and WY,n,A for the preimages
in UY,n and WY,n of the open subset A →֒ PHX,n ≃ PHY,n of PHY,n defined
by A.

The proof occupies the remainder of this section.

Remark 3.5. Note that the open subset UX ⊂ X considered in 1.4 is the
union over all n of the UX,n. Since UX is quasi-compact, we in fact have
UX = UX,n for n >> 0 and therefore 1.4 follows from 3.4.

Remark 3.6. Note that statement (c) follows from (a) and (b). Indeed let
PW in Db

coh(WX,n,A ×A WY,n,A) be an object with image in Db
coh(WX,n,A ×

Y ) isomorphic to P |WX,n,A×Y . Then the image of PW in Db
coh(UX,n,A ×A

WY,n,A) is by (a) supported on UX,n,A ×A UY,n,A, and therefore is in the
image ofDb

coh(UX,n,A ×A UY,n,A), and has image PUX,n,A×Y inDb
coh(UX,n,A ×

Y ).

3.7. The complex CX,n.

3.8. We can define a complex CX,n on X with a map of complexes

ϵX,n : CX,n → π∗
nOPHX,n

(1)

which restricts to a quasi-isomorphism over WX,n. Recall that we write

π∗
nOPHX,n

(1)

for the line bundle on X obtained by pullback under the rational map πn.
This complex CX,n will be used to understand the set WX,n.

The complex CX,n is the Koszul complex associated to the map ρ :
HX,n ⊗k OX → K⊗n

X (note that this map factors through π∗
nOPHX,n

(1)). Pre-
cisely, we have

C
i
X,n := (∧−i+1HX,n)⊗k K

⊗(in)
X

for i ≤ 0 and C
i
X,n = 0 for i > 0. The differential

di : C
i
X,n → C

i+1
X,n
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is given by the usual formula in local coordinates

(3.8.1) di((h1 ∧ · · · ∧ h1−i)⊗ ℓ)

:=

i∑

j=1

(−1)j+1(h1 ∧ · · · ĥj · · · ∧ h1−i)⊗ (ρ(hj)⊗ ℓ).

The map ϵX,n is defined to be the map induced by the natural map
HX,n ⊗k OX → π∗

nOPHX,n
(1). By standard properties of the Koszul complex

the restriction of ϵX,n to WX,n is a quasi-isomorphism.
If

(3.8.2) ΣX,n ⊂ π∗
nOPHX,n

(1)

is the image of HX,n ⊗k OX then a point z ∈ X lies in WX,n if and only if
ΣX,n,z is generated by a single element. Indeed if this is the case then Σn

is a line bundle in a neighborhood of z and the inclusion (3.8.2) restrict to
this open subset to an isomorphism, since it is an inclusion of line bundles
which is an isomorphism away from a codimension 2 subset.

Proposition 3.9. Let X and Y be smooth projective varieties over k and
let

Φ : Db
coh(X) → Db

coh(Y )

be a derived equivalence given by a kernel P ∈ Db
coh(X × Y ). Let TX,n (resp.

TY,n) be the endofunctor of Db
coh(X) (resp. Db

coh(Y )) given by tensoring with
CX,n (resp. CY,n). Then

Φ ◦ TX,n ◦ Φ−1 ≃ TY,n.

Proof. Let p : X × Y → X and q : X × Y → Y be the projections. The proof
of Lemma 3.3 implies that there exist isomorphisms

σn : p∗K⊗n
X ⊗L P ≃ P ⊗L q∗K⊗n

Y

in Db
coh(X × Y ). To prove the proposition it suffices to extend these isomor-

phisms to an isomorphism of complexes

(3.9.1) λ : p∗CX,n ⊗L P ≃ q∗CY,n ⊗L P.

Indeed such an isomorphism defines an isomorphism

Φ ◦ TX,n ≃ TY,n ◦ Φ.
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For an integer s define C
≤s
X,n to be the complex which in degrees i ≤ s is

the same as CX,n but which has zero terms in degree > s. There is then a
distinguished triangle for each s

(3.9.2) C
s
X,n[−s] // C

≤s
X,n

// C
≤s−1
X,n

// C
s
X,n[−s+ 1].

To prove the proposition we construct for each s an isomorphism in
Db

coh(X × Y )

λ≤s : p∗C≤s
X,n ⊗L P ≃ q∗C≤s

Y,n ⊗L P,

such that the diagram

(3.9.3) p∗Cs
X,n[−s]⊗L P

∧−s+1(τ̃)⊗σns
//

��

q∗Cs
Y,n[−s]⊗L P

��

p∗C≤s
X,n ⊗L P

λ≤s

// q∗C≤s
Y,n ⊗L P

commutes.

Lemma 3.10. Let s, i, and j be integers with j > s.

(i) We have

HomDb
coh(X×Y )(p

∗
C
≤s
X,n ⊗L P, q∗Ci

Y,n ⊗L P [−j]) = 0.

(ii) The restriction map

HomDb
coh(X×Y )(p

∗
C
≤s
X,n ⊗L P, q∗Ci

Y,n ⊗L P [−s])

��

HomDb
coh(X×Y )(p

∗
C
s
X,n ⊗L P [−s], q∗Ci

Y,n ⊗L P [−s])

is injective.

Proof. By considering the distinguished triangles (3.9.2) the proof of (i) is
reduced to showing that for all integers s, i, and j > s we have

HomDb
coh(X×Y )(p

∗
C
s
X,n ⊗L P [−s], q∗Ci

Y,n ⊗L P [−j]) = 0.

This follows from noting that elements of this group correspond to mor-
phisms of functors

Φ ◦ ΦC
s
X,n[−s] → ΦC

i
Y,n[−j] ◦ Φ
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which can be lifted to the dg-categories of complexes of coherent sheaves.
Using the isomorphism

ΦC
i
Y,n[−j] ◦ Φ ≃ Φ ◦ ΦC

i
X,n[−j]

and applying Φ−1 we see that we have to show that there are no nonzero
morphisms of functors

ΦC
s
X,n[−s] → ΦC

i
X,n[−j]

which can be lifted to the dg-category. Here for a complex K ∈ Db
coh(X) we

write ΦK for the endofunctor given by tensoring with K, and similarly for
complexes on Y . Equivalently, we need to show that there are no nonzero
morphisms in Db

coh(X ×X)

∆X∗C
s
X,n[−s] → ∆X∗C

i
X,n[−j],

which follows from the fact that j > s.
Statement (ii) follows from (i) and consideration of the triangles (3.9.2).

□

We now construct λ≤s inductively. For s sufficiently negative we have
C
≤s
X,n = 0 so there is nothing to show. So we assume that λ≤s has been

defined and construct λ≤(s+1). For this consider the diagram of distinguished
triangles

p∗Cs+1
X,n [−(s+ 1)]⊗L P

��

τ⊗σ
// q∗Cs+1

Y,n [−(s+ 1)]⊗L P

��

p∗C
≤(s+1)
X,n ⊗L P //❴❴❴❴❴❴

��

q∗C
≤(s+1)
Y,n ⊗L P

��

p∗C≤s
X,n ⊗L P

λ≤s
n //

��

q∗C≤s
Y,n ⊗L P

��

p∗Cs+1
X,n [−s]⊗L P

τ⊗σ
// q∗Cs+1

Y,n [−s]⊗L P,

where the bottom-most inner square commutes by Lemma 3.10 (ii). Now
define λ≤(s+1) to be a morphism as indicated by the dotted arrow, which ex-
ists by axiom TR 3 of triangulated categories [15, Tag 0145]. This completes
the proof of Proposition 3.9. □
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3.11. Proof of 3.4 (a)

If x ∈ UX,n then the skyscraper sheaf κ(x) ∈ Db
coh(X) has the property that

there exists an element α ∈ HX,n such that

α : κ(x) → κ(x)⊗L K⊗n
X

is an isomorphism. It follows that Px has the property that there exists an
element α′ ∈ HY,n for which the map

α′ : Px → Px ⊗
L K⊗n

Y

is an isomorphism. The statement for P |UX,n×Y follows from this and the
following 3.12.

To get the statement for WX,n note that if x ∈ WX,n is a point then from
the equation (3.9.1) we find that

Px ≃ Px ⊗
L
CY,n.

We get the statement for PWx,n×Y from this and the following 3.13.

Lemma 3.12. Let Q ∈ Db
coh(Y ) be a complex such that there exists an

element α ∈ HY,n for which the induced map

α : Q → Q⊗L K⊗n
Y

is an isomorphism. Then the support of Q is contained in UY,n.

Proof. Indeed the assumptions imply that for a point z ∈ Y in the support
of Q the fiber α(z) ∈ K⊗n

Y (z) is nonzero, and therefore z ∈ UY,n. □

Lemma 3.13. Let Q ∈ Db
coh(Y ) be a complex such that

Q⊗L
CY,n ≃ Q.

Then the support of Q is contained in WY,n.
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Proof. Let z ∈ Supp(Q) be a point in the support. Let t be the largest integer
for which H

t(Q)z ̸= 0. Since CY,n ∈ D≤0(Y ) we then have

H
t(Q⊗L

CY,n)z ≃ H
t(Q)z ⊗OY,z

H
0(CY,n)z.

We therefore find that

H
t(Q)z ⊗OY,z

H
0(CY,n)z ≃ H

t(Q)z.

Since we assume that Ht(Q)z is nonzero, this implies, by Nakayama’s lemma,
that H0(CY,n)z is generated by a single element. It follows that the subsheaf

ΣY,n ⊂ π∗
nOPHY,n

(1)

generated by the image of HY,n is locally free of rank 1 at z, which implies
that z ∈ WY,n. □

3.14. Set-theoretic support

In order to prove 3.4 (b) we will first need a set-theoretic statement.

Lemma 3.15. Let f : Z → WY,n be a morphism, with Z proper, and let F
be a coherent sheaf on Z such that F⊗ f∗

CY,n ≃ F. Then f(Supp(F)) ⊂
WY,n is contained in a finite union of fibers of πn.

Proof. It suffices to prove the lemma after making a base change to an
algebraic closure of k. Replacing Z by an alteration if necessary we may
assume that Z is smooth and proper over k and that F is supported on all
of Z.

Note that over WY,n we have CY,n ≃ OY (n) so f∗
CY,n ≃ f∗π∗

nOPHY,n
(1).

Let r be the generic rank of F. Then taking determinants we find that

det(F) ≃ det(F)⊗ f∗π∗
nOPHY,n

(r).

Therefore f∗π∗
nOPHY,n

(1)) is a torsion line bundle on Z, which implies that
the image of Z in PHY,n is a zero-dimensional subscheme. □



✐

✐

“8-Olsson” — 2025/8/11 — 15:52 — page 920 — #24
✐

✐

✐

✐

✐

✐

920 M. Lieblich and M. Olsson

3.16. For a point x ∈ WX,n the skyscraper sheaf κ(x) has the property that

κ(x)⊗L
CX,n ≃ κ(x).

It follows that we also have

Px ⊗
L
CY,n ≃ Px

in Db
coh(Y ) (Note: we already showed that the support of these complexes

lies in WY,n). By the lemma we conclude that the image of the support of Px

in PHY,n lies in a finite number of fibers of πn. And since EndDb
coh(Y )(Px) = k

the support is, in fact, connected. We have shown:

Corollary 3.17. The set-theoretic support of P |WX,n×Y is contained in

WX,n ×PHY,n
WY,n,

where the map WX,n → PHY,n is the composition of πn : WX,n → PHX,n

and the isomorphism (3.2.1).

3.18. Though not used in what follows, we also observe that P induces
derived equivalences of open varieties as follows. Note that since

PU,n := P |UX,n×UY,n
(resp. PW,n := P |WX,n×WY,n

)

has proper support over both UX,n and UY,n (resp. WX,n and WY,n) the
complex P induces functors

ΦU,n : Db
coh(UX,n) → Db

coh(UY,n), ΦW,n : Db
coh(WX,n) → Db

coh(WY,n).

Proposition 3.19. The functors ΦU,n and ΦW,n are equivalences of trian-
gulated categories.

Proof. That ΦU,n is an equivalence can be seen as follows. Let P∨ ∈
Db

coh(Y ×X) be the complex defining Φ−1 : Db
coh(Y ) → Db

coh(X), and let
P∨
U,n be the restriction of P∨ to UY,n × UX,n, which defines

Φ∨
U,n : Db

coh(UY,n) → Db
coh(UX,n)

We claim that ΦU,n ◦ Φ∨
U,n ≃ idDb

coh(UY,n) and Φ∨
U,n ◦ ΦU,n ≃ idDb

coh(UX,n).
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To see this observe that the restriction of P to UX,n × Y is equal to the
pushforward of PU,n by 3.4 (a), and similarly for P∨. Since the diagram

X × Y ×X

pr13

��

UX,n × Y × UX,n

pr13
��

? _oo

X ×X UX,n × UX,n
? _oo

is cartesian we conclude that the pushforward of p∗12PU,n ⊗ p∗23P
∨
U,n along

the map

p13 : UX,n × UY,n × UX,n → UX,n × UX,n

is isomorphic to ∆UX,n∗OUX,n
. It follows that Φ∨

U,n ◦ ΦU,n ≃ idDb
coh(UX,n). The

isomorphism

ΦU,n ◦ Φ∨
U,n ≃ idDb

coh(UY,n)

is shown similarly.
The proof that ΦW,n is an equivalence follows verbatim from the preced-

ing argument replacing “U” by “W” everywhere. □

3.20. Proof of 3.4 (b)

3.21. First recall Beilinson’s resolution of the diagonal on a projective space
P(V ) [2]. This resolution takes the form (let d denote the dimension ofP(V ))

p∗1OP(V )(−d)⊗ p∗2Ω
d
P(V )(d) → · · ·

→ p∗1OP(V )(−1)⊗ p∗2Ω
1
P(V )(1) → OP(V )×P(V ) → O∆.

The transition maps are obtained as follow. We have

Hom(p∗1OP(V )(−i)⊗ p∗2Ω
i
P(V )(i), p

∗
1OP(V )(−i+ 1)⊗ p∗2Ω

i−1
P(V )(i− 1))

≃ HomP(V )(OP(V )(−i),OP(V )(−i+ 1))⊗HomP(V )(Ω
i
P(V )(i),Ω

i−1
P(V )(i− 1))

≃ V ⊗HomP(V )(Ω
i
P(V )(i),Ω

i−1
P(V )(i− 1)).

From the twisted Euler sequence

0 → OP(V )(−1) → V ∨ ⊗k O→ TP(V )(−1) → 0

we obtain an isomorphism

V ∨ ≃ H0(P(V ), TP(V )(−1)).
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Together with the natural map

(3.21.1) V ∨ ≃ H0(P(V ), TP(V )(−1)) → HomP(V )(Ω
i
P(V )(i),Ω

i−1
P(V )(i− 1))

we then get a map

V ⊗ V ∨ → Hom(p∗1OP(V )(−i)

⊗ p∗2Ω
i
P(V )(i), p

∗
1OP(V )(−i+ 1)⊗ p∗2Ω

i−1
P(V )(i− 1)).

The image of the identity class in V ⊗ V ∨ defines under this map the differ-
ential in the Beilinson resolution.

3.22. Returning to the proof of 3.4 (b), let P ⊂ PHX,n be the closure of
the image of WX,n, viewed as a scheme with the reduced-induced structure,
and let

f : WX,n → P, g : WY,n → P

be the natural maps.

3.23. Consider first the case when k is infinite.
In this case, for a suitable subspace V ⊂ HX,n the induced rational map

P //❴❴❴ P(V )

is everywhere defined, finite, and generically étale (see for example [5, 2.11]).
Let

f ′ : WX,n → P(V ), g′ : WY,n → P(V )

be the induced maps, and let E(f ′, g′)• be the associated cosimplicial
scheme. We write

d′i : WX,n ×WY,n → E(f ′, g′)1 = WX,n ×P(V )×WY,n

for the structure maps in this cosimplicial scheme (and similarly for other
maps occurring in the cosimplicial structure).

With the notation of Paragraph 3.8 we have

f ′∗
OP(V )(1) = ΣX,n|WX,n

, g′∗OP(V )(1) = ΣY,n|WY,n
.

To ease notation we will write ΣWX,n
and ΣWY,n

for these sheaves in the
remainder of the proof. Note that these are line bundles on WX,n and WY,n.
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For an open set B ⊂ P(V ) we can also consider the restrictions

f ′
B : WX,n,B → B, g′B : WY,n,B → B,

and the associated cosimplicial scheme

E(f ′
B, g

′
B) →֒ E(f ′, g′).

3.24. We have a cartesian diagram

WX,n

��

// WX,n ×P(V )

��

P(V )
∆ // P(V )×P(V ).

Pulling back the Beilinson resolution of the diagonal of P(V ) we obtain a
complex on WX,n ×P(V ) of the form

(3.24.1) p∗1Σ
⊗(−d)
WX,n

⊗ p∗2Ω
d
P(V )(d) → · · ·

→ p∗1Σ
⊗(−1)
WX,n

⊗ p∗2Ω
1
P(V )(1) → OWX,n×P(V ).

Over the locus in WX,n where the map f ′ is flat this is a resolution of Oγf
,

where γf : WX,n → WX,n ×P(V ) is the graph of f . Pulling the complex
(3.24.1) back to WX,n ×P(V )×WY,n along the first two projections we get
a complex on E(f ′, g′)1, which over the preimage of the flat locus of f ′ is a
resolution of d0∗OWX,n×WY,n

.

3.25. For s ≤ 0 set

(3.25.1) P s
X := p∗13(p

∗
1Σ

⊗s
WX,n

⊗ P )⊗ p∗2Ω
−s
P(V )(−s),

an object of Db
coh(WX,n ×P(V )× Y ), and let P s

X → P s+1
X be the maps in-

duced by the maps in (3.24.1).
Projecting along WX,n ×P(V )× Y → WX,n we find

RHomWX,n×P(V )×Y (P
i
X , P j

X)

≃ RΓ(WX,n ×P(V )× Y, p∗1Σ
⊗(j−i)
WX,n

⊗ p∗2[Ω
−i
P(V )(−i),Ω−j

P(V )(−j)]⊗ p∗13[P, P ])

≃ RΓ(WX,n,Σ
⊗(j−i)
WX,n

⊗Rp1∗[P, P ]⊗k RHom(Ω−i
P(V )(−i),Ω−j

P(V )(−j)),
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where to ease the notation we write [−,−] for RHom(−,−). Now we have

Rp1∗RHom(P, P ) ∈ D≥0(WX,n)

and the natural map

OWX,n
→ R0p1∗RHom(P, P )

is an isomorphism (see for example the discussion in [8, Remark 5.1]). We
conclude that

Exts(P i
X , P j

X) = 0

for s < 0. Moreover, we have

Hom(P s
X , P s+1

X ) ≃ Γ(WX,n,ΣWX,n
)⊗HomP(V )(Ω

−s(−s),Ω−(s+1)(−(s+ 1)))

→֒ Γ(X,K⊗n
X )⊗HomP(V )(Ω

−s(−s),Ω−(s+1)(−(s+ 1))).

Using the map (3.21.1) we get a map

Γ(X,K⊗n
X )⊗ V ∨ → Γ(X,K⊗n

X )⊗HomP(V )(Ω
−s(−s),Ω−(s+1)(−(s+ 1))).

The image of the class λX ∈ Γ(X,K⊗n
X )⊗ V ∨ adjoint to the inclusion V →

Γ(X,K⊗n
X ) then equals the class of the differential P s

X → P s+1
X .

By [10, 1.4] the complex P •
X in Db

coh(WX,n ×P(V )× Y ) is induced by a
unique object PX ∈ DF (WX,n ×P(V )× Y ) of the filtered derived category.

Note that by 3.17 this complex is supported on WX,n ×P(V )×WY,n,
and we view PX more symmetrically as an object of DF (WX,n ×P(V )×
WY,n).

3.26. We can also interchange X and Y and define

P s
Y := p∗13(P ⊗ p∗2Σ

⊗s
WY,n

)⊗ p∗2Ω
−sΩP(V )(−s).

Using the isomorphism (3.2.1) we view P s
Y as an object in Db

coh(X ×P(V )×
WY,n). As above we then get an object PY ∈ DF (WX,n ×P(V )×WY,n).

The isomorphism constructed in the proof of Proposition 3.9

P ⊗ p∗1ΣX,n ≃ P ⊗ p∗2ΣY,n

induces isomorphisms

λs : P
s
X → P s

Y .

These isomorphisms are compatible with the transition maps (this follows
from the construction of the isomorphism (3.2.1)) and therefore we get an
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isomorphism of complexes

λ• : P
•
X → P •

Y .

By [10, 1.3] this is induced by a unique isomorphism

λ : PX → PY

in DF (WX,n ×P(V )×WY,n). If B ⊂ P(V ) is an open set over which f ′
B

and g′B are flat this induces an isomorphism

λ : d′0∗P |WX,n,B×WY,n,B
→ d′1∗P |WX,n,B×WY,n,B

in Db
coh(WX,n,B ×B ×WY,n,B).

Lemma 3.27. If B ⊂ P(V ) is an open set over which f ′ and g′ are flat,
then the following hold (let pr3 : WX,n,B ×B ×WY,n,B → WY,n,B denote the
projection to the third factor):

(i) Ripr3∗RHom(d′0∗P, d
′
1∗P ) = 0 for i < 0.

(ii) The natural maps

R0pr3∗RHom(d′0∗P, d
′
1∗P ) // R0

Hom(Rpr3∗d
′
0∗P,Rpr3∗d

′
1∗P ) OWY,n,B

oo

are isomorphisms, where the second map is obtained from the identifi-
cation pr3 ◦ d

′
1 ≃ pr3 ◦ d

′
0.

(iii) The isomorphism λ satisfies the cocycle condition on E(fB, gB)
2.

Proof. Since d′0∗P ≃ d′1∗P , to prove (i) and (ii) it suffices to prove the anal-
ogous statements with d′0∗P replaced by d′1∗P .

Consider the diagram

WX,n,B ×WY,n,B

p2

��

� � d′
1 // WX,n,B ×B ×WY,n,B

p23

��

p3

��

WY,n,B
� � j

// B ×WY,n,B

p2

��

WY,n,B,
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where j is the graph of g′B. Note that we have an isomorphism

Lp∗13P ⊗L d′1∗OWX,n,B×WY,n,B
≃ d′1∗P

which upon applying Ld′∗1 yields an isomorphism

P ⊗L Ld′∗1 d
′
1∗OWX,n,B×WY,n,B

≃ Ld′∗1 d
′
1∗P.

This defines isomorphisms

RHom(d′1∗P, d
′
1∗P ) ≃ d′1∗RHom(Ld′∗1 d

′
1∗P, P )

≃ d′1∗RHom(P ⊗L Ld′∗1 d
′
1∗OWX,n,B×WY,n,B

, P )

≃ d′1∗(RHom(P, P )⊗L (Ld′∗1 d
′
1∗OWX,n,B×WY,n,B

)∨).

We then have

Rp23∗RHom(d′1∗P, d
′
1∗P )

≃ Rp23∗(d
′
1∗(RHom(P, P )⊗L (Ld′∗1 d

′
1∗OWX,n,B×WY,n,B

)∨))

≃ j∗((Rp2∗RHom(P, P ))⊗L (Lj∗j∗OWY,n,B
)∨)

and the natural map

j∗OWY,n,B
→ j∗((Rp2∗RHom(P, P ))⊗L (Lj∗j∗OWY,n,B

)∨)

is an isomorphism in degrees ≤ 0. Pushing forward to WY,n,B we get state-
ments (i) and (ii). Note that under these identifications the element 1 ∈ k
corresponds to the previously constructed isomorphism λ.

To complete the proof of it remains to show that the map λ satisfies the
cocycle condition on E(f ′

B, g
′
B)

2. For this note that the preceding argument
shows that the map

HomDb
coh(E(f ′

B ,g′
B)2)(τ2∗P, τ0∗P ) → HomDb

coh(E(f ′
B ,g′

B)0)(P, P )

induced by pushing forward along the map E(f ′
B, g

′
B)

2 → E(f ′
B, g

′
B)

0 given
by the unique map [2] → [0] is an isomorphism. Since the pushforward of the
map λ is the identity on P this implies that the cocycle condition holds. □

3.28. From this and 1.1 we conclude that there exists a dense open subset
B ⊂ P(V ) such that the restriction of P to WX,n,B ×WY,n,B is induced by
pushforward from WX,n,B ×B WY,n,B. Let A ⊂ P be the preimage of B and
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assume further that B is chosen such that P → P(V ) is étale over B. Then
(note that with our notation we have WX,n,A = WX,n,B)

WX,n,A ×A WY,n,A →֒ WX,n,B ×B WY,n,B

is open and closed and a complex on WX,n,B ×B WY,n,B inducing P
is necessarily supported on WX,n,A ×A WY,n,A (since we know that
P |WX,n,A×WY,n,A

is set-theoretically supported on WX,n,A ×A WY,n,A). It fol-
lows that P |WX,n,A×WY,n,A

is, in fact, the pushforward of a complex on
WX,n,A ×A WY,n,A.

This completes the proof of 3.4 (b) in the case of infinite k.

3.29. To handle the case of finite k, note the following variant of 3.27
above. For an open subset A ⊂ P let E(fA, gA)

• be the cosimplicial scheme
associated to the maps

fA : WX,n,A → A, gA : WY,n,A → A.

Lemma 3.30. There exists a dense open subset A ⊂ P such that the fol-
lowing hold (let pr3 : WX,A ×A×WY,n,A → WY,n,A denote the projection to
the third factor)

(i) Ripr3∗RHom(d0∗P, d1∗P ) = 0 for i < 0.

(ii) The natural maps

R0pr3∗RHom(d0∗P, d1∗P ) // R0
Hom(Rpr3∗d0∗P,Rpr3∗d1∗P ) OWY,n,A

oo

are isomorphisms, where the second map is obtained from the identifi-
cation pr3 ◦ d1 ≃ pr3 ◦ d0.

(iii) The map λ : d0∗P → d1∗P , obtained from the isomorphisms in (ii) and
the section 1 ∈ Γ(WY,n,A,OWY,n,A

) is an isomorphism and satisfies the
cocycle condition on E(fA, gA)

2.

Proof. It suffices to verify the lemma after passing to a field extension of k.
By the case of an infinite field we may therefore assume that there exists an
open subset A such that P |WX,n,A×WY,n,A

is the pushforward of a complex on
WX,n,A ×A WY,n,A. In particular, we may assume that we have an isomor-
phism d0∗P ≃ d1∗P . The proof now proceeds as in the proof of 3.27. □

Combining this with 1.1 we then obtain 3.4 (b) in the case of finite k as
well. □
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4. Rouquier functors

In this section we explain how Rouquier’s work [14] can be combined with
our main result on support of complexes to obtain restrictions on kernels of
derived equivalences. This is also related to work of Lombardi [9].

4.1. The Albanese torsor

4.2. Let k be a perfect field and let X/k be a smooth projective variety.
Let PicX denote the Gm-gerbe over the Picard scheme PicX classifying line
bundles on X, and set

Pic0X := Pic0X ×PicX PicX .

We assume that Pic0X is a smooth scheme (this is automatic in characteristic
0), and therefore an abelian variety, and write AlbX for the dual abelian
scheme.

4.3. For a smooth projective variety X/k let T0
X denote the functor which

to any k-scheme T associates the set of isomorphism classes of morphisms
of Picard stacks

s : Pic0X,T → Pic0X,T

over the identity. Observe that any two such sections differ by a morphism
of Picard stacks

ρ : Pic0X,T → BGm,T .

Considering the commutative diagram

Pic0X,T × Pic0X,T

ρ×ρ

��

m // Pic0X,T

ρ

��

BGm,T ×BGm,T

mBGm // BGm,T

and the fact that for the line bundle M on BGm,T corresponding to the
standard character of Gm we have

m∗
BGm

(M) ≃ M⊠M

it follows that ρ corresponds to a line bundleLon Pic0X,T which is translation
invariant; that is, a point of

AlbX := Pic0Pic0X .
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Note also that a point x ∈ X(k) yields a section s. Indeed given x we
can interpret Pic0X as classifying pairs (L, σ) consisting of a line bundle L

on X and a trivialization σ : L(x) ≃ κ(x). From this it follows that T0
X is

a torsor under AlbX and there is a natural morphism

cX : X → T0
X .

If we trivialize T0
X using a point of X then this is identified with the usual

map from X to its Albanese.
Note also that we have a canonical isomorphism (this amounts to the

fact that the translation action of an abelian variety A on Pic0(A) is trivial)

Pic0
T0

X
≃ Pic0AlbX

and therefore an isomorphism

Pic0
T0

X
≃ Pic0X .

Chasing through these identifications one finds that this is simply given by

c∗X : Pic0
T0

X
→ Pic0X .

4.4. We say that an autoequivalence

α : Db
coh(X) → Db

coh(X)

satisfies the Rouquier condition RX if the complex Qα ∈ Db
coh(X ×X)

defining α is isomorphic to Γσ∗L, where Γσ : X → X ×X is the graph
x 7→ (x, σ(x)) of an automorphism σ of X and L is an invertible sheaf on
X numerically equivalent to 0.

Let R0
X be the fibered category which to any k-scheme T associates the

groupoid of objects Q ∈ Db
coh((X ×X)T ) of T -perfect complexes such that

for all geometric points t̄ → T the fiber Qt̄ ∈ Db
coh((X ×X)k(t̄)) defines an

equivalence Db
coh(Xt̄) → Db

coh(Xt̄) satisfying RX and whose associated au-
tomorphism Xt̄ → Xt̄ lies in the connected component of the identity in
Aut(X). Let R0

X denote the group scheme

R0
X := Pic0X ×Aut0X .

Then R
0
X is a Gm-gerbe over R0

X .

The key result of Rouquier that we will need is the following:
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Theorem 4.5 (Rouquier). Let Y/k be a second smooth projective variety
related to X by an equivalence Φ : Db

coh(X) → Db
coh(Y ).

(i) For any T/k and Q ∈ Db
coh((X ×X)T ) in R

0
X(T ) the complex in

Db
coh((Y × Y )T ) associated to the auto-equivalence Φ ◦ ΦQ ◦ Φ−1 of Db

coh(Y )
is in R

0
Y (T ).

(ii) The induced functor

(4.5.1) τ̃ : R0
X → R

0
Y

is an equivalence of gerbes.

Proof. See [14, 4.18]. □

By passing to coarse moduli spaces the equivalence (4.5.1) induces an
isomorphism

τ : R0
X → R0

Y .

Assumption 4.6. We assume for the rest of this section that Pic0X is re-
duced and that τ takes Pic0X to Pic0Y .

Remark 4.7. This assumption holds in many instances of interest.
(i) If k has characteristic 0 then the assumption that Pic0X is reduced is

automatic.
(ii) The assumption that Pic0X is reduced implies that it is an abelian

variety. If this holds and furthermore Aut0Y is affine, then automatically Pic0X
is mapped to Pic0Y .

(iii) In characteristic 0 the condition that Pic0X is taken to Pic0Y can
be checked on Hochschild cohomology. The map on tangent spaces at the
identity of the morphism τ is a map

Tτ : H1(X,OX)⊕H0(X,TX) → H1(Y,OY )⊕H0(Y, TY ).

Using the HKR isomorphism this map is identified with the map on
Hochschild cohomology

HH1(X) ≃ HH1(Y ).
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4.8. Under this assumption the map τ̃ induces an isomorphism of Picard
stacks

γ̃ : Pic0X → Pic0Y

over an isomorphism of abelian varieties

γ : Pic0X → Pic0Y .

It therefore also induces an isomorphism of torsors of sections

ρ : T0
X → T0

Y

compatible with the isomorphism

γt : AlbX → AlbY .

The main result of this section is the following:

Theorem 4.9. Let P denote a kernel for the equivalence Φ. Then there
exists a dense open subset A ⊂ T0

Y such that the restriction of P to
c−1
X ρ−1(A)× c−1

Y (A) ⊂ X × Y is isomorphic to the image of an object in

Db
coh(c

−1
X ρ−1(A)×A c−1

Y (A)) → Db
coh(c

−1
X ρ−1(A)× c−1

Y (A)).

The proof occupies the remainder of the section.

Lemma 4.10. Let L
u
X (resp. L

u
Y ) be the universal line bundle on X ×

Pic0X (resp. Pic0Y × Y ). Then we have a canonical isomorphism

(4.10.1) p∗12L
u
X ⊗L p∗13P ≃ (1X × γ̃ × 1Y )

∗(p∗23L
u
Y ⊗L p∗13P )

in Db
coh(X ×Pic0X × Y ).

Proof. To ease notation let us write PX (resp. PY ) for Pic0X (resp. Pic0Y ).
The isomorphism γ̃ is characterized by the condition that the complex in
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Db
coh((Y × Y )PX

) representing the autoequivalence

(4.10.2) Φ ◦ (⊗L
u
X) ◦ Φ−1

is isomorphic to ∆Y ∗(1Y × γ̃)∗Lu
Y . Consider the cartesian square

(X × Y )PX

q2

��

(x,y)7→(y,x,y)
// (Y ×X × Y )PX

q13

��

YPX

∆Y // (Y × Y )PX
,

where we write q− for the various projections (to distinguish from the projec-
tions p− from X ×Pic0X × Y in the statement of the lemma). Then (4.10.2)
is represented by the complex

Rq13∗(q
∗
2L

u
X ⊗L q∗12P ⊗L q∗23P

∨ ⊗ q∗3ωY [dim(Y )]) ∈ Db
coh((Y × Y )PX

).

The characterizing isomorphism

(4.10.3) Rq13∗(q
∗
2L

u
X ⊗L q∗12P ⊗L q∗23P

∨ ⊗ q∗3ωY [dim(Y )])

≃ ∆Y ∗(1Y × γ̃)∗Lu
Y

corresponds by adjunction to a map

(q∗2L
u
X ⊗L q∗12P ⊗L q∗23P

∨ ⊗ q∗3ωY [dim(Y )]) → q!13(∆Y ∗(1Y × γ̃)∗Lu
Y ).

Using the isomorphism

q!13(−) ≃ q∗13(−)⊗L q∗2ωX [dim(X)]

we find that the characterizing isomorphism (4.10.3) corresponds by adjunc-
tion to a morphism

(q∗2L
u
X ⊗L q∗12P ⊗L q∗23P

∨ ⊗ q∗3ωY [dim(Y )])

→ q∗13(∆Y ∗(1Y × γ̃)∗Lu
Y )⊗

L q∗2ωX [dim(X)]

in Db
coh((Y ×X × Y )PX

). Using the isomorphism

P ⊗ p∗2ωY [dim(Y )] ≃ P ⊗ p∗1ωX [dim(X)]
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and adjunction this, in turn, corresponds to a map

(4.10.4) p∗12L
u
X ⊗L p∗13P → (1X × γ̃ × 1Y )

∗(p∗23L
u
Y ⊗L p∗13P )

inDb
coh(X ×Pic0X × Y ). If we restrict this to a fiber over a point [L] ∈ Pic0X

corresponding to a line bundle L on X then the left side of (4.10.4) defines
the functor Φ ◦ (⊗L) : Db

coh(X) → Db
coh(Y ) and the right side defines the

functor (Φ ◦ (⊗L) ◦ Φ−1) ◦ Φ and our map is the natural isomorphism be-
tween them. By Orlov’s theorem it follows that (4.10.4) defines an isomor-
phism in all fibers over Pic0X and therefore is an isomorphism. □

Lemma 4.11. Let S be a noetherian scheme and let F∈ Db
coh(T

0
X,S) be a

complex with associated complex F
ρ ∈ Db

coh(T
0
Y,S). Then we have

(4.11.1) p∗12c
∗
X,SF⊗L p∗13P ≃ p∗23c

∗
Y,SF

ρ ⊗L p∗13P

in Db
coh(X × S × Y ).

Proof. Note that the diagram

Pic0
T0

X

��

c∗X // Pic0X

��

Pic0
T0

X

c∗X // Pic0X

is cartesian, and identifies T0
X with the Gm-torsor of sections of

Pic0
T0

X
→ Pic0

T0
X
.

In particular, there is a universal line bundle M
u
X on Pic0

T0
X
×T0

X . Similarly

there is a universal line bundle M
u
Y over Pic0

T0
Y
×T0

Y , and the isomorphism

((ρ∗)−1 × ρ) : Pic0
T0

X
×T0

X → Pic0
T0

Y
×T0

Y

comes equipped with an isomorphism

((ρ∗)−1 × ρ)∗Mu
Y ≃ M

u
X .

The functor

Db
coh(Pic

0
X,S) → Db

coh(T
0
X,S), G 7→ Rp2∗(p

∗
1G⊗L

M
u
X,S)
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is an equivalence of categories, where we write M
u
X,S for the pullback of

M
u
X to (Pic0

T0
X
×T0

X)S . Indeed this can be verified after making a field
extension, where it reduces to the standard derived equivalence between an
abelian variety and its dual. In particular, we can write

F= Rp2∗(p
∗
1G⊗L

M
u
X,S)

for a unique object G∈ Db
coh(Pic

0
X,S). Note also that if G

ρ ∈ Db
coh(Pic

0
Y,S))

is the complex corresponding to G under the isomorphism

γ : Pic0X → Pic0Y

then G
ρ transforms to F

ρ on T0
Y under the equivalence defined by M

u
Y .

Consider the diagram

X × Pic0
T0

X
× S × Y

��

// X × S × Y //

��

X × Y

X × Pic0
T0

X
× S

��

// X × S

��

T0
X × Pic0

T0
X
× S

��

// T0
X × S

Pic0
T0

X
× S.

From this we see that the complex on the left side of (4.11.1) is isomorphic
to the complex

Rp134∗(p
∗
14P ⊗L p∗12M

u
X ⊗L p∗23G).

Using the isomorphism (4.10.1) we find that the image of

p∗14P ⊗L p∗12M
u
X ⊗L p∗23G

in

Db
coh(X × Pic0(T0

Y )× S × Y )

is equal to

p∗14P ⊗L p∗24M
u
Y ⊗L p∗23G.

From this the result follows. □
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Lemma 4.12. Let x ∈ X be a point with image z ∈ T0
X . Then the complex

Px ∈ Yκ(x) is set-theoretically supported on c−1
Y (ρ(z)).

Proof. After making the field extension from k to κ(x), we may assume that
x is a k-rational point.

The support of Px in X × Y is contained in the support of Pc−1
X (z) =

P |c−1
X (z)×Y , so it suffices to show that the support of Pc−1

X (z) is contained in

X × c−1
Y (ρ(z)).

For this apply Lemma 4.11 with S = Spec(k) and Fthe skyscraper sheaf
κ(z) on T0

X . We then find that the support of Pc−1
X (z) is equal to the support

of P |X×c−1
Y (ρ(z)). □

4.13. Let WX ⊂ T0
X (resp. WY ⊂ T0

Y ) be the scheme-theoretic image of
cX (resp. cY ). If x ∈ X is a point then it follows from Lemma 4.12 that
c−1
Y (ρ(cX(x))) is nonempty; that is, ρ(cX(x)) ∈ WY . Since WX and WY are
integral it follows that ρ restricts to a morphism

(4.13.1) WX → WY ,

which we again denote by ρ. By considering the inverse transform we see
that this map is an isomorphism.

4.14. Let f : X → WX be the map induced by cX , and let

g : Y → WX

denote the composition of cY : Y → WY with the inverse of (4.13.1), and
let E• be the associated cosimplicial scheme as in 2.2. Applying 4.11 with
S = WX and F the sheaf u∗OWX

, where u : WX → T0
X ×WX is the graph

of the inclusion, we find that on

E1 = X ×WX × Y

we have

d0∗P ≃ d1∗P.

4.15. Having established the existence of this isomorphism we can proceed
as in the case of the canonical fibration. Namely if A ⊂ WX is an open subset
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over which f and g are flat, and

fA : f−1(A) → A, gA : g−1(A) → A

are the restrictions, then the same argument shows that the map

HomE(fA,gA)2(τ2∗P, τ0∗P ) → Homf−1(A)×g−1(A)(P, P ),

induced by the surjection [2] → [0], is an isomorphism. From this it follows
that the isomorphism d0∗P ≃ d1∗P satisfies the cocycle condition, after re-
striction to A. Theorem 4.9 then follows using 1.1. □
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