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A B S T R A C T

The changing topology of a network is driven by the need to maintain or optimize network
function. As this function is often related to moving quantities such as traffic, information, etc.,
efficiently through the network, the structure of the network and the dynamics on the network
directly depend on the other. To model this interplay of network structure and dynamics we use
the dynamics on the network, or the dynamical processes the network models, to influence the
dynamics of the network structure, i.e., to determine where and when to modify the network
structure. We model the dynamics on the network using Jackson network dynamics and the
dynamics of the network structure using minimal specialization, a variant of the more general
network growth model known as specialization. The resulting model, which we refer to as the
integrated specialization model, coevolves both the structure and the dynamics of the network.
We show that by reducing dynamic bottlenecks, i.e. reducing the network’s maximal asymptotic
load, this model simultaneously produces networks with real-world like properties. This includes
right-skewed degree distributions, sparsity, the small-world property, and non-trivial equitable
partitions. Additionally, when compared to other growth models, the integrated specialization
model creates networks with small diameter, minimizing distances across the network. The
result are networks that have both dynamic and structural features that allow quantities to
more efficiently move through the network.

1. Introduction

Networks studied in the biological, social, and technological sciences are inherently dynamic in that the state of the network’s
omponents evolve overtime. Technological and traffic networks show phase-transition type dynamics [1,2], gene regulatory
networks experience boolean dynamics [1,3], metabolic networks exhibit flux-balance dynamics [1,4], and the human brain has
een shown to have synchronous and other dynamic behavior [1,5].
The first type of dynamics is most often referred to as the dynamics on the network, referring to the changing states of the

etwork’s components. The second type of dynamics, which is the evolving topology of the network, is referred to as the dynamics
f the network. To a large extent the study of network dynamics focuses on one of these two types of dynamics, meaning either
he network’s structure is fixed and the dynamics on the network are studied, or the dynamics on the network are ignored and the
volving structure of the network is studied. However, in real-world networks, these two types of dynamics typically influence one
nother [6–8]. For instance, as traffic increases in a traffic network, the Internet, a supply chain, etc., new routes are added, which
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in turn creates new traffic patterns. In other areas the same principle holds. For instance, as money, etc. moves through a banking
network new paths emerge depending on the need to efficiently route these assets [9].

Here, we consider the interplay between these two types of dynamics. Specifically, we introduce a model that uses the dynamics
n the network to determine where to evolve the network’s structure. This change in structure in turn alters the dynamics on the
etwork, and this coevolving back and forth of structure and dynamics is analyzed. For the dynamics on the network, we use a
ackson network model, which describes queuing systems, e.g. transportation networks, website traffic, etc. [10]. Under certain
onditions, Jackson networks have a stationary distribution, which can be thought of as a globally attracting fixed point that the
ynamics on the network tend to. This allows us to determine asymptotically high-stress areas, or areas of maximal asymptotic load,
ithin the network [11]. These areas with maximal asymptotic load are where we perform the structural evolution of the network
ia minimal specialization, which maintains the function of the network while separating the number of tasks, i.e. load, of these
igh-stress areas.
Specialization, as a mechanism of growth, is a phenomenon observed in many real-world networks including biological [12–14],

ocial [15], and airline hubs in transportation networks [16]. Specialization allows a network to perform increasingly complex tasks
y copying parts of the network and dividing the original network connections between these copies. The resulting specialized
etwork maintains the functionality of the network by preserving all the network paths so that the ability to route information, etc.,
s maintained. Recently, network growth models for specialization have been studied in [17–19], where the authors describe how
pecialization creates real-world properties in a network over time [17], maintains intrinsic stability [18], and creates synchronous
ynamics [19].
The specific model we propose uses what we refer to as minimal specialization. Minimal specialization is effectively the

pecialization defined in [17], the difference is that it modifies the least number of nodes and edges possible when specializing a
etwork. After defining minimal specialization in Section 3 we prove some useful facts regarding its spectral and structural behavior.
pecifically, we prove that if we start with a strongly connected or primitive network, minimal specialization of the network will
esult in a strongly connected or primitive network (see Lemma 3.1.1 and Theorem 3.1.1). Additionally, we show how eigenvalues
nd eigenvectors evolve with minimal specialization (see Lemma 3.1.2). We also prove that minimal specialization creates and
reserves non-trivial equitable partitions (see Theorem 7.0.1). We will use minimal specialization to evolve the structure of the
ackson network in the area of highest maximal asymptotic load (see Sections 3 and 4). As this method incorporates both structure
nd dynamics we refer to it as the integrated specialization model. We show that the integrated specialization model creates networks
hat have structures observed in many real-world networks, including right-skewed degree distributions, sparsity, and the small-
orld property. It is worth emphasizing that these features emerge from a topological mechanism, i.e. specialization, designed to
educe the network’s maximal asymptotic load. Moreover, when compared to other growth models, the integrated specialization
odel creates networks with small diameter, i.e., networks that have relatively small distances across the network. Aside from
hese structural features, the integrated specialization model sequentially removes the network’s largest bottlenecks as the network
volves. This results in networks whose structure and dynamics are both increasingly well-adapted to allow quantities to move
fficiently through the network.
The paper is structured as follows. Section 2 introduces basic notation, Jackson networks, and the equations used to model

he dynamics on Jackson networks. In Section 3, we motivate and introduce the concept of minimal specialization, showing that
ertain topological and dynamical properties of the original network are maintained under these operations. In Section 4, we use
he dynamics, i.e., the stationary distribution, on a Jackson network to determine where to perform minimal specialization of the
etwork. We then extend this method, which we refer to as minimal dynamic specialization, to more general networks using the
etwork’s eigenvector centrality to specialize the network structure. In Section 5, we show that growing a Jackson network repeatedly
sing minimal dynamic specialization, referred to as the integrated specialization model, creates structural properties observed in many
eal-world networks. We also show that the maximum eigenvector centrality of the network decreases, meaning the integrated
odel sequentially reduces areas of high stress in the network, on average. These experiments are carried out for Erdös-Rényi (ER)
raphs in this section and later in the Appendix for random geometric (RG), Barabśi-Albert (BA), and Watts–Strogatz (WS) graphs.
ection 6 compares the integrated specialization model to other growth models, where we show that the integrated specialization
odel is comparable in creating common real-world properties while being more efficient in creating small diameter networks and
etworks with equidistributed traffic loads. Section 7 introduces equitable partitions and shows that minimal specialization creates
nd preserves non-trivial equitable partition elements, which are related to symmetries in the network and are common structures
bserved in many real-world networks. A natural question is whether for other initial graphs types we see the same qualitative
ehavior as seen here. This question is further explored in the Appendix

. Background

Real-world networks perform specific functions. The underlying structure of a network, represented by a graph, is key to its
erformance [20–22]. Formally, this is given by the graph 𝐺 = (𝑉 ,𝐸,𝑊 ), where 𝑉 is a vertex set (or node set) and 𝐸 is an edge
set. The vertices in 𝑉 represent the network components, or objects, while the edges in 𝐸 represent the connections or interactions
etween these objects. We let 𝑉 = {1, 2,… , 𝑛} with 𝑖 representing the 𝑖𝑡ℎ component of the network. An edge from 𝑖 to 𝑗, denoted
𝑖𝑗 is used to represent the 𝑖𝑡ℎ node affecting the 𝑗𝑡ℎ node. Here, the graphs we consider are directed graphs, meaning edges of the
raph are directed, noting that undirected graphs can be viewed as a special case of directed graphs. The function 𝑊 ∶ 𝐸 → R gives
he edge weight of each 𝑒𝑖𝑗 ∈ 𝐸, where 𝑊 (𝑒𝑖𝑗 ) can represent the strength of the interaction, transitions probabilities, etc. If 𝐺 is an
2

unweighted graph, then 𝑊 (𝑒𝑖𝑗 ) = 𝛿𝑖𝑗 and we write 𝐺 = (𝑉 ,𝐸).
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The underlying graph structure 𝐺 = (𝑉 ,𝐸,𝑊 ) of a network can alternatively be represented by its adjacency matrix 𝐴 = 𝐴(𝐺) ∈
𝑛×𝑛, with entries

𝐴𝑖𝑗 =

{

𝑊 (𝑒𝑗𝑖) if 𝑒𝑗𝑖 ∈ 𝐸
0 else.

e note that this orientation corresponds to right multiplication by a column vector. We let 𝜎(𝐴) denote the eigenvalues of the matrix
, and 𝜌(𝐴) = max{|𝜆| ∶ 𝜆 ∈ 𝜎(𝐴)} the spectral radius of 𝐴. Since there is a one-to-one relationship between a graph and its adjacency
atrix, we will use the two interchangeably.
To study the interplay between the dynamics on and of a network, we consider Jackson networks, which are used to model

ueuing systems [10]. The flow of a given quantity, e.g. traffic, information, etc., through a Jackson network is modeled as the
iscrete-time affine dynamical system

𝐱(𝑘+1) = 𝐴𝐱(𝑘) + 𝜸

here 𝐱(𝑘) ∈ R𝑛 is the state of the network giving the state 𝑥(𝑘)𝑖 of each component at time 𝑘 ≥ 0. The graph 𝐺 = (𝑉 ,𝐸,𝑊 ) associated
ith the Jackson network is the graph with the adjacency matrix 𝐴 ∈ [0, 1]𝑛×𝑛, called the system’s transition matrix where 𝐴𝑖𝑗 ∈ [0, 1]
s the probability of transitioning from vertex 𝑗 to vertex 𝑖. The vector 𝜸 ∈ R𝑛 gives the external inputs to the system. A Jackson
etwork can also have internal loss, meaning there is a non-zero probability of information, traffic, etc., leaving the system. This
ccurs when the probability of transitioning from node 𝑖 to any other node is less than 1, i.e., the 𝑖𝑡ℎ column of the transition matrix
ums to less than 1. For simplicity, we assume there is no external input or internal loss, meaning 𝜸 ≡ 𝟎 and 𝐴 is column stochastic.
hus,

𝐱(𝑘+1) = 𝐴𝐱(𝑘) = 𝐴𝑘𝐱(0) (1)

or the initial vector of quantities 𝐱(0) ∈ R𝑛. This configuration induces the discrete-time linear dynamical system (𝐴,R𝑛) where the
atrix 𝐴 = 𝐴(𝐺) is the adjacency matrix of the graph 𝐺 = (𝑉 ,𝐸,𝑊 ).
The asymptotic behavior of linear systems, such as the Jackson networks (𝐴,R𝑛), are fairly well understood. If 𝐴 is primitive,

hen the spectral radius is an algebraically simple eigenvalue of 𝐴 and lim𝑘→∞(𝜌−1𝐴)𝑘 = 𝐱𝐲⊺ where 𝐱 and 𝐲 are the right and left
eading eigenvectors associated with 𝜌, respectively, with ‖𝐱‖1 = 1 and 𝐱⊺𝐲 = 1. Moreover, since 𝐴 is stochastic, we have 𝜌 = 1 and
𝐲 = 1. That is, for the initial condition 𝐱(0) ⪰ 0, we have

lim
𝑘→∞

𝐴𝑘𝐱(0) = 𝐱1⊺𝐱(0) = ‖𝐱(0)‖1𝐱. (2)

Thus the sum of the quantities moving through the network is constant in time [23]. Additionally the asymptotic state of the system
s a scaled version of the leading eigenvector 𝐱, which when normalized with the 1-norm, is referred to as the systems stationary
istribution [11]. For a Jackson network (𝐴,R𝑛) with primitive matrix 𝐴, the stationary distribution is a globally attracting fixed point
of the system (see Eq. (2)). This stationary distribution indicates the long-term dynamics of the Jackson network (𝐴,R𝑛). Specifically,
t tells us which nodes, on average, carry the highest amount of information, traffic, stress, etc. The main idea behind the model
e propose is to use this globally attracting fixed point to determine where the long-term, high-stress areas of the network are (see
ection 4). To alleviate this stress, we modify the structure of the network accordingly, using the notion of minimal specialization.

. Topological network dynamics: Minimal specialization

In order to model the interplay between the dynamics on and the dynamics of the network, we need to determine how to evolve
the structure of the network. As described in the introduction, network specialization has been observed in a number of real-world
networks [12–16], and specialization models have been the focus of a number of recent papers [17–19]. In this work, we explore
two main deviations from these specialization models. The first is related to the observation that most real-world specializations
occur at small scales. For example, if a transportation route experiences high use, usually the route is only modified at its point of
highest traffic. To reflect this, our model of minimal specialization adds the fewest number of nodes and edges required to modify
the flow through the network while maintaining functionality.

Definition 3.0.1 (Minimal Specialization). For the graph 𝐺 = (𝑉 ,𝐸,𝑊 ) with |𝑉 | > 1, let 𝑖 ∈ 𝑉 such that 𝑖 has at least two out-going
edges. Let 𝑒𝑖𝑗 ∈ 𝐸 with 𝑖 ≠ 𝑗 and let 𝑤 = 𝑊 (𝑒𝑖𝑗 ). Let 𝐺 =

(

𝑉 ,𝐸,𝑊
)

be the graph where
(i) 𝑉 = 𝑉 ∪ {𝑖};
(ii) 𝐸 =

(

𝐸 ⧵ {𝑒𝑖𝑗}
)

∪ {𝑒𝑖𝑗} ∪ {𝑒𝑘𝑖 ∣ ∃ 𝑒𝑘𝑖 ∈ 𝐸}; and

(iii) 𝑊 (𝑒𝛼𝛽 ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

1 if 𝛼 = 𝑖, 𝛽 = 𝑗
(1 −𝑤)−1𝑊 (𝑒𝑖𝛽 ) if 𝛼 = 𝑖, 𝛽 ≠ 𝑗
(1 −𝑤)𝑊 (𝑒𝛼𝑖) if 𝛼 ≠ 𝑖, 𝛽 = 𝑖
𝑤𝑊 (𝑒𝛼𝑖) if 𝛼 ≠ 𝑖, 𝛽 = 𝑖.
𝑊 (𝑒𝑖𝑖) if 𝛼 = 𝑖, 𝛽 = 𝑖
𝑤(1 −𝑤)−1𝑊 (𝑒𝑖𝑖) if 𝛼 = 𝑖, 𝛽 = 𝑖
𝑊 (𝑒𝛼𝛽 ) else.
3
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We refer to the graph 𝐺 =
(

𝑉 ,𝐸,𝑊
)

associated with the system
(

𝐴,R(𝑛+1)
)

as the minimal specialization of the graph 𝐺 over
∈ 𝑉 with edge 𝑒𝑖𝑗 ∈ 𝐸. We refer to node 𝑖 as the specialized copy of node 𝑖.

In Definition 3.0.1, 𝑖 ∈ 𝑉 can be thought of as a copy of 𝑖 ∈ 𝑉 , whose specialized function is to maintain the weighted connections
to 𝑗 ∈ 𝑉 that were previously maintained by 𝑖 through 𝑒𝑖𝑗 . This results in vertices specialized into two parts, where 𝑖 performs its
previous task with the exception of routing traffic to 𝑗, which is now executed by its specialized copy 𝑖 (see Example 3.1.1).

It is important that 𝑖 ∈ 𝑉 has at least two out-going edges in order to be specialized. If it has only one out-going edge, then after
pecialization, it would have no out-going edges, becoming a dangling node, essentially meaning that information, traffic, etc., gets
rapped at this node.
We note that the edge weight update in Definition 3.0.1 maintains the stochastic nature of the Jackson network (see Section 3.1).

his manner of updating could be done for any 0 < 𝑤 < 1 and still produce a stochastic system, but choosing 𝑤 = 𝑊 (𝑒𝑖𝑗 ) maintains
he proportion of network quantities passing through 𝑖 and its copy 𝑖 after specialization that previously passed through 𝑖 before
specialization.

3.1. Topological and dynamical properties of minimal specialization

Minimal specialization induces a new system (𝐴,R𝑛+1) with new dynamics. Here we show this new system is also a Jackson
etwork that inherits the structural and stability properties of the original Jackson network (𝐴,R𝑛) under mild conditions. In
particular, we will show that if 𝐴 is primitive then 𝐴 is primitive, so that the specialized Jackson network (𝐴,R𝑛+1) has a stationary
distribution 𝐱 ∈ R𝑛+1. To prove this requires the following two lemmata.

emma 3.1.1 (Preservation of a Strongly Connected Graph). If 𝐺 =
(

𝑉 ,𝐸,𝑊
)

is a minimal specialization of the graph 𝐺 = (𝑉 ,𝐸,𝑊 )

nd 𝐺 is strongly connected, then 𝐺 is strongly connected.

Proof. We note that under minimal specialization, the only deleted edge in 𝐺 is 𝑒𝑖𝑗 , so any path in 𝐺 that does not contain 𝑒𝑖𝑗 will
lso be in 𝐺. Any path that contained 𝑒𝑖𝑗 can now use the edge 𝑒𝑖𝑗 since all the nodes having edges to 𝑖 now have edges to 𝑖. Thus
e only need to verify three things: (1) there is a path in 𝐺 from 𝑖 to 𝑗, (2) there are paths in 𝐺 from any node to 𝑖, and (3) from 𝑖

to any node.
First, we note that by constraints in Definition 3.0.1, 𝑖 ∈ 𝑉 has an edge 𝑒𝑖𝑘 ∈ 𝐸 with 𝑘 ≠ 𝑗. Moreover, since 𝐺 is strongly

onnected, there is at least one edge 𝑒ℎ𝑖 ∈ 𝐸 leading to 𝑖. Thus, there is a path from 𝑘 to ℎ and we have 𝑒ℎ𝑖 ∈ 𝐸. Therefore, we have
the path 𝑖 → 𝑘 → ⋯ → ℎ → 𝑖 → 𝑗.

Second, there is a path in 𝐺 from any node to 𝑖 and this path does not contain 𝑒𝑖𝑗 since it would create a cycle. Thus, we can
take the penultimate node in that path and traverse the edge from that node to 𝑖, and thus we have a path in 𝐺 ending at 𝑖.

Finally, it is easy to see there is a path from 𝑖 to any node, since we have the edge 𝑒𝑖𝑗 , and there is a path from 𝑗 to any node. □

emma 3.1.2 (Spectral Evolution of Jackson Networks). Suppose 𝐺 =
(

𝑉 ,𝐸,𝑊
)

is the minimal specialization of 𝐺 = (𝑉 ,𝐸,𝑊 ) over
∈ 𝑉 with edge 𝑒𝑖𝑗 ∈ 𝐸. If 𝑤 = 𝑊 (𝑒𝑖𝑗 ) and (𝜆, 𝐱) is an eigenpair of 𝐴 = 𝐴(𝐺) then (𝜆, 𝐱) is an eigenpair of 𝐴 = 𝐴(𝐺) where,

𝑥𝓁 =

⎧

⎪

⎨

⎪

⎩

(1 −𝑤)𝑥𝓁 if 𝓁 = 𝑖
𝑤𝑥𝓁 if 𝓁 = 𝑖
𝑥𝓁 else.

In particular, 𝑥𝑖, 𝑥𝑖, and 𝑥𝑖 have the same sign with 𝑥𝑖 = 𝑥𝑖 + 𝑥𝑖 so ‖𝑥‖1 = ‖𝑥‖1. The additional eigenvalue of 𝐴 is 0, meaning
𝜎(𝐴) = 𝜎(𝐴) ∪ {0}.

Proof. We will first consider how minimal specialization transforms the adjacency matrix. Without loss of generality, we can order
the rows and columns of our matrix so that we have

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴[{𝑗𝑖}𝑐 , {𝑖}𝑐 ]

𝐴1𝑖
𝐴2𝑖
⋮

𝐴(𝑗−1)𝑖
𝐴𝑗1 𝐴𝑗2 … 𝐴𝑗𝑗 𝑤
𝐴𝑖1 𝐴𝑖2 … 𝐴𝑖𝑗 𝐴𝑖𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×𝑛 (3)

where 𝐴[{𝑗, 𝑖}𝑐 , {𝑖}𝑐 ] denotes the matrix 𝐴 with the 𝑗𝑡ℎ and 𝑖𝑡ℎ rows excluded and the 𝑖𝑡ℎ column excluded.
4
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When we perform minimal specialization, the structural changes and weight updates found in Definition 3.0.1 are reflected in
he new adjacency matrix as follows:

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴[{𝑗, 𝑖, 𝑖}𝑐 , {𝑖, 𝑖}𝑐 ]

𝐴1𝑖
(1−𝑤)
𝐴2𝑖

(1−𝑤)
⋮

𝐴(𝑗−1)𝑖
(1−𝑤)

0

𝐴𝑗1 … 𝐴𝑗𝑗 0 1
(1 −𝑤)𝐴𝑖1 … (1 −𝑤)𝐴𝑖𝑗 𝐴𝑖𝑖 0

𝑤𝐴𝑖1 … 𝑤𝐴𝑖𝑗
𝑤𝐴𝑖𝑖
1−𝑤 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R(𝑛+1)×(𝑛+1). (4)

Let 𝐱 be the vector whose entries are given by

𝑥𝓁 =

⎧

⎪

⎨

⎪

⎩

(1 −𝑤)𝑥𝓁 if 𝓁 = 𝑖
𝑤𝑥𝓁 if 𝓁 = 𝑖
𝑥𝓁 else

.

Then for 𝑘 ∈ {1,… 𝑗 − 1}, the 𝑘𝑡ℎ entry of the product 𝐴𝐱 is
(

𝐴𝐱
)

𝑘
=

𝑗
∑

𝑠=1
𝐴𝑘𝑠𝑥𝑠 +

𝐴𝑘𝑖
1 −𝑤

(1 −𝑤)𝑥𝑖 + 0 ⋅𝑤𝑥𝑖 =
𝑗
∑

𝑠=1
𝐴𝑘𝑠𝑥𝑠 + 𝐴𝑘𝑖𝑥𝑖 = (𝐴𝐱)𝑘 = 𝜆𝑥𝑘.

For the 𝑗𝑡ℎ entry of the product 𝐴𝐱 we have,
(

𝐴𝐱
)

𝑗
=

𝑗
∑

𝑠=1
𝐴𝑗𝑠𝑥𝑠 + 0 +𝑤𝑥𝑖 =

𝑗
∑

𝑠=1
𝐴𝑗𝑠𝑥𝑠 + 𝐴𝑗𝑖𝑥𝑖 = (𝐴𝐱)𝑗 = 𝜆𝑥𝑗 .

For the 𝑖𝑡ℎ entry of the product 𝐴𝐱 we have,
(

𝐴𝐱
)

𝑖
=

𝑗
∑

𝑠=1
(1 −𝑤)𝐴𝑖𝑠𝑥𝑠 + 𝐴𝑖𝑖(1 −𝑤)𝑥𝑖 + 0 = (1 −𝑤)

𝑖
∑

𝑠=1
𝐴𝑖𝑠𝑥𝑠 = (1 −𝑤) (𝐴𝐱)𝑖 = 𝜆(1 −𝑤)𝑥𝑖.

Finally, for the 𝑖𝑡ℎ entry of the product 𝐴𝐱 we have,
(

𝐴𝐱
)

𝑖
=

𝑗
∑

𝑠=1
𝑤𝐴𝑖𝑠𝑥𝑠 +

𝑤𝐴𝑖𝑖
1 −𝑤

(1 −𝑤)𝑥𝑖 + 0 = 𝑤
𝑖

∑

𝑠=1
𝐴𝑖𝑠𝑥𝑠 = 𝑤 (𝐴𝐱)𝑖 = 𝜆𝑤𝑥𝑖.

Thus we have the product 𝐴𝐱 = 𝜆𝐱 and therefore 𝐱 is an eigenvector with eigenvalue 𝜆.
Finally, the last two rows of 𝐴 are scalar multiples of each other. Since the last row is a new row, a new linear dependence is

reated in the matrix, and thus the additional eigenvalue is 0. □

Theorem 3.1.1 (Preservation of Asymptotic Dynamics). Let 𝐺 = (𝑉 ,𝐸,𝑊 ) and assume 𝐴 = 𝐴(𝐺) ∈ [0, 1]𝑛×𝑛 is primitive and stochastic.
Then 𝐴 = 𝐴(𝐺) ∈ [0, 1](𝑛+1)×(𝑛+1), associated with any minimal specialization 𝐺 = (𝑉 ,𝐸,𝑊 ), is primitive and stochastic. Therefore,

lim
𝑛→∞

𝐴
𝑘
𝐱(0) = ‖𝐱(0)‖1𝐱 for any 𝐱(0) ∈ R𝑛+1

≥0

here 𝐱 is the stationary distribution of 𝐴.

Proof. Given that 𝐴 is stochastic and using Equation 3.1.2 in Lemma 3.1.2, we see that for 𝑘 ∈ {1, 2,… , 𝑗} ∪ {𝑖}, the 𝑘𝑡ℎ column
of 𝐴 sums to 1. For column 𝑖, it follows from combining 𝐴𝑖𝑖 and 𝑤(1 −𝑤)−1𝐴𝑖𝑖 and recognizing that the sum of the 𝑖𝑡ℎ column of 𝐴
xcluding 𝐴𝑗𝑖 is 1 −𝑤. Thus, 𝐴 is stochastic.
From Lemma 3.1.1, we have that 𝐺 is strongly connected. From Lemma 3.1.2, we have 𝜎(𝐴) = 𝜎(𝐴) ∪ {0}. Since 𝐴 is primitive,

𝜌(𝐴) > 0 is the only eigenvalue of maximum modulus. Thus 𝜌(𝐴) = 𝜌(𝐴) is the only eigenvalue of 𝐴 of maximal modulus. Thus 𝐴
s primitive (see [23] for the definition of primitive and equivalent characterizations). The dynamic consequences now follow from
rguments in Section 2. □

xample 3.1.1 (Minimal Specialization). Consider the graph 𝐺 = (𝑉 ,𝐸,𝑊 ) in Fig. 1(a) (left) with vertex set 𝑉 = {1, 2, 3, 4, 5}. After
erforming minimal specialization on node 5 over the edge 𝑒54 ∈ 𝐸, the result is the graph 𝐺 = (𝑉 ,𝐸,𝑊 ) shown in Fig. 1(a) (right)
with vertex set 𝑉 = {1, 2, 3, 4, 5, 5.1}, where 𝑖 = 5.1 is the copy of vertex 𝑖 = 5. The dynamics of the original and specialized Jackson
etworks (𝐴,R5) and (𝐴,R6) are shown in Fig. 1(b), left and right, respectively.
As 𝐴 ∈ [0, 1]5×5 is primitive, the Jackson network (𝐴,R5) has the stationary distribution

𝐱 = [.0337838, .101351, .314189, .212838, .337838]⊺.
5
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Fig. 1. Example of minimal specialization.

Similarly, 𝐴 ∈ R6 is primitive and the associated Jackson network has the stationary distribution

𝐱 = [.0337838, .101351, .314189, .212838, .135135, .202703]⊺.

In Fig. 1(b) the initial conditions 𝐱(0) = [10, 20, 30, 40, 50]⊺ and 𝐱(0) = [10, 20, 30, 40, 50, 0]⊺ of the systems
(

𝐴,R5) and
(

𝐴,R6
)

,
respectively, lead to similar dynamics. On the left, 𝐴𝑘𝐱(0) is calculated for 𝑘 = 0, 1,… , 100. We see that the long-term dynamics
approach ‖𝐱(0)‖1𝐱. After minimal specialization, we calculate 𝐴

𝑘
𝐱(0) for 𝑘 = 0, 1,… , 100. Again, the asymptotic state of the system

is ‖𝐱(0)‖1𝐱. Notice that ‖𝐱‖ = ‖𝐱‖, which is not a coincidence. This follows from Lemma 3.1.2, and is explored further in Section 4.

The second deviation from the original specialization models we propose is how we choose where to evolve the graph structure
f the Jackson network. Previously, the structure was evolved stochastically by choosing vertices randomly from the graph to
pecialize [17–19]. Here our goal is to use the dynamics on the network to determine where to specialize the structure.

. Coevolution of structure and dynamics

In real-world systems, the changing topology of the network is driven by the need to optimize the network’s function, which is
ften related to moving quantities efficiently through the network. Dynamical processes such as traffic flow, information transfer,
tc., put pressure on the network’s topology to evolve in specific ways. In order to model this behavior, we use the dynamics on
6

he network, or the dynamical processes the network models, to determine where to modify the network topology.
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The node that experiences the highest traffic volume in a network is a natural candidate for the part of the network under the
ost stress. The idea is that once specialized, this node and its specialized copy now share the load, lessening the stress on the
riginal node. A complicating factor in most real-world networks is that it may be difficult to determine which node experiences
he most traffic. This may be the case, for instance, if the network dynamics are irregular, e.g., aperiodic, chaotic, etc. The reason
e choose Jackson networks for our initial coevolution model is that, under mild assumptions, there is a clear hierarchy of which
odes experience more traffic. This is given by the network’s stationary distribution.

.1. Integrated specialization model

Suppose (𝐴,R𝑛) is a Jackson network where 𝐴 ∈ [0, 1]𝑛×𝑛 is primitive. Then 𝐴 has a unique stationary distribution 𝐱 =
[𝑥1, 𝑥2,… , 𝑥𝑛]𝑇 ∈ R𝑛, where 𝑥𝑖 is the asymptotic use of 𝑖 ∈ 𝑉 in the associated network or graph 𝐺 = (𝑉 ,𝐸,𝑊 ). The node that
experiences the maximal asymptotic load is the node 𝑖 such that 𝑥𝑖 = max𝓁{𝑥𝓁}𝑛𝓁=1. To specialize the network relative to its dynamics,
we choose node 𝑖 with maximal asymptotic load from among the nodes with more than 2 out-going edges. Given 𝑖 ∈ 𝑉 we choose
a node 𝑗 ∈ 𝑉 , 𝑗 ≠ 𝑖, such that 𝑊 (𝑒𝑖𝑗 ) = max{𝑊 (𝑒𝑖𝓁)|𝑒𝑖𝓁 ∈ 𝐸,𝓁 ≠ 𝑖}, i.e., we choose the edge that transitions the most traffic away
from node 𝑖. Specializing (𝐴,R𝑛) over node 𝑖 with edge 𝑒𝑖𝑗 results in the specialized Jackson network (𝐴,R𝑛+1), which we refer to
s the minimal dynamic specialization of (𝐴,R𝑛).
We note that if the node with maximal asymptotic load is not unique, say nodes 𝑖, 𝑘 ∈ 𝑉 , specializing 𝑖 with edge 𝑒𝑖𝑗 ∈ 𝐸 and

then specializing 𝑘 with edge 𝑒𝑘ℎ ∈ 𝐸 will result in a different (non-isomorphic) graph structure than if the network is specialized
in the opposite order. However, the asymptotic dynamics for all nodes after these two minimal dynamic specializations, in either
order, will be the same. Similarly, if the largest edge weight is not unique, the graph structure will be different depending on which
edge is chosen, but the resulting asymptotic dynamics for all nodes will be the same. In practice, non-uniqueness rarely occurs. If
it does, we randomly choose one of the nodes (or edges) to be used in the minimal dynamic specialization process.

If 𝐴 ∈ [0, 1]𝑛×𝑛 is primitive, by Theorem 3.1.1 it is possible to sequentially specialize the primitive Jackson network (𝐴,R𝑛) via
minimal dynamic specialization. For such networks we can define the following coevolving Jackson model which integrates both
the dynamics on and the dynamics of the network.

Definition 4.1.1 (Integrated Specialization Model). Let (𝐴0,R𝑛) be a Jackson network where 𝐴0 ∈ [0, 1]𝑛×𝑛 is primitive. We define the
sequence of Jackson networks

{(

𝐴𝑚,R𝑛+𝑚)}∞
𝑚=0 to be the integrated specialization model with initial Jackson network (𝐴0,R𝑛) and

𝐴𝑚+1 = 𝐴𝑚 for 𝑚 ≥ 0 is the minimal dynamic specialization of 𝐴𝑚.

4.2. Irreducibility

Having a Jackson network (𝐴,R𝑛) where 𝐴 ∈ [0, 1]𝑛×𝑛 is primitive is a strong condition. Primitivity is a property that is difficult
o establish since it typically involves calculating eigenvalues, taking large powers of matrices, calculating path lengths, etc., all of
hich are computationally intensive for large networks. However, a condition that is more reasonable is for 𝐴 to be irreducible,

which is equivalent to having a strongly-connected graph (see, for instance, [23]).
Most real-world networks have a largest strongly-connected component that comprises the majority of the network [24]. Thus,

the underlying graph structure of the network is strongly connected if we restrict our attention to the graph’s largest strongly-
connected component. This guarantees that the network’s adjacency matrix 𝐴 is irreducible. With irreducibly, we still have 𝜌(𝐴) as
n algebraically simple eigenvalue with positive leading eigenvector, but we lose having a unique stationary distribution (i.e. stable
symptotic dynamics). This positive leading eigenvector is the network’s eigenvector centrality, which gives a ranking of the nodes that
akes into account the importance of a node relative to the importance of its neighbors [24]. A necessary condition for primitivity is
rreducibly, so in the setting of primitivity, we still have a notion of eigenvector centrality. In fact, if we have a primitive, stochastic
atrix 𝐴, the eigenvector centrality is equivalent (up to scaling) to the associated Jackson network’s stationary distribution.
Similar to our minimal dynamic specialization, we can use this ranking to determine which node to use in minimal specialization,

.e., we choose a node with maximal eigenvector centrality, eligible for minimal specialization, and choose the edge in the same
anner as in minimal dynamic specialization. Moreover, Lemma 3.1.1 tells us that if 𝐴 is strongly connected, then so is 𝐴. Thus, like

with the integrated specialization model, we can use minimal dynamic specialization to create a sequence of irreducible Jackson
networks.

Example 4.2.1 (Minimal Dynamic Specialization). Consider the Jackson network (𝐴,R5) shown in Fig. 1(a) (left). The Jackson
etwork’s stationary distribution is

𝐯 =
[

.0337838, .101351, .314189, .212838, .337838
]⊺ ,

o max{𝑥𝑖} = 𝑥5 is the maximum load and max{𝑊 (𝑒5𝓁)} = 𝑊 (𝑒54). Thus the minimal dynamic specialization of (𝐴,R5) is the Jackson
etwork (𝐴,R6) shown in Fig. 1(a) (right). Note that the specialized network has the stationary distribution

𝐯 =
[

.0337838, .101351, .314189, .212838, .135135, .202703
]⊺ .

Fig. 1(b) shows the dynamics on the original network from Fig. 1(a) (left) and the specialized network (right). Over time, the
uantities at each node tend to converge to the (scaled) quantities of 𝐯, represented as black dots. After specialization, the dynamics
n the network behave in the same way, converging to (a scaled) 𝐯. The total traffic load in these systems is conserved, but the
aximal asymptotic load from

(

𝐴,R5) to
(

𝐴,R6
)

is reduced.
7
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Fig. 2. The long-term dynamics associated with the Jackson network in Fig. 1(a) is shown in part, where the dynamics of the network are shown above and the
ynamics on the network are shown below. The dynamics are generated using the integrated specialization model. Each plot on the bottom has the dynamics for
he node with the highest eigenvector centrality, the node with the median eigenvector centrality, and the node with minimum eigenvector centrality, plotted
n a log scale. As the network is repeatedly specialized, these quantities decrease by an order of magnitude.

Lemma 3.1.2 gives us a way of tracking how the maximum eigenvector centrality changes with the integrated specialization
odel. In particular, the sequence

{(

𝐴𝑚,R𝑚+𝑛)}∞
𝑚=0 has the sequence of leading eigenvectors 𝐯

(0), 𝐯(1), 𝐯(2) ⋯, where

𝑣(𝑘+1)𝓁 =

⎧

⎪

⎨

⎪

⎩

(1 −𝑤)𝑣(𝑘)𝑖 if 𝓁 = 𝑖
𝑤𝑣(𝑘)𝑖 if 𝓁 = 𝑖
𝑣(𝑘)𝓁 else

ith ‖𝐯(0)‖1 = ‖𝐯(1)‖ = ⋯ ‖𝐯(𝑘)‖ = ⋯. This allows us to recursively compare the maximum eigenvector centrality as we specialize.
onsequently, Lemma 3.1.2 describes the evolution of the eigenvector centrality vector as a graph 𝐺 with a column stochastic
djacency matrix is specialized under minimal dynamic specialization. Specifically, we have

max
1≤𝑘≤𝑛

𝑣(𝑚)𝑘 ≥ max
1≤𝑘≤𝑛+1

𝑣(𝑚+1)𝑘 for 𝑚 ≥ 0

n our sequence of leading eigenvectors. Thus, we are targeting and decreasing the areas of high stress or high importance on the
etwork.

xample 4.2.2. Sequentially specializing the Jackson network
(

𝐴,R5) in Example 1(a) using the integrated specialization model
esults in the sequence

{(

𝐴𝑚,R5+𝑚)}150
𝑚=0. Fig. 2 (bottom) shows the long-term dynamics for 𝑚 = 0, 50, 100, 150. Each plot has the

ynamics for the node with the highest eigenvector centrality, the node with the median eigenvector centrality, and the node with
inimum eigenvector centrality, plotted on a log scale. As the network is specialized, these quantities are getting increasingly closer
ogether and decrease by at least an order of magnitude. That is, as we specialize high-stress areas of the network, we are decreasing
etwork’s maximal asymptotic load, and repeatedly doing so creates more equidistributed asymptotic loads.

. Network model properties of the integrated specialization model

There are numerous models that generate networks which achieve specific properties observed in many real-world networks.
8

hese properties include (i) right-skewed degree distributions, (ii) sparsity, (iii) the small-world property etc. An Erdös-Rényi
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Fig. 3. Averaged results describing how the out-degree distribution of the network evolves using the integrated specialization model. The top row shows the
egree distribution (here the tails are truncated). The bottom row shows the degree distribution on a log–log scale, where the binning is done logarithmically
where the tails are not truncated). As the network evolves, the out-degree distribution becomes increasingly right-skewed, a hallmark of many real-world
etworks. On a log–log scale, the degree distribution appear increasingly linear as the system evolves.

etwork has a giant component, a Barabási-Albert network has a scale-free right-skewed degree distribution, and a Watts–Strogatz
etwork exhibits the small-world property [24,25]. In recent research, models have been proposed that create scale-free networks,
he small-world property, and high clustering coefficients. See for instance, [26–28].
Since the sequence of vertices that are specialized for a given initial network (𝐴0,R𝑛) is difficult to determine, it is then difficult to

determine the asymptotic structure of a network as it evolves under the integrated model. In this section we discuss some numerical
results. We give statistical evidence that the integrated specialization model exhibits many observed network model properties
including right-skewed degree distributions with some scale-free like properties, the small-world property, and sparsity. We also
present, what is likely the most novel property of this model, which is the decrease in maximal asymptotic load of the network as
a network is repeatedly specialized.

In our experiments, we begin with a Jackson network (𝐴0,R25) given by a directed Erdös-Rényi graph 𝐺 = (𝑉 ,𝐸,𝑊 ), with
𝑉 | = 25 nodes and a density of 𝐺𝑑𝑒𝑛 = .25, where for each ordered pair of nodes {𝑖, 𝑗} the edge 𝑒𝑖𝑗 belongs to the graph with
probability 𝐺𝑑𝑒𝑛. The edge weights are uniformly assigned a value from 1 to 100 and normalized so out-going edges sum to 1.
We use the integrated specialization model to produce the sequence

{(

𝐴𝑚,R25+𝑚)}500
𝑚=0, growing the network to 525 nodes. For this

equence of graphs, we collect statistics (i)-(iii) and repeat this experiment for 100 such initial Jackson networks. The averaged
tatistics with standard-deviations are described in the following subsections.

.1. Degree distribution

Many real-world networks exhibit a right-skewed degree distribution, meaning many nodes have low degree and few nodes
ave high degree [24]. Since we are analyzing directed networks in our numerical experiment, we consider both the in-degree and
ut-degree distributions.
Fig. 3 shows our results regarding how the out-degree evolves, on average, over our 100 trials. The top left histogram, which

as a distinct binomial shape, is the average histogram for 100 directed Erdös-Rényi graphs. This binomial shape is very unlike the
ight-skewed distribution found in real-world networks [24]. The top middle panel shows the averaged histogram for the networks
𝐴100,R125) over 100 simulates, and the top right panel is the averaged histogram of (𝐴200,R225) over 100 simulations. As these
raphs are specialized, we see, on average, an increasingly right-skewed degree distribution, i.e., an increasingly more real-world
ike degree distribution.
9
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Fig. 4. Left: A plot of the evolution of average 𝛼(𝑚)-value and over one-hundred sequences
{(

𝐴𝑚 ,R25+𝑚)}500
𝑚=0 of the integrated model is shown. Right: A plot of

he associated statistical error 𝜎(𝑚)-value average over the same sequences is shown. In each one standard-deviation is indicated.

There is a simple heuristic that helps explain why we see a right-skewed out-degree distribution. When we use the integrated
pecialization model, a node is created with only one out-going edge. As we sequentially specialize, it is possible for nodes with
small number of out-going edges to gain more out-going edges, but we are still adding a node with an out-degree of 1 at each
teration. Thus, although the degree-distribution does not reach a steady state as we are always increasing the out-degree of some
odes after minimal specialization, the distribution of the network’s out-degree becomes increasingly right skewed.
Additionally, along with a right-skewed degree distribution, many real-world networks exhibit a power-law distribution, meaning

his distribution is 𝑑𝑘 ∼ 𝐶𝑘−𝛼 for some 𝐶 > 0 where 𝛼 ∈ [2, 3] for many real-world networks [24]. Equivalently, the log–log
distribution is linear with a slope of −𝛼 where 𝛼 ∈ [2, 3]. The histograms shown in the bottom row of Fig. 3 are those in the top
ow but shown on a log–log scale, from left to right, respectively where the binning is done logarithmically. As the network evolves
hese degree distributions appear increasingly linear, specifically in the tail of the distribution (cf. Fig. 4).
For the integrated model we determine 𝛼 = 𝛼(𝑚) for the out-degree distribution of each

{(

𝐴𝑚,R25+𝑚)}500
𝑚=0 using

𝛼 = 1 + 𝑛
⎡

⎢

⎢

⎣

𝑛
∑

𝑖=1
ln
⎛

⎜

⎜

⎝

𝑘𝑖
𝑘𝑚𝑖𝑛 −

1
2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

−1

where we let 𝑘𝑚𝑖𝑛 = 7 (see [24], p. 325). We also use the associated statistical error 𝜎 = 𝜎(𝑚) for this sequence given by 𝜎 = (𝛼−1)∕
√

𝑛.
Fig. 4 shows the exponent 𝛼 = 𝛼(𝑚) (left) and statistical error 𝜎 = 𝜎(𝑚) (right) in a power-law analysis of the out-degree

distribution of the integrated model
{(

𝐴𝑚,R25+𝑚)}500
𝑚=0, averaged over 100 simulations. In Fig. 4 left we approach the value 𝛼 ≈ 2.3

with little variance across each simulation, and decreasing statistical error 𝜎 as we specialize. Additionally, the bottom row of Fig. 3
shows the log-histogram of the degree distribution as we specialize. We can see that as we specialize, the log-histograms become
increasingly linear.

We note that one drawback of the integrated specialization model is that the in-degree distribution does not evolve into a right-
skewed distribution. To solve this, we could alternate between specializing 𝐺 and 𝐺𝑇 , where 𝐺𝑇 is the graph with adjacency matrix
𝐴𝑇 . However, we would not have the same theoretical properties as the integrated specialization model defined here.

5.2. Small-world property

The diameter of a network is the network’s largest geodesic, i.e., its longest shortest path. Intuitively, the length of the diameter
is the farthest distance traffic, information, assets, etc., will travel in a network. It has been observed that as a real-world network
evolves over time, its diameter grows logarithmically. This phenomenon is known as the small-world Property [24].

Fig. 5(a) shows how the diameter of the sequence
{(

𝐴𝑚,R25+𝑚)}500
𝑚=0 grows, averaged over 100 such sequences. The black curve

is the evolution of the average diameter, with the shaded region representing one standard deviation. The orange curve is fitted
to the black curve. The growth appears to be logarithmic, suggesting that the integrated specialization model has the small-world
Property, at least for initial networks with an Erdös-Rényi topology.

5.3. Density

The density of a directed network 𝐺 = (𝑉 ,𝐸,𝑊 ) is defined to be

𝐺𝑑𝑒𝑛 =
𝑚 ,
10
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Fig. 5. Analyzing real-world properties.

where 𝑚 = |𝐸| is the number of edges and 𝑛 = |𝑉 | is the number of nodes. The density can be thought of as the ratio of edges to
possible edges in a graph. If the ratio tends to 0 as the network grows, the network is said to be sparse; otherwise, it is said to be
dense. A hallmark of real-world networks is that they appear to be sparse when compared to random networks [29].

Fig. 5(b) shows how the density changes as a network is grown using the integrated specialization model. For the graphs we
consider, the average density begins at 𝐺𝑑𝑒𝑛 = .25 and the sparsity rapidly drops towards zero, at a nearly exponential rate. One
standard deviation is shaded, but is too small to observe, indicating a very constrained evolution towards sparsity.

5.4. Maximum eigenvector centrality

In Section 4.1, we describe how eigenvector centrality is used in our dynamical model. To reiterate, real-world networks tend to
specialize in areas of the network with high traffic or stress. The integrated specialization model is designed to specialize nodes with
high eigenvector centrality, maximizing dynamic functionality by reducing high-stress areas. A consequence of Lemma 3.1.2 is that
the maximal eigenvector centrality, i.e., the maximal asymptotic load, of a network cannot increase as the network is specialized.

Fig. 5(c) shows the averaged results for how the maximal asymptotic load evolves with the integrated specialization model. One
standard deviation is shown, but is very small. On average, we see a rapid decrease in the maximum eigenvector centrality; thus,
statistically, we do much better than the theory informs, efficiently targeting areas of high traffic in the network and successfully
reducing the network’s maximal asymptotic load, i.e. areas of stress.

We note that in this section we consider the integrated model {(𝐴𝑚,R25+𝑚)}500𝑚=0 for the initial condition {𝐴0,R25} where 𝐴0
corresponds to a directed Erdös-Rényi graph as described in Section 5.1. A natural question is whether for other initial graphs types
we see the same qualitative behavior as seen here. This question is further explored in the Appendix where the same experiments
are run for random geometric (RG), Barabśi-Albert (BA), and Watts–Strogatz (WS) graphs.

As the outcomes to these experiments are similar in each case, this suggest that, irrespective of the initial condition, the integrated
model produces Jackson models with similar structure and dynamics.

6. Comparison to other models

The most novel feature of the integrated specialization model is that it uses the dynamics on the network to determine where
to evolve the structure of the network. In the previous section, we presented statistical evidence that the integrated specialization
model creates real-world structural properties. To understand how this coevolution leads to structural differences, we compare the
integrated specialization model to two other models: (i) random minimal specialization and (ii) the Barabśi-Albert (BA) model.

In random minimal specialization, we remove the integrated specialization model’s dependence on the network’s dynamics by
performing minimal specialization over a random node and its out-going edge with the highest weight. This creates a sequence of
Jackson networks

{(

𝑅𝑚,R𝑚+𝑛)}
𝑚≥0. In the Barabśi-Albert model we consider a single node preferentially added via a single edge at

each step, resulting in a sequence of simple graphs {𝐵𝑚}𝑚≥0, where |𝐵𝑚| = 𝑚 + 𝑛.
As in the previous section, we begin with an Erdös-Rényi graph 𝐺0 = (𝑉 ,𝐸,𝑊 ) with |𝑉 | = 25 and 𝐺𝑑𝑒𝑛 = .25 for each

of the integrated specialization, random minimal specialization, and Barabśi-Albert Models. For the models involving minimal
specialization, the initial Erdös-Rényi graph is directed, with edge weights uniformly assigned values in [1, 100] and then normalized
so out-going edge weights sum to 1. For the Barabśi-Albert Model, the initial Erdös-Rényi graph is undirected, and no edge-weights
11
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a

Fig. 6. Comparing models.

re assigned. For each model, we evolve the networks 500 times to create the sequences
{(

𝐴𝑚,R𝑛+𝑚)}500
𝑚=0,

{(

𝑅𝑚,R𝑛+𝑚)}500
𝑚=0, and

{

𝐵𝑚
}500
𝑚=0, respectively. This experiment is performed 100 times for each model and the data is averaged. We note that for each of

these models, the evolution of the density is essentially the same, rapidly decreasing to zero at nearly the same rate. Similarly, the
degree distributions all evolve to a right-skewed degree distribution. The three models also exhibit the small-world property, but
show different growth rates (see Fig. 6(a)).

In the networks we consider, the maximum eigenvector centrality corresponds to the node that, on average, has the most
information or traffic, i.e., the maximal asymptotic load. Thus, a decrease in maximum eigenvector centrality corresponds to
a decrease in areas of high stress on the network. Fig. 6(b) shows the evolution of the maximum eigenvector centrality, or
maximal asymptotic load, in each of the three growth models, where each eigenvector is normalized by the 1-norm. The integrated
specialization model rapidly decreases the maximal asymptotic load, which is expected. Random minimal specialization and BA do
not decrease as rapidly, or reach as low of a value as the integrated specialization model. Moreover, the variance across simulations
for the integrated specialization model is negligible, while there is higher variance in the other two models.

The differences in the evolution of the diameter and maximal asymptotic load give evidence that the integrated specialization
model creates efficient networks, both in terms structure and dynamics. Specifically, the integrated specialization model creates
networks with small diameter, so that distances across the network are minimized, and equidistributed traffic, so that traffic
bottlenecks are reduced throughout the network. Moreover, the negligible variance between trials for the integrated specialization
model suggests that we achieve these results in a near-optimal way.

7. Equitable partitions

A hallmark of real-world networks is the high occurrence of symmetric structures [30]. Each such symmetry is given by an
equitable partition, which is a generalization of the notion of a graph symmetry. Historically, equitable partitions are defined for
simple graphs: unweighted, undirected graphs without loops. However, equitable partitions can be defined for unweighted directed
graphs 𝐺 = (𝑉 ,𝐸) as follows [19]:

Definition 7.0.1 (Equitable Partition). Let 𝐺 = (𝑉 ,𝐸) be a graph with adjacency matrix 𝐴 = 𝐴(𝐺). Let 𝜋 = {𝑉1, 𝑉2,… , 𝑉𝑘} be a
partition of the vertices 𝑉 . Then 𝜋 is an equitable partition if the sum

∑

𝑗∈𝑉𝑏

𝐴𝑖𝑗 = 𝐷𝑎𝑏 (5)

is constant for any 𝑖 ∈ 𝑉𝑎. If |𝑉𝑖| = 1, we call 𝑉𝑖 trivial, else we call it non-trivial. We call 𝜋 trivial if each element in 𝜋 is trivial and
non-trivial if there exists a non-trivial element in 𝜋. We call the matrix 𝐷 ∈ N𝑘×𝑘 the divisor matrix of A associated with 𝜋, and 𝐺𝜋
12

the divisor graph associated with 𝐷.
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Fig. 7. An example illustrating the formation of non-trivial equitable partitions. On the left is the original network. From left to right, node 5 is specialized,
ith node 5.1 as its copy. These are in the same equitable partition element (red). Next, node 3 is specialized with node 3.1 as its copy, which are in the same
artition element (cyan). Finally, node 5 is specialized again, with node 5.2 as its copy, increasing the partition element size from two to three (red).

We emphasize that our definition uses the unweighted adjacency matrix, meaning we are focusing on the topology of the network
nd not the edge weights. A Jackson network (𝐴,R𝑛) has an equitable partition 𝜋 if its associated unweighted graph 𝐺 = 𝐺(𝐴) where
= (𝑉 ,𝐸) has the equitable partition 𝜋.
The main result of this section is that minimal specialization creates and preserves non-trivial equitable partition elements. Later,

e study the consequences of repeated minimal specialization on the size and type of equitable partitions a specialized network has
see Corollary 7.0.1 and Fig. 7).

heorem 7.0.1 (Preservation of Equitable Partitions). Let
(

𝐴,R𝑛+1
)

be the minimal specialization of the Jackson network (𝐴,R𝑛) over

any eligible vertex 𝑖 with edge 𝑒𝑖𝑗 , 𝑖 ≠ 𝑗. If (𝐴,R𝑛) has an equitable partition 𝜋 = {𝑉1, 𝑉2,… , 𝑉𝑘}, then
(

𝐴,R𝑛+1
)

has an equitable partition
𝜋 = {𝑉 1, 𝑉 2,…𝑉 𝑘} where

𝑉 𝑎 =

{

𝑉𝑎 ∪ {𝑖} if 𝑖 ∈ 𝑉𝑎
𝑉𝑎 otherwise

for 𝑎 = 1, 2,… , 𝑘

here 𝑖 is the node created during minimal specialization.

Proof. We first note that Definition 7.0.1 is equivalent to saying we can partition our adjacency matrix so that the row sum in each
artition is constant. Thus, we will consider the partitioned adjacency matrices corresponding to 𝜋 and 𝜋. Without loss of generality,
let 𝑗 ∈ 𝑉𝑘−1 and 𝑖 ∈ 𝑉𝑘. The partitioned adjacency matrix is

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 ⋯ 𝐴1𝑘
⋮ ⋮ ⋮ ⋮

𝐴(𝑘−1)1 ⋯ 𝐴(𝑘−1)(𝑘−1) 𝐴(𝑘−1)𝑘
𝐴𝑘1 𝐴𝑘2 𝐴𝑘(𝑘−1) 𝐴𝑘𝑘

⎤

⎥

⎥

⎥

⎥

⎦

∈ R𝑛×𝑛 (6)

where each 𝐴𝓁𝓁 is a block matrix that represents the connections within a part and each 𝐴𝓁ℎ,𝓁 ≠ ℎ a block matrix that represents
the connections from part ℎ to part 𝓁.

Let 𝐴̃(𝑘−1)𝑘 denote the matrix that has the same entries as 𝐴(𝑘−1)𝑘 except the entry corresponding to 𝑒𝑖𝑗 in the adjacency matrix
s changed from a 1 to a 0. This represents deleting the edge from 𝑖 to 𝑗, which is done during minimal specialization.
Let 𝐴̃𝑘𝓁 for 1 ≤ 𝓁 ≤ 𝑘 denote the matrix that has the same entries as 𝐴𝑘𝓁 but now we add an extra row that is a copy of the row

orresponding to node 𝑖. This represents 𝑖 having the same in-edges as 𝑖.
Since 𝑖 has only one out-going edge, which is to node 𝑗, the column in 𝐴 corresponding to 𝑖 is all zeros except a 1 in the 𝑗𝑡ℎ

entry.
Thus, the partitioned adjacency matrix of 𝐴 is

𝐴 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐴11 𝐴12 ⋯ 𝐴1𝑘 0
⋮ ⋮ ⋮ ⋮

𝐴(𝑘−1)1 ⋯ 𝐴(𝑘−1)(𝑘−1) 𝐴̃(𝑘−1)𝑘 𝑒𝑗
𝐴̃𝑘1 𝐴̃𝑘2 𝐴̃𝑘(𝑘−1) 𝐴̃𝑘𝑘 0

⎤

⎥

⎥

⎥

⎥

⎦

∈ R(𝑛+1)×(𝑛+1) (7)

where 𝑒𝑗 is the vector that is all zeros except for a 1 that corresponds to the row associated with 𝑗. In this form, it is clear that the
upper left (𝑘 − 1) × (𝑘 − 1) block matrix is the as the upper left (𝑘 − 1) × (𝑘 − 1) block matrix of 𝐴, so the row sums are constant on
each part. Moreover, in the last partition column, it is clear that partition rows 1 to 𝑘− 2 have constant row sum since we are only
adding a column of zeros. For the (𝑘 − 1), 𝑘 partition of 𝐴, if we are not examining the row corresponding to node 𝑗, the row sum
is the same as the row sum in 𝐴(𝑘−1)𝑘. If we are looking at the row corresponding to 𝑗, then the row in 𝐴̃(𝑘−1)𝑘 has the same entries
as 𝐴(𝑘−1)𝑘 except for the entry corresponding to 𝑒𝑖𝑗 , which is 0 for 𝐴̃(𝑘−1)𝑘 and 1 for 𝐴(𝑘−1)𝑘. But, we have an additional 1 in the row
orresponding to 𝑗 in 𝐴. Thus the row sums for

[

𝐴̃(𝑘−1)𝑘 𝑒𝑗
]

are the same as 𝐴(𝑘−1)𝑘, and thus the row sums are constant. Finally,
for the last partition row, since the rows of 𝐴̃𝑘𝓁 are copies of the rows of 𝐴𝑘𝓁 (some repeated), and we are only adding a column
of zeros in the case of 𝐴̃ , the row sums are constant.
13
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Thus, the partitioned 𝐴 has constant row sums on each part, so equivalently, 𝜋 is an equitable partition.
We note that if 𝑖 and 𝑗 are in the same partition element, then the argument is similar, but instead of having an 𝐴̃(𝑘−1)𝑘 and 𝐴̃𝑘𝑘,

here is just 𝐴̃𝑘𝑘 with an extra row that is a copy of the row corresponding to 𝑖 in 𝐴𝑘𝑘 and changing the appropriate entry from a 1
o a 0. □

Using Theorem 7.0.1, it follows that the size of a network’s equitable partition remains constant under minimal specialization,
.e., the following holds.

orollary 7.0.1. Let
{(

𝐴𝑚,R𝑛+𝑚)}∞
𝑚=0 be a sequence of Jackson networks created via repeated minimal specialization. Denote the trivial

artition of (𝐴0,R𝑛) by 𝜋0. Then (𝐴𝑚, 𝑅𝑛+𝑚) has an equitable partition 𝜋𝑚 where |𝜋𝑚| = |𝜋0| for all 𝑚 ≥ 0.

roof. This follows from an inductive argument. Our base case is 𝜋0 being the trivial equitable partition of (𝐴0,R𝑛). Thus |𝜋| = |𝑉 |.
ow assume inductively that for (𝐴𝑚−1,R𝑚−1+𝑛), we have that |𝜋𝑚−1| = |𝑉 |. Let (𝐴𝑚,R𝑚+𝑛) be the minimal specialization of
𝐴𝑚−1,R𝑚−1+𝑛). From Theorem 7.0.1, we have that |𝜋𝑛| = |𝜋𝑛−1| = |𝑉 |. □

The number of partition elements remains fixed as a network is specialized, meaning that as the network grows, the partition
lements are what grow in size. A related question, not answered here, is as the network grows, how do the sizes of the partition
lements grow? For the sake of illustration, we consider this in the following example.

xample 7.0.1. Fig. 7 shows an example of an evolving Jackson network given by the sequence
{(

𝐴𝑚,R5+𝑚)}3
𝑚=0. The Jackson

etworks are sequentially specialized over the vertices 𝑖 = 5, 3, and 5 again, respectively. Here the original network has the trivial
quitable partition 𝜋0 = {{1}, {2}, {3}, {4}, {5}}. The result of specializing in this manner results in the partitions

𝜋1 = {{1}, {2}, {3}, {4}, {5, 5.1}}
𝜋2 = {{1}, {2}, {3, 3.1}, {4}, {5, 5.1}}
𝜋3 = {{1}, {2}, {3, 3.1}, {4}, {5, 5.1, 5.2}},

here each partition element is colored brown, purple, black, green, and red, respectively. Note that |𝜋0| = |𝜋1| = |𝜋2| = |𝜋3|.

.1. Evolution of equitable partitions and comparisons

In Corollary 7.0.1, we proved that minimal specialization either creates a new non-trivial partition element or grows the
ize of a non-trivial element. Thus, the percentage of non-trivial equitable partition elements never decreases. Here, we explore
xperimentally the rate at which non-trivial elements are created. The experiments here are the same as those discussed earlier in
ection 6, beginning with a directed Erdös-Rényi graph of |𝑉 | = 25 nodes, 𝐺𝑑𝑒𝑛 = .25 density, and normalized edge weights for
ynamic and random minimal specialization models. We also examined two Barabśi-Albert models, one where we preferentially
ttach one node with one edge, and the other with one node and two edges. For these models, we begin with an undirected,
nweighted Erdös-Rényi graph with |𝑉 | = 25 nodes, 𝐺𝑑𝑒𝑛 = .25 density. We iterate each model 500 times, calculating the percentage
f non-trivial equitable partition elements at each time step. We repeat this for 100 simulations and average the results.
For the integrated specialization model, we achieve 100% non-triviality quite rapidly with little standard deviation, as seen in

ig. 8(a). We see similar results for repeated random minimal specialization (Fig. 8(b)). We can see that, on average, the BA network
dding one node and edge evolves to have roughly 70% non-triviality, with higher variance. For BA networks grown by adding one
ode and two edges, there is no consistent creation of equitable partitions (Fig. 8(b)). (As far as the author’s know, there is no
heory describing the occurrence of equitable partitions in BA models.) Our model is potentially useful in the sense that it can be
sed to evolve a network to any percentage of non-trivial partition elements, given that the percentage is in the of the form 𝑘

𝑛 for
0 ≤ 𝑘 ≤ 𝑛 where 𝑛 is the size of the starting network.

8. Conclusion

In this work, we develop a model that considers the interplay between the dynamics on and the dynamics of the network. We use
a modified Jackson network, i.e. stochastic linear dynamics, for the dynamics on the network, and we develop a mechanism called
minimal specialization to model the dynamics of the network. We then repeatedly use the dynamics on the network to determine
where to minimally specialize the network, which we refer to as the integrated specialization model. We proved that minimal
specialization preserves structural and dynamic properties of the network. Specifically, we proved that if we start with a strongly
connected or primitive network, minimal specialization will result in a strongly connected or primitive network. We also show how
eigenvalues and eigenvectors evolve with minimal specialization.

Numerically, we show that the integrated specialization model creates networks with properties observed in many real-world
networks. This includes a right-skewed degree distribution, sparsity, the small-world property, and nontrivial equitable partitions.
While other network growth model can produce similar structural features, what is novel about the integrated model is it produces
these features through a topological mechanism, i.e. specialization, designed to reduce the maximal asymptotic load of a network.
This suggests that locally reducing a networks load may be an important feature in the formation of real-world networks.

Last, we also compare the integrated specialization model to other growth models, showing evidence that the integrated
specialization model creates more efficient networks in terms of both dynamics and structure. Specifically, we see that the integrated
specialization model creates networks with small diameter, meaning distances across the network are minimized, which is done while
simultaneously minimizing maximal load, meaning bottlenecks are reduced.
14
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Fig. 8. Non-trivial equitable partitions.
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Appendix. Other initial networks

The simulations in Section 5 used directed random (directed Erdös-Rényi) graphs as the initial graphs for the integrated model.
Here, we briefly present analogous results using three different initial graphs. The first type of graph is a random geometric graph
(RG) with 𝑛 = 25 nodes and a radius of 𝑟 = .25. The second graph type is a Barabśi-Albert graph (BA) with 𝑛 = 25 nodes and 𝑚 = 5
connections. The third graph is a connected Watts–Strogatz graph (WS) with 𝑛 = 25 nodes, 𝑘 = 5 neighbors, and 𝑝 = .25 probability
of re-wiring connections. Each of these graphs is initially undirected and unweighted. We then modify each graph type by directing
then deleting half the edges (rounding down) uniformly assign edge weights 𝑊 (𝑒𝑖𝑗 ) ∈ [1, 100] then normalize out-going edges to
sum to 1. We check that the resulting graph is strongly connected.

Analogous to the previous simulations on Erdös-Rényi graphs we run one-hundred simulations for each type of graph, growing
the networks from 25 to 525 nodes. The same statistics as before are averaged and presented here (see Figs. 3 and 5). For these
experiments, Fig. 9 shows how the out-degree distribution evolves using the integrated model with the three modified initial graphs.
15

In each case the out-degree distribution becomes increasingly right-skewed under the integrated model, on average.



Physica A: Statistical Mechanics and its Applications 651 (2024) 130000A. King et al.

W
t

m
t

Fig. 9. The evolution of the out-degree distribution using the integrated model is shown for the modified random geometric (RG), Barabśi-Albert (BA), and
atts–Strogatz (WS) graphs. These are shown in the top, middle and bottom rows, respectively, for 0, 100, and 200 iterations, with the distribution tails
runcated.

Fig. 10 shows how the diameter evolves using the integrated model starting with the modified RG, BA, and WS graphs. Each
experiment exhibits a different type of logarithmic growth, suggesting that for each has a distinct small-world property.

Fig. 11 shows how the density evolves using the integrated model starting with the modified RG, BA, and WS graphs. Regardless
of the initial graph, the graph becomes increasingly sparse as the network is repeatedly specialized where the density appears to be
approaching zero.

Fig. 12 shows how the maximum eigenvector centrality of a network evolves using the integrated model starting with the
odified RG, BA, and WS graphs. As with network density, regardless of the initial graph the maximal centrality decreases as
he network is repeatedly specialized where the maximum in each case appears to be approaching zero.
Each of the figures in this and in Section 5 provide evidence that the integrated model creates networks with some of most

studied properties observed in many real-world networks including (i) right-skewed degree distributions, (ii) sparsity, and (iii) the
small-world property. While the specifics of (i)-(iii) depend on the initial graph used in the integrated model, the overall pattern
appears to be independent of the initial condition. Additionally, for each type of graph, the integrated model deceases the maximal
16

load on the network as the network is specialized.
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Fig. 10. The evolution of network diameter using the integrated model is shown for the modified random geometric (RG), Barabśi-Albert (BA), and Watts–Strogatz
(WS) graphs, from left to right respectively. A line of best fit is plotted in orange in each plot, and one standard deviation is shown.

Fig. 11. The evolution of network density using the integrated model is shown for the modified random geometric (RG), Barabśi-Albert (BA), and Watts–Strogatz
(WS) graphs, from left to right respectively. The average and one standard deviation is shown.

Fig. 12. The evolution of maximum eigenvector centrality using the integrated model is shown for the modified random geometric (RG), Barabśi-Albert (BA),
nd Watts–Strogatz (WS) graphs, from left to right respectively. The average and one standard deviation is shown.
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