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1. Introduction

Spectral graph theory studies the relationship between the graph’s spectrum, i.e.,
the set of eigenvalues of an associated matrix, and the structure of the graph. This
relationship between spectrum and structure is important in many real and theoretical
applications. This includes understanding the interplay of structure and function in real
world networks [5,15,20,25], the performance of machine learning algorithms [6,16,17,19],
and the advantages of different data structures in computer science [4,11], etc.

Here the structures we are interested in are equitable partitions. Equitable partitions
were originally studied due to the spectral properties they preserved [2,7,12]. More re-
cently, equitable partitions associated with graph symmetries have gained attention due
to their ubiquity in real-world networks [18]. In theoretical applications these symmetries
have been used to decompose graphs [3,9,10,14] and to study the formation of synchro-
nizing clusters and equitable partitions in dynamical network models [13,21,23,26,27].

An equitable partition 7 = {Vi,...,Vi} of a graph G is a vertex partition that,
roughly speaking, partitions the vertices of the graph such that every vertex in V; has
the same number of neighbors in any Vj irrespective of which vertex is considered. This
structure can be summarized by another smaller graph called the divisor graph G, of G
(see Section 2). In this way the divisor graph G, gives a global summary of the graph
G relative to the equitable partition .

A well-known property of a divisor graph is that its spectrum is a subset of the
graph’s original spectrum, i.e., 0(G,) C o(G) [2]. As one can think of o(G,) as the
global eigenvalues of G and it is a natural question as to whether it is possible to recover
the remaining or local eigenvalues of G, i.e. the eigenvalues o’ (G) = o(G) — 0(G), and
whether this can be done in a similar manner using divisor graphs.

Here we show that these local eigenvalues are, in fact, eigenvalues of a collection of
induced subgraphs G; C G for i = 1,...,r where each G; has an equitable partition
m; C w. We refer to each 7; as a local equitable partition on the local subgraph G; and
prove that the local eigenvalues of G form the set 0% (G) = 0% (G1)U---Uo% (G,). This
allows us to write the eigenvalues of G as the disjoint union

o(G) = o(Gr) U [0k (G1) U+~ Ut (G,
which we refer to as a complete equitable decomposition of G with respect to 7 (see
Theorem 2.2). A complete equitable decomposition is then a decomposition of the eigen-
values of G into its global eigenvalues and local eigenvalues of its local subgraphs (see
Example 2.3).

Since a complete equitable decomposition results in a collection of smaller graphs
with the same collective spectrum it is therefore possible, at least in principle, to find
the eigenvalues of a graph more efficiently using this decomposition when compared to
standard methods. Here we construct an algorithm which computes the eigenvalues of
a graph (matrix) based on the concept of a complete equitable decomposition. We show
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that in the worst case, in which a graph has only the trivial equitable partition, that
this algorithm has the same computational complexity as the standard algorithm. If,
however, the graph has a sufficiently nontrivial equitable partition, our algorithm can
compute the eigenvalues of the graph much faster (see Theorem 5.1). This we show using
a family of layered graphs (see Example 5.1 in Section 5.3).

The paper structured as follows. In Section 2 we review the basic concepts and classical
results related to equitable partitions. We then introduce the notion of a local equitable
partition and state our main result (Theorem 2.2). In Section 3 we begin our proof of this
result by describing the local and global eigenvector structure of a graph with an equitable
partition. In Section 4 we complete our proof. In Section 5 we introduce our algorithm
for finding the eigenvalues of a graph with respect to its coarsest equitable partition,
which we refer to as the LEParD algorithm (Local Equitable Partition Decomposition
algorithm). In Section 6 we conclude with a number of directions this research could be
taken along with some open questions.

2. Equitable partitions

In this section we define the notion of an equitable partition of a graph and give some
of its more well-known properties. For generality, we define a graph to be a weighted
directed graph G = (V, E,w) with vertex set V' = {1,2,...,n}, and edge set E, with
weight function w : E — C. A directed edge from vertex i to vertex j is denoted e;; where
the collection of all edges, possibly including loops, is the edge set E. The weight of the
edge e;; € E is given by w(e;;) € C.

This framework includes both unweighted and undirected graphs where an unweighted
graph G = (V, E,w) has the weight function

w(eij) _ {1 if €i; € E (1)

0 otherwise.

An undirected graph G = (V, E, w) has the property that if the edge e;; € E thenej; € E
where w(e;;) = w(ej;) and the pair of edges is thought of as a single edge between vertex
i and j.

The primary way to encode the structure of a graph G including its weights is with
a weighted adjacency matriz A = A(G) where A = [a;;] € C"*™ whose entries are given
by

(2)

w(eij) 7£ 0 if €;; € FE
;5 =
! 0 otherwise.
The eigenvalues o(G) of the graph G are the eigenvalues o(A) of its adjacency matrix
A. We note that a graph is unweighted if its adjacency matrix A € {0,1}"*" and is
undirected if A is symmetric.
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The focus of this paper is on equitable partitions and extending the original spectral
theory associated with equitable partitions. An equitable partition is defined as follows.

Definition 2.1 (Equitable partition). An equitable partition of a graph G = (V, E,w) is a
partition 7 = {V4,..., Vi } of V with the property that for all s,t € {1,2,...,k} the sum

Z Q5 = det

JEVL

is constant for any i € V,. The matrix D = [dy], which we write as D = A, € RF** is
the divisor matriz of A associated with m. The graph G, with adjacency matrix A, is
the divisor graph of G.

One can think of the divisor graph G as a global summary of how the vertices in the
elements of 7 are connected to each other. The graph G is effectively a coarse-graining
of the graph G into a directed graph in which each element of 7 = {V;,Va,... , Vi} is
represented by a single vertex. The directed edge weight of w(eys) = [Ax]s is the sum
of weighted edges from any vertex ¢ € V; to vertices j € V;. If G is a simple graph, then
the weight w(egst) in G is the number of edges between any vertex in V and any vertex
in V; as the matrix A € {0,1}"*" (see Example 2.1).

Given a vertex partition m# = {Vi,...,V;} of G, we can use 7 to partition the corre-
sponding adjacency matrix into a block matrix of the form

Ay ... Ap
A= 0 0 (3)
Akl A Akk

where A;; is the |V;| x |V;| submatrix of A whose rows are indexed by the vertices in V;
and the columns are indexed by the vertices in V. For an equitable partition m we can
always relabel the vertices of G such that vertices in the same element of 7 are labeled
consecutively and vertices in V; precede vertices in V; for ¢ < j. For simplicity, in what
follows we will assume the adjacency matrix A = A(G) is partitioned as in Equation (3).

For an equitable partition =@ = {Vj,...,V;}, the partitioned adjacency matrix A in
Equation (3) has the property that each sub-matrix A, has constant row sums. The
reason is that the entries of A,; will be the entries of A summed in Definition 2.1 for
a given V; and V;. Since this sum is constant for any given row ¢, the row sums of Ag
are constant. This constant row sum for the submatrix A, is the st-entry in the divisor
matrix D = A,.

Example 2.1. Consider the simple graph G shown in Fig. 1 (top left) and its adjacency
matrix A (top right). This graph has the equitable partition = = {V;, Vs, V3} where
i ={1,2}, Vo = {3,4,5,6,7,8}, and V3 = {9,10} represent the red, yellow, and green
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Fig. 1. Top Left: A simple graph G = (V, E,w) with equitable partition # = {V7, V5, V3} is shown where
Vi =4{1,2}, Vo = {3,4,5,6,7,8}, and V3 = {9,10} are indicated by the red, yellow, and green vertices,
respectively. Bottom Left: The divisor graph G, is shown with vertices 1 (red), 2 (yellow), and 3 (green)
corresponding to the elements Vi, Vs, and V3 of the equitable partition 7, respectively. Edge weights of G
are shown in black. Top Right: The adjacency matrix A = A(G) is shown, which is partitioned with respect
to m and has constant row sums in each block. Bottom Right: The divisor matrix A, = A(G) is shown.
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

vertices, respectively. The divisor graph G, and divisor matrix A, are shown in Fig. 1
(bottom left and bottom right, respectively). Note each entry of A, corresponds to the
constant rows sums of each submatrix Ay in A.

A classical result of spectral graph theory is that the eigenvalues of G, are a subset
of the eigenvalues of G. The proof of this result can be found in [2]. (A generalization of

this theorem can be found in Section 3, see Theorem 3.1.)

Theorem 2.1 (Spectra of a divisor matriz). If © is an equitable partition of a graph G
then 0(Gr) C 0(G).

The graph G in Example 2.1 has the eigenvalues
o(G) ={3.193,-2.193,2.115, -1.861, -1, —1,—1,1,1,—0.254}. (4)
Its divisor graph has the eigenvalues
o(Gr) ={3.193,-2.193,1} (5)

so that o(Gr) C o(G) (cf. Fig. 1).
Theorem 2.1 allows us to state the following definition.

Definition 2.2 (Global and local eigenvalues). If 7 is an equitable partition of a graph G,
then the eigenvalues of its divisor graph o(G,) are the global eigenvalues of G associated
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with the equitable partition 7. The other eigenvalues, denoted by % (G) = o(G)—0(G),
are the local eigenvalues of G associated with the equitable partition .

We note that in this definition we are considering the set of eigenvalues as a multiset.
A consequence of this is that if a particular eigenvalue has an algebraic multiplicity
greater than one, then it could be both a global and a local eigenvalue. For example,
the eigenvalue A = 1 from Example 2.1 is both a global and a local eigenvalue of the
graph in Fig. 1 with respect to the equitable partition 7 (cf. Equations (4) and (5)). In
particular, the global eigenvalues in this example are o(G,) = {3.193,—-2.193,1} and
the local eigenvalues are

ot (G) = 0(G) — 0(Gy) = {2.115,-1.861, —1, —1,—1,1, —0.254}.

Given that the global eigenvalues are the eigenvalues of the divisor graph, a natural
question is whether it is possible to recover the local eigenvalues in a similar manner.
Here we show that the local eigenvalues of G are the eigenvalues of a collection of induced
subgraphs G; of G, where each has an equitable partition 7; associated with the original
equitable partition 7. In other words, the local eigenvalues of G are related to specific
substructures of the graph G, which is the main result of this paper (see Theorem 2.2
and Example 2.3).

In order to identify these induced subgraphs we introduce the following notion of a
local equitable partition.

Definition 2.3 (Local equitable partition). Given a graph G = (V, E,w) with adjacency
matrix A and an equitable partition m = {V;,..., V. }, we say that two partition elements
Vs and V; such that s # t are consistently connected if Ay = )y, v, for some
ag € C. A subset ™ C 7 is a local equitable partition with respect to 7 if every Vi € 7 is
consistently connected to every V; € m — 7.

Example 2.2. Consider the subsets 71 = {Va,V3} and 7o = {V1,Va} of the equitable
partition m = {Vj, V5, V3} of the graph G in Fig. 1. In this case the subset 7; is not a
local equitable partition with respect to m as the submatrix

T
111000
0 001 11

does not have constant entries, i.e. A1z # aJyg for any a € C. However, 7y is a local

Aoy =

equitable partition with respect to 7 as

T
11 000000
A: A:
13 ll 1] and - Az loooooo]

have constant entries respectively.
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Suppose that G = (V, E,w) has the set of local equitable partitions 71, 7o, ..., T, with
respect to the same equitable partition 7. If 7; = {V1, V4, ..., V;} we let Vi, = U§:1‘7j,
i.e. the set of all vertices in 7;. Using this convention, for each i = 1,2,...,r we let G;
be the induced subgraph of G with vertex set Vz,.

Definition 2.4 (Complete set of local equitable partitions). Let G = (V, E,w) be a graph
with equitable partition 7. We say the set of local equitable partitions {7;}7_; is complete
if it is both disjoint and m — U]_;7; is a set of singleton partition elements of 7 or the
empty set.

Given an equitable partition 7 = {V1, Va,..., V}} there is a always at least one com-
plete set of local equitable partitions associated with it. The reason is that we can always
choose this complete set to be the single local equitable partition 7, C 7 consisting of
the nonsingle vertex elements of m. If there are more available local equitable partitions
we can always create a larger set that is a complete set of local equitable partitions, i.e.
a more refined complete set of local equitable partitions.

With this in place we can now give our main result, namely that the eigenvalues of a
graph with an equitable partition are either global eigenvalues of the original graph, or
local eigenvalues of certain subgraphs determined by the local equitable partition of 7.

Theorem 2.2 (Complete equitable decomposition). Let w be an equitable partition of the
graph G = (V, E,w) whose adjacency matriz is Hermitian. If G; are the induced subgraphs
corresponding to a complete set of local equitable partitions w; of w fori=1,2,...,r then

0(G) = 0(Gr) Ulog, (G1) U+~ Uog (Gy)],

T
which we refer to as a complete equitable decomposition of G with respect to .

We save the proof of Theorem 2.2 for Section 4 where we identify necessary and
sufficient conditions for when G; has the property that o (G;) C 0(G) — o(Gx).

Example 2.3. Consider the simple graph G = (V, E,w) in Fig. 2 with equitable partition
7w = {V1,Va, V3, V4, V5, Vs} colored red, yellow, green, brown, blue, orange; respectively.
The equitable partition 7 has the four local equitable partitions 7 = {V3}, 72 = {V3, Va},
w3 = {Vs}, and 74 = {Vs} corresponding to the graphs Gy, Ga2, G3, and G4, shown left,
respectively. These collectively form a complete set of local equitable partitions, i.e.
7w — Ul 7 = V4 = {11} is a singleton partition element of 7. Here the divisor graph of
G has the eigenvalues

o(Gr) ={3.83,—2.91,2.82,1.34,-1.07, 1}.

The local eigenvalues of each graph G; for i = 1,2, 3,4 are given by



J. Drapeau et al. / Linear Algebra and its Applications 701 (2024) 112-137 119

9 10
3 7
- Gl ‘/
° /? 5 02 6 2 I
! 12 13 15 ’
7‘ (]
\
¢ Gs Gy @
14 16

Fig. 2. A simple graph G = (V, E,w), shown left, with equitable partition = = {Vi, Va2, V3, V4, Vs, Vs}
indicated by red, yellow, green, brown, blue, and orange; respectively. The equitable partition 7 has the
four local equitable partitions 71 = {Vs}, 2 = {Vi1, Va}, ™3 = {Vs}, and 74 = {Vs} corresponding to the
graphs G1, G2, G3, and G4, shown right, respectively. The eigenvalues of the graph G are then given by
the union of its global and local eigenvalues o(G) = o(G,) U ofirl (G1) U afirz(Gg) U O'firx(Gg) U afiu(G4) (cf.
Example 2.3).

05, (G1) =0(G1) = o((G1)x,) = {1, -1} — {1} = {-1}
07, (G2) =0(G2) — 0((G2)z,)
={2.23,2.11,-1.86,—-1.30,—1,—1,1,—-0.25} — {2.23, —1.30}
={2.11,-1.86,—1,—1,1,—-0.25}
0, (G3) =0(G3) — 0((G3)z,) = {2,-1, -1} — {2} = {~1, -1}
07, (Ga) =0(Ga) — 0((Ga)z,) = {1, -1} — {1} = {~1}.
Using Theorem 2.2 the eigenvalues of the graph G are the union of its local and global
eigenvalues given by o(G) = 0(Gx) U ok (G1) Uck (G2) Uck (G3) Uok (Gy) or
o(G) ={3.83,-2.91,2.82,1.34, —1.07,1} U {-1}
u{2.11,-1.86,-1,—1,1,—-0.25} U {—1, -1} U {—1},
which is a complete equitable decomposition of G with respect to 7.
We note the complete set of local equitable partitions {7}_;} is not unique. For in-
stance, the set {71, T2, T3 UT4} is a less refined but second complete set of local equitable

partitions, which can similarly be used to create a different complete equitable decom-
position of the graph G.

3. Global and local eigenvectors

In order to prove Theorem 2.2, we need to develop the theory of local and global
eigenvectors. In a similar manner to how we partition the adjacency matrix A with
respect to m we can partition an eigenvector

v= o))" ... wk)T TGC”

of an adjacency matrix A with respect to a vertex partition 7 = {V,...,V;} where
v(j) € CIVil denotes the entries of v indexed by V;. For a collection of eigenvectors
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vi,...,V, partitioned by 7, we denote the entries of the ith eigenvector v; indexed by
the element V; as v;(j).

Given a graph G on |V| = n vertices with a vertex partition = = {V,...,V4}, the
characteristic matriz of G with respect to 7 is the matrix S = [s;;] € {0, 1}/V** where
each column of S represents a partition element, and each row represents a vertex. The
entry s;; of S is given by

1 ifieV;
Sij = :
0 otherwise.

ST'S is the nonsingular diagonal matrix diag(|V1], |Va|, .. ., |Vi|). This is due to ST'S being
a square k x k matrix and the columns of S being orthogonal. Therefore [STS];; = 0 for
i # j,and [STS]; = |V;| > 0.

The eigenvectors of the divisor graph G are related to the eigenvectors of G in the
following way.

Theorem 3.1 (Eigenpairs of the divisor matriz). If w is an equitable partition of a graph
G with an Hermitian adjacency matriz and (A, v) is an eigenpair of the divisor matriz
Ar, then (X, Sv) is an eigenpair of A = A(G).

Similar to the proof of Theorem 2.1 the proof of Theorem 3.1 can be found in [2].

A useful feature of the characteristic matrix is that it connects the adjacency matrix
of the graph to its divisor matrix via the following theorem which is proved in [12].

Theorem 3.2. Let m be an equitable partition of the graph G with characteristic matriz
S, A the adjacency matriz, and A, the adjacency matriz of the divisor graph. Then

AS = SA,
Ay = (S78)"1STAS.

A known consequence of the fact that AS = SA, is that the col(S) is A-invariant
[2,12]. Therefore there must exist a set of k orthogonal eigenvectors that span col(S) and
can be written as a linear combination of the columns of S.

Since s;; = 1 if i € V; and is 0 otherwise, then any linear combinations of the columns
of S will result in a vector v = [v(1)T...v(k)T]T with constant entries in v(j) for
j=1,...,k. As each v(j) has length equal to |V;| then this implies (col(S))% must also
be A-invariant. Thus, (col(S))* has a basis consisting of n — k eigenvectors Wi 1, ..., W,
of A that are orthogonal to the k eigenvectors that span col(.S).

In order for v-w = 0 where v € col(S) and w € col(S)*, the sum of the entries in
w(j) must be zero for a fixed j = 1,2,..., k. Therefore, there exists a set of eigenvectors
of A such that we can divide them into two groups: those with constant entries in v(j)

for each j (which come from col(S)), and those where the entries in each v(j) sum to
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0 for each j (which come from (col(S))+). While this is known, we formally give these
eigenvectors the names global and local eigenvectors, respectively.

Definition 3.1 (Global eigenvectors). Let G be a graph with equitable partition = =
Vi, ., Vih Wesay v=[o(1)T ... o(k)T]T € C"is a global eigenvector of G if v is
an eigenvector of the graph’s adjacency matrix and for all j = 1,2,...,k each entry of
v(j) is constant.

For the graph G in Fig. 1 (top left) with equitable partition 7 = {Vi, Vs, V5}, the
global eigenvalue A = 1 has the global eigenvector

T T

vo= o7 v@7 @7 =0 0]-2 —2 —2 -2 -2 —2[3 3] .
(6)

We note that as v, is a global eigenvector, each of the entries in v(j) for a given j =1,2,3

is constant, where |Vi| = 2, |V2] = 6, and |V3| = 2.

Definition 3.2 (Local eigenvectors). Let G be a graph with equitable partition 7 =
V1,00, Vib. We say v = [o(1)T ... wv(k)T]T € C" is a local eigenvector of G if
v is an eigenvector of the graph’s adjacency matrix and for each j = 1,2,...,k the sum
of the entries in v(j) is zero.

Again for the graph G in Fig. 1 (top left) with equitable partition 7 = {V7, Vs, V5}
the local eigenvalue A = 1 has the local eigenvector

ve=[o(1)T w(2)T v(3)T}T - [0 0]-2 11 -2 1 1]0 or. (7)
Here the entries of v(j) for a given j = 1,2,3 sum to zero where, as before, |V;| = 2,
|[V2| = 6, and |V3] = 2.

In Definition 3.1 we chose the name global eigenvectors because the eigenvalues associ-
ated with global eigenvectors are the “global eigenvalues” defined in Definition 2.2. The
converse however is not true. For instance, consider the combination of the two vectors
in Equations (6) and (7) into the eigenvector

T
V=V, +Ve= [U(l)T v(2)" U(3)T}
“fo o4 -1 <1 4 -1 —1[3 3] .

which is neither a global eigenvector nor a local eigenvector. This is possible as the
associated eigenvalue A\ = 1 is both a local and a global eigenvalue of G with respect to
the equitable partition.

In the following theorem we show if A € o(G;) is a global eigenvalue, there exists a
global eigenvector associated with it.
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Theorem 3.3. Let G be a graph with Hermitian adjacency matriz and equitable partition
.
(i) If (A, v) is an eigenpair of G where v is a global eigenvector with respect to w then
A€ o(Ar); and
(ii) If A € o(Ay) then there exists a global eigenvector of A associated with A.

T
Proof. If v is a global eigenvector, then we can write v = a11|7€/1‘ ak]-ﬁ/k‘

where 1y, is the all ones vector of size |V}|. Then

(A1 ... A arljy,
av— | - . .
LAk oo Ape] Larljyy
[a1 A1y, + -+ ap Ay, arljy,
- : - :
LarApi Ly, + - + apAre vy aglyy,

Each submatrix A;; will have constant row sums due to G having the equitable par-
tition w. Therefore, we can write Az‘j1|vj| = b;j1)y,) where the constant b;; is the ijth
entry in A,. Considering an arbitrary entry in Av, we get that the following holds for
alli=1,....k:

arAnlyyy + -t agdiljy,) = atbalyy, + -+ arbip 1y
= (arbs1 + -+ + apbir) 1)y,
= )\ai1|vi|.

From the final equality we can we conclude (a1b;1 + -+ 4+ axbir) = Aa;. Therefore the
vector w=[a; ... ax]? satisfies A,w = Aw implying A € o(A,).

If A\ € 0(A,), then by Theorem 3.1, which requires A to be Hermitian, there ex-
ists an eigenvector v of A that can be written as the matrix-vector product Sw =
[((Sw)(1)T ... ((Sw)(k))T]" where w is an eigenvector of A, associated with A
and S is the characteristic matrix for GG. Recall that, for simplicity and without loss of
generality, we partitioned the rows of S according to the equitable partition 7. Therefore
S will have |V;| consecutive, identical rows for a given ¢ = 1,...,k implying the entries
of (Sw)(i) will be identical after multiplying S and w. Given this is true for all i, Sw is
by definition a global eigenvector. 0O

For a graph G with a equitable partition 7 it is always possible to find a set of
corresponding eigenvectors which can be partitioned into global eigenvectors and local
eigenvectors. A consequence of Theorem 3.3 is that all the local eigenvalues ¢’ (G) must

all be associated with local eigenvectors. Thus we create a simple correspondence between
global and local eigenvalues as well as global and local eigenvectors, respectively.
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4. Proof of the complete equitable decomposition method

In this section we prove the main result of this paper, which describes how we can re-
cover all the eigenvalues of a graph (matrix) using its complete equitable decomposition.
To do this we require the following theorem.

Theorem 4.1. Let m = {V4,...,Vi} be an equitable partition on a graph G with Hermitian
adjacency matriz A, and 7 a subset of w. Let G, be the induced subgraph of G restricted
to the union of vertices contained in w. Then T is a local equitable partition if and only

if o (G,) C o(G) — o(Gy).

Proof. Suppose 7 has s < k partitions. Without loss of generality, suppose the first s
partitions of A are the s partitions contained in 7. First we define m = |V(G.)|. Also
we let T = [I, ()?;L_m%m]T7 and thus the principal submatrix By; = (T)TAT is the
adjacency matrix of G,. We write A as the partitioned block matrix so that

Bll BlQ

A =
B21 BQZ

Let v be a local eigenvector of G, so that

TVZ[VT OT}TZ[’U(l)T s u(s)T OT}T;AO.

In order for T'v to be an eigenvector of A, the following equation must hold:

v AV
] SR

which implies that By;v = 0. We can write Bo; as the following block matrix

Bll BlQ
B21 322

Bi1v + Bi20
By1v + B0

Bllv
Bglv

A(Tv) =

A(s+1)1 s A(S-i-l)s
By = : KR :
At Aps
where A;; represents connections between partitions V; € m where V; ¢ 7, and V; € 7
forallie {s+1,...,k}, and for all j € {1,...,s}. Hence,

Ay - Aptns | [v(1) Apsp)1v(1) + -+ Apspr)sv(s)
Boyv = : : = :

A . Aps v(s) Ap1v(1) + -+ - + Agsv(s)
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Assume 7 is a local equitable partition. Therefore, for all ¢, j we have the |V;| x |V}]
matrix A;; = oyj Jivi1,|v;) where o € C. Because v is a local eigenvector, the sum of the
entries in v(i) is 0. Thus A;;v(j) = ai;Jjv;|,|v,v(J) = ;0 = 0 for all i and j implying
Bs1v = 0. This means (A, T'v) is a local eigenpair of G where (A, v) is a local eigenpair
of G,. Since (A, v) was an arbitrary local eigenpair of G, we have every local eigenvalue
of G, will be a local eigenvalue of G. Thus, ¢£(G.) C 0(G) — o(Gx).

For the other implication, suppose o%(G.) C o(G) — o(G,) for the subgraph G,
chosen from © C w. We will show © must be a local equitable partition. Since we set
|[V(G.)| = m and assumed 7 had s partition elements, this implies 7 is an equitable
partition on G, that has s partition elements and thus s linearly independent global
eigenvectors. Also there are m — s linearly independent local eigenvectors of G, because
B is Hermitian due to being a principle submatrix of the Hermitian matrix A.

We are assuming that o0& (G.) C 0(G) —0(Gx), which implies By, v = 0 for every local
eigenvector v of G,. If we consider an arbitrary row-vector a = [al . am] of Bay,

then we know that v-a” = 0 for all local eigenvectors of v of G,. Also, we can partition
a according the vertex partitions V; € 7 and write a = {a(l)T e a(s)T ] Then we
can write the following system of equations in matrix form

T T

v1(1) v1(s) a(l)
La" = : : C =0
T T
V(m—s) (1) s U(m—s)(s) a(s)
where L is a (m — s) x m matrix that has linearly independent local eigenvector rows.
By the Rank-Nullity Theorem, we know the rank of L is m — s and the nullity is s.

Notice the columns of the characteristics matrix S of G, forms a basis for the nullspace
of L. Recall that the i*" column of S will take the form

Oyvy

S; = 1|V7:|

LOvy ]
where there is an all-ones vector corresponding to the i*" partition for 1 < i < s and
zeros elsewhere. Since the entries in each vg(7) sum to zero for all 1 < k < m — s, then
vk (i) - 1y, = 0 for all k. Therefore, each s; is contained in null-space of L. Clearly this

T is a linear combination of the columns of

set is also linearly independent. This means a
S, due to a” being in the nullspace of L, implying that a(i) = a1y, forall 1 <i<s.
Thus we can write a = [all‘Tvl‘ 0451‘7;/8| } Given a was an arbitrary row of Baq,

we know this must hold for all rows of Bsy.
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The rows of the submatrix A;; from Ba; can be written as aillij‘ where «; could be
unique to the row. However, we show this is not the case because the equitable partition
m on G guarantees A;; will have constant row sums. Thus o must be constant and cannot
vary across the rows of A;;. Hence, A;j = ai;Jv;||v;|- This is true for every block of Ba;
which is the definition of local equitable partition. 0O

Recall our main result, Theorem 2.2, that states the following. Let 7 = {V1,...,V}
be an equitable partition of a graph G with a Hermitian adjacency matrix A and let
m1,...,7r be a complete set of local equitable partitions with corresponding subgraphs
G1,...,Gy. Then

o(G) =o(Gr) U ot (G1)U---Uat (G,)].
The following is a proof of Theorem 2.2

Proof. Let 7 be an equitable partition of G with a complete set of local equitable par-
titions {71 ...7,}. Thus 7 — Ul_;7; is a set of singleton partition elements of =, and
suppose |1 — Ul_;7;| = s. We can partition A into r + s partitions as

B ... Biu ... B
A=| Bu ... Bw ... By
L B(rJrs)l oo B(rJrs)'r v B(r+s)(r+s) |

where B;; is the adjacency matrix for the subgraph G; selected by the local equitable
partition 7; for 1 < ¢ < 7. When r+1 < ,j <r+s, B;; represents a singleton partition
element of 7 and is a 1 x 1 matrix.

Now consider a local eigenpair (A, v) of G. We partition

v:{v[l]T R ] (A v[r—i—s]T}T

where v[i] denotes the entries of v indexed by V(G;), the group of partition elements
that make up By;;. If r +1 < i < r + s, then |v[i]| = 1 and v[i] = 0 because v is a local

T
eigenvector. Thus we can write v = {v[l]T o)t 0} . Hence, we get
[ Bu ... Bi ... Bipie |
Av = B,q Bm« ce BT(T+S)

L B(r+s)1 s B(rJrs)r v B(r+s)(r+s) i
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vFl] [ Buo[l]+ -+ Bo[r] ]
X Ug] = Bro[l] + -+ + Bppo[r]
6 _B(r+s)1v[1] + -+ B(r+s)rv[r} ]

Notice for ¢ # j that B;; is a block matrix where each block inside B;; is a matrix
Aap = aap )y, vy Therefore Byjv[j] = 0 since the sum of the entries in v[j] equals zero.
Now Av simplifies to

r 1 [ Buv[l]]
By1v[1] 4 -+ - 4 By,[r] 11.1}[ ]
' B
Av = Brlv[u 4+ .4 BrrrU[T'] _ 7"7“011[7"} = \v
_B(T+S)1U[1] +---+ B(T+S)T’U[T] ] 0
By definition v # 0, so there exists some 4 in which v[i] # 0 and Byv[i] = Avli]

implying A € 0% (G;). Hence 0(G) — 0(Gx) C ok (G1)U---U ok (G,).

By Theorem 4.1.1, we know 0% (G;) C 0(G) — 0(Gx) for all i = 1,...,7 resulting in
Jfrl (G1)U---U U%T(GT) Co(G)—0(Gy). Thus 0(G) — o (Gr) = Ufirl (G1)U-- -UU% (G).

Finally, we get the result that

0(G) = 0(Gr) U[0(G) = 0(Gr)] = 0(Gr) U 0%, (G1) U---Uog (G,)]. O

Thus the eigenvalues of a graph G with an adjacency matrix A and equitable partition
7 can be decomposed into the global eigenvalues of G and a collection of local eigenvalues
from induced subgraphs G; of G that respect the equitable partition m. In short, the
eigenvalues are the collection of the “global eigenvalues of the global equitable partition
together with the local eigenvalues of the local equitable partitions.”

5. Computing eigenvalues using complete equitable partitions

The standard and likely most well-known algorithm for finding the eigenvalues of a
matrix A € C"*" has computational complexity O(n3) (see, for instance, [22]). Other
algorithms have been proposed with lower computational complexity O(n®) for b < 3
(see [8]). In this section we consider how quickly one can find all the eigenvalues of a
Hermitian matrix A € C™*™ if it is the adjacency matrix of a graph G with a nontrivial
equitable partition .

The main result of this section is that it is, in principle, possible to find the eigenvalues
of a graph (matrix) faster by finding its complete equitable decomposition rather than by
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using standard methods. Our strategy is to leverage our main result found in Theorem 2.2
which decomposes the eigenvalues of a graph (matrix) into the disjoint union

0(G) = 0(Gx) U0k, (G1) U--- U0k (G,)].

Our strategy is to individually find the eigenvalues o(Gx), 0% (G1),...0% (G,). The
improvement in computational complexity naturally depends on the specific details of
the graph’s equitable partition. Roughly speaking, the less trivial the equitable partition
the faster the graph’s eigenvalues can be found. (See, Theorem 5.1 and Example 5.1.)

It is worth noting that many graphs associated with real-world data are known to
have nontrivial equitable partitions. For example, the authors of [18] show that many
real-world networks have nontrivial symmetries. As any graph symmetry induces an
equitable partition, such networks have nontrivial equitable partitions.

5.1. The LEParD algorithm

In this section we will outline our algorithm for finding the eigenvalues for a graph
(matrix) and describe its computational complexity. As a complete equitable decompo-
sition requires an equitable partition of a graph we choose the graph’s coarsest equitable
partition.

Definition 5.1 (Coarsest equitable partition). An equitable partition 7, = {V{*,...,V;*}
of a graph G is the graph’s coarsest equitable partition if for any partition element V; € 7,
where 7 is another equitable partition on G, the element V; C V* for some j € {1,...,k}.

For a given graph, the coarsest equitable partition always exists and is unique [24];
moreover it can be found relatively quickly [1].

The algorithm we propose for finding the eigenvalues of a graph (matrix) is referred
to as the LEParD Algorithm, or Local Equitable Partition Decomposition Algorithm,
which is comprised of the following four steps.

The LEParD Algorithm. Let G = (V| E,w) be a graph with a Hermitian adjacency
matrix A € C"*". To find its eigenvalues:

Step (1
Step (2
Step (3
Step (4

Find the coarsest equitable partition 7 = {V4,Va,...,Vi} of G;
Compute the global eigenvalues o(G) of the divisor matrix A;
Find the local equitable partitions 7; of G to identify the subgraphs G;; and

~— O~ ~— ~—

For each G;, compute its local eigenvalues ot (G;) = o(G;) — o((Gi)x,)-
To carry out Steps (2) and (4) of the LEParD algorithm we need to compute the

eigenvalues of specific graphs, i.e. G, G1,...,G,. This can be done using any algorithm

we like. If the particular algorithm we use has order O(a®) for a graph of size |G| = a
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we refer to this as using an eigenvalue finder of order O(a®). With this in place we can
bound the computational complexity of the LEParD algorithm.

Theorem 5.1 (Computational complezity of the LEParD algorithm). Let G = (V, E,w)
be a graph with coarsest equitable partition m = {V1,Va,...,Vi}. Using an eigenvalue
finder of order O(a®) the computational complezity of running the LEParD Algorithm
on G has order

o (m log(n) + k% +n + ET: nf) (9)

i=1
where n = |G|, m = |E|, and n; = |G;| forie {1,...,r}.

Proof. As each piece of the temporal complexity in Equation (9) corresponds to a step
in the LEParD algorithm here we prove the complexity of each piece.

1. The coarsest equitable partition 7 of G = (V, E,w) is found using the algorithm in
[1], which has computational complexity O(mlog(n)).

2. As |n| = k then |G| = k and the computational complexity of finding o(G,) is
O(kb).

3. We can identify the local equitable partitions 7; and the associated subgraphs G; by
finding the constant submatrices Ay = i)y, | v, of the graph’s adjacency matrix.
In Theorem 5.2 we show that the computational complexity of this step is O(m +n)
using Algorithm 1. Note, however, that m is omitted in the final O expression since
m < mlog(n).

4. Finding the local eigenvalues afiri(G,-) = 0(G;) — o((G;)r,) has computational com-
plexity in O(n?) where n; = |G;|, since |G;| > |(G;)r,|. Over all local equitable
partitions this has computational complexity (’)( Oy nf)

Together, Steps (1)—(4) have computational complexity given by Equation (9). O

Since the graphs G1,Ga, .. ., G, are disjoint then it is possible, at least in principle, to
simultaneously compute their eigenvalues, i.e., to parallelize the LEParD algorithm. Us-
ing this Parallelized LEParD algorithm we have the following computational complexity
bound, which follows from the proof of Theorem 5.1.

Corollary 5.1 (Computational complexity of the parallelized LEParD algorithm). Let G =
(V,E,w) be a graph with coarsest equitable partition = = {V1,Va,...,Vi}. Using an
eigenvalue finder of order O(a®) the computational complexity of running the Parallelized
LEParD Algorithm on G has order

@ (m log(n) + k” +n + max{n? f:l) (10)
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where n = |G|, m = |E|, n; = |G4| fori e {1,...,r}.

In the following section we show that local equitable partitions can be computed in
O(m+n) time justifying the claim that Step (3) of our algorithm has this as its temporal
complexity.

5.2. The LEP finder and monad LEP sets

To carry out Step (3) of the LEParD algorithm we will construct a specific set of local
equitable partitions (LEPs) for a given graph and coarsest equitable partition 7. The
main idea is that 7 C 7 is a local equitable partition of 7 if and only if the partition
elements of 7 are consistently connected to those not in 7 (see Definition 2.3). Thus,
partition elements that are not consistently connected cannot be LEPs on their own.
By grouping such elements together as one LEP, &, we can create a subgraph that is
consistently connected to all other V; ¢ #, which will be an LEP.

There often exist many different sets of LEPs. However, not all LEP sets can be
leveraged for efficient eigenvalue calculation. For instance, the trivial LEP 7y = 7 may
be formed by grouping all equitable partition elements together; however, we must then
compute eigenvalues of the subgraph Gy = G, providing no performance advantage over
simply computing the eigenvalues of the original graph G with traditional methods. To
maximize efficiency, the LEParD algorithm constructs the smallest possible LEPs from
the coarsest equitable partition. We call this set of LEPs the Monad LEP Set, and define
it as follows.

Definition 5.2 (Monad LEP set). Let G = (V, E,w) be a graph with coarsest equitable
partition m = {V4, V4, ..., Vi }. Then a complete set of LEPs . = {7y, ..., -} with respect
to m is the Monad LEP Set if for any other complete set of LEPs .2 = {#, ..., &} with
respect to 7w each

7 = U w; for some J; C {1,...,r}.
jeJ;

As using the LEParD algorithm efficiently depends on finding a Monad LEP Set, it
is important to understand how this set can be directly constructed for a given graph
and equitable partition. A helpful observation in this regard is the following result.

Proposition 5.1. For a graph G with coarsest equitable partition w, the associated Monad
LEP Set exists and is unique.

Proof. We prove the existence of a Monad LEP Set .Z by construction. First, given the
equitable partition 7 = {V1,Va,..., Vi }, let V; ~ V; mean that V; and V; are consistently
connected to each other, and V; ¢¢ V; mean that they are not; it is easily shown that
both ~ and ¢ relations are symmetric. We construct . as follows: for V;,V; € m, we
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place V; in the same element as Vj if V; 4 V;. More formally, V; and V; are in the same
element 7; € & iff there exist ki, ko, ..., ks such that

Vigt Viey 9 Vi 9+ o4 Vi, 2 V.

Note that, since ¢ is not transitive, it may be the case that V; ~ Vj; indeed, the in-
termediate sequence of equitable partition elements Vi, , Vi,, ..., Vi, is only necessary if
Vi ~ V;. Further, we note that & = {7,...,7,} is a partition of 7, since each V,, € 7
will be contained in exactly one 7, € .Z.

We will now prove that £ is a Monad LEP Set. Given some complete set of LEPs
L= {71, ..., s}, we wish to show that for all #; € 2,

7= U m; for some J; C {1,...,r}
JjEJ;

Note that each #; and 7; is simply a set of elements V,, from m. We define J; = {j | V, €
7; for some V,, € #;} and proceed with a proof of equality.

(©): Given V,, € #;, there exists some 7}, € . such that V,, € 7, since .Z is a partition
of 7. Since we defined J; to include all such indices k, and since 75, C UjeJ,-, Tj, wWe
have Vi, € U, e, 75

(2): Given V,, € UjeJi 7, there exists some k € J; such that V,, € 7. By the definition
of J;, there also exists some V3 € 7, such that Vg € 7; for some 7; € 2. Further,
by our construction of .#, there exist some ki, ko, ..., k; such that

Voo 2 Viy # Viey # - & Vi, # V.

Since 7; is an LEP, and V3 € 7;, then Vg ~ V,, for all V, € m—; (see Definition 2.3).
Since Vi, # V3, it follows that Vi, € #;. A simple induction argument is sufficient
to show also that V,, € @;. Hence, &; = Uje‘,i 7;, so £ is a Monad LEP Set.

Finally, we prove that the Monad LEP Set is unique. Suppose now that there exists
some other Monad LEP Set . = {#1,...,7s}. Since @y = UjEJk w; for sonie Jr C
{1,...,r}, it must be the case that 7 2 7y for some £ € Ji. Similarly, since .Z is also
a Monad LEP Set, 7 = (J;¢;, i for some I, C {1,...,s}. Since 7} shares elements
with 7y, then k € Iy, so my D 7. Thus, it must be the case that 7, = 7. Since 7, was
arbitrary, we see that .2 = Z. Hence, the Monad LEP Set .Z is unique. O

Since a graph’s coarsest equitable partition and Monad LEP Set exist and are unique,
the LEParD algorithm can be used to improve the performance of standard eigenvalue
finders, at least in certain cases (see Example 5.1). To compute the Monad LEP Set
we use Algorithm 1 where, for a graph G = (V, E,w), we let N(v) = {w € V : ey, €
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Algorithm 1: Local Equitable Partition Finder.

Input : G = (V, E,w)
7, the coarsest equitable partition of G
Output: The Monad LEP Set .

LepGraph «+ dict()

foreach V; € w do

| add (Vi, {}) to LepGraph

end

foreach V; € w do

M N, ey, N(v) /* find neighbors common to all vertices in V; */

foreach v € V; do

/* for each neighbor of v not shared by all vertices in V; */

8 foreach w € N(v) \ M do

/* partition elements containing v and w are not consistently connected with
one another, so group them in the same LEP */

9 if w(v) # w(w) then

10 LepGraph|r(v)].add(m(w))

11 LepGraph|r(w)].add(w(v))

12 end

13 end

14 end

15 end

16 LEPs < GetConnectedComponents(LepGraph) /* see Procedure 2 */

17

18 return LEPs /* This will be the Monad LEP Set */

B N S

E} denote the set of neighbors of v € V. Additionally, for an equitable partition = =
V1, Va, ..., Vi of G, we let w(v) =V if v € V.

The final step of Algorithm 1 uses Procedure 2 (GetConnectedComponents) to orga-
nize equitable partition elements into LEPs. This procedure has computational complex-

ity given by the following lemma.

Lemma 5.1. Procedure 2 has time complexity of order O(m + n) and spacial complexity
of order O(n), where m = |E| and n = |V|.

Proof. Procedure 2 (GetConnectedComponents) is simply a Depth First Search (DFS)
with some added constant time operations at each step (adding nodes to the Component
or adding the Component to the list of ConnectedComponents). Since it is well known
that DFS takes O(|E| + |V|) operations, we see that Procedure 2 likewise has runtime
complexity in O(m + n).

ConnectedComponents and Component may both contain each vertex at most once,
so their combined size will be at most proportional to 2n. Since vertices in Neighbors
are never simultaneously in Visited, we have |Neighbors| + |Visited| < n, so their
contribution to the algorithm’s spatial complexity is at most n. Hence, the total space
used is proportional to 3n € O(n). O

Theorem 5.2. Algorithm 1 has both computational and spatial complexity of order O(m+
n), where m = |E| and n = |V|.
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Procedure 2: GetConnectedComponents(G).

Input : G, a dictionary of (vertex, neighbors) pairs, where neighbors is a set of vertices
connected to vertex
Output: {71, w2,..., 7}, a partition of the vertices of G into connected components

1 Visited < set() /* tracks which vertices have already been considered */
2 ConnectedComponents < list()
3 foreach vertex i in G do
if 4 is not in Visited then
Component <« set()
Neighbors < list()
Neighbors.add(i)
repeat
j < Neighbors.pop()
Component.add(j)
Visited.add(j)
/* add j’s unvisited neighbors to Neighbors */
Neighbors.add(G[j] \ Visited)
until Neighbors is empty
ConnectedComponents.add(Component)

-
= S ©® ® o oA

=
w o

—
'y

15 end
16 end
17 return ConnectedComponents

Proof. First, we demonstrate that N(v) and 7(v) can be found in linear time and ac-
cessed thereafter in constant time. N(v) may be represented by a dictionary mapping
each vertex to its neighbors; it may be constructed by iterating over all vertices and
edges, thus taking linear time with respect to the number of vertices and edges and
being in O(n + m). Similarly, we may obtain 7(v) by constructing a dictionary to point
vertices to their partition elements by iterating over the elements of 7, using each ver-
tex once and thereby achieving temporal complexity in O(n). Accessing N(v) or 7(v)
thereafter will be a constant-time lookup in the dictionary.

These dictionaries will have size proportional to the sizes of their keys and values. In
the case of N(v) we have |keys| + |values| = |V| + |E| = n + m. In the case of 7 (v),
|keys| + |values| = |V| 4 |r| < 2n, since there are at most n partition elements. Thus,
their spacial complexities are in O(n + m) and O(n), respectively.

In Algorithm 1 the first loop, on lines 2-4, initializes a dictionary with an entry for
each partition element in 7, and therefore may take k operations and will use space
proportional to k, where k = |r| < |V|. Next, on line 6, we compute M, the set of
neighbors common to all v € V;, by iterating over each edge e,,, connecting some vertex
v € V; to a neighboring vertex w € V. Thus, after being repeated for all V; € «, all edges
will have been considered exactly once, so line 6 will contribute m operations to the
overall time complexity. M may not contain more vertices than V', so its space is bounded
by n. Similarly, the following nested loops on lines 7-8 will result in lines 9-12 being run
once for each edge if M is empty (the worst case). Since adding to a set is constant in time
and space, lines 9-12 may contribute up to m operations and take space proportional to
m. Finally, from Lemma 5.1, GetConnectedComponents has time complexity in O(n+m)
and space complexity in O(n), so it contributes on the order of O(n+m) operations and
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takes O(n) space. Thus, Algorithm 1 takes k+3m—+n < 3m+2n € O(m+n) operations
and uses k +2m +n < 2m + 2n € O(m + n) space. O

In the worst case scenario, all equitable partition elements are trivial and thus the
divisor matrix is identical to the adjacency matrix. In this case, the LEParD algorithm
performs with the same temporal complexity as the traditional algorithm. That is,
asymptotically we lose nothing by using the LEParD algorithm to find eigenvalues of
a graph (matrix). Thus, though our method cannot guarantee performance improve-
ments in all cases, it may surpass traditional methods when a graph has a nontrivial
coarsest equitable partition as is often the case in real-world networks [18]. The latter is
considered in the following section.

5.83. An optimized example

In practice, the complexity of the LEParD algorithm will be dominated by finding
the eigenvalues of divisor matrices and LEP subgraphs (see Theorem 5.1). To illustrate
the potential of the LEParD algorithm, here we consider a family of graphs that are
designed to minimize this cost.

Because the LEParD algorithm can find the local eigenvalues of each of the subgraphs
G; individually, the local eigenvalues % (G;) can be computed simultaneously for all
i =1,...,r. Thus, the runtime of the LEParD algorithm, which finds these eigenvalues
in parallel, is determined by the size of the largest divisor graph or LEP. In the interest
of minimizing this term, we examine a family of graphs L,, = (V,, E,) for which the
divisor graph (L), and LEP subgraphs are roughly equal in size and the local divisor
graphs have a single vertex.

Example 5.1 (Layered graphs). Let L, = (V,,, E,,) be the family of layered graphs with
adjacency matrix

where n € N is a perfect square and each J € {1}7*7 is the all ones matrix with j = \/n.
The graph L, = (V,, E,) has a coarsest equitable partition 7" = {V*,Vj*,...,V;"}
where the element V;» = {(i — 1) x v/n+1,...,i x y/n} and k = y/n. Here all elements
V* € n™ are consistently connected to one another, so the Monad LEP Set of L,, is
simply the set of singletons containing elements of #”, ie., {{V{"},{V3'},....{V"}}.
This equitable partition is indicated in Fig. 3 for the layered graph Lyg = (Vag, E49).

A comparison of the time needed to compute the eigenvalues of L, = (V,,, E,) is
shown in Fig. 4. The methods compared are the Multi-Shift QR algorithm (hereafter
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) (L4g)nao
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(L49)1
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(L4g)i fori:2,3,...,7

Fig. 3. Top: The layered graph L4g = (Va9, E49) described in Example 5.1 with coarsest equitable partition
x4 = {V1497 V249, .. .,V749} shown as the red, yellow, purple, orange, green, brown, and blue vertices;
respectively. From left to right, each vertex in a partition element is connected to each of the vertices in the
adjacent partition element(s) but to no other vertices, excepting the vertices in the red partition element,
which additionally have self-loops. Top Middle: The divisor graph (L4g)r4 of Ls9. Bottom Middle and
Bottom: The subgraphs (L4g)1 and (La4g),; for i = 2,3,...,7 are shown, respectively.

QR algorithm) and the LEParD algorithm using QR as its eigenvalue finder. These are
shown in black and yellow, respectively.

In Fig. 4, at approximately n = 1000 the LEParD algorithm becomes computationally
more efficient than the QR method. The slope of the red and green regression lines are
approximately 2.996 and 1.896, respectively, suggesting that the approximate computa-
tional complexity of the QR method and LEParD algorithm is O(n?:99¢) and O(n'-8%¢)
respectively (see Proposition 5.2 and the paragraph that follows). We note that the LEP-
arD algorithm’s runtime may be further improved via multithreading in a faster language
(whereas the current implementation uses multiprocessing in Python).

This example suggests that when the coarsest equitable partition of a graph is suffi-
ciently nontrivial, the LEParD algorithm can be used to compute eigenvalues faster than
can be done using standard methods.

To establish the computational complexity seen in Fig. 4 for the layer graphs L, =
(Vo, Ep,) we give the following proposition.

Corollary 5.2. Using an eigenvalue finder of order O(a®) the
(i) LEParD algorithm on L,, = (V,,, E,,) has order O(n3/?log(n) + n%); and
(ii) the Parallelized LEParD algorithm on L, = (V,, E,) has order O(n®/?log(n) +n3).
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Parallelized LEParD vs. QR Method

LEParD Parallel
214 4 o(nl.896)

—e— QR method
2114 0(n29%)

28

25

22

Run Time (seconds)

25 27 29 211 213 215 217
Layered Graph Size

Fig. 4. The time needed to run the QR algorithm to find the eigenvalues of the layered graph L, = (V,, Ey)
is compared to the time needed to do the same using the LEParD algorithm. These are shown in blue and
yellow, respectively, where the horizontal axis gives the size n of the graph and vertical axis, the time, each
on a logarithmic scale.

Proof. For the graph L,, the number of edges m = (y/n — 1)|J| + v/n =n*? —n+ /n
where |J| is the number of entries in the matrix J € {1}V™*v” and the second /n is the
number of self-loops. The number of elements in the graph’s coarsest equitable partition
is k = \/n where each element contains n; = /n vertices. Here the Monad LEP Set
has size r = y/n, since each equitable partition element is preserved as a singleton LEP

{vir}.
From Equation (9), the LEParD algorithm has complexity

(9( <n3/2 —n+\/ﬁ) log(n) + (\/ﬁ)b—&-n—&-f (\/ﬁ)b) —

b+1

O<n3/2 log(n) +n? + \/ﬁ(n%)> = O(n3/2 log(n) + nT)
From Equation (10), the Parallelized LEParD algorithm has complexity
O( (n3/2 —n+ \/ﬁ) log(n) + (ﬁ)b +n+ (\/ﬁ)b) =
O(n3/2 log(n) + 23 + n) = O(n3/2 log(n) + n%> O
Because b = 3 for the QR method, the performance of the LEParD algorithm using

this as an eigenvalue finder has an approximate order of O(n?). The Parallelized LEParD
algorithm using the QR method has an order of O(n3/?1og(n)). The performance advan-
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tage of the Parallelized LEParD algorithm (using QR) when compared to the standard
QR method is shown in Fig. 4.

6. Conclusion

In this paper we introduce the notion of a complete equitable decomposition of a
graph, which allows us to decompose a graph into smaller graphs relative to an equi-
table partition, while maintaining its spectrum. However, to do so we assume that the
adjacency matrix of the graph is Hermitian. This is necessary for the proof we give in
Section 4 to hold. Currently, we are working to determine whether our result holds for
the much more general class of directed graphs. If this can be shown it may be possible
to modify the LEParD algorithm to much more quickly find eigenvalues of potentially
any real-world data set, where nontrivial equitable partitions are expected. This will be
explored in future publications.

With regard to the LEParD algorithm it is unknown to what extent this algorithm
is numerically stable or how its spatial complexity scales as this method needs to store
matrices in a way not needed by standard algorithms. Last, it is also possible that a
complete equitable decomposition can be carried out via a similarity transform, i.e. a
transform that extends the classical theory described in Theorems 3.1 and 3.2. Currently
this is unknown.
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