Math. Res. Lett.
Volume 32, Number 3, 897-938, 2025
D0I:10.4310/MRL.250731112230

Derived equivalences over base schemes

and support of complexes

MAaAX LIEBLICH AND MARTIN OLSSON

Let X and Y be smooth projective varieties over a field k ad-
mitting morphisms f: X — 7T and ¢g:Y — T to a third vari-
ety 1. We formulate conditions on a derived equivalence @ :
Db (X) — D%, (Y) ensuring that ® is induced by a complex P
in Db, (X x7Y), defining derived equivalences between the fibers
of f and g. We apply our results to the canonical fibration and
Albanese fibration.
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1. Introduction

For a noetherian scheme X let D%, (X) denote the derived category of
complexes of Ox-modules with bounded and coherent cohomology sheaves.
Let X and Y be varieties over a field k, admitting an equivalence

®p: Db (X) = D2y (Y)

coh coh

given by a complex P € Di’oh(X x Y). The equivalence ®p preserves many

natural structures: the canonical ring, the automorphism scheme of the
identity functor, etc. This suggests that there are often natural morphisms

897



898 M. Lieblich and M. Olsson

f: X —=Tand g:Y — T with a common target that should be somehow
respected by ®p. The simplest way to “respect 17”7 would be for P to be in
the image of the natural pushforward map D, (X x7Y) — D% (X x Y),
and it is natural to ask for conditions ensuring this holds. It is that question
that we study here.

The typical way in which one would use such a thing is as the natural
generalization of the seminal result of Bondal and Orlov [4]: two derived
equivalent varieties X and Y are relatively equivalent over isomorphisms of
their canonical and anti-canonical models (see §3). This particular idea also
appeared in a slighlty different form in [16].

In general, it appears to be a difficult question to decide when a com-
plex that is set-theoretically supported on a closed subscheme Xy C X is
the pushforward of a complex from Xj. Analogous questions about affine
morphisms X’ — X have an interesting history. As shown in [13, Theorem
8.1], even for base change by field extensions, it is unusual for a complex
with an X’ structure to be pushed forward from X’. For kernels of derived
equivalences, however, we have additional tools at our disposal. First, on
the level of co-categories a very satisfactory solution was given by Ben-Zvi,
Francis, and Nadler [1, 4.7]. Second, to get results on the level of derived
categories, rather than oco-categories, we use variations of the gluing results
of Beilinson, Bernstein, and Deligne developed in [10].

Our main technical results are not restricted to derived equivalences and
we state them in more general form. Let S be a scheme (in practice this will
often be the spectrum of a field) and let

f: X—->T, ¢g:Y—>T
be morphisms of S-schemes with 7'/S separated and flat. Let
do,d1: X XgY = X xgT xgY

be the morphisms given on scheme-valued points

do(z,y) = (2, f(2),y), di(z,y) = (z,9(y),)-
We also consider the maps

dV X xTxY 5 XxT?xY, i=0,1,2,
given on scheme-valued points by

d(()l) Dzt y) = (x, f(2), 6 y),
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d" (2, y) > (2,t,t,y),

ds s (2.t ) > (2,4, 9(1), v)-
Observe that dS” o dy = d{") o do, d\") o dy = d o dy, and d{") o dy = d o
do.
We consider a pair (P, ¢) where P € Dgcon(X xgY) is an object of the

derived category of complexes with quasi-coherent cohomology sheaves on
X X8 Y and

© : dO*P — dl*P

is an isomorphism in Dgeon(X xg T xgY') such that the diagram

(1.0.1) dVdo,P 2 g0 g p o d o, p 22 g g, p
| |
dVdy, P - dVa,, P

commutes (we refer to this commutativity as the cocycle condition).
Note that if

€e: X XY > X xgY

is the natural inclusion then dy o € = d; o € and therefore for a complex Py €
Dqycon (X x7Y) the pushforward e, Py admits a natural such isomorphism ¢
over X xgT xgY.

Theorem 1.1. Assume that either f or g is flat and that (P, ) is a pair
as above. Assume further that P is a perfect complex and that the derived
pushforward

Rpr,, R#Hom (P, P)

lies in D=°(X). Then there exists a pair (Py, ), unique up to unique iso-
morphism, consisting of a complex Py € choh(X x7Y) and X : e, Py~ P
identifying @ with the canonical isomorphism between the pushforwards of
Py,

Remark 1.2. As indicated above the proof of this theorem given in sec-
tion 2 has two steps. The first step is to identify the derived category
choh(X x7 YY) with the quasi-coherent objects of the total topos of a cer-
tain cosimplicial scheme E(f,g)® (see theorem 2.6). The second step is to
apply the results of [10] to lift (uniquely) the object (P, ) to this total
topos.
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In this paper, we will also discuss two main applications of Theorem 1.1.

1.3 (Canonical fibration). Let X and Y be smooth projective varieties

over a field k related by a derived equivalence ® : D’ | (X) — D, (Y) given
by a complex P € Dlgoh(X xY). Let Rx = @p>ol'(X, Kg?”) (resp. Ry :=

®n>ol' (Y, K$")) denote the canonical ring of X (resp. Y) so we have rational
maps

cx: X-->=Proj(Rx), cy: Y—-—>Proj(Ry) .

It is well-known (this is stated explicitly in [16, 4.4] and attributed to [11]
in [6, 6.1]) that ® induces a canonical isomorphism

(1.3.1) T RX — Ry,
and therefore also an isomorphism of schemes
7 : Proj(Rx) ~ Proj(Ry).

Let Ux C X (resp. Uy CY) be the complement of the base locus of
{K " >0 (resp. {Ky"}n>0), so cx (resp. cy) is a morphism on Uy (resp.
Uy). Also, for an open subset A C Proj(Ry) let Ux a (resp. Uy a) denote
the preimage of A under 7o cx (resp. cy).

Theorem 1.4. There exists a dense open subset A C Proj(Ry) such that
the restriction of P to Ux a4 X Y is isomorphic to the the image of an object

ke DSOh(UXﬂ Xrocx,A,cy UY,A)
whose support is proper over both Ux o and Uy 4.

Remark 1.5. (i) The above generalizes earlier work of Toda [16, 1.1].

(ii) Over fields of characteristic 0 the canonical ring is known to be
finitely generated. Over fields of positive characteristic, however, this is not
known so a little more care is needed in the arguments presented below.

(iii) We also prove a version of the above theorem replacing Uy with the
maximal open subset Wx over which the morphism cx extends.

1.6 (Albanese fibration). Let X be a smooth projective variety over a
field &, let Pic% (resp. Aut% ) denote the connected component of the identity
of the Picard scheme of X (resp. the automorphism group scheme of X),
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and set
RY% := Pic} x Aut$.
As we recall in section 4, if

®: D (X)— Db (Y)

coh coh

is a derived equivalence given by a complex P € D% (X x Y), then ® in-
duces an isomorphism
dro : R ~RY.
Let
ex: X =TS, ¢y : Y - TV

be the Albanese torsors of X and Y (see section 4 for more discussion). For
an open subset U C TG let Xy denote ¢3! (U), and similarly for V.

Theorem 1.7 (Theorem 4.9). Assume that Pick and PicY. are reduced
and that ®ro sends Picg( to Picg/ and therefore defines an isomorphism

Ppieo : Pick — Pic).
Then ® induces an isomorphism of schemes
dpo : TG — TY

compatible with the actions of the Picard schemes, and there exists a dense
open subset A C TQ, such that
Plx Ya

— X
@5 (4)

1s isomorphic to the image of an object in Dgoh(ch;é (4) XA Yy).

Remark 1.8. (a) The assumption that the groups schemes Pic% and Pic)-
are reduced holds for example if k has characteristic 0.

(b) The assumption that ®Rro preserves the Picard schemes frequently
holds. For example, it holds if the automorphism group schemes are affine.
Varieties for which the automorphism group scheme has a nontrivial abelian
variety as quotient can be classified; see [12, 2.4].

1.9. The body of the article is divided into three sections. Section 2 is de-
voted to the proof of 1.1. As noted above the key ingredient is 2.6, which
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reduces the proof to a problem of gluing in the derived category of a cosimpli-
cial scheme. Theorem 1.1 is obtained from this and a variant of the BBD glu-
ing lemma for cosimplicial schemes. Section 3 is concerned with the canonical
fibration. In this section we prove, in particular, theorem 1.4. In addition to
the results of section 2 we use in a key way the Beilinson resolution of the
diagonal of projective space. Finally in section 4 we apply a similar analysis
to the Albanese fibration proving 1.7.

2. Support of complexes and relativization of equivalences
2.1. Complexes on fiber products

For the convenience of the reader we review the result [1, 4.7] using the more
classical language of derived categories.

2.2. We fix a base scheme S, a flat S-scheme T'/S, and consider two sepa-
rated morphisms of S-schemes

f:X->T g:Y—T.

Let 75: X — X xgT (resp. 7,:Y =T xgY) be the maps given on
scheme-valued points by

(@) = (2, f(2)), 75(y) = (9(v),y).
We then get a cosimplicial scheme
E(f,9)°
by the following variant of the bar construction. Set
E(f,9)" =X xsT"" xgY,

where T*" denotes the n-fold fiber product of T with itself over S and we
make the convention that 7% = S so E(f,g)° = X x5 Y. Define maps

d" VL E(f,9" " > E(f.g)", i=0,....n

by

dy' ™ = yp X idpxovey, APV = idyepxon X g
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and, fori=1,...,n—1,

d(n—l)

i = idXXTX(i—l) X AT X ide(n—ifl)XY.

Note that with our earlier notation we have d; = dgo) and the above notation
is consistent with that of the introduction. Define maps

sgn) : E(f,g)”+1 — E(f,9)", i=0,...,n,
by the formula

Sgn)(.%,tl, - ,tn+1,y) = (x,tl, . ,£i+1, - ,tn+1,y)

on scheme-valued points.

Lemma 2.3. The maps dl(n_l) and sgn) satisfy the cosimplicial identities

[15, Tag 016K] and therefore define a cosimplicial scheme E(f,g)®.
Proof. This is immediate from the definitions. O

2.4. We have an augmentation
e: X xpY = E(f,9)°,

that is, a map from X x7Y to E(f,g)° compatible with each map in the
cosimplicial structure. Writing

en: X XY = E(f,9)"
for the induced map in degree n, the map ¢, is given on scheme valued points
by
(z,y) = (z, f(2),..., f(2),9).

Note that since f(z) = g(y) we could also write this formula using g(y).
One can also think of the augmentation as a morphism from the constant
cosimplicial scheme on X x7Y.

2.5. Let Mod(E(f,g)®) denote the category of systems ({F,}, ¢s), where
Fn is a sheaf of Ops 4)»-modules on the étale site of E(f,g)" and for every
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morphism 0 : [n] — [m] with associated morphism d : E(f,g)" — E(f,g)™
we have a morphism

©s - _>d‘fna

and these morphisms are compatible with compositions. The category
Mod(E(f,h)*®) is abelian, with kernels and cokernels defined level-wise. In
particular, restriction to any particular E(f,g)" is an exact functor. We let

D(E(f,9)*)

denote the associated derived category and

“(E(f,9)*) € D(E(f.9)°)

the subcategory of complexes whose restriction to each E(f, g)" is bounded
above.

For an object P € D(E(f,g)®) we let P, denote its restriction to
E(f,g)". For amorphism d : E(f,g)" — E(f,g)™ associated to a morphism
0 in A we have a map

05+ P, — R Py,
in the derived category of E(f,g)™. We write

qcoh( (fa )) (E(f7g).)

for the subcategory of complexes for which the sheaves #*(%,,) are quasi-
coherent and the maps s are all isomorphisms, and

qcoh( (f g) ) (_)(E(f,g)') mecoh(E(fag).)-
Pushforward along the augmentation defines a functor
(2.5.1) €x choh(X xrY)— choh( (f,9)°).

Theorem 2.6. If either f or g is flat then the functor (2.5.1) is an equiv-
alence.

Remark 2.7. It seems likely that one can formulate and prove a version of
this result without the flatness assumption replacing X xr Y by a suitable
derived fiber product.

The proof will be in several steps.
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2.8. The functor
€« : Mod(X x7Y) — Mod(E(f,g)°%)

has a left adjoint €*: For ({#F,}, {ys}) € Mod(E(f,g)®) the pullbacks €%,
form a simplicial object in Mod(X x7Y') and €*({F,}, {ps}) is given by the
coequalizer of the two maps €]%| = €;Fo. Deriving this left adjoint we get
a functor

LE* qcoh( (f g) ) qcoh(X XT Y)
We show that the functors

Le*e, : Dy (X X7 Y) = D (X x7Y)

and

e Le* : qcoh( (f? )) qcoh( (f’ ))

are isomorphic to the respective identity functors by the adjunction maps.
Note that the functors and natural transformations are all compatible with
restriction to open subschemes. In particular, we can check whether the
adjunction maps are isomorphisms locally on X xg Y.

2.9. We reduce to the case when X, Y, S, and T are all affine as follows.
Since T'/S is separated the maps do,d; : X xgY — X xgT xgY are
closed immersions. Indeed, the morphisms vy and ’y; are closed immersions
being sections of separated morphisms, and therefore dy and d; are also
closed immersions being obtained by base change from these maps. For & €

Do (E(f,9)*) we have
(2.9.1) do(Supp(%)) = Supp(%1) = di (Supp(Py)).
Now observe that if U C T is an open subset then
Ay (do(f7HU) x5 Y)) = f7HU) x2 g7 (U).

Combining this with (2.9.1) we find that if 7' = U;T; is an open covering of
T and if

fi: Xi =Ty gi: Y =T,

are the restrictions of f and g then % is supported on

UZE(fZ7gZ). - E(f7 g).a
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and it suffices to verify that our adjunction maps are isomorphisms for
D(fi,gi)®. We may therefore assume that 7" is affine, say 7' = Spec R, and
that the map T' — S factors through an affine open subset Spec(k) C S for
a ring k. Replacing S by Spec(k) we are reduced to the case when S and T’
are affine.

Having made this reduction, we can then cover X and Y by affines and
verify that the adjunction maps are isomorphisms over corresponding open
subsets.

We may therefore assume that X = Spec(A) and Y = Spec(B) for R-
algebras A and B.

2.10. In this case E(f,g)® is given by the simplicial ring s (with tensor
products taken over k)

- AQR®RRB==A®RRRB<=——AR®B.

Lemma 2.11. The augmentation Ay > AQRpr B induces a quasi-
isomorphism on the associated normalized complezes.

Proof. Let A, — R be the simplicial ring with augmentation obtained from
the above construction taking A = B = R.
Since the maps

& AR @B - A9 R*" VeB

are A ® B-linear, the normalized complex of o4 is isomorphic to the complex
obtained from the normalized complex of o, tensored over R ® R with A ®
B. Note also that of, is term-wise flat over R ® R. It follows that if we
show that ¢f, — R induces a quasi-isomorphism on associated normalized
complexes, then the map

de =~ o, per (A® B) - Re%,r (A® B)~ A®Rp B
also induces a quasi-isomorphism (using the flatness of one of f or g). We
are therefore reduced to the case when A = B = R.
In this case it follows from direct calculation that the maps

hy, : R®(n+2) —>R®(n+3), AR @At 1 = AR Qapt1 ®1

define a homotopy between the identity and 0. ([
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2.12. From this and [7, I, 3.3.4.6] we see that if P € D™ (A ®g B) then the
adjunction map

Le*e,P = (A®r B)®% P — P

is an isomorphism in the derived category.
To verify that the adjunction

(2.12.1) P — e,Le*P

is an equivalence for P € D(;Coh(E (f,9)°%), note that since all the transition
maps in E(f,g)® are affine, and therefore have exact pushforwards, and €*
is right exact we get by descending induction that it suffices to consider
the case when P is a module concentrated in degree 0. In this case P is
given by an A ® B-module for which the two induced actions of A ® R® B
are equal. That is, P is given by an A ® B-module on which the R-actions
coming from the two factors are the same implying that the A ® B-module
structure descends to an A ® g B-module structure. So in this case P is, in
fact, of the form ¢, Py for a A ® g B-module Py and we have

exLete. Py ~ €, Py

by the case already considered. This isomorphism identifies (2.12.1) with the
identity map (in the derived category), and therefore (2.12.1) is an isomor-
phism. This completes the proof of 2.6. g

Example 2.13. Let X = Spec(R) be an affine scheme over a field k& and
let f € R be an element defining an effective Cartier divisor Z — X. Let

F:X — A}

be the morphism defined by f so that F~(0) = Z. We can then apply our
setup with T'= A}V = Spec(k), and g the zero section Spec(k) < Al. The
two maps

doydi : X =X xY 5 X xTxY =XxA}

are then given by
do = (idx, F), di = (idx,0);

that is, dg = yF is the graph of F' and d; = ~q is the graph of the zero map.
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2.14. Proof of 1.1

Theorem 2.6 reframes the problem of descending a complex P € Dgcoh(X Xg
Y) to Dgcoh(X X7 Y') to one of extending P to an object of D(E(f,g)*),
the derived category of the cosimplicial scheme E(f, g)®. This is, fundamen-
tally, a problem of gluing objects of the derived category (though not in the
classical setting of a covering in a site but instead in the setting of gluing
objects in a cosimplicial topos) and we apply the results of [10].

For m >0 let ; : [0] = [m] (0 < i <m) be the morphism in A sending
0 to i. For a morphism 0 : [n] — [m] in A let E5: E(f,g9)" — E(f,g9)™ be
the corresponding morphism, and let

as 1 [1] — [m]
be the map sending 0 to 0 and 1 to §(0) so we have

E,, = E,, ody, E

s = Fas © d1.

2.15. Consider again the setup of 2.2. Let P € Dgcoh(X X s Y) be acomplex
equipped with an isomorphism

@ : do« P 5 d P

on X XxgT xgY such that the diagram (1.0.1) commutes. We show that
under the assumptions of 1.1 there exists a unique pair (Py, \), where Py €

Dgcoh(X X7 Y)is acomplex and X : €9, Py ~ P is an isomorphism identifying

o with the canonical isomorphism between the pushforwards of Fp.

2.16. Define P, € D°_, (E(f,g)") to be the pushforward of P along the
)71

qcoh
morphism X xgY — E(f,g)" given by the map [0] — [n] sending 0 to 0.

For every morphism 0 : [n] — [m] we then get an isomorphism

@5 : Py = REq,doy P ——> REq,.d1, P ~ REj.P,.

The maps s are compatible with composition. For maps

we get by applying RE,, to the diagram (1.0.1) an equality

RE,.(¢5) © 0p = Pps-
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Lemma 2.17. Letd : [n] — [m] and p : [t| — [m] be morphisms in A. Then
Exty s ym (REp P, REs.Py) = 0, for i <0.
Proof. We have REs,. P, ~ P, ~ RE,,P,, so it suffices to show that

EXtSE(ﬁg)m ("}/[)*P, ’}/O*P) = 0

for s < 0.
Let

t: X > X XS ™
be the map given on scheme-valued points by
v (o, f(@), .. ().

Then ~g is obtained by taking the product of ¢ with Y. By adjunction, and
using the fact that P is perfect, we have

EXtSE(ﬁg)m(’YO*P, VO*P)
~ H*(X x Y, R#om (Ly;70:Ox xv,Ox xy) @ R*om (P, P)).

Let & denote the complex
R%#om (Lt*t,0x,0x).
Then we have
Rpri% ~ R#Hom (Ly570«Oxxy,Oxxy).

We conclude that

(2.17.1) R @Y Rpr,, R¥om (P, P)
~ Rpr, (R#om (Ly570:O0xxy, Ox xy) @ R#om (P, P)).

Since R is locally represented by a complex of projective ©x-modules con-
centrated in degrees > 0 and Rpr;, R#om (P, P) is concentrated in degrees
> 0 the complex (2.17.1) is in DZ%(X). In particular, its cohomology is zero
in negative degrees. 0
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Theorem 1.1 now follows from the lemma and the BBD gluing lemma for
a D-topos [10, 1.5 and 1.7]. In our situation these results give the following.
With notation of loc. cit. we take D = AP so that E(f, g)® defines a functor

D = A — (schemes).

Informally (or formally if one works with appropriate oco-categories) this
defines a functor

D? = A — (triangulated categories), [n] — D(E(f,9)",0p(f,g))-
Let I' (notation consistent with [10, 1.4]) denote the category of systems

({Mn}[n}eAv {905})

as follows:

(i) For each [n] € A we are given an object M,, € D*(E(f,g)", Op(f.q))-

(ii) For each morphism ¢ : [n] — [m] in A we are given a morphism ¢; :
My, = REs.M,,.

(iii) The maps ¢ are compatible with composition in the sense that for a
composition in A

the diagram

RFEs. '
My =2~ REs M "' REy, RE; M,

\lg

REs 5. My,
commutes.
There is a functor
m:D'(E(f,9)*) » T

sending a complex M to the system given by the restrictions M, of M
to each E(f,g)™ with the natural transition maps. Let IV C T’ be the full
subcategory of systems for which the following additional conditions hold:
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(iv) There exists integers a < b such that M,, € DY (E(f, 9)",0p(,9)")
(the category of complexes with cohomology supported in the interval

[a, b))
(v) For any two morphisms d : [n] — [m] and p : [t] — [m] in A with com-
mon target we have

Exth( f.gym (REp My, REs, M,) = 0, for i < 0.

Let IV € DY(E(f, g)*) be those complexes K with 7(K) € I''. Then [10, 1.5

and 1.7 (i)] imply that the functor I — I is an equivalence of categories.
Lemma 2.17 is therefore the necessary input needed to apply the results

of [10] yielding Theorem 1.1. O

3. Canonical fibration

3.1. For a smooth projective variety X over a field k let
RX = @nzor(X, Kg?n)

be its canonical ring. Over fields of characteristic 0 this ring is known to be
finitely generated [3].

For an integer n > 1 for which Hx , := ['(X, K¥") is nonzero we get a
rational map

Tt X—->=PHx, .
We then get open subsets

UX,n C Wx,n c X,

where Ux ,, is the maximal open subset over which Hy ;, generates Kg?" and
Wx 5, is the maximal open subset over which , is a morphism. Since X is
normal the complement of Wx ,, in X has codimension > 2 and since X is

smooth the invertible sheaf 7;0pp, (1) extends uniquely to an invertible
subsheaf

T 0pm, (1) = K"

over all of X for which there is a map
HXJL — F(X, FZ@pHX,” (1))

whose image generates 7;0pp, (1) over Wx .
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For an open subset A C PHx, we write Ux , 4 (resp. Wx , 4) for the
preimage of A in Ux ,, (resp. Wx ).

3.2. If X and Y are two smooth projective varieties over k related by a
derived equivalence

®: Db (X) — Dl (Y)

coh coh

then ® induces an isomorphism
(321) HX,n ~ Hyﬂn

for all n; in particular, ® induces an isomorphism of canonical rings Rx ~
Ry-. This is due to Bondal and Orlov [4].
Let us recall the argument. For an integer n € Z define a functor
Sp: DS (X) — DAL (X), FrFo K

Define Sk, to be the category whose objects are the functors S, and for
which the morphisms S, — S, are given by elements of H°(X, Kg?(n_m)).
So Sk, is a subcategory of the category End(D% , (X)) of endofunctors of
D «l:)oh (X ) :

Lemma 3.3. Let X and Y be smooth projective varieties over a field k
and let ® : D%, (X) — DY, (Y) be an equivalence of triangulated categories.

coh

Then the induced functor

(3.3.1) End(D%, (X)) — End(D%,,(Y)), Frs ®oFod™!

coh coh

sends Sk, to Sk, .

Proof. The fact that conjugation by ® matches up the objects of the cate-
gories S, and Sk, is due to Bondal and Orlov [4]. Let P € D’ (X xY)
be a complex defining ®. For an integer n and Sx,, € End(D?, (X)) (resp.
Sy, € End(DP,, (Y))) given by tensoring with K§" (resp. Kv'") we have
® o Sx , given by P ®p}K§?" and Sy, o ® given by P ®p§‘/K®", where px
and py are the projections. The result therefore follows from the standard
fact [6, 5.22] that

PepyK{" ~ P®py KP".

Since these subcategories are not full, however, a bit more is required
to get the compatibility on morphisms. Following [17], let Lpe,r(X) (resp.
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Lypery) denote the dg-category of perfect complexes of quasi-coherent sheaves
on X. The kernel P then defines an equivalence

P Lperf(X) — Lperf(y)-

Let Sx : D2, (X) — D%, (X) be the Serre functor of X. By the uniqueness
part of Orlov’s theorem, as well as Toén’s representability result in [17, 8.15]

the functor has a lift
Sx ¢+ Lpers(X) = Lpers(X)

which is unique up to equivalence of dg functors (in the sense of [17]).
In fact, Sx is given by Ax,wx[dim(X)] € Lpe, (X x X). For integers n
and m it therefore makes sense to consider the subspace

Homg,,qpe. (x) (8%, SX') € Hompgna(pe, (x)) (S SX)

of morphigms of ~funct0rs S% — S which admit liftings to morphisms of dg
functors S% — S¢. By [17, 8.9] the set Homend(DEOh(X))(S},S}?) consists
precisely of those morphisms induced by sections of K;G?(mfn). Now for a lift
Sx the functor

DoSxo®: Lyt (V) = Lyers(Y)

is a dg lift of the Serre functor Sy of Y. From this it follows that (3.3.1) sends
the subset Homend(DQOh(X))(SEL(, S%) to Homﬁnd(Dgoh(Y))(Se’ SY) which im-
plies the lemma. U

Theorem 3.4. Let X and Y be smooth projective varieties over k and let

@ 1 Dl (X) = Dhy (V)
be a derived equivalence given by a complex P & Dgoh(X xY). Letn > 1 be
an integer such that Hx ,, (and therefore also Hy,y) is nonzero.
(a) The support of Ply, .xy (resp. Plw, .xy) is contained in Ux, x
Uy (resp. Wx n X Wyp,).
(b) There exists a dense open subset A C PHx , such that Ply, , ,xy
s 1somorphic to an object in the image of

Db (WX,n,A X A Wy7n7,4) — Db (WX,MA X Y)

coh coh
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(c) There exists a dense open subset A C PHx, such that Ply, , ,xy
is isomorphic to an object in the image of

D’ (Uxna %4 Uyna) = Dlp(Ux na X Y).

coh

Here we somewhat abusively write Uy, o4 and Wy, a4 for the preimages
in Uy, and Wy, of the open subset A — PHx , ~ PHy,, of PHy,, defined
by A.

The proof occupies the remainder of this section.

Remark 3.5. Note that the open subset Ux C X considered in 1.4 is the
union over all n of the Ux . Since Ux is quasi-compact, we in fact have
Ux = Ux, for n >> 0 and therefore 1.4 follows from 3.4.

Remark 3.6. Note that statement (c) follows from (a) and (b). Indeed let
Py in DP, (Wx 4 x4 Wy, 4) be an object with image in D%, (Wx n.4 ¥
Y') isomorphic to Plw, , ,xy. Then the image of Py in Dgoh(UX,n,A X A
Wy n.a) is by (a) supported on Ux, a X4 Uyp a, and therefore is in the
image of ch)oh(UquA X A Uyn, ), and has image Py, ,xy in Dgoh(UX,n,A X

Y).
3.7. The complex 6x .

3.8. We can define a complex €x , on X with a map of complexes
€xn : Bxn — m,0pH, . (1)

which restricts to a quasi-isomorphism over Wx ,,. Recall that we write

7,0pH, (1)

for the line bundle on X obtained by pullback under the rational map .
This complex €x , will be used to understand the set W ;.

The complex €x, is the Koszul complex associated to the map p:
Hx, @ O0x — K% (note that this map factors through m;6pp, . (1)). Pre-
cisely, we have

C@_l)(n — (/\71'+1HX,n) O Kf?(l'n)

for i <0 and C@g(n =0 for 7 > 0. The differential

ey i+1
di: 6x , — C@X,n
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is given by the usual formula in local coordinates

(3.8.1) dz((hl VANERRIVA hl—i) & E)
= (1) (ha Aeehy e Ahag) @ (p(hy) @ 0).
j=1

The map €x, is defined to be the map induced by the natural map
Hx, ®,0x — 7;0pm, ,(1). By standard properties of the Koszul complex
the restriction of ex, to Wy, is a quasi-isomorphism.

If

(3.8.2) Exn C m0pm, (1)

is the image of Hx, ®; Ox then a point z € X lies in Wx,, if and only if
Y x n,. is generated by a single element. Indeed if this is the case then X,
is a line bundle in a neighborhood of z and the inclusion (3.8.2) restrict to
this open subset to an isomorphism, since it is an inclusion of line bundles
which is an isomorphism away from a codimension 2 subset.

Proposition 3.9. Let X and Y be smooth projective varieties over k and
let

®: Db, (X)— Db (V)

coh coh

be a derived equivalence given by a kernel P € Dgoh(X xY). Let Ty, (resp.
Ty.) be the endofunctor of D%, (X) (resp. Db, (Y)) given by tensoring with
Bxn (resp. Byn). Then

PoTx,o0 !~ Ty .

Proof. Letp: X xY — Xandq: X XY — Y be the projections. The proof
of Lemma 3.3 implies that there exist isomorphisms

on p*Kg?" QU P~ Pl q*Kg?"

in Dgoh(X x Y"). To prove the proposition it suffices to extend these isomor-

phisms to an isomorphism of complexes
(3.9.1) A:p €y, @Y P~ ¢* By, @V P.
Indeed such an isomorphism defines an isomorphism

PoTx, ~Ty,od.
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For an integer s define CG)S(Sn to be the complex which in degrees ¢ < s is
the same as 6x, but which has zero terms in degree > s. There is then a
distinguished triangle for each s

(3.9.2) €5 nl—5) 63 65, —= Gy al-s+1]
To prove the proposition we construct for each s an isomorphism in
Dgoh (X X Y)

ASS p*C@;{Sn QU P~ q*%éi Qv P,
such that the diagram

AT F)®0 s

(3.9.3) Pr6x ,[—s] @T P 765, [—s] @F P

| |

p*C@;{fn QL P q*f@§2 QL P

commutes.
Lemma 3.10. Let s, ¢, and j be integers with j > s.
(i) We have
Hompy (xxv) (P*C@)S(,Sn ®" P, "8y, @ P[-j]) = 0.
(ii) The restriction map
Homp;,, (xv) (P65, @ P,q" 6}, &% P[=s])
|
Hompy (xxy)(p* 6%, @ Pl—s], "6y, @ P[—s])
18 injective.
Proof. By considering the distinguished triangles (3.9.2) the proof of (i) is
reduced to showing that for all integers s, i, and j > s we have

Hongoh(XXY) (p*cg:;(,n ®L P[_S]7 q*C@Xi/,n ®L P[_J]) =0.

This follows from noting that elements of this group correspond to mor-
phisms of functors
P o dCxnlsl @m0 @
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which can be lifted to the dg-categories of complexes of coherent sheaves.
Using the isomorphism

dC =0l o d ~ P o pEx.nl-il

and applying ®~! we see that we have to show that there are no nonzero
morphisms of functors

PCx.nl—5] _y pBx.nl-l
which can be lifted to the dg-category. Here for a complex K € Db, (X) we
write ®X for the endofunctor given by tensoring with K, and similarly for
complexes on Y. Equivalently, we need to show that there are no nonzero
morphisms in D%, (X x X)

Ax B nl—5] = Ax. 6 [l

which follows from the fact that j > s.

Statement (ii) follows from (i) and consideration of the triangles (3.9.2).
O

We now construct AS* inductively. For s sufficiently negative we have
C@)S(sn =0 so there is nothing to show. So we assume that A<* has been
defined and construct A<t For this consider the diagram of distinguished
triangles

PrEY (s + 1] @ P25 et [~ (s + 1)] @F P

p*%)g(,(7i+1) ®L P—— — — _ . q*%)%S—H) ®L P
ASs
pre%, @ P : ¢ 65, O P

TRO

PrEY sl @t P ¢ 6y, [~s] @ P,

where the bottom-most inner square commutes by Lemma 3.10 (ii). Now
define AS611 to be a morphism as indicated by the dotted arrow, which ex-
ists by axiom TR 3 of triangulated categories [15, Tag 0145]. This completes
the proof of Proposition 3.9. O
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3.11. Proof of 3.4 (a)

If x € Ux, then the skyscraper sheaf x(z) € Db, (X) has the property that
there exists an element o € Hx ,, such that

o k(z) = K(z) @Y KE"

is an isomorphism. It follows that P, has the property that there exists an
element o/ € Hy,, for which the map

o Py — P @Y K"

is an isomorphism. The statement for P|y, , xy follows from this and the
following 3.12.

To get the statement for Wx ,, note that if x € W ,, is a point then from
the equation (3.9.1) we find that

P, =~ P, @Y Gy,
We get the statement for Py,  «y from this and the following 3.13.

Lemma 3.12. Let Q € D’ (Y) be a complex such that there eists an

coh
element o € Hy,, for which the induced map

a:Q— Qe Kgm
is an isomorphism. Then the support of Q is contained in Uy,,.

Proof. Indeed the assumptions imply that for a point z € Y in the support
of @ the fiber a(z) € K" (z) is nonzero, and therefore z € Uy,,. O

Lemma 3.13. Let Q € D° , (Y) be a complex such that

coh
Q& By ~ Q.

Then the support of Q is contained in Wy,,.
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Proof. Let z € Supp(Q) be a point in the support. Let ¢ be the largest integer
for which #*(Q). # 0. Since By, € D=°(Y) we then have

%t(Q ®L %Y,n)z = %t(Q)z ®®y‘z %O(C@Y,n)z-
We therefore find that

H'(Q): Roy.. H(Byn). ~ H(Q)-.

Since we assume that #!(Q), is nonzero, this implies, by Nakayama’s lemma,
that #°(Gy,,). is generated by a single element. It follows that the subsheaf

Ey}n C WZ@PHY," (1)

generated by the image of Hy,, is locally free of rank 1 at z, which implies
that z € Wy,,. O

3.14. Set-theoretic support

In order to prove 3.4 (b) we will first need a set-theoretic statement.

Lemma 3.15. Let f : Z — Wy, be a morphism, with Z proper, and let F
be a coherent sheaf on Z such that F @ f*@By, ~F. Then f(Supp(F)) C
Wy, is contained in a finite union of fibers of m,.

Proof. 1t suffices to prove the lemma after making a base change to an
algebraic closure of k. Replacing Z by an alteration if necessary we may
assume that Z is smooth and proper over k and that & is supported on all
of Z.
Note that over Wy, we have By, ~ Oy (n) so f*8y,, ~ f*1;0pp,., (1).
Let r be the generic rank of &. Then taking determinants we find that

det(F) ~ det(F) ® f*m,0pp,. (7).

Therefore f*m:0pg,. (1)) is a torsion line bundle on Z, which implies that
the image of Z in PHy, is a zero-dimensional subscheme. O
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3.16. For a point z € Wy ,, the skyscraper sheaf x(x) has the property that
r(x) Y Bx., ~ K(2).
It follows that we also have
P, @Y Gy, ~ P,

in Dgoh(Y) (Note: we already showed that the support of these complexes
lies in Wy,,). By the lemma we conclude that the image of the support of P,
in P Hy,, lies in a finite number of fibers of m,,. And since End Db (Y) (Py) =k

the support is, in fact, connected. We have shown:
Corollary 3.17. The set-theoretic support of Plw,  xy is contained in

WX,n XPHy,, WY,na

where the map Wx , — PHy,, is the composition of m, : Wx , — PHx
and the isomorphism (3.2.1).

3.18. Though not used in what follows, we also observe that P induces
derived equivalences of open varieties as follows. Note that since

Pyn := Pluy ,xUy., (tesp. Pwn = Plwy ,xwy.,)

has proper support over both Ux, and Uy, (resp. Wx , and Wy,,) the
complex P induces functors

(I)Um : Dgoh(UX,n) - D(IZoh(UYﬂI)? @W,n : Dgoh(WX,n) - Dgoh(WYﬂ’b)'
Proposition 3.19. The functors @y, and Pw, are equivalences of trian-
gulated categories.

Proof. That ®r, is an equivalence can be seen as follows. Let PV e
Db, (Y x X) be the complex defining ®~1: D% (V) — Db, (X), and let
P(\]/,n be the restriction of PV to Uy, X Ux ,, which defines

O, Db (Uy) = D2 (Uxn)

coh coh

We claim that @7, 0 @y, ~idpe (1,.,.) and & o Py, ~idpe ()
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To see this observe that the restriction of P to Ux, x Y is equal to the
pushforward of Py, by 3.4 (a), and similarly for PV. Since the diagram

X XY xX<—Ux,xY xUx,

lprlg lprm

XXX =<~—— UX,n X UX,n

is cartesian we conclude that the pushforward of pi, Py, ® p;SPl\J/,n along
the map

P13 : Uxn X Uy X Ux .y = Uxn X Ux

is isomorphic to Ay, ,+Op, . It follows that &, o Oy, >~ idpe (Ux..)- The
isomorphism

vV ~
Py 0 Opy, 1dDgoh(Uy,n)

is shown similarly.
The proof that ®yy,, is an equivalence follows verbatim from the preced-
ing argument replacing “U” by “W” everywhere. ]

3.20. Proof of 3.4 (b)

3.21. First recall Beilinson’s resolution of the diagonal on a projective space
P(V) [2]. This resolution takes the form (let d denote the dimension of P(V))

p10p(v)(—d) ® PéQ%(V)(d) —
= PiOpv)(—1) @ PsQp 1) (1) = Op(v)xp(v) — Oa.
The transition maps are obtained as follow. We have
Hom(piOp()(~i) @ Py (1), piOp (1 (—i + 1) @ P (i — 1))

~ Homp () (Op (v (i), Op(v)(—i + 1)) © Homp v (Qp v (i), Q;(%/) (1—1))
~ V' ® Homp(y)(Qpy) (i), Qpy (0 = 1))-

From the twisted Euler sequence
0= Op(vy(—1) = VY @ 6 —= Tpy)(—1) = 0
we obtain an isomorphism

VY ~ HY(P(V), Tp)(—1)).
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Together with the natural map

(3:21.1) VY = HY(P(V), Tp(v)(~1)) = Homp(y)(Qp(y) (i), Qpy ) (i — 1))

we then get a map

VeVvY - Hom (piOp (v (1)
® P5Qp vy (1), PIOP(v) (—i + 1) ® P3Qp (i — 1))

The image of the identity class in V' ® V" defines under this map the differ-
ential in the Beilinson resolution.

3.22. Returning to the proof of 3.4 (b), let P C PHx, be the closure of
the image of Wx ,, viewed as a scheme with the reduced-induced structure,
and let

f Wxp—=P, g: Wy, =P

be the natural maps.

3.23. Consider first the case when k is infinite.
In this case, for a suitable subspace V' C Hx ;, the induced rational map

P-->P(V)

is everywhere defined, finite, and generically étale (see for example [5, 2.11]).
Let
[ Wx,—=P(V), ¢: Wy, =P(V)

be the induced maps, and let E(f’,¢')® be the associated cosimplicial
scheme. We write

di: Wy x Wy, = E(f',d)' = Wxn x P(V) x Wy,

for the structure maps in this cosimplicial scheme (and similarly for other
maps occurring in the cosimplicial structure).
With the notation of Paragraph 3.8 we have

f 0pa(1) = Sxnlwy., 9 0pr)(1) = Zynlw,.,-

To ease notation we will write Xy, , and Xy, , for these sheaves in the
remainder of the proof. Note that these are line bundles on Wy ,, and Wy,,.
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For an open set B C P(V) we can also consider the restrictions
fjg :Wxnp— B, ng :WynB — B,
and the associated cosimplicial scheme
E(f.98) = E(f'.9).
3.24. We have a cartesian diagram

WX,n E—— WX,n X P(V)

i l

P(V)—2~P(V) x P(V).

Pulling back the Beilinson resolution of the diagonal of P(V) we obtain a
complex on Wx ,, x P(V) of the form

* —d *
(3.24.1) p@?}(x,n) ®pQQdP(V) (d) = -
* -1 *
— plzﬁl(x,n) ® pQQ%)(V)(]‘) — ©WX,71XP(V)‘

Over the locus in Wy , where the map f’ is flat this is a resolution of 0,
where v : Wx,, = Wx,, x P(V) is the graph of f. Pulling the complex
(3.24.1) back to Wx ,, x P(V) x Wy, along the first two projections we get
a complex on E(f’,¢')!, which over the preimage of the flat locus of f’ is a
resolution of do«Ow, , xwy.,,-

3.25. For s <0 set
(3.25.1) P = pis(hiZy),, © P) @ paQpy) (=9),

an object of D’ (Wx, x P(V) x Y), and let P§ — Pyt be the maps in-
duced by the maps in (3.24.1).
Projecting along Wx , x P(V) x Y — Wx,, we find

RHomyy,  «p)xy (P, P%)
~ RI(Wxn, x P(V) x Y,pTZ%(j;z) ®p§[9;_>év)(—i)> Qpiyy (=5)] @ pis[P, P))

~ RI (Wi, S5 " @ Rpua [P, P] @ RHom(Qp0 (=), Qphy) (—)),
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where to ease the notation we write [—, —] for R#om (—, —). Now we have
Rp1. R¥om (P, P) € D=°(Wx )
and the natural map
Ow,, — R'p1. R¥om (P, P)

is an isomorphism (see for example the discussion in [8, Remark 5.1]). We
conclude that

Ext®(P%, P{) =0

for s < 0. Moreover, we have

Hom(P§, Py™) = D(Wx, Siy..) ® Hompy) (@ (—s), 2 (—(5 1))
< D(X, K£") ® Homp(y(Q*(—s), @~ (—(s + 1)).

Using the map (3.21.1) we get a map
DX, K¢ @ VY = I(X, K{") @ Hompy) (7 (—s), QT (—(s + 1))).

The image of the class Ax € I'(X, K¥") @ V¥ adjoint to the inclusion V —
T(X, K{") then equals the class of the differential Py — Pyt
By [10, 1.4] the complex Py in Db, (Wx,, x P(V) x Y) is induced by a
unique object Px € DF(Wx ,, x P(V) x Y) of the filtered derived category.
Note that by 3.17 this complex is supported on Wx , x P(V) x Wy,
and we view Py more symmetrically as an object of DF(Wx, x P(V) x

Wy.p).
3.26. We can also interchange X and Y and define

Py = pis(P@psSiy, ) @ psQ  Qpgyy(—s).

,n

Using the isomorphism (3.2.1) we view P as an object in D% | (X x P(V) x
Wy.). As above we then get an object Py € DF(Wx,, x P(V) x Wy,,,).
The isomorphism constructed in the proof of Proposition 3.9

P®p>{ZX,n = P®p;EY,n

induces isomorphisms

As 1 Py — Py,
These isomorphisms are compatible with the transition maps (this follows
from the construction of the isomorphism (3.2.1)) and therefore we get an
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isomorphism of complexes
e : Py — Py.

By [10, 1.3] this is induced by a unique isomorphism
A Px = Py

in DF(Wx,, x P(V) x Wy,,). If BCP(V) is an open set over which f}
and g5 are flat this induces an isomorphism

. Al U
A dO*P‘WX,n,B XWy n,B — dl*P|WX,n,B XWy n, B

in Db

coh

(WX,n,B X B x WY,n,B)~

Lemma 3.27. If B C P(V) is an open set over which f' and ¢' are flat,
then the following hold (let pry : Wx g X B x Wy, B — Wy, B denote the
projection to the third factor):

(i) Ripry, R¥om (dy, P, d;,P) =0 fori<O0.

(ii) The natural maps
0 ! U 0 U i
R’pr;, R#om (dy, P, d|,P) — R"#om(Rprz,dy, P, Rprg,dj, P) <— Ow, , ,

are isomorphisms, where the second map is obtained from the identifi-
cation prs o dj ~ prs o dj,.

(iii) The isomorphism X satisfies the cocycle condition on E(fg,gp)?.
Proof. Since df,, P ~ d},P, to prove (i) and (ii) it suffices to prove the anal-

ogous statements with dj, P replaced by d,P.
Consider the diagram

dy
WX,n,B X Wy,n7BC—> WX,n,B x B x WY,n,B

T

WY,n,B( B x Wymfpz

lpz/,

WY,n,B:

<




926 M. Lieblich and M. Olsson

where j is the graph of ¢g’;. Note that we have an isomorphism
LpisP @Y d1, 0wy, sxwy., s = d1, P
which upon applying Ld}* yields an isomorphism
P @" Ld{'d},Owy, ox Wy, » = Ld{'d}, P.
This defines isomorphisms

R#om (d|,P,d,,P) ~ d\, R¥om (Ld}"d,,P, P)
~ d}, R¥om (P @ Ld}d|,Ow, . ,xwy. 5, P)
= dll*(R%Om(Pv P) ®L (Ld/l* /1*®Wx,n,B XWY,n,B)v)'

We then have

Rp23* R%Om( ,1*P7 dll*P)
= Rp23*(d/1*(R%0m(P7 P) ®L (Ldll* ,1*®Wx,n,B XWY,n,B)v))
~ ji((Rpz2. R¥om (P, P)) @ (Lj*j.0wy, »)")

and the natural map
j*GWY,n,B — ]*((Rp2* R%Om(Pv P)) ®L (Lj*j*GWY,n,B)V)

is an isomorphism in degrees < 0. Pushing forward to Wy, p we get state-
ments (i) and (ii). Note that under these identifications the element 1 € k
corresponds to the previously constructed isomorphism .

To complete the proof of it remains to show that the map A satisfies the
cocycle condition on E(f}, gjg)2. For this note that the preceding argument
shows that the map

Home

coh

(B(fh.90)2) (24P, 70+ P) = Hompy | (p(s, 4,10 (P, P)

induced by pushing forward along the map E(fg, g%5)* — E(f5,9%)° given
by the unique map [2] — [0] is an isomorphism. Since the pushforward of the
map A is the identity on P this implies that the cocycle condition holds. [

3.28. From this and 1.1 we conclude that there exists a dense open subset
B C P(V) such that the restriction of P to Wx , B x Wy, g is induced by
pushforward from Wy ,, p xp Wy, 5. Let A C P be the preimage of B and
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assume further that B is chosen such that P — P (V) is étale over B. Then
(note that with our notation we have Wx , 4 = Wx . p)

WxnaXaWyna— Wxne*xXBWynn

is open and closed and a complex on Wx, g xg Wy, g inducing P
is necessarily supported on Wx a4 x4 Wyna (since we know that
Plwy . axWy.,. 4 is set-theoretically supported on W p a4 x4 Wy a). It fol-
lows that Plw,, ,xwy.. 18, in fact, the pushforward of a complex on
Wixna XaWypa.

This completes the proof of 3.4 (b) in the case of infinite k.

3.29. To handle the case of finite k, note the following variant of 3.27
above. For an open subset A C P let E(f4,94)°® be the cosimplicial scheme
associated to the maps

fA : WX,n,A — A, ga : Wy’nyA — A.

Lemma 3.30. There exists a dense open subset A C P such that the fol-
lowing hold (let pr3 : Wx 4 x A X Wy, 4 — Wy, 4 denote the projection to
the third factor)

(i) Riprs, R¥om (do.P,d1+P) =0 fori < 0.

(ii) The natural maps
R%prs, R¥om (do. P, di P) — R%om (Rprs,do. P, Rprs,di.P) <— Ow,. .,

are isomorphisms, where the second map is obtained from the identifi-
cation pry o dy =~ pr3 o dy.

(iii) The map A : do. P — d1. P, obtained from the isomorphisms in (ii) and
the section 1 € I'(Wy, 4,0w,.,. ) is an isomorphism and satisfies the
cocycle condition on E(fa,ga)?>.

Proof. 1t suffices to verify the lemma after passing to a field extension of k.
By the case of an infinite field we may therefore assume that there exists an
open subset A such that Ply, . ,xw,., . is the pushforward of a complex on
Wx n,a Xa Wy a. In particular, we may assume that we have an isomor-
phism dg« P ~ d1,P. The proof now proceeds as in the proof of 3.27. O

Combining this with 1.1 we then obtain 3.4 (b) in the case of finite k as
well. O
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4. Rouquier functors

In this section we explain how Rouquier’s work [14] can be combined with
our main result on support of complexes to obtain restrictions on kernels of
derived equivalences. This is also related to work of Lombardi [9].

4.1. The Albanese torsor

4.2. Let k be a perfect field and let X/k be a smooth projective variety.
Let Picx denote the G,,-gerbe over the Picard scheme Picx classifying line
bundles on X, and set

@icg( = Pic())( X Picy PiCx.

We assume that Pic is a smooth scheme (this is automatic in characteristic
0), and therefore an abelian variety, and write Alby for the dual abelian
scheme.

4.3. For a smooth projective variety X/k let Tg( denote the functor which
to any k-scheme T associates the set of isomorphism classes of morphisms
of Picard stacks

S Picg(’T — Qicgmﬂ
over the identity. Observe that any two such sections differ by a morphism
of Picard stacks

p: Picg(vT — BGy, 1.

Considering the commutative diagram

. 0 . 0 m . 0

pol lp

MmpaG,,

BGm,T X BGm,T - BGm,T

and the fact that for the line bundle Ml on BG,, r corresponding to the
standard character of G,,, we have

Mg, (M) =~ MR M

it follows that p corresponds to a line bundle & on Picg(yT which is translation
invariant; that is, a point of

Alby := Picp;. -
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Note also that a point = € X (k) yields a section s. Indeed given x we
can interpret Picg( as classifying pairs (£, 0) consisting of a line bundle &
on X and a trivialization o : £(x) ~ k(z). From this it follows that T% is
a torsor under Alby and there is a natural morphism

CxtX—>T()](.

If we trivialize T% using a point of X then this is identified with the usual
map from X to its Albanese.

Note also that we have a canonical isomorphism (this amounts to the
fact that the translation action of an abelian variety A on Pic%(A) is trivial)

Pich, ~ Pic}y,,
and therefore an isomorphism
PicOTg( ~ Pic%.
Chasing through these identifications one finds that this is simply given by
cx: PicOToX — Pic%.
4.4. We say that an autoequivalence

a:Db,(X)—= Dby (X)

coh coh

satisfies the Rouquier condition Rx if the complex Q, € Dgoh(X x X)
defining « is isomorphic to I';x%, where I'; : X — X x X is the graph
x +— (x,0(x)) of an automorphism o of X and &£ is an invertible sheaf on
X numerically equivalent to 0.

Let SRS]( be the fibered category which to any k-scheme T' associates the
groupoid of objects @ € Db, ((X x X)7) of T-perfect complexes such that

for all geometric points £ — T the fiber Q7 € D? , (X x X)) defines an

coh
equivalence D%, (X;) — DU, (Xj) satisfying Ry and whose associated au-

tomorphism X7 — X7 lies in the connected component of the identity in
Aut(X). Let RY denote the group scheme

RY% := Pic} x Aut.
Then 9%9( is a Gy,,-gerbe over Rg(.

The key result of Rouquier that we will need is the following:
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Theorem 4.5 (Rouquier). Let Y/k be a second smooth projective variety
related to X by an equivalence ® : D°, (X) — Db (Y).

(i) For any T/k and Q € D%, ((X x X)) in RY(T) the complex in
(Y x Y)r) associated to the auto-equivalence ® o ®g o ®~1 of Db (V)

coh

‘Dgoh
is in RY(T).

(i) The induced functor
4.5.1 7R = RY
X Y
is an equivalence of gerbes.

Proof. See [14, 4.18]. O

By passing to coarse moduli spaces the equivalence (4.5.1) induces an
isomorphism

7: R} — RY.

Assumption 4.6. We assume for the rest of this section that Pic% is re-
duced and that T takes Pic% to PicY.

Remark 4.7. This assumption holds in many instances of interest.

(i) If k has characteristic 0 then the assumption that Pic% is reduced is
automatic.

(ii) The assumption that Pic% is reduced implies that it is an abelian
variety. If this holds and furthermore Aut- is affine, then automatically Pic%-
is mapped to Picg/.

(iii) In characteristic 0 the condition that Pic% is taken to Pic) can
be checked on Hochschild cohomology. The map on tangent spaces at the
identity of the morphism 7 is a map

Tr: HY(X,06x)® H(X,Tx) — H'(Y,6y) @ H'(Y, Ty).

Using the HKR isomorphism this map is identified with the map on
Hochschild cohomology

HHY(X)~ HH(Y).
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4.8. Under this assumption the map 7 induces an isomorphism of Picard
stacks

q: Qicg( — 9%'09/

over an isomorphism of abelian varieties
7 : Pick — Picy.

It therefore also induces an isomorphism of torsors of sections

p: T — TY

compatible with the isomorphism

At Albx — Alby.
The main result of this section is the following:

Theorem 4.9. Let P denote a kernel for the equivalence ®. Then there

erists a dense open subset A C Tg/ such that the restriction of P to

c)_(lpfl(A) X c;l(A) C X XY is isomorphic to the image of an object in

DZon(ex'p™ (A) x4 ¢y (A)) = Dionlex'p™(4) x ' (4)).
The proof occupies the remainder of the section.

Lemma 4.10. Let &% (resp. £y) be the universal line bundle on X x
Pic% (resp. Pic). x Y ). Then we have a canonical isomorphism

(4.10.1) Pl @ pisP ~ (1x x 4 x 1y)*(phsy @" piyP)
in DP, (X x Pic x Y).

coh

Proof. To ease notation let us write Py (resp. Py) for Pic% (resp. Pic).).
The isomorphism 7 is characterized by the condition that the complex in
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Db

oon (Y X Y)g, ) representing the autoequivalence

(4.10.2) Do (RLY)od!
is isomorphic to Ay, (1y x 7)*Z25:. Consider the cartesian square

(X % Vg, S22 3 X s Vg

- -

Y, Av (Y X Vg,

where we write ¢_ for the various projections (to distinguish from the projec-
tions p_ from X x Pic% x Y in the statement of the lemma). Then (4.10.2)
is represented by the complex

Ra13:(¢32% ®" iz P @ ¢33 PV @ giwy [dim(Y)]) € Dep((Y x Yy ).
The characterizing isomorphism

(4.10.3) Raus.(32¥ @ ¢, P @ ¢53PY © ghwy [dim(Y)])
~ Ay*(ly X ’?)*g;}

corresponds by adjunction to a map
(2% @ g1z P @ g53PY @ giwy[dim(Y)]) = qi5(Avs(ly x 7)"2).
Using the isomorphism
q13(—) = gi3(—) @ giwx [dim(X)]

we find that the characterizing isomorphism (4.10.3) corresponds by adjunc-
tion to a morphism

(63L% @ o P @Y g33PY @ giwy [dim(Y)])
— ¢f3(Ayv.(ly x 7)*2¢) @ Gwy[dim(X)]

in Db

coh

(Y x X xY)g, ). Using the isomorphism

P ® piwy [dim(Y)] ~ P ® pjwx[dim(X)]
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and adjunction this, in turn, corresponds to a map

(4.10.4) P1aE¥ @ pisP — (1x X 7 X 1y)*(p53 %y @" piyP)
in DY, (X x Pic% x Y). If we restrict this to a fiber over a point [£] € Pic%

corresponding to a line bundle £ on X then the left side of (4.10.4) defines
the functor ® o (®%) : D¥, (X) — D%, (V) and the right side defines the
functor (® o (%) o ®!)o ® and our map is the natural isomorphism be-

tween them. By Orlov’s theorem it follows that (4.10.4) defines an isomor-

phism in all fibers over @icg( and therefore is an isomorphism. O
Lemma 4.11. Let S be a noetherian scheme and let F € Dgoh(TOX,S) be a
complex with associated complex F* & Dsoh(T%S). Then we have

(4.11.1) Piack sF ®U piaP ~ piacy sF @Y pia P

in Db (X x SxY).

Proof. Note that the diagram
9°7LCOT(§( S SMC[))(
Pich, — > Pic%

is cartesian, and identifies Tg( with the G,,-torsor of sections of
gsic%g{ — PICOTg(

In particular, there is a universal line bundle Ml on PicOTg( X Tg(. Similarly
there is a universal line bundle Jly. over Pic%g] X Tg),, and the isomorphism

((p*)™" x p) : Picpg x T — Picqy x TY
comes equipped with an isomorphism
((p*)™" X p)* sy =~ M.
The functor

Dby, (Pick 5) = D (T% 5), 6 > Rpou(p}6 @ Ml )

coh
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is an equivalence of categories, where we write MY s for the pullback of
MY to (PiCOTg{ x T%)s. Indeed this can be verified after making a field
extension, where it reduces to the standard derived equivalence between an
abelian variety and its dual. In particular, we can write

F = Rpo.(pi 6 " M¥ 5)

for a unique object € € ch)oh(Png(,S)' Note also that if €° € Dgoh(Pic%S))
is the complex corresponding to € under the isomorphism

7 : Pic% — Picy-

then 6 transforms to F* on T under the equivalence defined by .
Consider the diagram

X x Picpg X S XY —>XxSxY —=XxY

X x Picpy x S X xS

Tg(xPic%g(xS TS x S

Pic%, x S.
T X S

From this we see that the complex on the left side of (4.11.1) is isomorphic
to the complex

Rp131.(p1a P " plally @ pis).
Using the isomorphism (4.10.1) we find that the image of

PP " PloMly o p336

in
Dl (X x Pic?(TY) x S x Y)
is equal to
PP &% p3 Ml @ piy 6.
From this the result follows. ([
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Lemma 4.12. Let x € X be a point with image z € Tg(. Then the complex
Py € Y,y is set-theoretically supported on c{,l (p(2)).

Proof. After making the field extension from k to x(x), we may assume that
x is a k-rational point.

The support of P, in X X Y is contained in the support of Pc}—(l(z) =
P|c}—(1(z)><y, so it suffices to show that the support of Pc)_(l(z) is contained in

X x ey (p(2)).
For this apply Lemma 4.11 with S = Spec(k) and F the skyscraper sheaf
k(z) on Tg(. We then find that the support of PC)—(l( 2) is equal to the support

of Pl ez (o)) O
4.13. Let Wx C Tg( (resp. Wy C TOY) be the scheme-theoretic image of
cx (resp. cy). If z € X is a point then it follows from Lemma 4.12 that

¢yt (p(cx(x))) is nonempty; that is, p(cy(x)) € Wy Since Wy and Wy are
integral it follows that p restricts to a morphism

(4.13.1) Wx — Wy,

which we again denote by p. By considering the inverse transform we see
that this map is an isomorphism.

4.14. Let f: X — Wx be the map induced by cx, and let

g:Y —-Wx
denote the composition of ¢y : Y — Wy with the inverse of (4.13.1), and
let E® be the associated cosimplicial scheme as in 2.2. Applying 4.11 with
S = Wx and F the sheaf u,.Op,, where u: Wx — Tg( x Wx is the graph
of the inclusion, we find that on

E'=XxWx xY

we have

dO*P ~ dl*P

4.15. Having established the existence of this isomorphism we can proceed
as in the case of the canonical fibration. Namely if A C W is an open subset
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over which f and g are flat, and
fa:fHA) - A ga:g A=A
are the restrictions, then the same argument shows that the map
Homp s, .2 (724 P, 704 P) — Hom 14y g-1(a) (P, P),

induced by the surjection [2] — [0], is an isomorphism. From this it follows
that the isomorphism do. P ~ d1, P satisfies the cocycle condition, after re-
striction to A. Theorem 4.9 then follows using 1.1. (]
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