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ARTICLE INFO ABSTRACT

Keywords: The changing topology of a network is driven by the need to maintain or optimize network
Complex networks function. As this function is often related to moving quantities such as traffic, information, etc.,
Netwolrk growth models efficiently through the network, the structure of the network and the dynamics on the network
Specialization

directly depend on the other. To model this interplay of network structure and dynamics we use
the dynamics on the network, or the dynamical processes the network models, to influence the
dynamics of the network structure, i.e., to determine where and when to modify the network
structure. We model the dynamics on the network using Jackson network dynamics and the
dynamics of the network structure using minimal specialization, a variant of the more general
network growth model known as specialization. The resulting model, which we refer to as the
integrated specialization model, coevolves both the structure and the dynamics of the network.
We show that by reducing dynamic bottlenecks, i.e. reducing the network’s maximal asymptotic
load, this model simultaneously produces networks with real-world like properties. This includes
right-skewed degree distributions, sparsity, the small-world property, and non-trivial equitable
partitions. Additionally, when compared to other growth models, the integrated specialization
model creates networks with small diameter, minimizing distances across the network. The
result are networks that have both dynamic and structural features that allow quantities to
more efficiently move through the network.

Equitable partitions
Bottlenecks

1. Introduction

Networks studied in the biological, social, and technological sciences are inherently dynamic in that the state of the network’s
components evolve overtime. Technological and traffic networks show phase-transition type dynamics [1,2], gene regulatory
networks experience boolean dynamics [1,3], metabolic networks exhibit flux-balance dynamics [1,4], and the human brain has
been shown to have synchronous and other dynamic behavior [1,5].

The first type of dynamics is most often referred to as the dynamics on the network, referring to the changing states of the
network’s components. The second type of dynamics, which is the evolving topology of the network, is referred to as the dynamics
of the network. To a large extent the study of network dynamics focuses on one of these two types of dynamics, meaning either
the network’s structure is fixed and the dynamics on the network are studied, or the dynamics on the network are ignored and the
evolving structure of the network is studied. However, in real-world networks, these two types of dynamics typically influence one
another [6-8]. For instance, as traffic increases in a traffic network, the Internet, a supply chain, etc., new routes are added, which
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in turn creates new traffic patterns. In other areas the same principle holds. For instance, as money, etc. moves through a banking
network new paths emerge depending on the need to efficiently route these assets [9].

Here, we consider the interplay between these two types of dynamics. Specifically, we introduce a model that uses the dynamics
on the network to determine where to evolve the network’s structure. This change in structure in turn alters the dynamics on the
network, and this coevolving back and forth of structure and dynamics is analyzed. For the dynamics on the network, we use a
Jackson network model, which describes queuing systems, e.g. transportation networks, website traffic, etc. [10]. Under certain
conditions, Jackson networks have a stationary distribution, which can be thought of as a globally attracting fixed point that the
dynamics on the network tend to. This allows us to determine asymptotically high-stress areas, or areas of maximal asymptotic load,
within the network [11]. These areas with maximal asymptotic load are where we perform the structural evolution of the network
via minimal specialization, which maintains the function of the network while separating the number of tasks, i.e. load, of these
high-stress areas.

Specialization, as a mechanism of growth, is a phenomenon observed in many real-world networks including biological [12-14],
social [15], and airline hubs in transportation networks [16]. Specialization allows a network to perform increasingly complex tasks
by copying parts of the network and dividing the original network connections between these copies. The resulting specialized
network maintains the functionality of the network by preserving all the network paths so that the ability to route information, etc.,
is maintained. Recently, network growth models for specialization have been studied in [17-19], where the authors describe how
specialization creates real-world properties in a network over time [17], maintains intrinsic stability [18], and creates synchronous
dynamics [19].

The specific model we propose uses what we refer to as minimal specialization. Minimal specialization is effectively the
specialization defined in [17], the difference is that it modifies the least number of nodes and edges possible when specializing a
network. After defining minimal specialization in Section 3 we prove some useful facts regarding its spectral and structural behavior.
Specifically, we prove that if we start with a strongly connected or primitive network, minimal specialization of the network will
result in a strongly connected or primitive network (see Lemma 3.1.1 and Theorem 3.1.1). Additionally, we show how eigenvalues
and eigenvectors evolve with minimal specialization (see Lemma 3.1.2). We also prove that minimal specialization creates and
preserves non-trivial equitable partitions (see Theorem 7.0.1). We will use minimal specialization to evolve the structure of the
Jackson network in the area of highest maximal asymptotic load (see Sections 3 and 4). As this method incorporates both structure
and dynamics we refer to it as the integrated specialization model. We show that the integrated specialization model creates networks
that have structures observed in many real-world networks, including right-skewed degree distributions, sparsity, and the small-
world property. It is worth emphasizing that these features emerge from a topological mechanism, i.e. specialization, designed to
reduce the network’s maximal asymptotic load. Moreover, when compared to other growth models, the integrated specialization
model creates networks with small diameter, i.e., networks that have relatively small distances across the network. Aside from
these structural features, the integrated specialization model sequentially removes the network’s largest bottlenecks as the network
evolves. This results in networks whose structure and dynamics are both increasingly well-adapted to allow quantities to move
efficiently through the network.

The paper is structured as follows. Section 2 introduces basic notation, Jackson networks, and the equations used to model
the dynamics on Jackson networks. In Section 3, we motivate and introduce the concept of minimal specialization, showing that
certain topological and dynamical properties of the original network are maintained under these operations. In Section 4, we use
the dynamics, i.e., the stationary distribution, on a Jackson network to determine where to perform minimal specialization of the
network. We then extend this method, which we refer to as minimal dynamic specialization, to more general networks using the
network’s eigenvector centrality to specialize the network structure. In Section 5, we show that growing a Jackson network repeatedly
using minimal dynamic specialization, referred to as the integrated specialization model, creates structural properties observed in many
real-world networks. We also show that the maximum eigenvector centrality of the network decreases, meaning the integrated
model sequentially reduces areas of high stress in the network, on average. These experiments are carried out for Erdos-Rényi (ER)
graphs in this section and later in the Appendix for random geometric (RG), Barabsi-Albert (BA), and Watts-Strogatz (WS) graphs.
Section 6 compares the integrated specialization model to other growth models, where we show that the integrated specialization
model is comparable in creating common real-world properties while being more efficient in creating small diameter networks and
networks with equidistributed traffic loads. Section 7 introduces equitable partitions and shows that minimal specialization creates
and preserves non-trivial equitable partition elements, which are related to symmetries in the network and are common structures
observed in many real-world networks. A natural question is whether for other initial graphs types we see the same qualitative
behavior as seen here. This question is further explored in the Appendix

2. Background

Real-world networks perform specific functions. The underlying structure of a network, represented by a graph, is key to its
performance [20-22]. Formally, this is given by the graph G = (V, E, W), where V is a vertex set (or node set) and E is an edge
set. The vertices in V represent the network components, or objects, while the edges in E represent the connections or interactions
between these objects. We let V' = {1,2,...,n} with i representing the ith component of the network. An edge from i to j, denoted
e;; is used to represent the ith node affecting the jzh node. Here, the graphs we consider are directed graphs, meaning edges of the
graph are directed, noting that undirected graphs can be viewed as a special case of directed graphs. The function W : E — R gives
the edge weight of each ¢;; € E, where W (e;;) can represent the strength of the interaction, transitions probabilities, etc. If G is an
unweighted graph, then W (e;;) = §;; and we write G = (V, E).
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The underlying graph structure G = (V, E, W) of a network can alternatively be represented by its adjacency matrix A = A(G) €
R™" with entries

A = Wie;) ife;€E
Y 0 else.

We note that this orientation corresponds to right multiplication by a column vector. We let (A) denote the eigenvalues of the matrix
A, and p(A) = max{|A| : A € 6(A)} the spectral radius of A. Since there is a one-to-one relationship between a graph and its adjacency
matrix, we will use the two interchangeably.

To study the interplay between the dynamics on and of a network, we consider Jackson networks, which are used to model
queuing systems [10]. The flow of a given quantity, e.g. traffic, information, etc., through a Jackson network is modeled as the
discrete-time affine dynamical system

x*D = gx®) 4y

where x® € R” is the state of the network giving the state xf.k) of each component at time k > 0. The graph G = (V, E, W) associated
with the Jackson network is the graph with the adjacency matrix A € [0, 1]™", called the system’s transition matrix where A;; € [0, 1]
is the probability of transitioning from vertex j to vertex i. The vector y € R" gives the external inputs to the system. A Jackson
network can also have internal loss, meaning there is a non-zero probability of information, traffic, etc., leaving the system. This
occurs when the probability of transitioning from node i to any other node is less than 1, i.e., the ith column of the transition matrix
sums to less than 1. For simplicity, we assume there is no external input or internal loss, meaning y = 0 and A is column stochastic.

Thus,
xkHD = Ax®) = Akx©) @

for the initial vector of quantities x» € R”. This configuration induces the discrete-time linear dynamical system (A, R") where the
matrix A = A(G) is the adjacency matrix of the graph G = (V, E, W).

The asymptotic behavior of linear systems, such as the Jackson networks (4, R"), are fairly well understood. If A is primitive,
then the spectral radius is an algebraically simple eigenvalue of A and lim,_ . (p~' A)*¥ = xyT where x and y are the right and left
leading eigenvectors associated with p, respectively, with ||x||; = 1 and xTy = 1. Moreover, since A is stochastic, we have p =1 and
y = 1. That is, for the initial condition x©) > 0, we have

lim A*x©@ = x17x@ = ||x©||;x. &)

Thus the sum of the quantities moving through the network is constant in time [23]. Additionally the asymptotic state of the system
is a scaled version of the leading eigenvector x, which when normalized with the 1-norm, is referred to as the systems stationary
distribution [11]. For a Jackson network (A, R") with primitive matrix A, the stationary distribution is a globally attracting fixed point
of the system (see Eq. (2)). This stationary distribution indicates the long-term dynamics of the Jackson network (A, R"). Specifically,
it tells us which nodes, on average, carry the highest amount of information, traffic, stress, etc. The main idea behind the model
we propose is to use this globally attracting fixed point to determine where the long-term, high-stress areas of the network are (see
Section 4). To alleviate this stress, we modify the structure of the network accordingly, using the notion of minimal specialization.

3. Topological network dynamics: Minimal specialization

In order to model the interplay between the dynamics on and the dynamics of the network, we need to determine how to evolve
the structure of the network. As described in the introduction, network specialization has been observed in a number of real-world
networks [12-16], and specialization models have been the focus of a number of recent papers [17-19]. In this work, we explore
two main deviations from these specialization models. The first is related to the observation that most real-world specializations
occur at small scales. For example, if a transportation route experiences high use, usually the route is only modified at its point of
highest traffic. To reflect this, our model of minimal specialization adds the fewest number of nodes and edges required to modify
the flow through the network while maintaining functionality.

Definition 3.0.1 (Minimal Specialization). For the graph G = (V, E, W) with V| > 1, let i € V such that i has at least two out-going
edges. Let ¢;; € E with i # j and let w = W(e;;). Let G= (7, E,W) be the graph where

MV =vuli

(i) E= (E\ {e;})u {e;} Ulez13 ey € EY; and

1 if a=i, p=j
A—w)y"Wiey) if a=i, p#j
(1 — w)W(ey;) if a#i, f=i

(i) W (eqp) = wW (eq) if a#i, f=1
Wie;) if a=i,p=i
wl —w)y Wi, if a=i,p=i
W (eqp) else.
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We refer to the graph G = (7, f,W) associated with the system (Z, R("“)) as the minimal specialization of the graph G over

i € V with edge ¢;; € E. We refer to node i as the specialized copy of node i.

In Definition 3.0.1, i € V can be thought of as a copy of i € V, whose specialized function is to maintain the weighted connections
to j € V that were previously maintained by i through e;;. This results in vertices specialized into two parts, where i performs its
previous task with the exception of routing traffic to j, which is now executed by its specialized copy i (see Example 3.1.1).

It is important that i € V' has at least two out-going edges in order to be specialized. If it has only one out-going edge, then after
specialization, it would have no out-going edges, becoming a dangling node, essentially meaning that information, traffic, etc., gets
trapped at this node.

We note that the edge weight update in Definition 3.0.1 maintains the stochastic nature of the Jackson network (see Section 3.1).
This manner of updating could be done for any 0 < w < 1 and still produce a stochastic system, but choosing w = W (e;;) maintains
the proportion of network quantities passing through i and its copy i after specialization that previously passed through i before
specialization.

3.1. Topological and dynamical properties of minimal specialization

Minimal specialization induces a new system (A,R"*') with new dynamics. Here we show this new system is also a Jackson
network that inherits the structural and stability properties of the original Jackson network (4,R") under mild conditions. In
particular, we will show that if A is primitive then A is primitive, so that the specialized Jackson network (4, R"*!) has a stationary
distribution X € R"*!. To prove this requires the following two lemmata.

Lemma 3.1.1 (Preservation of a Strongly Connected Graph). If G = (7, E,W) is a minimal specialization of the graph G = (V,E, W)
and G is strongly connected, then G is strongly connected.

Proof. We note that under minimal specialization, the only deleted edge in G is ¢;;, so any path in G that does not contain e;; will
also be in G. Any path that contained e;; can now use the edge ¢;; since all the nodes having edges to i now have edges to i. Thus
we only need to verify three things: (1) there is a path in G from i to j, (2) there are paths in G from any node to i, and (3) from i
to any node.

First, we note that by constraints in Definition 3.0.1, i € V has an edge ¢;, € E with k # j. Moreover, since G is strongly
connected, there is at least one edge e,; € E leading to i. Thus, there is a path from k to » and we have e,; € E. Therefore, we have
the pathi » k —» - > h - i — j.

Second, there is a path in G from any node to i and this path does not contain e;; since it would create a cycle. Thus, we can
take the penultimate node in that path and traverse the edge from that node to i, and thus we have a path in G ending at i.

Finally, it is easy to see there is a path from i to any node, since we have the edge €5 and there is a path from j to any node. []

Lemma 3.1.2 (Spectral Evolution of Jackson Networks). Suppose G = (7, E,W) is the minimal specialization of G = (V, E, W) over
i € V with edge ¢;; € E. If w= W (e;;) and (4,x) is an eigenpair of A = A(G) then (4,X) is an eigenpair on = A(G) where,

(I-wyx, ife=i

Xp = wx, ift =i
Xp else.
In particular, x;,X;, and x; have the same sign with x; = X; + x; so ||x|l; = |X|l;. The additional eigenvalue of A is 0, meaning

o(A4) = 6(A) U {0}.

Proof. We will first consider how minimal specialization transforms the adjacency matrix. Without loss of generality, we can order
the rows and columns of our matrix so that we have

A]i
ALY )] A
A= : € R™" (3)
Ag-ni
Ay Ap A w
A Ap Ajj Aj;

where A[{j, i}, {i}¢] denotes the matrix A with the jth and ith rows excluded and the ith column excluded.
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When we perform minimal specialization, the structural changes and weight updates found in Definition 3.0.1 are reflected in
the new adjacency matrix as follows:

_ Ay _
(I-w)
Ay
AL T (1)) o |0
Z — A(j;])i e R(n+l)><(n+1). (4)
(-w)
A A 0 1
(1 - w)A;, (- w)A;; A, 0
wA;, wA,; o
— |

Let X be the vector whose entries are given by

(I-wyx, ife=i
Xy =qwx, ife=i.

Xp else

Then for k € {1, ... j — 1}, the kth entry of the product AX is

J J

_ A,

(Ax)k = X Ay + TR = w0 40 wx; = Y A+ A = (AX) = Axg.
s=1

s=1

For the jth entry of the product AX we have,
_ j j
(Ai) =Y Apx, + 0+ wx; = Y Ajx, + Ajx; = (AX); = Ax;.
Ios=l s=1
For the ith entry of the product AX we have,

J i
(Zi)_ = Y (- WA, + A1 = w0)x; +0 = (1= w) Y Ayyx, = (1 — 1) (Ax); = A1 — w)x;.
! s=1

s=1

Finally, for the ith entry of the product AX we have,

j i
—_ wA..
(Ax), = Z WA; X + 1—”(1 —w)x; +0= wz AjXy = w(AX); = Awx;.
= -w s=1
Thus we have the product AX = /X and therefore X is an eigenvector with eigenvalue A.
Finally, the last two rows of A are scalar multiples of each other. Since the last row is a new row, a new linear dependence is
created in the matrix, and thus the additional eigenvalue is 0. [J

Theorem 3.1.1 (Preservation of Asymptotic Dynamics). Let G = (V, E,W) and assume A = A(G) € [0, 1]"™" is primitive and stochastic.
Then A = A(G) € [0, 1]1¢+Dx0+D) " associated with any minimal specialization G = (V, E, W), is primitive and stochastic. Therefore,

—k_ —0), — _
lim 4 X0 = [X?),X forany X% e R’;El

n—oo

where X is the stationary distribution of A.

Proof. Given that A is stochastic and using Equation 3.1.2 in Lemma 3.1.2, we see that for k € {1,2,...,;} U {i}, the kth column
of A sums to 1. For column i, it follows from combining A4, and w(l — w)~' A,; and recognizing that the sum of the irh column of A
excluding A;; is 1 — w. Thus, A is stochastic.

From Lemma 3.1.1, we have that G is strongly connected. From Lemma 3.1.2, we have o(A) = 6(A) U {0}. Since A is primitive,
p(A) > 0 is the only eigenvalue of maximum modulus. Thus p(Z) = p(A) is the only eigenvalue of A of maximal modulus. Thus A
is primitive (see [23] for the definition of primitive and equivalent characterizations). The dynamic consequences now follow from
arguments in Section 2. []

Example 3.1.1 (Minimal Specialization). Consider the graph G = (V, E, W) in Fig. 1(a) (left) with vertex set V = {1,2,3,4,5}. After
performing minimal specialization on node 5 over the edge es, € E, the result is the graph G = (V,E,W) shown in Fig. 1(a) (right)
with vertex set V = {1,2,3,4,5,5.1}, where i = 5.1 is the copy of vertex i = 5. The dynamics of the original and specialized Jackson
networks (4,R’) and (Z, R®) are shown in Fig. 1(b), left and right, respectively.

As A € [0,117° is primitive, the Jackson network (A4,RR%) has the stationary distribution

x = [.0337838,.101351,.314189, 212838, .337838]".
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G

(a) An example of minimal specialization where the graph G on the right is a specialized version
of the graph G on the left. Here, node 5 with edge es4 is specialized, via minimal specialization,
resulting in the node 5.1 (red on left). An edge from node 5.1 to node 4 is added (red on right).
Nodes 1 and 3, which have an edge into node 5 now also have edges into node 5.1. Additionally,
the edge from node 5 to node 4 is deleted but all other outgoing edges of 5 remain. The weights are
updated according to the given scheme (see Definition 3.0.1).

Dynamics on the Network Over Time

—
—2

60 -3 60
— 4
— s
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° E
301

» «
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8
Quantity at node

Quantity at node

N
1)

0 20 0 60 80 100 0 20 o 60 80 100
(A, RY) (A, R
(b) The dynamics on the network over time, for the networks in Figure la. For the initial network,
the system’s dynamics are shown for the initial condition x(0) = [10, 20, 30, 40, 50] (left). Here,

the long-term behavior at each node tends to a scaled version of x, the stationary distribution the
Jackson network (A, [RS), which is represented by the black dots. After specialization (right), we
see that the network has similar behavior to the original network. Specifically, using the initial
condition x(*) = [10, 20, 30, 40, 50, 0], the dynamics on the network converge to a scaled version of

X, the stationary distribution of (Z, [RG), and the load at node 5 decreases.

Fig. 1. Example of minimal specialization.

Similarly, A € RS is primitive and the associated Jackson network has the stationary distribution
x = [.0337838,.101351,.314189, .212838, .135135,.202703]".

In Fig. 1(b) the initial conditions x¥' = [10,20,30,40,50] and X = [10,20,30,40,50,0]1 of the systems (4,R’) and (4,R®),
respectively, lead to similar dynamics. On the left, A*x© is calculated for k = 0,1,...,100. We see that the long-term dynamics

o . e k<0 - i i
approach ||x]|,x. After minimal specialization, we calculate A X" for k = 0,1,...,100. Again, the asymptotic state of the system
is ||§(0)||1§. Notice that ||x|| = ||x||, which is not a coincidence. This follows from Lemma 3.1.2, and is explored further in Section 4.

The second deviation from the original specialization models we propose is how we choose where to evolve the graph structure
of the Jackson network. Previously, the structure was evolved stochastically by choosing vertices randomly from the graph to
specialize [17-19]. Here our goal is to use the dynamics on the network to determine where to specialize the structure.

4. Coevolution of structure and dynamics

In real-world systems, the changing topology of the network is driven by the need to optimize the network’s function, which is
often related to moving quantities efficiently through the network. Dynamical processes such as traffic flow, information transfer,
etc., put pressure on the network’s topology to evolve in specific ways. In order to model this behavior, we use the dynamics on
the network, or the dynamical processes the network models, to determine where to modify the network topology.
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The node that experiences the highest traffic volume in a network is a natural candidate for the part of the network under the
most stress. The idea is that once specialized, this node and its specialized copy now share the load, lessening the stress on the
original node. A complicating factor in most real-world networks is that it may be difficult to determine which node experiences
the most traffic. This may be the case, for instance, if the network dynamics are irregular, e.g., aperiodic, chaotic, etc. The reason
we choose Jackson networks for our initial coevolution model is that, under mild assumptions, there is a clear hierarchy of which
nodes experience more traffic. This is given by the network’s stationary distribution.

4.1. Integrated specialization model

Suppose (A,R") is a Jackson network where A € [0,1]"™" is primitive. Then A has a unique stationary distribution x =
[x1, %, .-, x,]T € R", where x; is the asymptotic use of i € V in the associated network or graph G = (V, E,W). The node that
experiences the maximal asymptotic load is the node i such that x; = max,{x,}}_,. To specialize the network relative to its dynamics,
we choose node i with maximal asymptotic load from among the nodes with more than 2 out-going edges. Given i € V' we choose
anode j € V,j # i, such that We;;) = max{W(e; )le;s € E, € # i}, e, we choose the edge that transitions the most traffic away
from node i. Specializing (A, R") over node i with edge ¢; j results in the specialized Jackson network (A, R"™1), which we refer to
as the minimal dynamic specialization of (A, R").

We note that if the node with maximal asymptotic load is not unique, say nodes i,k € V, specializing i with edge ¢;; € E and
then specializing k with edge e,;, € E will result in a different (non-isomorphic) graph structure than if the network is specialized
in the opposite order. However, the asymptotic dynamics for all nodes after these two minimal dynamic specializations, in either
order, will be the same. Similarly, if the largest edge weight is not unique, the graph structure will be different depending on which
edge is chosen, but the resulting asymptotic dynamics for all nodes will be the same. In practice, non-uniqueness rarely occurs. If
it does, we randomly choose one of the nodes (or edges) to be used in the minimal dynamic specialization process.

If A € [0, 1]™" is primitive, by Theorem 3.1.1 it is possible to sequentially specialize the primitive Jackson network (A,R") via
minimal dynamic specialization. For such networks we can define the following coevolving Jackson model which integrates both
the dynamics on and the dynamics of the network.

Definition 4.1.1 (Integrated Specialization Model). Let (4, R") be a Jackson network where A € [0, 1]™" is primitive. We define the
sequence of Jackson networks {(Am,R"’f’")}::O to be the integrated specialization model with initial Jackson network (4,,R") and
Apyr = ‘A, for m > 0 is the minimal dynamic specialization of 4,,.

4.2. Irreducibility

Having a Jackson network (A4,RR") where A € [0, 1]™" is primitive is a strong condition. Primitivity is a property that is difficult
to establish since it typically involves calculating eigenvalues, taking large powers of matrices, calculating path lengths, etc., all of
which are computationally intensive for large networks. However, a condition that is more reasonable is for A to be irreducible,
which is equivalent to having a strongly-connected graph (see, for instance, [23]).

Most real-world networks have a largest strongly-connected component that comprises the majority of the network [24]. Thus,
the underlying graph structure of the network is strongly connected if we restrict our attention to the graph’s largest strongly-
connected component. This guarantees that the network’s adjacency matrix A is irreducible. With irreducibly, we still have p(A) as
an algebraically simple eigenvalue with positive leading eigenvector, but we lose having a unique stationary distribution (i.e. stable
asymptotic dynamics). This positive leading eigenvector is the network’s eigenvector centrality, which gives a ranking of the nodes that
takes into account the importance of a node relative to the importance of its neighbors [24]. A necessary condition for primitivity is
irreducibly, so in the setting of primitivity, we still have a notion of eigenvector centrality. In fact, if we have a primitive, stochastic
matrix A, the eigenvector centrality is equivalent (up to scaling) to the associated Jackson network’s stationary distribution.

Similar to our minimal dynamic specialization, we can use this ranking to determine which node to use in minimal specialization,
i.e., we choose a node with maximal eigenvector centrality, eligible for minimal specialization, and choose the edge in the same
manner as in minimal dynamic specialization. Moreover, Lemma 3.1.1 tells us that if A is strongly connected, then so is A. Thus, like
with the integrated specialization model, we can use minimal dynamic specialization to create a sequence of irreducible Jackson
networks.

Example 4.2.1 (Minimal Dynamic Specialization). Consider the Jackson network (4,R>) shown in Fig. 1(a) (left). The Jackson
network’s stationary distribution is
v = [.0337838,.101351, 314189, 212838, .337838| ",

s0 max{x;} = xs is the maximum load and max{W (es,)} = W (es,). Thus the minimal dynamic specialization of (4, R?) is the Jackson
network (4, R®) shown in Fig. 1(a) (right). Note that the specialized network has the stationary distribution

v = [.0337838,.101351, 314189, 212838, .135135,.202703] .

Fig. 1(b) shows the dynamics on the original network from Fig. 1(a) (left) and the specialized network (right). Over time, the
quantities at each node tend to converge to the (scaled) quantities of v, represented as black dots. After specialization, the dynamics
on the network behave in the same way, converging to (a scaled) v. The total traffic load in these systems is conserved, but the
maximal asymptotic load from (4,R%) to (X, R6> is reduced.
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Evolution of Network Topology under Dynamic Minimal Specialization
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Fig. 2. The long-term dynamics associated with the Jackson network in Fig. 1(a) is shown in part, where the dynamics of the network are shown above and the
dynamics on the network are shown below. The dynamics are generated using the integrated specialization model. Each plot on the bottom has the dynamics for
the node with the highest eigenvector centrality, the node with the median eigenvector centrality, and the node with minimum eigenvector centrality, plotted
on a log scale. As the network is repeatedly specialized, these quantities decrease by an order of magnitude.

Lemma 3.1.2 gives us a way of tracking how the maximum eigenvector centrality changes with the integrated specialization
model. In particular, the sequence {(Am,R”‘+")}:=0 has the sequence of leading eigenvectors v(¥, v, v ... where

A1-wo® ife=i

i

U(fkﬂ) = wul(.k) ife=i
u(tf‘) else
with [[vO; = v = ... ||v®®|| = .... This allows us to recursively compare the maximum eigenvector centrality as we specialize.

Consequently, Lemma 3.1.2 describes the evolution of the eigenvector centrality vector as a graph G with a column stochastic
adjacency matrix is specialized under minimal dynamic specialization. Specifically, we have

(m+1)

max o™ > max o form>0

1<k<n I<k<n+1

in our sequence of leading eigenvectors. Thus, we are targeting and decreasing the areas of high stress or high importance on the
network.

Example 4.2.2. Sequentially specializing the Jackson network (A,R’) in Example 1(a) using the integrated specialization model
results in the sequence {(Am,R5+'")},]n5:()o. Fig. 2 (bottom) shows the long-term dynamics for m = 0, 50, 100, 150. Each plot has the
dynamics for the node with the highest eigenvector centrality, the node with the median eigenvector centrality, and the node with
minimum eigenvector centrality, plotted on a log scale. As the network is specialized, these quantities are getting increasingly closer
together and decrease by at least an order of magnitude. That is, as we specialize high-stress areas of the network, we are decreasing

network’s maximal asymptotic load, and repeatedly doing so creates more equidistributed asymptotic loads.
5. Network model properties of the integrated specialization model

There are numerous models that generate networks which achieve specific properties observed in many real-world networks.
These properties include (i) right-skewed degree distributions, (ii) sparsity, (iii) the small-world property etc. An Erdos-Rényi



A. King et al. Physica A: Statistical Mechanics and its Applications 651 (2024) 130000

Degree Distributions

0 iterations, truncated 250 iterations, truncated 500 iterations, truncated
500 4 12000 |
6000
5000 4 10000 -
4000 4 8000 1
3000 A 60001
2000 4 4000
1000 A 2000 +

2 4 6 8 10 12 5 10 15 20 5 10 15 20
0 iterations, log-log scale 250 iterations, log-log scale 100 iterations, log-log scale

o
N
v
o
N
v

10° 10t 102 10° 10! 10? 10° 10! 102

Fig. 3. Averaged results describing how the out-degree distribution of the network evolves using the integrated specialization model. The top row shows the
degree distribution (here the tails are truncated). The bottom row shows the degree distribution on a log-log scale, where the binning is done logarithmically
(where the tails are not truncated). As the network evolves, the out-degree distribution becomes increasingly right-skewed, a hallmark of many real-world
networks. On a log-log scale, the degree distribution appear increasingly linear as the system evolves.

network has a giant component, a Barabési-Albert network has a scale-free right-skewed degree distribution, and a Watts-Strogatz
network exhibits the small-world property [24,25]. In recent research, models have been proposed that create scale-free networks,
the small-world property, and high clustering coefficients. See for instance, [26-28].

Since the sequence of vertices that are specialized for a given initial network (4, R") is difficult to determine, it is then difficult to
determine the asymptotic structure of a network as it evolves under the integrated model. In this section we discuss some numerical
results. We give statistical evidence that the integrated specialization model exhibits many observed network model properties
including right-skewed degree distributions with some scale-free like properties, the small-world property, and sparsity. We also
present, what is likely the most novel property of this model, which is the decrease in maximal asymptotic load of the network as
a network is repeatedly specialized.

In our experiments, we begin with a Jackson network (4,,R?) given by a directed Erdés-Rényi graph G = (V, E, W), with
[V| = 25 nodes and a density of G,,, = .25, where for each ordered pair of nodes {i,j} the edge e¢;; belongs to the graph with
probability G,,,. The edge weights are uniformly assigned a value from 1 to 100 and normalized so out-going edges sum to 1.
We use the integrated specialization model to produce the sequence {(A,,, R>*") }fnioo, growing the network to 525 nodes. For this
sequence of graphs, we collect statistics (i)-(iii) and repeat this experiment for 100 such initial Jackson networks. The averaged
statistics with standard-deviations are described in the following subsections.

5.1. Degree distribution

Many real-world networks exhibit a right-skewed degree distribution, meaning many nodes have low degree and few nodes
have high degree [24]. Since we are analyzing directed networks in our numerical experiment, we consider both the in-degree and
out-degree distributions.

Fig. 3 shows our results regarding how the out-degree evolves, on average, over our 100 trials. The top left histogram, which
has a distinct binomial shape, is the average histogram for 100 directed Erdos-Rényi graphs. This binomial shape is very unlike the
right-skewed distribution found in real-world networks [24]. The top middle panel shows the averaged histogram for the networks
(A0, R'?) over 100 simulates, and the top right panel is the averaged histogram of (A, R?*) over 100 simulations. As these
graphs are specialized, we see, on average, an increasingly right-skewed degree distribution, i.e., an increasingly more real-world
like degree distribution.
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Analyzing Power-Law Property
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Fig. 4. Left: A plot of the evolution of average a(m)-value and over one-hundred sequences {(Am,R”*'")}fnofO of the integrated model is shown. Right: A plot of
the associated statistical error o(m)-value average over the same sequences is shown. In each one standard-deviation is indicated.

There is a simple heuristic that helps explain why we see a right-skewed out-degree distribution. When we use the integrated
specialization model, a node is created with only one out-going edge. As we sequentially specialize, it is possible for nodes with
a small number of out-going edges to gain more out-going edges, but we are still adding a node with an out-degree of 1 at each
iteration. Thus, although the degree-distribution does not reach a steady state as we are always increasing the out-degree of some
nodes after minimal specialization, the distribution of the network’s out-degree becomes increasingly right skewed.

Additionally, along with a right-skewed degree distribution, many real-world networks exhibit a power-law distribution, meaning
this distribution is d, ~ Ck™® for some C > 0 where a« € [2,3] for many real-world networks [24]. Equivalently, the log-log
distribution is linear with a slope of —a where a € [2,3]. The histograms shown in the bottom row of Fig. 3 are those in the top
row but shown on a log-log scale, from left to right, respectively where the binning is done logarithmically. As the network evolves
these degree distributions appear increasingly linear, specifically in the tail of the distribution (cf. Fig. 4).

For the integrated model we determine a = a(m) for the out-degree distribution of each {(4,,, R*>*") }500

=0 using
-1

n kl
a=14+n Zln _—
i=1 Komin —

1
min 2
where we let k,,;, = 7 (see [24], p. 325). We also use the associated statistical error ¢ = o(m) for this sequence given by ¢ = (a—1)/ ﬁ
Fig. 4 shows the exponent @ = a(m) (left) and statistical error ¢ = o(m) (right) in a power-law analysis of the out-degree
distribution of the integrated model {(4,,. R25+'")}fno:00, averaged over 100 simulations. In Fig. 4 left we approach the value a ~ 2.3
with little variance across each simulation, and decreasing statistical error ¢ as we specialize. Additionally, the bottom row of Fig. 3
shows the log-histogram of the degree distribution as we specialize. We can see that as we specialize, the log-histograms become
increasingly linear.
We note that one drawback of the integrated specialization model is that the in-degree distribution does not evolve into a right-
skewed distribution. To solve this, we could alternate between specializing G and G*, where G7 is the graph with adjacency matrix
AT. However, we would not have the same theoretical properties as the integrated specialization model defined here.

5.2. Small-world property

The diameter of a network is the network’s largest geodesic, i.e., its longest shortest path. Intuitively, the length of the diameter
is the farthest distance traffic, information, assets, etc., will travel in a network. It has been observed that as a real-world network
evolves over time, its diameter grows logarithmically. This phenomenon is known as the small-world Property [24].

Fig. 5(a) shows how the diameter of the sequence {(AM,RZS*"”)},S"(EO grows, averaged over 100 such sequences. The black curve
is the evolution of the average diameter, with the shaded region representing one standard deviation. The orange curve is fitted
to the black curve. The growth appears to be logarithmic, suggesting that the integrated specialization model has the small-world

Property, at least for initial networks with an Erdds-Rényi topology.
5.3. Density

The density of a directed network G = (V, E, W) is defined to be
_m
nn—1)"

Gden =
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(a) Averaged results describing how the
diameter of the network evolves us-
ing the integrated specialization model.
One standard deviation is shown with
the shaded region. The orange curve is a
logarithmic equation fitted to the data.
The trend of the diameter is logarithmic,
i.e., the model exhibits the small-world
property, a phenomenon that is typical

of real-world networks.

Physica A: Statistical Mechanics and its Applications 651 (2024) 130000

Evolution of Density

025

005

0 100 400 500

200 300
Iteration
(b) Averaged results describing how the
density of the network evolves using the
integrated specialization model. One
standard deviation is shown, with the
maximum standard deviation as 0.017
and the minimum as 0.0008. As the net-
work evolves, the density decreases over-
all, a hallmark of many real-world net-

works.
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(c) Averaged results describing how the
maximum eigenvector centrality of the
network evolves using the integrated
specialization model. One standard de-
viation is shown, with the maximum
standard deviation as 0.0178 and the
minimum as 0.0003. As the network
evolves, the maximum eigenvector cen-
trality decreases, indicating that we are
reducing areas of high stress in the net-

work.

Fig. 5. Analyzing real-world properties.

where m = |E| is the number of edges and » = |V| is the number of nodes. The density can be thought of as the ratio of edges to
possible edges in a graph. If the ratio tends to 0 as the network grows, the network is said to be sparse; otherwise, it is said to be
dense. A hallmark of real-world networks is that they appear to be sparse when compared to random networks [29].

Fig. 5(b) shows how the density changes as a network is grown using the integrated specialization model. For the graphs we
consider, the average density begins at G,,, = .25 and the sparsity rapidly drops towards zero, at a nearly exponential rate. One
standard deviation is shaded, but is too small to observe, indicating a very constrained evolution towards sparsity.

5.4. Maximum eigenvector centrality

In Section 4.1, we describe how eigenvector centrality is used in our dynamical model. To reiterate, real-world networks tend to
specialize in areas of the network with high traffic or stress. The integrated specialization model is designed to specialize nodes with
high eigenvector centrality, maximizing dynamic functionality by reducing high-stress areas. A consequence of Lemma 3.1.2 is that
the maximal eigenvector centrality, i.e., the maximal asymptotic load, of a network cannot increase as the network is specialized.

Fig. 5(c) shows the averaged results for how the maximal asymptotic load evolves with the integrated specialization model. One
standard deviation is shown, but is very small. On average, we see a rapid decrease in the maximum eigenvector centrality; thus,
statistically, we do much better than the theory informs, efficiently targeting areas of high traffic in the network and successfully
reducing the network’s maximal asymptotic load, i.e. areas of stress.

We note that in this section we consider the integrated model {(Am,IRZS*"”)};J;IOSO for the initial condition {A,,R*} where 4,
corresponds to a directed Erdos-Rényi graph as described in Section 5.1. A natural question is whether for other initial graphs types
we see the same qualitative behavior as seen here. This question is further explored in the Appendix where the same experiments
are run for random geometric (RG), Barabsi-Albert (BA), and Watts-Strogatz (WS) graphs.

As the outcomes to these experiments are similar in each case, this suggest that, irrespective of the initial condition, the integrated
model produces Jackson models with similar structure and dynamics.

6. Comparison to other models

The most novel feature of the integrated specialization model is that it uses the dynamics on the network to determine where
to evolve the structure of the network. In the previous section, we presented statistical evidence that the integrated specialization
model creates real-world structural properties. To understand how this coevolution leads to structural differences, we compare the
integrated specialization model to two other models: (i) random minimal specialization and (ii) the Barabsi-Albert (BA) model.

In random minimal specialization, we remove the integrated specialization model’s dependence on the network’s dynamics by
performing minimal specialization over a random node and its out-going edge with the highest weight. This creates a sequence of
Jackson networks {(Rm RmHm) }mzo' In the Barabsi-Albert model we consider a single node preferentially added via a single edge at
each step, resulting in a sequence of simple graphs {B,,},-¢, where |B, | = m + n.

As in the previous section, we begin with an Erdds-Rényi graph G, = (V,E,W) with |V| = 25 and G4, = .25 for each
of the integrated specialization, random minimal specialization, and Barab$i-Albert Models. For the models involving minimal
specialization, the initial Erdos-Rényi graph is directed, with edge weights uniformly assigned values in [1, 100] and then normalized
so out-going edge weights sum to 1. For the Barab$i-Albert Model, the initial Erdos-Rényi graph is undirected, and no edge-weights

11
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(a) Figure comparing the evolution of the diameter for
the integrated specialization, random minimal special-
ization, and Barabsi-Albert model (adding one edge at a
time). 100 simulations of networks grown to 525 nodes
were averaged. A line of best fit is shown for each
model. In each case the models appear to have loga-
rithmic growth, i.e., the small-world property.

Physica A: Statistical Mechanics and its Applications 651 (2024) 130000

Maximum Eigenvector Centrality, Comparing Growth Models

—— Minimal Specialization
Random Specialization
—— Barabasi-Albert

° ° ° °
° ° o i
? £ 8 B

Maximum Eigenvector Centrality
°
s

0.00

Iteration

(b) Figure comparing the evolution of the maximum
eigenvector centrality for the integrated specializa-
tion, random minimal specialization, and Barabsi-Albert
model (adding one edge at a time). 100 simulations
of networks grown to 525 nodes were averaged. For
the maximum eigenvector centrality over time, the in-
tegrated specialization model does a better job of de-

creasing the maximum eigenvector centrality and does
so with little variance between simulations. Thus, the
integrated specialization model is more efficient at tar-
geting high-stress areas of the network and relieving that
stress.

Fig. 6. Comparing models.
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{Bm}fn(fo, respectively. This experiment is performed 100 times for each model and the data is averaged. We note that for each of
these models, the evolution of the density is essentially the same, rapidly decreasing to zero at nearly the same rate. Similarly, the
degree distributions all evolve to a right-skewed degree distribution. The three models also exhibit the small-world property, but
show different growth rates (see Fig. 6(a)).

In the networks we consider, the maximum eigenvector centrality corresponds to the node that, on average, has the most
information or traffic, i.e., the maximal asymptotic load. Thus, a decrease in maximum eigenvector centrality corresponds to
a decrease in areas of high stress on the network. Fig. 6(b) shows the evolution of the maximum eigenvector centrality, or
maximal asymptotic load, in each of the three growth models, where each eigenvector is normalized by the 1-norm. The integrated
specialization model rapidly decreases the maximal asymptotic load, which is expected. Random minimal specialization and BA do
not decrease as rapidly, or reach as low of a value as the integrated specialization model. Moreover, the variance across simulations
for the integrated specialization model is negligible, while there is higher variance in the other two models.

are assigned. For each model, we evolve the networks 500 times to create the sequences {(A,,,,R"*’")}

The differences in the evolution of the diameter and maximal asymptotic load give evidence that the integrated specialization
model creates efficient networks, both in terms structure and dynamics. Specifically, the integrated specialization model creates
networks with small diameter, so that distances across the network are minimized, and equidistributed traffic, so that traffic
bottlenecks are reduced throughout the network. Moreover, the negligible variance between trials for the integrated specialization
model suggests that we achieve these results in a near-optimal way.

7. Equitable partitions

A hallmark of real-world networks is the high occurrence of symmetric structures [30]. Each such symmetry is given by an
equitable partition, which is a generalization of the notion of a graph symmetry. Historically, equitable partitions are defined for
simple graphs: unweighted, undirected graphs without loops. However, equitable partitions can be defined for unweighted directed
graphs G = (V, E) as follows [19]:

Definition 7.0.1 (Equitable Partition). Let G = (V, E) be a graph with adjacency matrix A = A(G). Let = = {V},V,,...,V,} be a
partition of the vertices V. Then r is an equitable partition if the sum
Z Ajj = Dy 5)

i€V
is constant for any i € V,.. If |V;| = 1, we call V] trivial, else we call it non-trivial. We call z trivial if each element in 7 is trivial and
non-trivial if there exists a non-trivial element in z. We call the matrix D € N*** the divisor matrix of A associated with r, and G,,
the divisor graph associated with D.
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Fig. 7. An example illustrating the formation of non-trivial equitable partitions. On the left is the original network. From left to right, node 5 is specialized,
with node 5.1 as its copy. These are in the same equitable partition element (red). Next, node 3 is specialized with node 3.1 as its copy, which are in the same
partition element (cyan). Finally, node 5 is specialized again, with node 5.2 as its copy, increasing the partition element size from two to three (red).

We emphasize that our definition uses the unweighted adjacency matrix, meaning we are focusing on the topology of the network
and not the edge weights. A Jackson network (4, R") has an equitable partition r if its associated unweighted graph G = G(A) where
G = (V, E) has the equitable partition .

The main result of this section is that minimal specialization creates and preserves non-trivial equitable partition elements. Later,
we study the consequences of repeated minimal specialization on the size and type of equitable partitions a specialized network has
(see Corollary 7.0.1 and Fig. 7).

Theorem 7.0.1 (Preservation of Equitable Partitions). Let (Z, R”“) be the minimal specialization of the Jackson network (A,R") over
any eligible vertex i with edge e;;,i # j. If (A,R") has an equitable partition = = {V},V5, ...,V }, then (Z, ]R”“) has an equitable partition
7={V,.V,. ...V} where

— {Vuu iy ifiev,

V, = ) fora=1,2,...,k
v, otherwise

a
where i is the node created during minimal specialization.
Proof. We first note that Definition 7.0.1 is equivalent to saying we can partition our adjacency matrix so that the row sum in each

partition is constant. Thus, we will consider the partitioned adjacency matrices corresponding to = and 7. Without loss of generality,
let j € V,_, and i € V. The partitioned adjacency matrix is

A App Ay
A= : : : : c R ®)
Au-n1 | | Aw=nk=1 | Au=1k
Ap Ajr Aje-1y Ak

where each A,, is a block matrix that represents the connections within a part and each A,,,¢ # h a block matrix that represents
the connections from part 4 to part £.

Let A;_y, denote the matrix that has the same entries as A_,y, except the entry corresponding to e;; in the adjacency matrix
is changed from a 1 to a 0. This represents deleting the edge from i to j, which is done during minimal specialization.

Let A,, for 1 < ¢ < k denote the matrix that has the same entries as A,, but now we add an extra row that is a copy of the row
corresponding to node i. This represents i having the same in-edges as i.

Since i has only one out-going edge, which is to node j, the column in A corresponding to i is all zeros except a 1 in the jth
entry.

Thus, the partitioned adjacency matrix of A is

All AIZ o Alk 0

A= : : : _ f | e gohxen 1%
A=t | = | Agei=n | Ag-k ¢
Ap Ajr Aje-1y Ak 0

where e; is the vector that is all zeros except for a 1 that corresponds to the row associated with j. In this form, it is clear that the
upper left (k — 1) X (k — 1) block matrix is the as the upper left (k — 1) X (k — 1) block matrix of A, so the row sums are constant on
each part. Moreover, in the last partition column, it is clear that partition rows 1 to k —2 have constant row sum since we are only
adding a column of zeros. For the (k — 1), k partition of A, if we are not examining the row corresponding to node j, the row sum
is the same as the row sum in A_;). If we are looking at the row corresponding to j, then the row in A _,y, has the same entries
as Ay except for the entry corresponding to e;;, which is 0 for Ay_1y and 1 for A;_,y,. But, we have an additional 1 in the row
corresponding to j in A. Thus the row sums for [Apcii e /‘] are the same as A(_,y, and thus the row sums are constant. Finally,
for the last partition row, since the rows of A,, are copies of the rows of A,, (some repeated), and we are only adding a column
of zeros in the case of A, the row sums are constant.
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Thus, the partitioned A has constant row sums on each part, so equivalently, 7 is an equitable partition.

We note that if i and j are in the same partition element, then the argument is similar, but instead of having an A,_,), and Ay,
there is just A,, with an extra row that is a copy of the row corresponding to i in A, and changing the appropriate entry from a 1
toa0. [

Using Theorem 7.0.1, it follows that the size of a network’s equitable partition remains constant under minimal specialization,
i.e., the following holds.

Corollary 7.0.1. Let {(A,,,R"™™") }:zo be a sequence of Jackson networks created via repeated minimal specialization. Denote the trivial
partition of (A, R") by ny. Then (A,,, R™™) has an equitable partition r,, where |x,,| = || for all m > 0.

Proof. This follows from an inductive argument. Our base case is 7, being the trivial equitable partition of (4,, R"). Thus |z| = |V].
Now assume inductively that for (A,_;,R"~!*"), we have that |z,_,;| = |V|. Let (A4,,R™") be the minimal specialization of
(A,,_1, R™ 14" From Theorem 7.0.1, we have that |z,| = |z,_,| = |V]. O

The number of partition elements remains fixed as a network is specialized, meaning that as the network grows, the partition
elements are what grow in size. A related question, not answered here, is as the network grows, how do the sizes of the partition
elements grow? For the sake of illustration, we consider this in the following example.

Example 7.0.1. Fig. 7 shows an example of an evolving Jackson network given by the sequence {(4,,,R>* "’)}izo. The Jackson
networks are sequentially specialized over the vertices i = 5,3, and 5 again, respectively. Here the original network has the trivial
equitable partition 7, = {{1}, {2}, {3}, {4}, {5}}. The result of specializing in this manner results in the partitions

7y = {{1},{2}, {3}, {4}.{5.5.1}}
7y = {{1}.{2},{3,3.1}, {4}, {5.5.1}}
73 = {{1},{2},{3,3.1},{4}.{5,5.1,5.2}},

where each partition element is colored brown, purple, black, green, and red, respectively. Note that |zy| = |7|| = |7, | = |73].
7.1. Evolution of equitable partitions and comparisons

In Corollary 7.0.1, we proved that minimal specialization either creates a new non-trivial partition element or grows the
size of a non-trivial element. Thus, the percentage of non-trivial equitable partition elements never decreases. Here, we explore
experimentally the rate at which non-trivial elements are created. The experiments here are the same as those discussed earlier in
Section 6, beginning with a directed Erdos-Rényi graph of |V| = 25 nodes, G,,, = .25 density, and normalized edge weights for
dynamic and random minimal specialization models. We also examined two Barabs$i-Albert models, one where we preferentially
attach one node with one edge, and the other with one node and two edges. For these models, we begin with an undirected,
unweighted Erdds-Rényi graph with |V'| = 25 nodes, G, = .25 density. We iterate each model 500 times, calculating the percentage
of non-trivial equitable partition elements at each time step. We repeat this for 100 simulations and average the results.

For the integrated specialization model, we achieve 100% non-triviality quite rapidly with little standard deviation, as seen in
Fig. 8(a). We see similar results for repeated random minimal specialization (Fig. 8(b)). We can see that, on average, the BA network
adding one node and edge evolves to have roughly 70% non-triviality, with higher variance. For BA networks grown by adding one
node and two edges, there is no consistent creation of equitable partitions (Fig. 8(b)). (As far as the author’s know, there is no
theory describing the occurrence of equitable partitions in BA models.) Our model is potentially useful in the sense that it can be
used to evolve a network to any percentage of non-trivial partition elements, given that the percentage is in the of the form ’;‘ for
0 < k < n where n is the size of the starting network.

8. Conclusion

In this work, we develop a model that considers the interplay between the dynamics on and the dynamics of the network. We use
a modified Jackson network, i.e. stochastic linear dynamics, for the dynamics on the network, and we develop a mechanism called
minimal specialization to model the dynamics of the network. We then repeatedly use the dynamics on the network to determine
where to minimally specialize the network, which we refer to as the integrated specialization model. We proved that minimal
specialization preserves structural and dynamic properties of the network. Specifically, we proved that if we start with a strongly
connected or primitive network, minimal specialization will result in a strongly connected or primitive network. We also show how
eigenvalues and eigenvectors evolve with minimal specialization.

Numerically, we show that the integrated specialization model creates networks with properties observed in many real-world
networks. This includes a right-skewed degree distribution, sparsity, the small-world property, and nontrivial equitable partitions.
While other network growth model can produce similar structural features, what is novel about the integrated model is it produces
these features through a topological mechanism, i.e. specialization, designed to reduce the maximal asymptotic load of a network.
This suggests that locally reducing a networks load may be an important feature in the formation of real-world networks.

Last, we also compare the integrated specialization model to other growth models, showing evidence that the integrated
specialization model creates more efficient networks in terms of both dynamics and structure. Specifically, we see that the integrated
specialization model creates networks with small diameter, meaning distances across the network are minimized, which is done while
simultaneously minimizing maximal load, meaning bottlenecks are reduced.
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Evolution of Non-Trivial Equitable Partitions
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(a) An example illustrating the evolution of the percent-
age of non-trivial equitable partition elements using the
integrated specialization model. As the network evolves,
the percentage of non-trivial equitable partition elements
increases. Little standard deviation is observed, with
the maximum being .0378 and the minimum being 0
(in every simulation, the final network had 100% non-
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Equitable Partitions, Comparing Growth Models

—— Minimal Specialization
Random Specialization

—— Barabasi-Albert, 1 edge

—— Barabasi-Albert, 2 edges

% NonTrivial Partition Elements

Iteration

(b) The evolution of the maximum percentage of non-
trivial equitable partition elements for the growth mod-
els, the integrated specialization model, random mini-
mal specialization, and Barabsi-Albert model (adding
one and two edges at a time). 100 simulations of net-
works grown to 525 nodes are averaged. The integrated
specialization model and random specialization perform

virtually the same, with little variance in both models.
The BA model adding one edge doesn’t achieve as high
of a percentage, and exhibits more variance between sim-
ulations. For the BA model adding two edges, there is
no consistent creation of non-trivial equitable partitions.

triviality).

Fig. 8. Non-trivial equitable partitions.
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Appendix. Other initial networks

The simulations in Section 5 used directed random (directed Erdos-Rényi) graphs as the initial graphs for the integrated model.
Here, we briefly present analogous results using three different initial graphs. The first type of graph is a random geometric graph
(RG) with n = 25 nodes and a radius of r = .25. The second graph type is a Barabsi-Albert graph (BA) with n = 25 nodes and m =5
connections. The third graph is a connected Watts—Strogatz graph (WS) with n = 25 nodes, k = 5 neighbors, and p = .25 probability
of re-wiring connections. Each of these graphs is initially undirected and unweighted. We then modify each graph type by directing
then deleting half the edges (rounding down) uniformly assign edge weights W (e;;) € [1,100] then normalize out-going edges to
sum to 1. We check that the resulting graph is strongly connected.

Analogous to the previous simulations on Erdos-Rényi graphs we run one-hundred simulations for each type of graph, growing
the networks from 25 to 525 nodes. The same statistics as before are averaged and presented here (see Figs. 3 and 5). For these
experiments, Fig. 9 shows how the out-degree distribution evolves using the integrated model with the three modified initial graphs.
In each case the out-degree distribution becomes increasingly right-skewed under the integrated model, on average.
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Out-Degree Distributions

RG Modified out-degree distributions
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WS Modified out-degree distributions
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0 iterations 100 iterations 200 iterations

o
w

Fig. 9. The evolution of the out-degree distribution using the integrated model is shown for the modified random geometric (RG), Barabsi-Albert (BA), and
Watts-Strogatz (WS) graphs. These are shown in the top, middle and bottom rows, respectively, for 0, 100, and 200 iterations, with the distribution tails
truncated.

Fig. 10 shows how the diameter evolves using the integrated model starting with the modified RG, BA, and WS graphs. Each
experiment exhibits a different type of logarithmic growth, suggesting that for each has a distinct small-world property.

Fig. 11 shows how the density evolves using the integrated model starting with the modified RG, BA, and WS graphs. Regardless
of the initial graph, the graph becomes increasingly sparse as the network is repeatedly specialized where the density appears to be
approaching zero.

Fig. 12 shows how the maximum eigenvector centrality of a network evolves using the integrated model starting with the
modified RG, BA, and WS graphs. As with network density, regardless of the initial graph the maximal centrality decreases as
the network is repeatedly specialized where the maximum in each case appears to be approaching zero.

Each of the figures in this and in Section 5 provide evidence that the integrated model creates networks with some of most
studied properties observed in many real-world networks including (i) right-skewed degree distributions, (ii) sparsity, and (iii) the
small-world property. While the specifics of (i)-(iii) depend on the initial graph used in the integrated model, the overall pattern
appears to be independent of the initial condition. Additionally, for each type of graph, the integrated model deceases the maximal
load on the network as the network is specialized.
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Evolution of Diameter, Different Initial Graphs
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Fig. 10. The evolution of network diameter using the integrated model is shown for the modified random geometric (RG), Barab$i-Albert (BA), and Watts-Strogatz
(WS) graphs, from left to right respectively. A line of best fit is plotted in orange in each plot, and one standard deviation is shown.

Evolution of Density, Different Initial Graphs
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Fig. 11. The evolution of network density using the integrated model is shown for the modified random geometric (RG), Barabsi-Albert (BA), and Watts-Strogatz
(WS) graphs, from left to right respectively. The average and one standard deviation is shown.

Evolution of Max Eigenvector Centrality, Different Initial Graphs
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Fig. 12. The evolution of maximum eigenvector centrality using the integrated model is shown for the modified random geometric (RG), Barabsi-Albert (BA),
and Watts-Strogatz (WS) graphs, from left to right respectively. The average and one standard deviation is shown.
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