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A classical result in spectral graph theory states that if a 
graph G has an equitable partition π then the eigenvalues 
of the divisor graph Gπ are a subset of its eigenvalues, i.e. 
σ(Gπ) ⊆ σ(G). A natural question is whether it is possi-
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these remaining eigenvalues. Using this decomposition, which 
we refer to as a complete equitable decomposition, we intro-
duce an algorithm for finding the eigenvalues of an undirected 
graph (symmetric matrix) with a nontrivial equitable parti-
tion. Under mild assumptions on this equitable partition we 
show that we can find eigenvalues of such a graph faster us-
ing this method when compared to standard methods. This is 
potentially useful as many real-world data sets are quite large 
and have a nontrivial equitable partition.
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1. Introduction

Spectral graph theory studies the relationship between the graph’s spectrum, i.e., 
the set of eigenvalues of an associated matrix, and the structure of the graph. This 
relationship between spectrum and structure is important in many real and theoretical 
applications. This includes understanding the interplay of structure and function in real 
world networks [5,15,20,25], the performance of machine learning algorithms [6,16,17,19], 
and the advantages of different data structures in computer science [4,11], etc.

Here the structures we are interested in are equitable partitions. Equitable partitions 
were originally studied due to the spectral properties they preserved [2,7,12]. More re-
cently, equitable partitions associated with graph symmetries have gained attention due 
to their ubiquity in real-world networks [18]. In theoretical applications these symmetries 
have been used to decompose graphs [3,9,10,14] and to study the formation of synchro-
nizing clusters and equitable partitions in dynamical network models [13,21,23,26,27].

An equitable partition π = {V1, . . . , Vk} of a graph G is a vertex partition that, 
roughly speaking, partitions the vertices of the graph such that every vertex in Vi has 
the same number of neighbors in any Vj irrespective of which vertex is considered. This 
structure can be summarized by another smaller graph called the divisor graph Gπ of G
(see Section 2). In this way the divisor graph Gπ gives a global summary of the graph 
G relative to the equitable partition π.

A well-known property of a divisor graph is that its spectrum is a subset of the 
graph’s original spectrum, i.e., σ(Gπ) ⊆ σ(G) [2]. As one can think of σ(Gπ) as the 
global eigenvalues of G and it is a natural question as to whether it is possible to recover 
the remaining or local eigenvalues of G, i.e. the eigenvalues σ�

π(G) = σ(G) − σ(Gπ), and 
whether this can be done in a similar manner using divisor graphs.

Here we show that these local eigenvalues are, in fact, eigenvalues of a collection of 
induced subgraphs Gi ⊆ G for i = 1, . . . , r where each Gi has an equitable partition 
π̄i ⊆ π. We refer to each π̄i as a local equitable partition on the local subgraph Gi and 
prove that the local eigenvalues of G form the set σ�

π(G) = σ�
π̄1

(G1) ∪ · · · ∪ σ�
π̄r

(Gr). This 
allows us to write the eigenvalues of G as the disjoint union

σ(G) = σ(Gπ) ∪ [σ�
π̄1

(G1) ∪ · · · ∪ σ�
π̄r

(Gr)],

which we refer to as a complete equitable decomposition of G with respect to π (see 
Theorem 2.2). A complete equitable decomposition is then a decomposition of the eigen-
values of G into its global eigenvalues and local eigenvalues of its local subgraphs (see 
Example 2.3).

Since a complete equitable decomposition results in a collection of smaller graphs 
with the same collective spectrum it is therefore possible, at least in principle, to find 
the eigenvalues of a graph more efficiently using this decomposition when compared to 
standard methods. Here we construct an algorithm which computes the eigenvalues of 
a graph (matrix) based on the concept of a complete equitable decomposition. We show 
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that in the worst case, in which a graph has only the trivial equitable partition, that 
this algorithm has the same computational complexity as the standard algorithm. If, 
however, the graph has a sufficiently nontrivial equitable partition, our algorithm can 
compute the eigenvalues of the graph much faster (see Theorem 5.1). This we show using 
a family of layered graphs (see Example 5.1 in Section 5.3).

The paper structured as follows. In Section 2 we review the basic concepts and classical 
results related to equitable partitions. We then introduce the notion of a local equitable 
partition and state our main result (Theorem 2.2). In Section 3 we begin our proof of this 
result by describing the local and global eigenvector structure of a graph with an equitable 
partition. In Section 4 we complete our proof. In Section 5 we introduce our algorithm 
for finding the eigenvalues of a graph with respect to its coarsest equitable partition, 
which we refer to as the LEParD algorithm (Local Equitable Partition Decomposition 
algorithm). In Section 6 we conclude with a number of directions this research could be 
taken along with some open questions.

2. Equitable partitions

In this section we define the notion of an equitable partition of a graph and give some 
of its more well-known properties. For generality, we define a graph to be a weighted 
directed graph G = (V, E, ω) with vertex set V = {1, 2, . . . , n}, and edge set E, with 
weight function ω : E → C. A directed edge from vertex i to vertex j is denoted eij where 
the collection of all edges, possibly including loops, is the edge set E. The weight of the 
edge eij ∈ E is given by ω(eij) ∈ C.

This framework includes both unweighted and undirected graphs where an unweighted 
graph G = (V, E, ω) has the weight function

ω(eij) =
{

1 if eij ∈ E

0 otherwise.
(1)

An undirected graph G = (V, E, ω) has the property that if the edge eij ∈ E then eji ∈ E

where ω(eij) = ω(eji) and the pair of edges is thought of as a single edge between vertex 
i and j.

The primary way to encode the structure of a graph G including its weights is with 
a weighted adjacency matrix A = A(G) where A = [aij ] ∈ Cn×n whose entries are given 
by

aij =
{

ω(eij) �= 0 if eij ∈ E

0 otherwise.
(2)

The eigenvalues σ(G) of the graph G are the eigenvalues σ(A) of its adjacency matrix 
A. We note that a graph is unweighted if its adjacency matrix A ∈ {0, 1}n×n and is 
undirected if A is symmetric.
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The focus of this paper is on equitable partitions and extending the original spectral 
theory associated with equitable partitions. An equitable partition is defined as follows.

Definition 2.1 (Equitable partition). An equitable partition of a graph G = (V, E, ω) is a 
partition π = {V1, . . . , Vk} of V with the property that for all s, t ∈ {1, 2, . . . , k} the sum

∑
j∈Vt

aij = dst

is constant for any i ∈ Vs. The matrix D = [dst], which we write as D = Aπ ∈ Rk×k, is 
the divisor matrix of A associated with π. The graph Gπ with adjacency matrix Aπ is 
the divisor graph of G.

One can think of the divisor graph Gπ as a global summary of how the vertices in the 
elements of π are connected to each other. The graph Gπ is effectively a coarse-graining 
of the graph G into a directed graph in which each element of π = {V1, V2, . . . , Vk} is 
represented by a single vertex. The directed edge weight of ω(est) = [Aπ]st is the sum 
of weighted edges from any vertex i ∈ Vs to vertices j ∈ Vt. If G is a simple graph, then 
the weight ω(est) in Gπ is the number of edges between any vertex in Vs and any vertex 
in Vt as the matrix A ∈ {0, 1}n×n (see Example 2.1).

Given a vertex partition π = {V1, . . . , Vk} of G, we can use π to partition the corre-
sponding adjacency matrix into a block matrix of the form

A =

⎡
⎢⎣

A11 . . . A1k

...
. . .

...
Ak1 . . . Akk

⎤
⎥⎦ (3)

where Aij is the |Vi| × |Vj | submatrix of A whose rows are indexed by the vertices in Vi

and the columns are indexed by the vertices in Vj. For an equitable partition π we can 
always relabel the vertices of G such that vertices in the same element of π are labeled 
consecutively and vertices in Vi precede vertices in Vj for i < j. For simplicity, in what 
follows we will assume the adjacency matrix A = A(G) is partitioned as in Equation (3).

For an equitable partition π = {V1, . . . , Vk}, the partitioned adjacency matrix A in 
Equation (3) has the property that each sub-matrix Ast has constant row sums. The 
reason is that the entries of Ast will be the entries of A summed in Definition 2.1 for 
a given Vs and Vt. Since this sum is constant for any given row i, the row sums of Ast

are constant. This constant row sum for the submatrix Ast is the st-entry in the divisor 
matrix D = Aπ.

Example 2.1. Consider the simple graph G shown in Fig. 1 (top left) and its adjacency 
matrix A (top right). This graph has the equitable partition π = {V1, V2, V3} where 
V1 = {1, 2}, V2 = {3, 4, 5, 6, 7, 8}, and V3 = {9, 10} represent the red, yellow, and green 
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Fig. 1. Top Left: A simple graph G = (V, E, ω) with equitable partition π = {V1, V2, V3} is shown where 
V1 = {1, 2}, V2 = {3, 4, 5, 6, 7, 8}, and V3 = {9, 10} are indicated by the red, yellow, and green vertices, 
respectively. Bottom Left: The divisor graph Gπ is shown with vertices 1 (red), 2 (yellow), and 3 (green) 
corresponding to the elements V1, V2, and V3 of the equitable partition π, respectively. Edge weights of Gπ

are shown in black. Top Right: The adjacency matrix A = A(G) is shown, which is partitioned with respect 
to π and has constant row sums in each block. Bottom Right: The divisor matrix Aπ = A(Gπ) is shown. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

vertices, respectively. The divisor graph Gπ and divisor matrix Aπ are shown in Fig. 1
(bottom left and bottom right, respectively). Note each entry of Aπ corresponds to the 
constant rows sums of each submatrix Ast in A.

A classical result of spectral graph theory is that the eigenvalues of Gπ are a subset 
of the eigenvalues of G. The proof of this result can be found in [2]. (A generalization of 
this theorem can be found in Section 3, see Theorem 3.1.)

Theorem 2.1 (Spectra of a divisor matrix). If π is an equitable partition of a graph G

then σ(Gπ) ⊆ σ(G).

The graph G in Example 2.1 has the eigenvalues

σ(G) = {3.193, −2.193, 2.115, −1.861, −1, −1, −1, 1, 1, −0.254}. (4)

Its divisor graph has the eigenvalues

σ(Gπ) = {3.193, −2.193, 1} (5)

so that σ(Gπ) ⊂ σ(G) (cf. Fig. 1).
Theorem 2.1 allows us to state the following definition.

Definition 2.2 (Global and local eigenvalues). If π is an equitable partition of a graph G, 
then the eigenvalues of its divisor graph σ(Gπ) are the global eigenvalues of G associated 
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with the equitable partition π. The other eigenvalues, denoted by σ�
π(G) = σ(G) −σ(Gπ), 

are the local eigenvalues of G associated with the equitable partition π.

We note that in this definition we are considering the set of eigenvalues as a multiset. 
A consequence of this is that if a particular eigenvalue has an algebraic multiplicity 
greater than one, then it could be both a global and a local eigenvalue. For example, 
the eigenvalue λ = 1 from Example 2.1 is both a global and a local eigenvalue of the 
graph in Fig. 1 with respect to the equitable partition π (cf. Equations (4) and (5)). In 
particular, the global eigenvalues in this example are σ(Gπ) = {3.193, −2.193, 1} and 
the local eigenvalues are

σ�
π(G) = σ(G) − σ(Gπ) = {2.115, −1.861, −1, −1, −1, 1, −0.254}.

Given that the global eigenvalues are the eigenvalues of the divisor graph, a natural 
question is whether it is possible to recover the local eigenvalues in a similar manner. 
Here we show that the local eigenvalues of G are the eigenvalues of a collection of induced 
subgraphs Gi of G, where each has an equitable partition π̄i associated with the original 
equitable partition π. In other words, the local eigenvalues of G are related to specific 
substructures of the graph G, which is the main result of this paper (see Theorem 2.2
and Example 2.3).

In order to identify these induced subgraphs we introduce the following notion of a 
local equitable partition.

Definition 2.3 (Local equitable partition). Given a graph G = (V, E, ω) with adjacency 
matrix A and an equitable partition π = {V1, . . . , Vk}, we say that two partition elements 
Vs and Vt such that s �= t are consistently connected if Ast = αstJ|Vs|,|Vt| for some 
αst ∈ C. A subset π̄ ⊆ π is a local equitable partition with respect to π if every Vs ∈ π̄ is 
consistently connected to every Vt ∈ π − π̄.

Example 2.2. Consider the subsets π̄1 = {V2, V3} and π̄2 = {V1, V2} of the equitable 
partition π = {V1, V2, V3} of the graph G in Fig. 1. In this case the subset π̄1 is not a 
local equitable partition with respect to π as the submatrix

A21 =
[

1 1 1 0 0 0
0 0 0 1 1 1

]T

does not have constant entries, i.e. A12 �= αJ2,6 for any α ∈ C. However, π̄2 is a local 
equitable partition with respect to π as

A13 =
[

1 1
1 1

]
and A23 =

[
0 0 0 0 0 0
0 0 0 0 0 0

]T

have constant entries respectively.
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Suppose that G = (V, E, ω) has the set of local equitable partitions π̄1, ̄π2, . . . , ̄πr with 
respect to the same equitable partition π. If π̄i = {V̄1, V̄2, . . . , V̄�} we let Vπ̄i

= ∪�
j=1V̄j , 

i.e. the set of all vertices in π̄i. Using this convention, for each i = 1, 2, . . . , r we let Gi

be the induced subgraph of G with vertex set Vπ̄i
.

Definition 2.4 (Complete set of local equitable partitions). Let G = (V, E, ω) be a graph 
with equitable partition π. We say the set of local equitable partitions {π̄i}r

i=1 is complete
if it is both disjoint and π − ∪r

i=1π̄i is a set of singleton partition elements of π or the 
empty set.

Given an equitable partition π = {V1, V2, . . . , Vk} there is a always at least one com-
plete set of local equitable partitions associated with it. The reason is that we can always 
choose this complete set to be the single local equitable partition π̄1 ⊆ π consisting of 
the nonsingle vertex elements of π. If there are more available local equitable partitions 
we can always create a larger set that is a complete set of local equitable partitions, i.e. 
a more refined complete set of local equitable partitions.

With this in place we can now give our main result, namely that the eigenvalues of a 
graph with an equitable partition are either global eigenvalues of the original graph, or 
local eigenvalues of certain subgraphs determined by the local equitable partition of π.

Theorem 2.2 (Complete equitable decomposition). Let π be an equitable partition of the 
graph G = (V, E, ω) whose adjacency matrix is Hermitian. If Gi are the induced subgraphs 
corresponding to a complete set of local equitable partitions π̄i of π for i = 1, 2, . . . , r then

σ(G) = σ(Gπ) ∪ [σ�
π̄1

(G1) ∪ · · · ∪ σ�
π̄r

(Gr)],

which we refer to as a complete equitable decomposition of G with respect to π.

We save the proof of Theorem 2.2 for Section 4 where we identify necessary and 
sufficient conditions for when Gi has the property that σ�

π̄i
(Gi) ⊆ σ(G) − σ(Gπ).

Example 2.3. Consider the simple graph G = (V, E, ω) in Fig. 2 with equitable partition 
π = {V1, V2, V3, V4, V5, V6} colored red, yellow, green, brown, blue, orange; respectively. 
The equitable partition π has the four local equitable partitions π̄1 = {V3}, π̄2 = {V1, V2}, 
π̄3 = {V5}, and π̄4 = {V6} corresponding to the graphs G1, G2, G3, and G4, shown left, 
respectively. These collectively form a complete set of local equitable partitions, i.e. 
π − ∪4

i=1π̄i = V4 = {11} is a singleton partition element of π. Here the divisor graph of 
G has the eigenvalues

σ(Gπ) = {3.83, −2.91, 2.82, 1.34, −1.07, 1}.

The local eigenvalues of each graph Gi for i = 1, 2, 3, 4 are given by
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Fig. 2. A simple graph G = (V, E, ω), shown left, with equitable partition π = {V1, V2, V3, V4, V5, V6}
indicated by red, yellow, green, brown, blue, and orange; respectively. The equitable partition π has the 
four local equitable partitions π̄1 = {V3}, π̄2 = {V1, V2}, π̄3 = {V5}, and π̄4 = {V6} corresponding to the 
graphs G1, G2, G3, and G4, shown right, respectively. The eigenvalues of the graph G are then given by 
the union of its global and local eigenvalues σ(G) = σ(Gπ) ∪ σ�

π̄1
(G1) ∪ σ�

π̄2
(G2) ∪ σ�

π̄3
(G3) ∪ σ�

π̄4
(G4) (cf. 

Example 2.3).

σ�
π̄1

(G1) =σ(G1) − σ((G1)π̄1) = {1, −1} − {1} = {−1}
σ�

π̄2
(G2) =σ(G2) − σ((G2)π̄2)

={2.23, 2.11, −1.86, −1.30, −1, −1, 1, −0.25} − {2.23, −1.30}
={2.11, −1.86, −1, −1, 1, −0.25}

σ�
π̄3

(G3) =σ(G3) − σ((G3)π̄3) = {2, −1, −1} − {2} = {−1, −1}
σ�

π̄4
(G4) =σ(G4) − σ((G4)π̄4) = {1, −1} − {1} = {−1}.

Using Theorem 2.2 the eigenvalues of the graph G are the union of its local and global 
eigenvalues given by σ(G) = σ(Gπ) ∪ σ�

π̄1
(G1) ∪ σ�

π̄2
(G2) ∪ σ�

π̄3
(G3) ∪ σ�

π̄4
(G4) or

σ(G) = {3.83, −2.91, 2.82, 1.34, −1.07, 1} ∪ {−1}
∪ {2.11, −1.86, −1, −1, 1, −0.25} ∪ {−1, −1} ∪ {−1},

which is a complete equitable decomposition of G with respect to π.
We note the complete set of local equitable partitions {π̄4

i=1} is not unique. For in-
stance, the set {π̄1, ̄π2, ̄π3 ∪ π̄4} is a less refined but second complete set of local equitable 
partitions, which can similarly be used to create a different complete equitable decom-
position of the graph G.

3. Global and local eigenvectors

In order to prove Theorem 2.2, we need to develop the theory of local and global 
eigenvectors. In a similar manner to how we partition the adjacency matrix A with 
respect to π we can partition an eigenvector

v =
[

v(1)T . . . v(k)T
]T

∈ Cn

of an adjacency matrix A with respect to a vertex partition π = {V1, . . . , Vk} where 
v(j) ∈ C|Vj | denotes the entries of v indexed by Vj . For a collection of eigenvectors 
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v1, . . . , vn partitioned by π, we denote the entries of the ith eigenvector vi indexed by 
the element Vj as vi(j).

Given a graph G on |V | = n vertices with a vertex partition π = {V1, . . . , Vk}, the 
characteristic matrix of G with respect to π is the matrix S = [sij ] ∈ {0, 1}|V |×k where 
each column of S represents a partition element, and each row represents a vertex. The 
entry sij of S is given by

sij =
{

1 if i ∈ Vj

0 otherwise.

ST S is the nonsingular diagonal matrix diag(|V1|, |V2|, . . . , |Vk|). This is due to ST S being 
a square k × k matrix and the columns of S being orthogonal. Therefore [ST S]ij = 0 for 
i �= j, and [ST S]ii = |Vi| > 0.

The eigenvectors of the divisor graph Gπ are related to the eigenvectors of G in the 
following way.

Theorem 3.1 (Eigenpairs of the divisor matrix). If π is an equitable partition of a graph 
G with an Hermitian adjacency matrix and (λ, v) is an eigenpair of the divisor matrix 
Aπ, then (λ, Sv) is an eigenpair of A = A(G).

Similar to the proof of Theorem 2.1 the proof of Theorem 3.1 can be found in [2].
A useful feature of the characteristic matrix is that it connects the adjacency matrix 

of the graph to its divisor matrix via the following theorem which is proved in [12].

Theorem 3.2. Let π be an equitable partition of the graph G with characteristic matrix 
S, A the adjacency matrix, and Aπ the adjacency matrix of the divisor graph. Then

AS = SAπ

Aπ = (ST S)−1ST AS.

A known consequence of the fact that AS = SAπ is that the col(S) is A-invariant 
[2,12]. Therefore there must exist a set of k orthogonal eigenvectors that span col(S) and 
can be written as a linear combination of the columns of S.

Since sij = 1 if i ∈ Vj and is 0 otherwise, then any linear combinations of the columns 
of S will result in a vector v = [v(1)T . . . v(k)T ]T with constant entries in v(j) for 
j = 1, . . . , k. As each v(j) has length equal to |Vj | then this implies (col(S))⊥ must also 
be A-invariant. Thus, (col(S))⊥ has a basis consisting of n −k eigenvectors wk+1, . . . , wn

of A that are orthogonal to the k eigenvectors that span col(S).
In order for v · w = 0 where v ∈ col(S) and w ∈ col(S)⊥, the sum of the entries in 

w(j) must be zero for a fixed j = 1, 2, . . . , k. Therefore, there exists a set of eigenvectors 
of A such that we can divide them into two groups: those with constant entries in v(j)
for each j (which come from col(S)), and those where the entries in each v(j) sum to 
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0 for each j (which come from (col(S))⊥). While this is known, we formally give these 
eigenvectors the names global and local eigenvectors, respectively.

Definition 3.1 (Global eigenvectors). Let G be a graph with equitable partition π =
{V1, . . . , Vk}. We say v = [ v(1)T . . . v(k)T ]T ∈ Cn is a global eigenvector of G if v is 
an eigenvector of the graph’s adjacency matrix and for all j = 1, 2, . . . , k each entry of 
v(j) is constant.

For the graph G in Fig. 1 (top left) with equitable partition π = {V1, V2, V3}, the 
global eigenvalue λ = 1 has the global eigenvector

vg =
[

v(1)T v(2)T v(3)T
]T

=
[

0 0 −2 −2 −2 −2 −2 −2 3 3
]T

.

(6)
We note that as vg is a global eigenvector, each of the entries in v(j) for a given j = 1, 2, 3
is constant, where |V1| = 2, |V2| = 6, and |V3| = 2.

Definition 3.2 (Local eigenvectors). Let G be a graph with equitable partition π =
{V1, . . . , Vk}. We say v = [ v(1)T . . . v(k)T ]T ∈ Cn is a local eigenvector of G if 
v is an eigenvector of the graph’s adjacency matrix and for each j = 1, 2, . . . , k the sum 
of the entries in v(j) is zero.

Again for the graph G in Fig. 1 (top left) with equitable partition π = {V1, V2, V3}
the local eigenvalue λ = 1 has the local eigenvector

v� =
[

v(1)T v(2)T v(3)T
]T

=
[

0 0 −2 1 1 −2 1 1 0 0
]T

. (7)

Here the entries of v(j) for a given j = 1, 2, 3 sum to zero where, as before, |V1| = 2, 
|V2| = 6, and |V3| = 2.

In Definition 3.1 we chose the name global eigenvectors because the eigenvalues associ-
ated with global eigenvectors are the “global eigenvalues” defined in Definition 2.2. The 
converse however is not true. For instance, consider the combination of the two vectors 
in Equations (6) and (7) into the eigenvector

v = vg + v� =
[

v(1)T v(2)T v(3)T
]T

=
[

0 0 −4 −1 −1 −4 −1 −1 3 3
]T

,

(8)

which is neither a global eigenvector nor a local eigenvector. This is possible as the 
associated eigenvalue λ = 1 is both a local and a global eigenvalue of G with respect to 
the equitable partition.

In the following theorem we show if λ ∈ σ(Gπ) is a global eigenvalue, there exists a 
global eigenvector associated with it.
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Theorem 3.3. Let G be a graph with Hermitian adjacency matrix and equitable partition 
π.
(i) If (λ, v) is an eigenpair of G where v is a global eigenvector with respect to π then 
λ ∈ σ(Aπ); and
(ii) If λ ∈ σ(Aπ) then there exists a global eigenvector of A associated with λ.

Proof. If v is a global eigenvector, then we can write v =
[

a11T
|V1| . . . ak1T

|Vk|

]T

where 1|Vj | is the all ones vector of size |Vj |. Then

Av =

⎡
⎢⎣

A11 . . . A1k

...
. . .

...
Ak1 . . . Akk

⎤
⎥⎦

⎡
⎢⎣

a11|V1|
...

ak1|Vk|

⎤
⎥⎦

=

⎡
⎢⎣

a1A111|V1| + · · · + akA1k1|Vk|
...

a1Ak11|V1| + · · · + akAkk1|Vk|

⎤
⎥⎦ = λ

⎡
⎢⎣

a11|V1|
...

ak1|Vk|

⎤
⎥⎦ .

Each submatrix Aij will have constant row sums due to G having the equitable par-
tition π. Therefore, we can write Aij1|Vj | = bij1|Vi| where the constant bij is the ijth 
entry in Aπ. Considering an arbitrary entry in Av, we get that the following holds for 
all i = 1, . . . , k:

a1Ai11|V1| + · · · + akAik1|Vk| = a1bi11|Vi| + · · · + akbik1|Vi|

= (a1bi1 + · · · + akbik)1|Vi|

= λai1|Vi|.

From the final equality we can we conclude (a1bi1 + · · · + akbik) = λai. Therefore the 
vector w = [ a1 . . . ak ]T satisfies Aπw = λw implying λ ∈ σ(Aπ).

If λ ∈ σ(Aπ), then by Theorem 3.1, which requires A to be Hermitian, there ex-
ists an eigenvector v of A that can be written as the matrix-vector product Sw =
[ ((Sw)(1))T . . . ((Sw)(k))T ]T where w is an eigenvector of Aπ associated with λ

and S is the characteristic matrix for G. Recall that, for simplicity and without loss of 
generality, we partitioned the rows of S according to the equitable partition π. Therefore 
S will have |Vi| consecutive, identical rows for a given i = 1, . . . , k implying the entries 
of (Sw)(i) will be identical after multiplying S and w. Given this is true for all i, Sw is 
by definition a global eigenvector. �

For a graph G with a equitable partition π it is always possible to find a set of 
corresponding eigenvectors which can be partitioned into global eigenvectors and local 
eigenvectors. A consequence of Theorem 3.3 is that all the local eigenvalues σ�

π(G) must 
all be associated with local eigenvectors. Thus we create a simple correspondence between 
global and local eigenvalues as well as global and local eigenvectors, respectively.
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4. Proof of the complete equitable decomposition method

In this section we prove the main result of this paper, which describes how we can re-
cover all the eigenvalues of a graph (matrix) using its complete equitable decomposition. 
To do this we require the following theorem.

Theorem 4.1. Let π = {V1, . . . , Vk} be an equitable partition on a graph G with Hermitian 
adjacency matrix A, and π̄ a subset of π. Let G∗ be the induced subgraph of G restricted 
to the union of vertices contained in π̄. Then π̄ is a local equitable partition if and only 
if σ�

π̄(G∗) ⊆ σ(G) − σ(Gπ).

Proof. Suppose π̄ has s < k partitions. Without loss of generality, suppose the first s
partitions of A are the s partitions contained in π̄. First we define m = |V (G∗)|. Also 
we let T = [Im 0T

(n−m),m]T , and thus the principal submatrix B11 = (T )T AT is the 
adjacency matrix of G∗. We write A as the partitioned block matrix so that

A =
[

B11 B12
B21 B22

]
.

Let v be a local eigenvector of G∗ so that

T v =
[

vT 0T
]T

=
[

v(1)T . . . v(s)T 0T
]T

�= 0.

In order for T v to be an eigenvector of A, the following equation must hold:

A(Tv) =
[

B11 B12
B21 B22

] [
v
0

]
=

[
B11v + B120
B21v + B220

]
=

[
B11v
B21v

]
=

[
λv
0

]
= λ(T v)

which implies that B21v = 0. We can write B21 as the following block matrix

B21 =

⎡
⎢⎣

A(s+1)1 . . . A(s+1)s

...
. . .

...
Ak1 . . . Aks

⎤
⎥⎦

where Aij represents connections between partitions Vi ∈ π where Vi /∈ π̄, and Vj ∈ π̄

for all i ∈ {s + 1, . . . , k}, and for all j ∈ {1, . . . , s}. Hence,

B21v =

⎡
⎢⎣

A(s+1)1 . . . A(s+1)s

...
. . .

...
A . . . A

⎤
⎥⎦

⎡
⎢⎣

v(1)
...

v(s)

⎤
⎥⎦ =

⎡
⎢⎣

A(s+1)1v(1) + · · · + A(s+1)sv(s)
...

A v(1) + · · · + A v(s)

⎤
⎥⎦ .
k1 ks k1 ks
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Assume π̄ is a local equitable partition. Therefore, for all i, j we have the |Vi| × |Vj |
matrix Aij = αijJ|Vi|,|Vj | where α ∈ C. Because v is a local eigenvector, the sum of the 
entries in v(i) is 0. Thus Aijv(j) = αijJ|Vi|,|Vj |v(j) = αij0 = 0 for all i and j implying 
B21v = 0. This means (λ, T v) is a local eigenpair of G where (λ, v) is a local eigenpair 
of G∗. Since (λ, v) was an arbitrary local eigenpair of G∗, we have every local eigenvalue 
of G∗ will be a local eigenvalue of G. Thus, σ�

π̄(G∗) ⊆ σ(G) − σ(Gπ).
For the other implication, suppose σ�

π̄(G∗) ⊆ σ(G) − σ(Gπ) for the subgraph G∗
chosen from π̄ ⊆ π. We will show π̄ must be a local equitable partition. Since we set 
|V (G∗)| = m and assumed π̄ had s partition elements, this implies π̄ is an equitable 
partition on G∗ that has s partition elements and thus s linearly independent global 
eigenvectors. Also there are m − s linearly independent local eigenvectors of G∗ because 
B is Hermitian due to being a principle submatrix of the Hermitian matrix A.

We are assuming that σ�
π̄(G∗) ⊆ σ(G) −σ(Gπ), which implies B21v = 0 for every local 

eigenvector v of G∗. If we consider an arbitrary row-vector a =
[

a1 . . . am

]
of B21, 

then we know that v · aT = 0 for all local eigenvectors of v of G∗. Also, we can partition 
a according the vertex partitions Vi ∈ π̄ and write a =

[
a(1)T . . . a(s)T

]
. Then we 

can write the following system of equations in matrix form

LaT =

⎡
⎢⎢⎣

v1(1)T

. . . v1(s)T

...
. . .

...
v(m−s)(1)T

. . . v(m−s)(s)T

⎤
⎥⎥⎦

⎡
⎢⎣

a(1)
...

a(s)

⎤
⎥⎦ = 0

where L is a (m − s) × m matrix that has linearly independent local eigenvector rows.
By the Rank-Nullity Theorem, we know the rank of L is m − s and the nullity is s. 

Notice the columns of the characteristics matrix S of G∗ forms a basis for the nullspace 
of L. Recall that the ith column of S will take the form

si =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0|V1|
...

1|Vi|
...

0|Vs|

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where there is an all-ones vector corresponding to the ith partition for 1 ≤ i ≤ s and 
zeros elsewhere. Since the entries in each vk(i) sum to zero for all 1 ≤ k ≤ m − s, then 
vk(i) · 1|Vi| = 0 for all k. Therefore, each si is contained in null-space of L. Clearly this 
set is also linearly independent. This means aT is a linear combination of the columns of 
S, due to aT being in the nullspace of L, implying that a(i) = αi1|Vi| for all 1 ≤ i ≤ s. 
Thus we can write a =

[
α11T

|V1| . . . αs1T
|Vs|

]
. Given a was an arbitrary row of B21, 

we know this must hold for all rows of B21.
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The rows of the submatrix Aij from B21 can be written as αi1T
|Vj | where αi could be 

unique to the row. However, we show this is not the case because the equitable partition 
π on G guarantees Aij will have constant row sums. Thus α must be constant and cannot 
vary across the rows of Aij . Hence, Aij = αijJ|Vi|,|Vj |. This is true for every block of B21
which is the definition of local equitable partition. �

Recall our main result, Theorem 2.2, that states the following. Let π = {V1, . . . , Vk}
be an equitable partition of a graph G with a Hermitian adjacency matrix A and let 
π̄1, . . . , ̄πr be a complete set of local equitable partitions with corresponding subgraphs 
G1, . . . , Gr. Then

σ(G) = σ(Gπ) ∪ [σ�
π̄1

(G1) ∪ · · · ∪ σ�
π̄r

(Gr)].

The following is a proof of Theorem 2.2

Proof. Let π be an equitable partition of G with a complete set of local equitable par-
titions {π̄1 . . . π̄r}. Thus π − ∪r

i=1π̄i is a set of singleton partition elements of π, and 
suppose |π − ∪r

i=1π̄i| = s. We can partition A into r + s partitions as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 . . . B1r . . . B1(r+s)
...

. . .
...

. . .
...

Br1 . . . Brr . . . Br(r+s)
...

. . .
...

. . .
...

B(r+s)1 . . . B(r+s)r . . . B(r+s)(r+s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where Bii is the adjacency matrix for the subgraph Gi selected by the local equitable 
partition π̄i for 1 ≤ i ≤ r. When r + 1 ≤ i, j ≤ r + s, Bij represents a singleton partition 
element of π and is a 1 × 1 matrix.

Now consider a local eigenpair (λ, v) of G. We partition

v =
[

v[1]T . . . v[r]T . . . v[r + s]T
]T

where v[i] denotes the entries of v indexed by V (Gi), the group of partition elements 
that make up Bii. If r + 1 ≤ i ≤ r + s, then |v[i]| = 1 and v[i] = 0 because v is a local 

eigenvector. Thus we can write v =
[

v[1]T . . . v[r]T . . . 0
]T

. Hence, we get

Av =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11 . . . B1r . . . B1(r+s)
...

. . .
...

. . .
...

Br1 . . . Brr . . . Br(r+s)
...

. . .
...

. . .
...

B . . . B . . . B

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(r+s)1 (r+s)r (r+s)(r+s)
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×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v[1]
...

v[r]
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11v[1] + · · · + B1rv[r]
...

Br1v[1] + · · · + Brrv[r]
...

B(r+s)1v[1] + · · · + B(r+s)rv[r]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Notice for i �= j that Bij is a block matrix where each block inside Bij is a matrix 
Aab = αabJ|Va|,|Vb|. Therefore Bijv[j] = 0 since the sum of the entries in v[j] equals zero. 
Now Av simplifies to

Av =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B11v[1] + · · · + B1rv[r]
...

Br1v[1] + · · · + Brrv[r]
...

B(r+s)1v[1] + · · · + B(r+s)rv[r]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11v[1]
...

Brrv[r]
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λv

By definition v �= 0, so there exists some i in which v[i] �= 0 and Biiv[i] = λv[i]
implying λ ∈ σ�

π̄i
(Gi). Hence σ(G) − σ(Gπ) ⊆ σ�

π̄1
(G1) ∪ · · · ∪ σ�

π̄r
(Gr).

By Theorem 4.1.1, we know σ�
π̄i

(Gi) ⊆ σ(G) − σ(Gπ) for all i = 1, . . . , r resulting in 
σ�

π̄1
(G1) ∪ · · · ∪ σ�

π̄r
(Gr) ⊆ σ(G) − σ(Gπ). Thus σ(G) − σ(Gπ) = σ�

π̄1
(G1) ∪ · · · ∪ σ�

π̄r
(Gr).

Finally, we get the result that

σ(G) = σ(Gπ) ∪ [σ(G) − σ(Gπ)] = σ(Gπ) ∪ [σ�
π̄1

(G1) ∪ · · · ∪ σ�
π̄r

(Gr)]. �
Thus the eigenvalues of a graph G with an adjacency matrix A and equitable partition 

π can be decomposed into the global eigenvalues of G and a collection of local eigenvalues 
from induced subgraphs Gi of G that respect the equitable partition π. In short, the 
eigenvalues are the collection of the “global eigenvalues of the global equitable partition 
together with the local eigenvalues of the local equitable partitions.”

5. Computing eigenvalues using complete equitable partitions

The standard and likely most well-known algorithm for finding the eigenvalues of a 
matrix A ∈ Cn×n has computational complexity O(n3) (see, for instance, [22]). Other 
algorithms have been proposed with lower computational complexity O(nb) for b < 3
(see [8]). In this section we consider how quickly one can find all the eigenvalues of a 
Hermitian matrix A ∈ Cn×n if it is the adjacency matrix of a graph G with a nontrivial 
equitable partition π.

The main result of this section is that it is, in principle, possible to find the eigenvalues 
of a graph (matrix) faster by finding its complete equitable decomposition rather than by 



J. Drapeau et al. / Linear Algebra and its Applications 701 (2024) 112–137 127
using standard methods. Our strategy is to leverage our main result found in Theorem 2.2
which decomposes the eigenvalues of a graph (matrix) into the disjoint union

σ(G) = σ(Gπ) ∪ [σ�
π̄1

(G1) ∪ · · · ∪ σ�
π̄r

(Gr)].

Our strategy is to individually find the eigenvalues σ(Gπ), σ�
π̄1

(G1), . . . σ�
π̄r

(Gr). The 
improvement in computational complexity naturally depends on the specific details of 
the graph’s equitable partition. Roughly speaking, the less trivial the equitable partition 
the faster the graph’s eigenvalues can be found. (See, Theorem 5.1 and Example 5.1.)

It is worth noting that many graphs associated with real-world data are known to 
have nontrivial equitable partitions. For example, the authors of [18] show that many 
real-world networks have nontrivial symmetries. As any graph symmetry induces an 
equitable partition, such networks have nontrivial equitable partitions.

5.1. The LEParD algorithm

In this section we will outline our algorithm for finding the eigenvalues for a graph 
(matrix) and describe its computational complexity. As a complete equitable decompo-
sition requires an equitable partition of a graph we choose the graph’s coarsest equitable 
partition.

Definition 5.1 (Coarsest equitable partition). An equitable partition π∗ = {V ∗
1 , . . . , V ∗

k }
of a graph G is the graph’s coarsest equitable partition if for any partition element Vi ∈ π, 
where π is another equitable partition on G, the element Vi ⊆ V ∗

j for some j ∈ {1, . . . , k}.

For a given graph, the coarsest equitable partition always exists and is unique [24]; 
moreover it can be found relatively quickly [1].

The algorithm we propose for finding the eigenvalues of a graph (matrix) is referred 
to as the LEParD Algorithm, or Local Equitable Partition Decomposition Algorithm, 
which is comprised of the following four steps.

The LEParD Algorithm. Let G = (V, E, ω) be a graph with a Hermitian adjacency 
matrix A ∈ Cn×n. To find its eigenvalues:

Step (1) Find the coarsest equitable partition π = {V1, V2, . . . , Vk} of G;
Step (2) Compute the global eigenvalues σ(Gπ) of the divisor matrix Aπ;
Step (3) Find the local equitable partitions π̄i of G to identify the subgraphs Gi; and
Step (4) For each Gi, compute its local eigenvalues σ�

πi
(Gi) = σ(Gi) − σ((Gi)πi

).

To carry out Steps (2) and (4) of the LEParD algorithm we need to compute the 
eigenvalues of specific graphs, i.e. Gπ, G1, . . . , Gr. This can be done using any algorithm 
we like. If the particular algorithm we use has order O(ab) for a graph of size |G| = a
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we refer to this as using an eigenvalue finder of order O(ab). With this in place we can 
bound the computational complexity of the LEParD algorithm.

Theorem 5.1 (Computational complexity of the LEParD algorithm). Let G = (V, E, ω)
be a graph with coarsest equitable partition π = {V1, V2, . . . , Vk}. Using an eigenvalue 
finder of order O(ab) the computational complexity of running the LEParD Algorithm 
on G has order

O
(

m log(n) + kb + n +
r∑

i=1
nb

i

)
(9)

where n = |G|, m = |E|, and ni = |Gi| for i ∈ {1, . . . , r}.

Proof. As each piece of the temporal complexity in Equation (9) corresponds to a step 
in the LEParD algorithm here we prove the complexity of each piece.

1. The coarsest equitable partition π of G = (V, E, ω) is found using the algorithm in 
[1], which has computational complexity O(m log(n)).

2. As |π| = k then |Gπ| = k and the computational complexity of finding σ(Gπ) is 
O(kb).

3. We can identify the local equitable partitions π̄i and the associated subgraphs Gi by 
finding the constant submatrices Ast = αstJ|Vs|,|Vt| of the graph’s adjacency matrix. 
In Theorem 5.2 we show that the computational complexity of this step is O(m + n)
using Algorithm 1. Note, however, that m is omitted in the final O expression since 
m < m log(n).

4. Finding the local eigenvalues σ�
π̄i

(Gi) = σ(Gi) − σ((Gi)πi
) has computational com-

plexity in O
(
nb

i

)
where ni = |Gi|, since |Gi| ≥ |(Gi)πi

|. Over all local equitable 
partitions this has computational complexity O

( ∑r
i=1 nb

i

)
.

Together, Steps (1)–(4) have computational complexity given by Equation (9). �
Since the graphs G1, G2, . . . , Gr are disjoint then it is possible, at least in principle, to 

simultaneously compute their eigenvalues, i.e., to parallelize the LEParD algorithm. Us-
ing this Parallelized LEParD algorithm we have the following computational complexity 
bound, which follows from the proof of Theorem 5.1.

Corollary 5.1 (Computational complexity of the parallelized LEParD algorithm). Let G =
(V, E, ω) be a graph with coarsest equitable partition π = {V1, V2, . . . , Vk}. Using an 
eigenvalue finder of order O(ab) the computational complexity of running the Parallelized 
LEParD Algorithm on G has order

O
(

m log(n) + kb + n + max{nb
i }r

i=1

)
(10)
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where n = |G|, m = |E|, ni = |Gi| for i ∈ {1, . . . , r}.

In the following section we show that local equitable partitions can be computed in 
O(m +n) time justifying the claim that Step (3) of our algorithm has this as its temporal 
complexity.

5.2. The LEP finder and monad LEP sets

To carry out Step (3) of the LEParD algorithm we will construct a specific set of local 
equitable partitions (LEPs) for a given graph and coarsest equitable partition π. The 
main idea is that π̄ ⊆ π is a local equitable partition of π if and only if the partition 
elements of π̄ are consistently connected to those not in π̄ (see Definition 2.3). Thus, 
partition elements that are not consistently connected cannot be LEPs on their own. 
By grouping such elements together as one LEP, π̂, we can create a subgraph that is 
consistently connected to all other Vi /∈ π̂, which will be an LEP.

There often exist many different sets of LEPs. However, not all LEP sets can be 
leveraged for efficient eigenvalue calculation. For instance, the trivial LEP π̄0 = π may 
be formed by grouping all equitable partition elements together; however, we must then 
compute eigenvalues of the subgraph G0 = G, providing no performance advantage over 
simply computing the eigenvalues of the original graph G with traditional methods. To 
maximize efficiency, the LEParD algorithm constructs the smallest possible LEPs from 
the coarsest equitable partition. We call this set of LEPs the Monad LEP Set, and define 
it as follows.

Definition 5.2 (Monad LEP set). Let G = (V, E, ω) be a graph with coarsest equitable 
partition π = {V1, V2, ..., Vk}. Then a complete set of LEPs L = {π̄1, ..., ̄πr} with respect 
to π is the Monad LEP Set if for any other complete set of LEPs L̂ = {π̂1, ..., ̂πs} with 
respect to π each

π̂i =
⋃

j∈Ji

π̄j for some Ji ⊆ {1, . . . , r}.

As using the LEParD algorithm efficiently depends on finding a Monad LEP Set, it 
is important to understand how this set can be directly constructed for a given graph 
and equitable partition. A helpful observation in this regard is the following result.

Proposition 5.1. For a graph G with coarsest equitable partition π, the associated Monad 
LEP Set exists and is unique.

Proof. We prove the existence of a Monad LEP Set L by construction. First, given the 
equitable partition π = {V1, V2, . . . , Vk}, let Vi ∼ Vj mean that Vi and Vj are consistently 
connected to each other, and Vi �∼ Vj mean that they are not; it is easily shown that 
both ∼ and �∼ relations are symmetric. We construct L as follows: for Vi, Vj ∈ π, we 
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place Vi in the same element as Vj if Vi �∼ Vj . More formally, Vi and Vj are in the same 
element π̄i ∈ L iff there exist k1, k2, . . . , kt such that

Vi �∼ Vk1 �∼ Vk2 �∼ · · · �∼ Vkt
�∼ Vj .

Note that, since �∼ is not transitive, it may be the case that Vi ∼ Vj ; indeed, the in-
termediate sequence of equitable partition elements Vk1 , Vk2 , . . . , Vkt

is only necessary if 
Vi ∼ Vj . Further, we note that L = {π̄1, . . . , ̄πr} is a partition of π, since each Vn ∈ π

will be contained in exactly one π̄m ∈ L .
We will now prove that L is a Monad LEP Set. Given some complete set of LEPs 

L̂ = {π̂1, ..., ̂πs}, we wish to show that for all π̂i ∈ L̂ ,

π̂i =
⋃

j∈Ji

π̄j for some Ji ⊆ {1, . . . , r}.

Note that each π̂i and π̄j is simply a set of elements Vα from π. We define Ji = {j | Vα ∈
π̄j for some Vα ∈ π̂i} and proceed with a proof of equality.

(⊆): Given Vα ∈ π̂i, there exists some π̄k ∈ L such that Vα ∈ π̄k, since L is a partition 
of π. Since we defined Ji to include all such indices k, and since π̄k ⊆

⋃
j∈Ji

π̄j , we 
have Vα ∈

⋃
j∈Ji

π̄j .
(⊇): Given Vα ∈

⋃
j∈Ji

π̄j , there exists some k ∈ Ji such that Vα ∈ π̄k. By the definition 

of Ji, there also exists some Vβ ∈ π̄k such that Vβ ∈ π̂i for some π̂i ∈ L̂ . Further, 
by our construction of L , there exist some k1, k2, . . . , kt such that

Vα �∼ Vk1 �∼ Vk2 �∼ · · · �∼ Vkt
�∼ Vβ .

Since π̂i is an LEP, and Vβ ∈ π̂i, then Vβ ∼ Vγ for all Vγ ∈ π−π̂i (see Definition 2.3). 
Since Vkt

�∼ Vβ , it follows that Vkt
∈ π̂i. A simple induction argument is sufficient 

to show also that Vα ∈ π̂i. Hence, π̂i =
⋃

j∈Ji
π̄j , so L is a Monad LEP Set.

Finally, we prove that the Monad LEP Set is unique. Suppose now that there exists 
some other Monad LEP Set L̂ = {π̂1, . . . , ̂πs}. Since π̂k =

⋃
j∈Jk

π̄j for some Jk ⊆
{1, . . . , r}, it must be the case that π̂k ⊇ π̄� for some � ∈ Jk. Similarly, since L̂ is also 
a Monad LEP Set, π̄� =

⋃
i∈I�

π̂i for some I� ⊆ {1, . . . , s}. Since π̂k shares elements 
with π̄�, then k ∈ I�, so π̄� ⊇ π̂k. Thus, it must be the case that π̄� = π̂k. Since π̂k was 
arbitrary, we see that L̂ = L . Hence, the Monad LEP Set L is unique. �

Since a graph’s coarsest equitable partition and Monad LEP Set exist and are unique, 
the LEParD algorithm can be used to improve the performance of standard eigenvalue 
finders, at least in certain cases (see Example 5.1). To compute the Monad LEP Set 
we use Algorithm 1 where, for a graph G = (V, E, ω), we let N(v) = {w ∈ V : ewv ∈
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Algorithm 1: Local Equitable Partition Finder.
Input : G = (V, E, ω)

π, the coarsest equitable partition of G
Output : The Monad LEP Set L

1 LepGraph ← dict()
2 foreach Vi ∈ π do
3 add (Vi, {}) to LepGraph
4 end
5 foreach Vi ∈ π do
6 M ←

⋂
v∈Vi

N(v) /* find neighbors common to all vertices in Vi */
7 foreach v ∈ Vi do

/* for each neighbor of v not shared by all vertices in Vi */
8 foreach w ∈ N(v) \ M do

/* partition elements containing v and w are not consistently connected with 
one another, so group them in the same LEP */

9 if π(v) �= π(w) then
10 LepGraph[π(v)].add(π(w))
11 LepGraph[π(w)].add(π(v))
12 end
13 end
14 end
15 end
16 LEP s ← GetConnectedComponents(LepGraph) /* see Procedure 2 */
17
18 return LEP s /* This will be the Monad LEP Set */

E} denote the set of neighbors of v ∈ V . Additionally, for an equitable partition π =
{V1, V2, . . . , Vk} of G, we let π(v) = Vi if v ∈ Vi.

The final step of Algorithm 1 uses Procedure 2 (GetConnectedComponents) to orga-
nize equitable partition elements into LEPs. This procedure has computational complex-
ity given by the following lemma.

Lemma 5.1. Procedure 2 has time complexity of order O(m + n) and spacial complexity 
of order O(n), where m = |E| and n = |V |.

Proof. Procedure 2 (GetConnectedComponents) is simply a Depth First Search (DFS) 
with some added constant time operations at each step (adding nodes to the Component
or adding the Component to the list of ConnectedComponents). Since it is well known 
that DFS takes O(|E| + |V |) operations, we see that Procedure 2 likewise has runtime 
complexity in O(m + n).

ConnectedComponents and Component may both contain each vertex at most once, 
so their combined size will be at most proportional to 2n. Since vertices in Neighbors

are never simultaneously in V isited, we have |Neighbors| + |V isited| ≤ n, so their 
contribution to the algorithm’s spatial complexity is at most n. Hence, the total space 
used is proportional to 3n ∈ O(n). �
Theorem 5.2. Algorithm 1 has both computational and spatial complexity of order O(m +
n), where m = |E| and n = |V |.
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Procedure 2: GetConnectedComponents(G).
Input : G, a dictionary of (vertex, neighbors) pairs, where neighbors is a set of vertices 

connected to vertex
Output : {π1, π2, . . . , πk}, a partition of the vertices of G into connected components

1 V isited ← set() /* tracks which vertices have already been considered */
2 ConnectedComponents ← list()
3 foreach vertex i in G do
4 if i is not in V isited then
5 Component ← set()
6 Neighbors ← list()
7 Neighbors.add(i)
8 repeat
9 j ← Neighbors.pop()

10 Component.add(j)
11 V isited.add(j)

/* add j’s unvisited neighbors to Neighbors */
12 Neighbors.add(G[j] \ V isited)
13 until Neighbors is empty
14 ConnectedComponents.add(Component)
15 end
16 end
17 return ConnectedComponents

Proof. First, we demonstrate that N(v) and π(v) can be found in linear time and ac-
cessed thereafter in constant time. N(v) may be represented by a dictionary mapping 
each vertex to its neighbors; it may be constructed by iterating over all vertices and 
edges, thus taking linear time with respect to the number of vertices and edges and 
being in O(n + m). Similarly, we may obtain π(v) by constructing a dictionary to point 
vertices to their partition elements by iterating over the elements of π, using each ver-
tex once and thereby achieving temporal complexity in O(n). Accessing N(v) or π(v)
thereafter will be a constant-time lookup in the dictionary.

These dictionaries will have size proportional to the sizes of their keys and values. In 
the case of N(v) we have |keys| + |values| = |V | + |E| = n + m. In the case of π(v), 
|keys| + |values| = |V | + |π| ≤ 2n, since there are at most n partition elements. Thus, 
their spacial complexities are in O(n + m) and O(n), respectively.

In Algorithm 1 the first loop, on lines 2-4, initializes a dictionary with an entry for 
each partition element in π, and therefore may take k operations and will use space 
proportional to k, where k = |π| ≤ |V |. Next, on line 6, we compute M , the set of 
neighbors common to all v ∈ Vi, by iterating over each edge evw connecting some vertex 
v ∈ Vi to a neighboring vertex w ∈ V . Thus, after being repeated for all Vi ∈ π, all edges 
will have been considered exactly once, so line 6 will contribute m operations to the 
overall time complexity. M may not contain more vertices than V , so its space is bounded 
by n. Similarly, the following nested loops on lines 7-8 will result in lines 9-12 being run 
once for each edge if M is empty (the worst case). Since adding to a set is constant in time 
and space, lines 9-12 may contribute up to m operations and take space proportional to 
m. Finally, from Lemma 5.1, GetConnectedComponents has time complexity in O(n +m)
and space complexity in O(n), so it contributes on the order of O(n +m) operations and 
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takes O(n) space. Thus, Algorithm 1 takes k +3m +n ≤ 3m +2n ∈ O(m +n) operations 
and uses k + 2m + n ≤ 2m + 2n ∈ O(m + n) space. �

In the worst case scenario, all equitable partition elements are trivial and thus the 
divisor matrix is identical to the adjacency matrix. In this case, the LEParD algorithm 
performs with the same temporal complexity as the traditional algorithm. That is, 
asymptotically we lose nothing by using the LEParD algorithm to find eigenvalues of 
a graph (matrix). Thus, though our method cannot guarantee performance improve-
ments in all cases, it may surpass traditional methods when a graph has a nontrivial 
coarsest equitable partition as is often the case in real-world networks [18]. The latter is 
considered in the following section.

5.3. An optimized example

In practice, the complexity of the LEParD algorithm will be dominated by finding 
the eigenvalues of divisor matrices and LEP subgraphs (see Theorem 5.1). To illustrate 
the potential of the LEParD algorithm, here we consider a family of graphs that are 
designed to minimize this cost.

Because the LEParD algorithm can find the local eigenvalues of each of the subgraphs 
Gi individually, the local eigenvalues σ�

π̄i
(Gi) can be computed simultaneously for all 

i = 1, . . . , r. Thus, the runtime of the LEParD algorithm, which finds these eigenvalues 
in parallel, is determined by the size of the largest divisor graph or LEP. In the interest 
of minimizing this term, we examine a family of graphs Ln = (Vn, En) for which the 
divisor graph (Ln)π and LEP subgraphs are roughly equal in size and the local divisor 
graphs have a single vertex.

Example 5.1 (Layered graphs). Let Ln = (Vn, En) be the family of layered graphs with 
adjacency matrix

A(Ln) =

⎡
⎢⎢⎢⎣

I J

J 0
. . .

. . . . . . J
J 0

⎤
⎥⎥⎥⎦

where n ∈ N is a perfect square and each J ∈ {1}j×j is the all ones matrix with j =
√

n. 
The graph Ln = (Vn, En) has a coarsest equitable partition πn = {V n

1 , V n
2 , . . . , V n

k }
where the element V n

i = {(i − 1) × √
n + 1, . . . , i × √

n} and k =
√

n. Here all elements 
V n

i ∈ πn are consistently connected to one another, so the Monad LEP Set of Ln is 
simply the set of singletons containing elements of πn, i.e., {{V n

1 }, {V n
2 }, . . . , {V n

k }}. 
This equitable partition is indicated in Fig. 3 for the layered graph L49 = (V49, E49).

A comparison of the time needed to compute the eigenvalues of Ln = (Vn, En) is 
shown in Fig. 4. The methods compared are the Multi-Shift QR algorithm (hereafter 
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Fig. 3. Top: The layered graph L49 = (V49, E49) described in Example 5.1 with coarsest equitable partition 
π49 = {V 49

1 , V 49
2 , . . . , V 49

7 } shown as the red, yellow, purple, orange, green, brown, and blue vertices; 
respectively. From left to right, each vertex in a partition element is connected to each of the vertices in the 
adjacent partition element(s) but to no other vertices, excepting the vertices in the red partition element, 
which additionally have self-loops. Top Middle: The divisor graph (L49)π49 of L49. Bottom Middle and 
Bottom: The subgraphs (L49)1 and (L49)i for i = 2, 3, . . . , 7 are shown, respectively.

QR algorithm) and the LEParD algorithm using QR as its eigenvalue finder. These are 
shown in black and yellow, respectively.

In Fig. 4, at approximately n = 1000 the LEParD algorithm becomes computationally 
more efficient than the QR method. The slope of the red and green regression lines are 
approximately 2.996 and 1.896, respectively, suggesting that the approximate computa-
tional complexity of the QR method and LEParD algorithm is O(n2.996) and O(n1.896)
respectively (see Proposition 5.2 and the paragraph that follows). We note that the LEP-
arD algorithm’s runtime may be further improved via multithreading in a faster language 
(whereas the current implementation uses multiprocessing in Python).

This example suggests that when the coarsest equitable partition of a graph is suffi-
ciently nontrivial, the LEParD algorithm can be used to compute eigenvalues faster than 
can be done using standard methods.

To establish the computational complexity seen in Fig. 4 for the layer graphs Ln =
(Vn, En) we give the following proposition.

Corollary 5.2. Using an eigenvalue finder of order O(ab) the
(i) LEParD algorithm on Ln = (Vn, En) has order O(n3/2 log(n) + n

b+1
2 ); and

(ii) the Parallelized LEParD algorithm on Ln = (Vn, En) has order O(n3/2 log(n) +n
b
2 ).
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Fig. 4. The time needed to run the QR algorithm to find the eigenvalues of the layered graph Ln = (Vn, En)
is compared to the time needed to do the same using the LEParD algorithm. These are shown in blue and 
yellow, respectively, where the horizontal axis gives the size n of the graph and vertical axis, the time, each 
on a logarithmic scale.

Proof. For the graph Ln the number of edges m = (
√

n − 1)|J | + √
n = n3/2 − n +

√
n

where |J | is the number of entries in the matrix J ∈ {1}
√

n×√
n, and the second 

√
n is the 

number of self-loops. The number of elements in the graph’s coarsest equitable partition 
is k =

√
n where each element contains ni =

√
n vertices. Here the Monad LEP Set 

has size r =
√

n, since each equitable partition element is preserved as a singleton LEP 
{V n

i }.
From Equation (9), the LEParD algorithm has complexity

O
( (

n3/2 − n +
√

n
)

log(n) +
(√

n
)b + n +

√
n∑

i=1

(√
n

)b
)

=

O
(

n3/2 log(n) + n
b
2 +

√
n(n b

2 )
)

= O
(

n3/2 log(n) + n
b+1

2

)
.

From Equation (10), the Parallelized LEParD algorithm has complexity

O
( (

n3/2 − n +
√

n
)

log(n) +
(√

n
)b + n +

(√
n

)b
)

=

O
(

n3/2 log(n) + 2n
b
2 + n

)
= O

(
n3/2 log(n) + n

b
2

)
. �

Because b = 3 for the QR method, the performance of the LEParD algorithm using 
this as an eigenvalue finder has an approximate order of O(n2). The Parallelized LEParD 
algorithm using the QR method has an order of O(n3/2 log(n)). The performance advan-
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tage of the Parallelized LEParD algorithm (using QR) when compared to the standard 
QR method is shown in Fig. 4.

6. Conclusion

In this paper we introduce the notion of a complete equitable decomposition of a 
graph, which allows us to decompose a graph into smaller graphs relative to an equi-
table partition, while maintaining its spectrum. However, to do so we assume that the 
adjacency matrix of the graph is Hermitian. This is necessary for the proof we give in 
Section 4 to hold. Currently, we are working to determine whether our result holds for 
the much more general class of directed graphs. If this can be shown it may be possible 
to modify the LEParD algorithm to much more quickly find eigenvalues of potentially 
any real-world data set, where nontrivial equitable partitions are expected. This will be 
explored in future publications.

With regard to the LEParD algorithm it is unknown to what extent this algorithm 
is numerically stable or how its spatial complexity scales as this method needs to store 
matrices in a way not needed by standard algorithms. Last, it is also possible that a 
complete equitable decomposition can be carried out via a similarity transform, i.e. a 
transform that extends the classical theory described in Theorems 3.1 and 3.2. Currently 
this is unknown.
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