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Abstract 
Bac kgr ound: Predicting phenotypes from genetic variation is foundational for fields as di v erse as bioengineering and global change 
biology, highlighting the importance of efficient methods to predict gene functions. Linking genetic changes to phenotypic changes has 
been a goal of decades of experimental work, especially for some model gene families, including light-sensiti v e opsin proteins. Opsins 
can be expressed in vitro to measure light absorption parameters, including λmax —the w av elength of maxim um a bsorbance—which 
str ongl y affects organismal phenotypes like color vision. Despite extensi v e r esear c h on opsins, the data remain dispersed, uncompiled, 
and often challenging to access, thereby precluding systematic and comprehensive analyses of the intricate relationships between 
genotype and phenotype. 
Results: Here , w e report a newly compiled database of all heterolo gously e xpressed opsin genes with λmax phenotypes that we call 
the Visual Physiology Opsin Database ( VPOD ). VPOD_1.0 contains 864 unique opsin genotypes and corresponding λmax phenotypes 
collected across all animals from 73 separate publications. We use VPOD data and deepBreaks to show regression-based machine 
learning (ML) models often r elia b l y pr edict λmax , account for nonadditi v e effects of m utations on function, and identify functionall y 
critical amino acid sites. 
Conclusion: The ability to reliably predict functions from gene sequences alone using ML will allow robust exploration of molecular- 
ev olutionar y patterns gov erning phenotype, will inform functional and ev olutionar y connections to an organism’s ecological nic he , 
and may be used mor e br oadl y for de novo protein design. Together, our database, phenotype predictions, and model comparisons lay 
the groundwork for future resear c h applicable to families of genes with quantifiable and comparable phenotypes. 
Ke yw or ds: mac hine learning, re gression, compiled database, genotype–phenotype relationships, predicting phenotypes, spectral sen- 
sitivity, color-vision, opsins, imputation 

Ke y P oints: 
! We introduce the Visual Physiology Opsin Database 

( VPOD_1.0 ), which includes 864 unique animal opsin 
genotypes and corresponding λmax phenotypes from 73 
separate publications. ! We demonstrate that regression-based machine learn- 
ing models can r eliabl y pr edict λmax fr om gene sequence 
alone, predict nonad diti ve effects of mutations on func- 
tion, and identify functionally critical amino acid sites. ! We provide an approach that lays the groundwork for fu- 
tur e r obust explor ation of molecular-e volutionary pat- 
terns governing phenotype, with potential broader ap- 
plications to any family of genes with quantifiable and 
comparable phenotypes. 

Introduction 
Although critical to pr ogr ess in drug and vaccine design [ 1–
3 ], responses to climate change [ 4–8 ], and bioengineering [ 4 , 9–
11 ], accur atel y pr edicting gene function fr om sequences r emains 
a significant challenge. While there are many ways to eluci- 
date genotype–phenotype relationships experimentally, including 
deep mutational scanning, and in vitro heter ologous expr ession 
with phenotyping, these techniques are often tedious and cost- 
pr ohibitiv e, especiall y when applied to broad comparative stud- 
ies of gene families. In addition, accur atel y pr edicting the phe- 
notype of a protein using computational methods alone is chal- 
lenging because of data gaps and the sheer complexity of possi- 
ble relationships between genes and phenotypes, including epis- 
tasis and the nonad diti ve effects of different mutations. Machine 
learning (ML) is gaining traction for its potential broad biological 
applications, accessibility, and faster speeds, especially in biolog- 
ical contexts where phenotype data are abundant and quantifi- 
able . Here , classical regression and classification algorithms are 
sometimes used to train models for phenotype predictions using 
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genotype–phenotype data [ 12 , 13 ], while deep learning models can 
be used to integrate heterogeneous multilayered omics and en- 
vironmental data for establishing higher-dimensional genotype–
phenotype connections [ 14 , 15 ] or de novo protein design [ 16 ]. In 
broader biological contexts, ML models often inform laboratory 
experiments to predict directional evolution of diseases and their 
variants [ 17–19 ] or to automate image sorting and animal iden- 
tification from camera trap data [ 20–22 ]. In all cases, ML models 
are a worthwhile long-term investment for genotype–phenotype 
studies because models can iter ativ el y impr ov e as empirical data 
accum ulate ov er time. 

Suc h accum ulation of important information is exemplified by 
decades of laboratory work that has led to significant pr ogr ess in 
understanding the genetic basis of phenotypic changes for model 
gene families such as opsins. Opsins are a family of G-protein cou- 
pled receptors (GPCR) that bind to a retinal chromophore . T he 
2 units together, opsin and c hr omophor e, form visual pigments 
that absorb photons [ 23 ]. Opsins have crucial roles in many or- 
ganismal functions, including circadian rhythms, phototaxis, and 
image-forming color vision. A critical opsin phenotype is spec- 
tral sensitivity—the range of wavelengths to which a gene or or- 
ganism is sensitive . T he main parameter of opsin spectral sensi- 
tivity is λmax , the wavelength of light (in nm) with maximal ab- 
sorbance [ 24 ]. Common methods of c har acterizing spectr al sen- 
sitivities and λmax include or gan-le v el electr or etinogr ams (ERGs) 
[ 25–27 ], cell-le v el micr ospectr ophotometry (MSP) [ 28–32 ], purifica- 
tion of heter ologousl y expr essed opsins follo w ed b y spectropho- 
tometry [ 33 ], and heterologous action spectroscopy using light re- 
sponse assays for opsins expressed in immortalized cell lines [ 34 ]. 
Differ ent opsins ar e tuned by c hanges in amino acid sequences to 
respond to different wavelengths of light, and many previ- 
ous studies have expressed experimentally mutated opsins and 
measur ed spectr al sensitivities to establish genotype–phenotype 
connections [ 34–38 ]. Although other factors sometimes affect 
spectr al r esponsiv eness, including the type of c hr omophor e 
to which an opsin is cov alentl y bound (11- cis retinal or 11- 
cis -3,4-didehydr o r etinal) [ 39 , 40 ], opsins pr ovide a r ar e case 
where an intrinsic molecular function extends rather directly 
to organismal phenotypes, especially those involving color sen- 
sitivity. Despite opsins being a well-studied system with an 
extensiv e bac klog of published liter atur e, some pr e vious authors 
expressed doubts that sequence data alone could pr ovide r eli- 
able computational predictions of λmax phenotypes [ 41–44 ]. At the 
same time, some λmax predictions sho w ed promise, although on 
the limited scale of v ertebr ate cone visual pigments via atomistic 
molecular sim ulations [ 45 , 46 ]. Furthermor e, onl y the nonanimal, 
microbial, or type 1 (T1) opsins have been systematically cata- 
loged and used to examine genotype–phenotype pr edictiv e po w er 
of ML models [ 47 , 48 ]. While some r esearc hers hav e made signifi- 
cant efforts to compile peak sensitivity data for terrestrial animal 
photopigments [ 49 ] and taxon-specific light-sensitivity data for 
gr oups like fr ogs [ 50 , 51 ] and r ay-finned fishes [ 52 , 53 ], these efforts 
curr entl y lac k dir ect links to genetic data that are essential for 
our current study . Consequently , the extensive data on genotype–
phenotype associations of animal opsins remain disorganized, de- 
centralized, often in noncomputer readable formats within older 
liter atur e, and under anal yzed computationall y. 

Her e, we r eport a genotype–phenotype database for animal 
opsins called the Visual Physiology Opsin Database ( VPOD ). We 
used standard liter atur e searc hes to compile all heter ologousl y 
expressed animal opsin genes with spectral sensitivity measure- 
ments. We used this ne wl y compiled and harmonized database 
to e v aluate ML methods for connecting genotypes and pheno- 

types. We created 11 subsets of the ov er all database to examine 
factors that impact the reliability and performance of ML mod- 
els and briefly compar ed ML pr edictions to phylogenetic imputa- 
tion [ 54 , 55 ]. We also examined whether ML can pr edict intr a genic 
epistasis, and we predicted amino acid sites particularly impor- 
tant for changing λmax . Using our database of 864 unique opsin 
sequences and corresponding λmax values, w e sho w ML models 
trained on opsin data accur atel y pr edict the λmax of opsins from 
genetic data alone (highest R 2 = 0.968 with a lo w est mean abso- 
lute error [MAE] of 6.56 nm), especially when ample and diverse 
training data are a vailable . ML also predicts some known effects 
of epistatic mutations on λmax . Finally, ML models identify sev- 
eral sites that cause shifts in λmax (e.g., “spectral tuning sites”) and 
sites known to be structur all y important, e v en in the absence of 
mutant data in training. When training data are sufficient, these 
results support the use of ML as a reliable and efficient predictor 
of λmax for pr e viousl y unc har acterized opsins, as a tool for iden- 
tifying candidate spectral tuning sites and epistatic interactions, 
and as a more general method for linking gene sequences and 
phenotypes. 
Methods 
Compiling a genotype–phenotype database for 
animal opsins 
We collected λmax data for opsins using typical liter atur e r e- 
vie w/searc h methods, with search engine, k e ywords, and date of 
access documented in the “litsearch ” table of the VPOD database 
( RRID:SCR _ 025668 ). We cataloged all usable papers with λmax data 
in the “references ” table of VPOD , recording DOI and a k e y to link 
to the search that found the paper. We documented the details of 
heter ologous expr ession experiments in the “heterologous ” table, 
including species, GenBank accession number for the sequence, 
m utation(s) (if a pplicable) using a mac hine-r eadable notation, 
λmax , cell type for expression (e.g., HEK293, COS1, etc.), protein pu- 
rification method, type of spectrum (e.g., dark or difference spec- 
trum), and a k e y to link to the corresponding literature source. 
Note, we did not record the c hr omophor e used to r econstitute the 
purified opsin protein because 11- cis retinal is the standard and all 
instances thus far recorded in the “heterologous ” table are from ex- 
periments using 11- cis retinal (although future iterations of VPOD 
could record these details if data with alternative chromophores 
become available). We input opsin genetic data in an “opsins ” ta- 
ble, recording opsin gene family names (e .g., long-wa ve sensitive = 
LWS, short-wav e sensitiv e = SWS1, etc.). We also included specific 
“gene names ” (where applicable), phylum, class, species informa- 
tion, accession number, DNA sequence, amino acid sequence, and 
the database from which sequences were retrieved (e.g., NCBI). 
We r e-cr eated all m utant and c himeric (e.g., 1 or mor e tr ans- 
membrane domains of the mutant copied from a different se- 
quence to replace the original) opsin sequences based on liter- 
ature descriptions using a pair of Python scripts ( mutagenesis.py 
and chimeras.p y ) a vailable on our GitHub [ 56 ]. We added all het- 
er ologousl y expr essed opsins fr om the liter atur e to VPOD ; we call 
this version of the database VPOD_1.0. We refer to heterologous 
data as VPOD_het_1.0 , which will allow for future additions to the 
database to link specific opsin sequences to λmax values estab- 
lished with methods other than heter ologous expr ession, includ- 
ing micr ospectr ophotometry or other methods. During the course 
of manuscript r e vie w, we found and entered 259 new heterolo- 
gousl y expr essed opsins into VPOD , an update we call VPOD_1.1 
(Fig. 1 ) . We decided to k ee p results from VPOD_1.0 in the main text 
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Figure 1: Histogram distributions of vertebrate and invertebrate opsins and absorbance data—λmax —from VPOD_het_1.1 with a scaled kernel density 
estimate (KDE) curves overlaid to better visualize the general shape and characteristics of our λmax distributions. Note an obvious data bias for 
v ertebr ate opsins, especiall y those with λmax v alues between 350–375 nm and 480–510 nm, pr obabl y due to focal r esearc h on UVS and Rh1 opsins. 
because the new data points did not dr asticall y alter an y model 
performances. We also provide this table of performance metrics 
for VPOD_1.1 ( Supplementary Material 1 (S1) ). Ther efor e, all tests 
and figures should still be assumed to use VPOD_1.0 data unless 
stated otherwise. 
Training ML models with deepBreaks 
We performed all data pr epr ocessing, including data extr action, 
sequence alignments, and formatting, in the Jupyter notebooks 
“opsin_model_wf .ipynb , ” available on GitHub . We used 2 multiple 
sequence alignment methods, MAFFT ( RRID:SCR _ 011811 ) [ 57 ] and 
MUSCLE ( RRID:SCR _ 011812 ) [ 58 ], and a version of both alignments 
with a Gblocks ( RRID:SCR _ 015945 ) [ 59 ] refinement (for a total of 4 
alignments), all set to their default parameters to begin to test the 
sensitivity of model performance to different alignments. We then 
tr ained v arious ML models employing a custom version of deep- 
Breaks [ 60 ], an ML tool designed for exploring genotype–phenotype 
associations. deepBreaks takes aligned genotype data (DN A, RN A, 
amino acid) and some measure(s) of corresponding continuous or 
categorical phenotype data as input to train ML models. deepBreaks 
uses one-hot encoding to convert amino acid sequences into nu- 
merical values. One consequence of this encoding is any amino 
acids at a given position in the alignment, which are not present 
at that position in any training data, will be treated equivalently as 
unseen. For example, cases of only A and V at a highly conserved 
site in the training set that are presented with a sequence with T 
at that site will be considered as no A and no V. The models can- 

not distinguish the input whether it is T or other unseen amino 
acids at that site . T he results produced by deepBreaks encompass a 
compilation of 12 r egr ession ML models [ 60 ], showcasing 10 met- 
rics of cr oss-v alidation performance (ranked by R 2 ) and a feature 
importance report derived from the top-performing models that 
ranks amino acid positions by their relative importance to each 
model (from 0.0–1.0, with 1.0 being a site with the highest rela- 
tive importance) for the phenotype in question ( λmax ). The met- 
rics used to determine these r elativ e importance scor es of eac h 
position vary based on the structure and output of the algorithms 
used for model training. For example, xgboost [ 61 ] and LightGBM 
[ 62 , 63 ] use the number of times a feature appears in a tree as a 
proxy for importance [ 60 ], while AdaBoost [ 64 ] and random forest 
[ 65 , 66 ], use Gini importance, which quantifies a feature’s contri- 
bution to impr oving pr ediction accur acy [ 60 , 67 , 68 ]. For a more 
detailed explanation on how position importance scor es ar e cal- 
culated for different models, refer to the “Interpretation ” heading 
under the methods section of the deepBreaks publication [ 60 ]. In 
addition to R 2 , deepBreaks reports the MAE, mean absolute percent 
err or (MAPE), mean squar e err or (MSE), and r oot mean squar e er- 
ror (RMSE) for each of the 12 ML models. We e v aluated the per- 
formance of algorithms based on their r elativ e r anks to look for 
patterns in which algorithms performed better for different data 
subsets and a ppr oac hes. deepBreaks also pr oduces a set of distri- 
bution box plots (default is 100) to visualize phenotypes ( λmax ) as- 
sociated with a particular amino acid identity at a site of interest, 
order ed alphabeticall y. 
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Ta ble 1: P erformance metrics across opsin subsets and top-performing models 
Name Data subset version # sequences Top ML algorithm R 2 a MAE (nm) b MAPE (%) b MSE a RMSE a 
Whole dataset VPOD_wds_het_1.0 864 LGBM 0.947 7.47 1.71 207 13.8 
All wild types VPOD_wt_het_1.0 318 Bayesian Ridge 0.902 10 2.18 297 16.5 
All mutants VPOD_mut_het_1.0 546 LGBM 0.951 7.89 1.86 194 13.4 
Vertebrates VPOD_vert_het_1.0 721 LGBM 0.968 6.56 1.49 111 10.3 
WT 
v ertebr ates VPOD_wt_vert_het_1.0 274 GBR 0.961 5.46 1.18 82.1 8.36 
Inv ertebr ates VPOD_inv_het_1.0 143 LGBM 0.814 14.7 3.22 614 23.1 
Rods VPOD_rod_het_1.0 352 Bayesian Ridge 0.834 3.51 0.71 27.7 5.04 
WT Rods VPOD_wt_rod_het_1.0 157 GBR 0.783 3.57 0.72 31.9 5.11 
MWS/LWS VPOD_mls_het_1.0 91 XGB 0.677 8.77 1.82 317 15 
UVS/SWS VPOD_uss_het_1.0 280 GBR 0.821 8.02 2.06 200 13.6 
WT UVS/SWS VPOD_wt_uss_het_1.0 66 Adaboost 0.865 7.79 1.87 152 10.6 
T1 opsins Kary asuy ama_T1_ops 884 Random Forest 0.804 9.41 1.76 186 13.5 
a R 2 , mean square error (MSE), and root mean square error (RMSE) are often interpreted as direct measures of comparing/analyzing model performance and used as 
training loss terms of the objective function—which measures how well the model fits the training data. One has to often balance between this and the regularization 
term, whic h contr ols the complexity of the model. T hus , a high performance is both simple and pr edictiv e, a tr ade-off r eferr ed to as the “bias-v ariance ” tr ade-off. 
b Mean absolute error (MAE) and mean absolute percent error (MAPE) are in relation to the absolute error λmax predictions and interpreted in the same units of 
“nm.”
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Figure 2: ML model predictions on whole vertebrate opsin dataset, n = 721, R 2 = 0.968, MAE = 6.68 nm, MAPE = 1.52. Sequences were iteratively and 
r andoml y selected to be withheld from the training dataset ( n = 50) to act as unseen test data. This was repeated until all sequences had been sampled 
once. Predictions in which the absolute difference between the “known” and “pr edicted” λmax ar e < 10 nm are represented by gray dots. All predictions 
in which the absolute difference between the “known” and “pr edicted” λmax ar e > 10 nm are represented by colored dots. Yellow dots represent WT 
pr edictions, m utants with only a single mutation are green, mutants with greater than 1 mutation are light blue, and chimeric opsins are dark blue. 
The light gray bar surrounding the trend line represents a 95% confidence interval. Inset: Boxplot distribution of prediction error for different opsin 
data types from the top-performing vertebrate opsin ML model to better visualize our sources of error. Note, the median for each boxplot hovers 
around 0 nm. Single mutations have the largest spread of error, but this is most likely due to the high abundance of that data type over all others. 
Understanding model performance using 
different subsets of the database 
We created 11 data subsets with varying levels of taxonomic and 
gene family inclusivity (Table 1 ) to test which factors most im- 
pact the reliability/performance of ML methods. We used nam- 
ing conventions that include versioning to improve reproducibil- 
ity and reliability of individual datasets and models. For ex- 
ample, 1 subset combines ultraviolet and SWS opsins, which 
we named VPOD_uss_het_1.0. Our convention is to name the 
subset (in this case USS = “ultraviolet and short-wave sen- 
sitive” opsins), name the source of phenotype data (heterol- 
ogous = het), and record the version number of the dataset 
(1.0) . We also created subsets for medium- and long-wave sen- 

sitive opsins ( VPOD_mls_het_1.0 ) and all rod (Rh1) and rod-like 
(Rh2) opsins ( VPOD_rod_het_1.0 ). Other subsets use species tax- 
onomy, one for v ertebr ates ( VPOD_vert_het_1.0 ) and another for 
inv ertebr ates ( VPOD_inv_het_1.0 ). For taxonomic subsets, we con- 
sidered all sequences from phylum Chordata as “vertebrates”
and the rest as “in vertebrates .” Another subset excludes all mu- 
tant opsin sequences, called “wild-types” ( VPOD_wt_het_1.0 ). A 
final named subset is the whole dataset ( VPOD_wds_het_1.0 ) 
(Fig. 2 ). 

Using various subsets of data, we performed a number of 
experiments to better understand the performance of ML models 
in predicting λmax . First, to better understand how training data 
relate to model performance, R 2 , and training data size, we 
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Figure 3: Scatterplot of wild-type model’s λmax predictions for 546 mutant opsins, with an R 2 of 0.860, MAE of 12.36 nm, and MAPE of 2.91%. Mutant 
predictions in which the absolute difference between the “known” and “pr edicted” λmax ar e < 10 nm are represented by gray dots. All predictions in 
which the absolute difference between the “known” and “pr edicted” λmax ar e > 10 nm are represented by colored symbols, further separated by 
inv ertebr ate (squar es) and v ertebr ate (circles) opsins. Mutants with onl y a single m utation ar e gr een, m utants with gr eater than 1 m utation ar e light 
blue, and chimeric opsins are dark blue. Mutations that caused a shift of > 10 nm from the WT are outlined in purple . T he light gray bar surrounding 
the trend line represents a 95% confidence interval. 
gr aduall y incr eased the size of training datasets by starting from 
zero and incrementally adding between 15 and 50 r andoml y 
selected sequences at a time for the whole dataset (WDS), verte- 
brate, wild-type (WT), and rod subsets se parately, re peating the 
process 3 times per subset ( Supplementary Material 2 (S2) ). We 
then analyzed the fit between the size of training datasets (x-axis) 
and model performance (y-axis), comparing 6 nonlinear models 
with Akaike information criterion (AIC) to find the model that best 
explains the observed variation ( Supplementary Material 3 (S3 ). 
Second, to understand if ML could predict known pheno- 
typic changes due to experimental mutations, we queried the 
top-performing WT model (which lacks data from artificially 
mutated sequences) using all experimentally mutated opsins 
to predict their known phenotypes. We plotted these results 
using matplotlib [ 69 ] to visualize c har acteristics of poorl y pr e- 
dicted outliers (e.g., taxonomic bias or sensitivity to mutations, 
whic h caused lar ge shifts in λmax fr om the WT) (Fig. 3 ). To test 
further whether including these mutant data significantly im- 
pr ov es pr edictions of λmax , we used the VPOD_het_1.1 dataset 
( Supplementary Material 1 (S1) ) and a Wilcoxon signed-rank test 
[ 70 , 71 ] to compare distributions of squared error for predictions 
by the WDS model (contains mutant data) and WT model (no 
mutant data) on all mutant data ( n = 761) and separ atel y com- 
paring onl y m utants causing the lar gest phenotypic c hanges in 
λmax ( > 10 nm from the wild-type; n = 346). To accomplish this 
for the WDS models, we iter ativ el y r emov ed 25 mutant opsins 
at a time from training data, used the same training algorithm 
(gr adient boosted r egr essor [GBR]), and pr edicted λmax v alues of 
withheld opsins following the completion of model training (with- 
held opsins are not used as test data during the actual model 
training), until all mutant opsins were sampled once (this 
notebook is available on GitHub as 
“vpod_wf_iterate_subsample.ipynb . ” Thir d, w e examined the ability 
of our models to predict λmax of 30 inv ertebr ate opsins not in 
VPOD_1.0 because they are only known from physiological studies 
( Supplementary Material 4 (S4) , Supplementary Material 5 (S5) ). 

Here, we collected data both characterized by single-cell mi- 
cr ospectr ophotometry (MSP) or electr or etinogr am methods and 
with expression localized to cell type by in situ hybridization 
(ISH), to link λmax to a specific opsin (the sequences and metadata 
can be found in “msp_erg_raw.txt ” and “msp_erg_meta.tsv ,” while 
the r esulting pr edictions can be found under the “msp_tests ”
folder on our GitHub r epository). Finall y, we dir ectl y compar ed 
pr edictiv e ca pabilities of models tr ained on differ ent data subsets 
by r andoml y selecting and r emoving the same 25 wild-type 
ultra violet or short-wa ve sensitive opsins from the training data 
of the WDS, v ertebr ate, WT, and ultr aviolet sensitiv e (UVS)/SWS 
models before training and querying the model with those same 
sequences following training ( Supplementary Material 4 (S4) , 
Supplementary Material 6 (S6) ). 
Comparing machine learning and phylogenetic 
imputation 
We compared performance of ML models to phylogenetic impu- 
tation, which estimates phenotypes using phylogenetic informa- 
tion [ 54 , 55 ]. Phylogenetic imputation uses maximum likelihood 
(we will not abbr e viate maxim um likelihood as ML to avoid con- 
fusion with machine learning), usually assuming Brownian mo- 
tion to predict missing phenotypes using a phylogenetic tr ee, suc h 
that more closely related species or sequences have more sim- 
ilar phenotypes. For the phylogeny, we constructed opsin gene 
trees in phyML [ 72 ], assuming the “WAG” substitution model [ 73 ] 
and a proportion of 0.029 invariable sites, with Gamma as a rate 
across sites model, and 4 substitution rate classes. We randomly 
r emov ed 50 opsin sequences and their corr esponding λmax v al- 
ues from each of the ML training datasets (with the exception 
of the smaller medium wav elength-sensitiv e (MWS)/LWS and in- 
v ertebr ate datasets, wher e we onl y r emov ed 15), then estimated 
the r emov ed λmax v alues using phylogenetic imputation. We used 
the phylogenetic imputation submodule of the phytools R pac ka ge 
[ 74 ] for imputation . We compared imputed and actual λmax using 
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r egr ession. Imputation seemed sensitiv e to input alignment, per- 
haps caused by very short or zero length branch lengths in the 
phylogeny, as we could only complete imputation with phytools 
after removing uninformative and heavily gapped regions with 
Gblocks. To allow direct comparisons of regressions between im- 
putation and ML, we r e-cr eated ML tr aining–data alignments us- 
ing MAFFT, MUSCLE, and Gblocks in the same way as for imputa- 
tion and predicted λmax for the same sets of sequences as impu- 
tation ( Supplementary Material 7 (S7) ). 
Testing ability of ML to account for intragenic 
epistasis 
Functional predictions are often misled by epistasis [ 41 ], so we 
tested the ability of our WDS models to predict the effects of 
epistatic mutations by haphazardly selecting 3 double mutants 
with pr e viousl y demonstr ated epistatic effects fr om tr aining data 
in which double mutants, each single mutant, and wild-type se- 
quence are all characterized by heterologous expression. The 3 
epistatic double mutants are all derived from bovine rhodopsins: 
D83N_A292S, F261Y_A269T, and A164S_A269T. We r emov ed the 
double m utants fr om the tr aining dataset but r etained single m u- 
tants to test whether the model treats the mutations as ad diti ve 
or epistatic. We hypothesized that the many instances of multi- 
mutant sequences with epistatic effects in the training set would 
allow the model to account for both the magnitude and direc- 
tion of intr a genic epistasis. We then r an a separ ate test wher e 
we r emov ed the same double m utants plus their corr espond- 
ing single mutants to observe whether the WDS model still pre- 
dicts epistatic effects from wild-type data alone. We subsequently 
repeated this same process for the WT and vertebrate models 
( Supplementary Material 8 (S8) ). 

We ran an additional experiment to test the general ability 
to to predict epistatic interactions between mutations for all 
av ailable data. Her e, we identified all m ultim utants that hav e 
phenotype data for each individual component mutation. Next 
we selected those m ultim utants with nonad diti ve (e pistatic) in- 
teractions between mutations (which we define as > 1 nm dif- 
ference between the actual m ultim utant phenotype and the 
sum of changes in phenotype due to the individual mutations). 
These 111 “epistatic m utants” wer e then all r emov ed fr om WDS 
( VPOD_wds_het_1.1 ) to create a new training dataset called “WDS- 
min use pi” that lac ks e vidence of intr a genic epistasis. For this 
test, we hypothesized that if the ML a ppr oac h can account for 
epistasis, the RMSE of predictions of the 111 epistatic mutants 
would be significantly lower for the model trained with WDS- 
min use pi than the model trained with no mutants at all (WT). 
We tested for statistically significant differences in the distri- 
butions of square error for predictions made by WDS-min use pi 
versus WT and WDS-min use pi versus the epistasis-free addi- 
tiv e m utation v alues (EAMVs, whic h r epr esent the expected λmax 
for mutants if the effects of their singular mutational compo- 
nents wer e tr eated as ad diti v e). We also pr edicted a statisti- 
call y significant differ ence between pr edictions made by WT and 
EAMV only if WT contains enough natur al v ariation (not based 
on mutants) to observe patterns of intragenic epistasis . T hese 
statistical tests assumed a Bonferroni correction for multiple 
tests. 
Identifying known spectral tuning sites 
In addition to predicting λmax , we wanted to identify amino acid 
sites with strong effects on the phenotype, called spectral tun- 
ing sites for opsins. To do so, deepBreaks produces an “importance 

r eport” of the r elativ e importance of amino acid positions within 
the sequence r elativ e to the phenotype . T his r eport is gener ated 
for each of the top 3 performing models, with the addition of a col- 
umn that calculates the “mean r elativ e importance” v alue of eac h 
individual position. We automated the translation of these fea- 
tur e r epr esentations of aligned amino acid positions compared to 
bovine rhodopsin for the sake of inter pr etability. We also included 
the amino acid residue identity at eac h corr esponding position 
and whether it is in one of the opsin tr ansmembr ane domains 
(TMDs). We used this to provide us with a standardized context 
for analysis of the most significant positions highlighted by the 
models, which we could use to compare to published mutants and 
known spectral tuning sites. We analyzed the importance report 
for each model to see what positions it highlighted as most im- 
portant, with an extra emphasis placed on the output for the WT 
models since it was the least likely to be biased by the presence of 
already known mutant data ( Supplementary Material 9 (S9) ), as 
pr e vious r esearc hers often c hose suspected tuning sites for m u- 
tagenesis experiments. 
Results 
Data description: A genotype–phenotype 
database for animal opsins 
VPOD is a new database , a vailable on GitHub and in GigaDB 
[ 75 ] that curr entl y includes all heter ologousl y expr essed animal 
opsins. We refer to a subset of the database with only heterolo- 
gous data as VPOD_het_1.0 , although for version 1.0, this is syn- 
onymous with the entire database. VPOD_het_1.0 relies on 73 
publications, mainly primary sources, with dates ranging from 
the 1980s to 2023. The database contains opsin sequences and 
phenotype data from 166 unique species (counting 35 recon- 
structed ancestors), including fishes, amphibians, reptiles, mam- 
mals , crustaceans , and biv alv es. Altogether, VPOD_het_1.0 con- 
tains 864 unique opsin sequences and corresponding λmax values. 
This includes 318 unique WT opsins and 546 unique experimen- 
tall y m utated opsins (447 fr om v ertebr ates and 99 fr om inv erte- 
br ates) fr om 82 species (73 v ertebr ate and 9 inv ertebr ate species). 
Of the mutants, 73 are “chimeric,” meaning 1 or more transmem- 
brane domains of the mutant are copied from a different opsin to 
replace the original. Phylogenetically, VPOD_het_1.0 is mainly ver- 
tebrate opsins ( n = 721), with only 143 unique invertebrate opsins 
( Supplementary Material 10 (S10) ). The v ertebr ate opsins consist 
of 113 UVS opsins, 167 SWS opsins, 8 MWS opsins, 83 LWS opsins, 
237 rhodopsin (Rh1) opsins, and 113 rhodopsin-like (Rh2) opsins 
( Supplementary Material 10 (S10) ). Phenotypically, VPOD_het_1.0 
spans a range of λmax values from 350 to 611 nm. The highest con- 
centration of phenotype values are between 350–375 nm and 475–
525 nm (Fig. 1 ) due to the liter atur e bias favoring c har acterization 
of UVS/SWS opsins and rhodopsins (Rh1). 
T he da ta used for model tr aining strongl y impact 
accuracy 
Se v er al models tr ained with differ ent subsets of data pr edicted 
λmax with high accuracy (Table 1 ). The top-performing models 
from these subsets consistently used the same 5 algorithms, in- 
cluding the gradient boosting regressor (GBR) [ 68 , 76 ], Bayesian 
ridge (BR) [ 77 , 78 ], light gradient boosting machine (LGBM) [ 79 ], 
r andom for est (RF) [ 66 ], and extr eme gr adient boosted mac hine 
(XGB) [ 61 ]. For example, VPOD_vert_het_1.0 —trained with all ver- 
tebr ate wild-type, m utant, and c himeric opsins—had the highest 
10-fold cr oss-v alidation (CV) R 2 (0.968) and lo w est MAE (6.56 nm) 
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of any models we compared (Fig. 2 ). Similarly, VPOD_wds_het_1.0 , 
trained with the whole dataset, had very high R 2 (0.947) and 
low MAE (7.47 nm). The 2 data subsets also shared the same 
5 top-performing models (GBR, BR, LGBM, RF, and XGB). In addi- 
tion, VPOD_wt_het_1.0 —trained without mutants and only wild- 
type data—had a similarly high R 2 (0.902) and a low MAE (10.3 nm) 
when predicting unseen wild-type data. Overall, this “wild-type- 
onl y” model also far ed well, e v en when pr edicting m utant data 
not included in the model (Fig. 3 ). While these performance met- 
rics ar e impr essiv e, it is important to r emember that phylogenetic 
relatedness between sequences of a dataset could inflate values, 
like R 2 , when using random sampling for cr oss-v alidation because 
opsins that are more similar to those in the training data will be 
easier to predict, and phylogenetically clustered sequences will 
also be more likely to be resampled. Roberts et al. [ 80 ] provide a 
discussion of alternative cross-validation strategies such as “block 
cr oss-v alidation” for nonindependent data types, including phy- 
logeneticall y r elated data, whic h can help mitigate this issue. De- 
spite ov er all high R 2 , we noticed multiple instances wher e m uta- 
tions that cause large shifts in λmax ( > 10 nm) were not well pre- 
dicted by the wild-type-only model, as indicated by large resid- 
ual values for the predictions of these mutant sequences (Fig. 3 ). 
We found including mutant data significantl y impr ov es pr edic- 
tions of λmax when comparing predictions of models trained with 
(WDS) and without (WT) mutant data and rejecting the null hy- 
potheses of no underlying differences between the distribution 
of squared error for predictions of all mutants ( P = 9.96e-22, 
WDS RMSE = 12.6 nm, WT RMSE = 17.6 nm) ( Supplementary 
Material 11 (S11) ) and when predicting phenotypes of mutants 
with large shifts in λmax ( P = 2.29e-25, WDS RMSE = 17.0 nm, WT 
RMSE = 24.2 nm) ( Supplementary Material 11 (S11) ). 

In addition to including mutant data, data availability more 
gener all y impr ov es pr edictiv e po w er, with performance thresh- 
olds and plateaus depending on the genetic diversity of the 
tr aining data. Ov er all accur acy in pr edicting λmax for our mod- 
els trained on more genotypically and phenotypically complete 
subsets of data (WDS, v ertebr ate, WT) impr ov es as a function 
of the number of sequences in a dataset and shows an initial 
plateau ( R 2 = ∼0.80–0.90) of diminishing returns around 120 to 
200 sequences that continues to taper off above 200 sequences 
( Supplementary Material 2 (S2) , Supplementary Material 3 (S3 ). 
Consistent with a rough performance threshold, we found mod- 
els from data subsets with fewer than ∼200 training sequences to 
far less accur atel y pr edict λmax . For example, VPOD_mls_het_1.0 —
tr ained onl y on the 91 MWS/LWS opsins of v ertebr ates—and 
VPOD_inv_het_1.0 —tr ained onl y on 144 inv ertebr ate opsins—
sho w ed among the lo w est R 2 (0.677 and 0.814, r espectiv el y; Ta- 
ble 1 ). For all data subsets, we found the relationship between 
number of sequences in a dataset and model performance best 
fits a r ecipr ocal model, whic h is suitable when the dependent vari- 
able plateaus as the independent variable grows larger. We found 
the coefficients of the r ecipr ocal equations to be different between 
data subsets and to increase in negative magnitude with a de- 
crease in taxonomic/genetic diversity (the rod model holding the 
lar gest negativ e v alue of −44). These equations do not account di- 
r ectl y for taxonomic , genetic , or phenotypic diversity, as the raw 
number of genes is the value of the x-axis . T herefore , one should 
be cautious about a ppl ying them to predict model performance 
based on training data size alone. 

The complicated relationship between size of training dataset 
and pr edictiv e po w er is further illustrated b y models from some 
larger data subsets that resulted in rather poor predictions. One 
large dataset (884 sequences), the previously published Karya- 

suyama type 1 opsin dataset ( Kary asuy ama_T1_ops [ 47 ]), showed 
onl y moder ate R 2 (0.804) and MAE (9.41), similar to models fr om 
the m uc h smaller inv ertebr ate data (Table 1 ). One explanation 
for lo w er pr edictiv e po w er could be that the v ery old a ge of T1 
opsins led to a higher complexity and diversity of genotype–
phenotype associations, which are not yet completely sampled 
enough to allow good predictions. In addition, models based on 
rod, UVS/SWS, and MWS/LWS subsets tend to sho w lo w er R 2 
than might be at first expected ( Supplementary Material 2 (S2) , 
Supplementary Material 3 (S3 ), especially since these 3 datasets 
together comprise the training data for the vertebrate model 
(our highest performing model, R 2 = 0.968). For example, the 
rod model, with 352 sequences, should have resulted in a model 
with an R 2 around 0.900 to 0.960 based on the trend lines for 
the WDS and v ertebr ate datasets ( Supplementary Material 2 (S2) , 
Supplementary Material 3 (S3 ) but resulted in an R 2 = 0.831. A 
possible explanation for this lo w er R 2 v alue for r od models is the 
small degree of variability in λmax. When variation is low, even very 
small differences from model predictions could lead to larger dif- 
fer ences in R 2 . Ther efor e, when a data subset such as rod opsins 
contains limited variability in the r esponse v ariable ( λmax ), addi- 
tional metrics that are less sensitive to variance will be important, 
such as MAE or RMSE, which report the absolute magnitude of er- 
r ors r ather than the pr oportion of explained v ariance. To illustr ate 
further, most models tested on their ability to predict the λmax for 
a set of 25 subsampled WT-SWS opsins from VPOD performed rel- 
ativ el y poorl y based on R 2 alone ( Supplementary Material 4 (S4) ), 
with the v ertebr ate model ( R 2 = 0.914, MAE = 7.89) demonstrat- 
ing a r elativ el y gr eater pr edictiv e po w er than all other models 
( Supplementary Material 4 (S4) , Supplementary Material 6 (S6) ). 
Ho w e v er, between the v ertebr ate and lowest performing model 
(SWS model; R 2 = 0.778, MAE = 11.6 nm), there is only a 3.71-nm 
increase in MAE, a much less dramatic perceived shift in perfor- 
mance than might be inter pr eted fr om R 2 alone. 

When predicting λmax of 30 unseen wild-type inv ertebr ate 
opsins from a separately curated MSP dataset, almost every 
model performed rather poorly, with exception of the WT model 
( n = 30, R 2 = 0.887, MAE = 17.5) ( Supplementary Material 4 (S4) , 
Supplementary Material 5 (S5) ). The best-performing model pro- 
duced by the sparsely populated “Invertebrate ” dataset could only 
pr edict unseen inv ertebr ate opsins with an R 2 of 0.837 and MAE of 
26.3 nm ( Supplementary Material 4 (S4) , Supplementary Material 
6 (S6) ). Until the models ar e tr ained with mor e inv ertebr ate (r- 
opsin) data, w e w ould not put high confidence in the estimates of 
λmax . Furthermor e, these separ atel y cur ated inv ertebr ate opsins 
are independent of the phylogenetic relatedness of the data used 
in model training and therefore provide a less inflated estimate 
of the ability to predict λmax compared to random resampling of 
training data. Because of the sparsity of invertebrate data in the 
training set, this result further highlights that opsins more dis- 
tantl y r elated to those in the database will be more difficult to 
predict. 
ML predictions of λmax are comparable to 
phylogenetic imputation 
Both ML and phylogenetic imputation were often accurate pre- 
dictors of λmax ( Supplementary Material 7 (S7) ). When using the 
same test data, ML models usually outperformed phylogenetic 
imputation, ho w e v er slightl y ( Supplementary Material 7 (S7) ), al- 
beit using far less computational time: ML used on the order 
of minutes to calculate models, and imputation used on the 
order of hours to generate opsin phylogenies . T he MWS/LWS 
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dataset was the only instance where phylogenetic imputation 
( R 2 = 0.784) lar gel y outperformed ML ( R 2 = 0.512). We found our 
implementation protocol for phylogenetic imputation r equir ed 
removing aligned sites with extensive gaps (for which we used 
Gblocks); we speculate this lessened the impacts of very short 
br anc h lengths on model fitting during imputation. To allow di- 
rect comparisons between approaches, we also used the same 
trimmed alignments for tr aining ML models. Inter estingl y, ther e 
was a slight but noticeable decrease in ML performance following 
Gblocks trimming for the inv ertebr ate, MWS/LWS, and UVS/SWS 
datasets ( Supplementary Material 7 (S7) ). The R 2 of the MWS/LWS 
model dr opped fr om 0.677 to 0.645, while the inv ertebr ate model 
dr opped fr om 0.814 to 0.797 ( Supplementary Material 7 (S7) ). ML 
performance r emained r elativ el y consistent after tripping for the 
WT, v ertebr ate, WDS , SWS/UVS , and rod models, with only a 
slight reduction in R 2 ( < 0.01) and slight increase in MAE ( ±1 nm) 
for the WT model. We speculate the observed differences in 
ML performance following Gblocks processing is due to the re- 
duced number of features in the datasets from removing aligned 
sites. 
ML often predicts the effects of epistatic 
mutations 
The WDS successfull y pr edicted 3 out of 3 individual instances 
of epistasis ( Supplementary Material 8 (S8) ) using sequences 
that wer e r emov ed fr om the tr aining data befor e using the 
model to predict known epistatic phenotypes. For double mutant 
D83N_A292S, the model predicted 485.2 nm, which was 0.2 nm 
off the known λmax of 485 nm. If the WDS model belie v ed the sites 
were ad diti ve, the resulting λmax based on adding shifts of single 
mutants would have been much lo w er, at 477.5 nm. Second, for 
mutant F261Y_A269, the model predicted 520.0 nm, for which the 
kno wn λmax w as 520 nm. An ad diti v e pr ediction would hav e been 
higher, 524 nm. Third, for m utant A164S_A269T, the model pr e- 
dicted a λmax of 515.5 nm, where the kno wn λmax w as 514 nm. This 
is a special case in which the double mutant experiences a form of 
epistasis where the effect of mutation A269T ( λmax = 514) masks 
the shift otherwise caused by mutation A164S ( λmax = 502 nm). 
T hus , the model corr ectl y pr edicted an instance of epistasis in 
which one mutation masks the effect of another. 

We also queried the WT model with these same 3 double mu- 
tants to test the importance of mutant sequences in informing 
the model on epistatic interactions. Ho w ever, without any mu- 
tant data at all, the WT model did not display the same abili- 
ties to predict epistasis in any instance. For the double mutant 
D83N_A292S, the model predicted that neither the individual mu- 
tations nor the double mutant would have a significant effect on 
λmax , and all were predicted to be 499.9 nm. For double mutants 
F261Y_A269 and A164S_A269T, the WT model successfully pre- 
dicted all individual mutations would cause a red shift (although 
F261Y and A269 were > 3 nm off their known λmax ) but incorr ectl y 
treated the mutational effects as ad diti ve for the double mutant 
( Supplementary Material 8 (S8) ). 

Our broader experiment to test the predictability of epistatic 
effects using the WDS-min use pi model (which excluded from 
training all 111 opsins with known nonad diti v e m utational ef- 
fects, which we call epistatic opsins) correctly predicted epis- 
tasis for 105 of 111 of the epistatic opsins with higher R 2 
(0.969) and m uc h lo w er RMSE (12.4 nm) than predictions by 
the WT model ( R 2 = 0.894, RMSE = 22.3 nm), which contains 
no experimentall y m utated opsins, and the EAMV ( R 2 = 0.878, 
RMSE = 29.8 nm), whic h ignor es epistatic effects, r espectiv el y 

( Supplementary Material 12 (S12) ). Our test of the null hypotheses 
of no underlying differences between the distribution of squared 
error for predictions of the 111 epistatic mutants were rejected 
after Bonferr oni corr ection by the WDS-min use pi model ver- 
sus WT model ( P = 1.24e-06) and WDS-min use pi model versus 
EAMV ( P = 2.56e-09) but not rejected for the WT model versus 
EAMV ( P = 0.086) ( Supplementary Material 12 (S12) ). Together, 
the large differences in RMSE and the results of the statistical 
tests str ongl y support the idea that the inclusion of e v en single 
m utants significantl y r educes the err or of ML models when pre- 
dicting epistatic interactions between mutations and that this er- 
ror is also less than the error we would observe if our models 
simpl y tr eated m utations as ad diti v e. Ne v ertheless, the insignif- 
icant difference between WT predictions and EAMV indicates 
there is not enough information about epistatic interactions in 
wild-type (nonmutant) data alone to accurately predict intragenic 
epistasis. 
ML predicts tuning sites from wild-type 
sequences alone 
The full WT model and its few variants (SWS and rod WT 
models) predict several previously characterized “spectral tun- 
ing sites”—functionally demonstrated to change λmax —even with 
no information on mutants used in the training data (Fig. 4 , 
Supplementary Material 9 (S9) ). For the primary WT model alone, 
we found 15 of the top 25 amino acid sites, ranked by r elativ e im- 
portance to the model (all ≥0.40), were spectral tuning sites pre- 
viousl y c har acterized by m uta genesis and heter ologous expr es- 
sion ( Supplementary Material 9 (S9) ). For example, the especially 
well-c har acterized position 308 (p308), known for its role in tun- 
ing LWS opsins and considered 1 of the 5 k e y sites in c har acter- 
izing LWS opsins under the “five-site rule” [ 81 ], had the highest 
r elativ e importance v alue of 1.0 when using the full WT model, 
indicating the amino acid identity at p308 is especially impor- 
tant for predicting λmax . In another example, the full WT model 
highlighted p181, a phylogenetically conserved counterion in the 
r etinal-opsin Sc hiff base inter action for all nonv ertebr ate opsins 
[ 82 , 83 ]. Additionally, the transition from E to H at p181 (E181H) 
is a c har acteristic of the r ed-shifted v ertebr ate LWS opsins [ 35 , 
83 ], easily visualized in Fig. 4 C. When predicting λmax of bovine 
rhodopsin with mutation E181H, the WT model predicted a red 
shift compared to wild type, as observed with the natural evolu- 
tion of the LWS opsin lineage . T he WT SWS/UVS model similarly 
highlighted p113, a site functionall y c har acterized as the counte- 
rion in the r etinal-opsin Sc hiff base inter action for all v ertebr ate 
opsins [ 35 , 83 ] and as a known spectral tuning site in SWS/UVS 
opsins [ 84 ]. Mor eov er, e v en the WT r od model, tr ained on a mer e 
157 sequences, identified p292 ( Supplementary Material 9 (S9) ), 
another well-c har acterized and conserv ed spectr al tuning site for 
v ertebr ate rhodopsins [ 85–87 ], as the site with highest r elativ e im- 
portance to its predictions of rhodopsin λmax . These spectral tun- 
ing sites are not simply conserved sites, as there is little to no 
correlation between amino acid sites important to model predic- 
tions (importance scores) and their r elativ e Shannon entropy [ 88 , 89 ] 
scores ( R 2 = 0.001). This is somewhat expected as deepBreaks drops 
all conserv ed (“zer o-entr opy”) sites during pr epr ocessing, because 
a site with no variation provides no important information about 
the effects of variation on the resulting phenotype. In addition, we 
pr edict an y corr elation between site conserv ation and model im- 
portance would be for sites that ar e moder atel y conserv ed and in 
close proximity to opsin–chromophore binding site (position 296) 
or binding pocket [ 41 , 42 , 90 ]. 
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Figure 4: (A, B) Blue bars indicate the 7 tr ansmembr ane domain regions of the bovine rhodopsin and are labeled accordingly. Purple bars indicate the 
top 3 most important positions to predictions of λmax by the “BayesianRidge” ML r egr ession model trained on the WT opsin dataset. (A) Bar gr a ph of 
r elativ e entr opy scor es by position calculated via Shannon entr opy [ 71 , 88 , 89 ] using the multisequence alignment for the WT data subset. (B) Bar 
gr a ph of r elativ e importance by position generated via “BayesianRidge” ML r egr ession model trained on the WT opsin dataset. We inter pr et positions 
with higher r elativ e importance as having a larger effect or weight on λmax prediction. Positions 181 [ 35 , 83 ], 261 [ 87 , 91 ], and 308 [ 81 ] are highlighted in 
purple because they are among the highest scoring sites and have all been previously characterized as functionally important to opsin phenotype and 
function. Based on an R 2 of 0.001, there is no linear relationship between r elativ e entr op y b y position and the r elativ e importance of scor es by position. 
(C–E) These distribution box plots provide a visualization for which amino acid (aa) residues at a particular site are associated with different ranges of 
lambda max at a site of inter est, order ed alphabeticall y, not by frequency (left to right). For a more detailed explanation on how position importance 
scor es ar e calculated for differ ent models, r efer to the “Inter pr etation” heading under the methods section of the deepBreaks publication [ 60 ]. 
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Discussion 
To better understand methods to connect genes and their func- 
tions, we initiate VPOD , a database of opsin genes and correspond- 
ing spectral sensitivity phenotypes . Here , we used VPOD_1.0 to 
examine the ability of ML models to predict functions of opsin 
genes, pr edict intr a genic epistasis, and identify amino acid sites 
critical for functional changes. In all cases, ML shows promise, es- 
pecially when given enough training data. 
The important relationship between data 
availability and predictive po w er 
The pr edictiv e po w er of λmax is often high when using ML for 
opsins , and it impro ves with a greater amount and variety of 
data, albeit with diminishing returns. In particular, the number of 
opsin genes, their genetic diversity, and the relationship between 
genetic and phenotypic differences are all critical in determin- 
ing pr edictiv e po w er. P articularl y illustr ativ e of these ideas are 
our analyses with and without experimentally mutated opsins. 
Even though we might conceive of all wild-type data as natu- 
r al m utants c hosen by e volution, experimentall y induced m uta- 
tions ar e particularl y important by often c hanging just 1 amino 
acid that dr asticall y c hanges phenotype. As such, we found that 
including mutant data usually improved predictive po w er, and 
conv ersel y, pr edicting some phenotypes fr om labor atory m uta- 
genesis was sometimes difficult without including other mutant 
data in model training ( Supplementary Material 11 (S11) ). How- 
e v er, r el ying on published mutant data alone is not optimal be- 
cause it is derived from a nonrandom subset of species because 
people continue to work in established systems. Ne v ertheless, the 
genotype–phenotype landscape may be sampled well enough us- 
ing high numbers of only wild-type genes, as evidenced by the 
small difference in performance when adding mutant data to the 
wild-type subset of well-sampled v ertebr ate opsins (Table 1 ). In 
contr ast, adding m utant data to the sparsely sampled inverte- 
brate opsins made a big difference . For in v ertebr ate opsins, using 
only wild-type data (ignoring all mutants) led to some very in- 
accur ate pr edictions, especiall y of lar ge phenotypic shifts caused 
by experimental m uta genesis (Fig. 3 ), indicating the genotype–
phenotype space is still undersampled for inv ertebr ates. This is 
expected since ML learns from patterns in the underlying dataset, 
making predictions of distantly related opsins from those in VPOD 
mor e unr eliable. We ac knowledge this as a significant dr awbac k 
for the ML a ppr oac h, especiall y in systems or taxonomic groups 
lacking sufficient or reliable data. T hus , given this currently lim- 
ited dataset, we do not put high confidence in the λmax estimates 
of either wild-type or mutant invertebrate (rhabdomeric) opsins. 
Ther efor e, tar geting inv ertebr ate opsins should be a high priority 
for new additions to VPOD . 

A lar ge div ersity of tr aining data is also critical for r eliabl y pr e- 
dicting intr a genic e pistasis—the nonad diti ve effects on a pheno- 
type of interactions between 2 or more mutations within a gene—
which is common [ 10 , 41 , 43 , 44 , 92 , 93 ] and an obstacle to con- 
necting genotypes and phenotypes [ 41 , 94–96 ]. Our most com- 
plete datasets (whole dataset and v ertebr ate dataset) identified 
known cases of intr a genic epistasis, but our models trained with- 
out experimental m uta genesis data did not. Mor eov er, ML demon- 
strates some capacity to predict the epistatic interactions between 
m utations, e v en when onl y pr ovided with the single m utation 
components—as is evidenced by our WDS-min use pi dataset test 
( Supplementary Material 12 (S12) ). Similarly to the overall predic- 
tive po w er of λmax abo ve , predicting epistasis probably requires 

sufficient variation at interacting sites, which seems especially en- 
hanced by experimentally mutated genes. 

Variation in the availability of genotype–phenotype data for 
training impacts not only the predictive po w er of phenotype but 
also the converse: the ability to predict amino acid sites that 
c hange λmax . Se v er al models, including those tr ained with the 
WDS, v ertebr ate, and WT data, wer e able to successfull y pr e- 
dict pr e viousl y c har acterized spectr al tuning sites . T his is less 
surprising for models trained with WDS and vertebrate datasets 
due to the pr e v alence of data, e v en including mutants in the 
training data from experiments that specifically targeted sites 
thought b y resear chers to be functionally informative. Yet even 
without any targeted mutational data, 3 model variants using 
only wild-type data predicted experimentally well-characterized 
spectral tuning/functional sites, including sites important to the 
stability of the opsin–c hr omophor e inter action (P181 and P113). 
This demonstrates the strong potential for ML models to iden- 
tify amino acid sites that go vern phenotype , leading to pre- 
dictions of candidate spectral tuning sites, which can be con- 
firmed with m uta genesis experiments [ 38 , 86 ] if not done so 
already. 
ML algorithm type contributes to the predicti v e 
po w er of ML models 
While pr obabl y not as important as the training data used, the 
ML algorithm itself also impacts pr edictiv e po w er. All 5 of the 
best-performing ML algorithms (GBR, BR, LGBM, RF, and XGB) are 
variants of the decision tree model architecture ( Supplementary 
Material 13 (S13) ), and 3 of 5, including GBR, LGBM, and XGB, are 
“gr adient boosted” decision tr ee–based ML algorithms . T he gra- 
dient boosted algorithms all share the same general principles 
of gradient boosting [ 76 , 97 ], including the use of ensembles of 
“weak learners,” usually decision trees, which work sequentially 
and “gradient descent” when minimizing a loss function, to im- 
pr ov e ML model performance. While LGBM gener all y performed 
best for predicting phenotype, it was not as effective in predicting 
the epistatic effects of m utations, wher e GBR and XGB sho w ed 
the highest performance . T his suggests that while LGBM excels in 
gener al phenotype pr ediction, the details of GBR and XGB may be 
better suited for epistasis prediction. The difference likely arises 
from the unique aspects of each algorithm’s model training and 
settings of hyper par ameters. XGB and LGBM differ from GBR by 
the addition of a regularization term to the objective function and 
in the process of ensemble tree construction during model train- 
ing: GBR and XGB use le v el-based tr ee fitting while LGBM uses 
leaf-based tree fitting. One consequence of leaf-based tree con- 
struction is that due to its faster conv er gence/tr aining time, it can 
create complex trees that are more prone to overfitting, thereby 
“learning” patterns that may not exist as it constructs trees on a 
“best-first basis” with a fixed number of n-terminal nodes [ 63 , 79 ]. 
This creates a model that often performs well on training data but 
ma y o v er gener alize, missing finer gr ained collinearities and inter- 
dependencies, which would be important for predicting epistasis. 
As such, our models might be improved by fine-tuning hyperpa- 
rameters (e.g., learning rate, max-depth, and number of estima- 
tors), and the choice of which model to use will depend on the end 
goals of the analysis. 
The assumptions of our method and limitations 
of ML extr apola tion 
Understanding the limitations and assumptions inherent in pre- 
dictive modeling is vital for accurately interpreting animal color 
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sensitivity from opsin sequences, especially considering the im- 
pact of various factors on sensitivity beyond the opsin itself across 
m ultiple le v els of biological or ganization. At the cell le v el, we as- 
sume that λmax measured in cell culture (e.g., HEK293, COS cells) 
is the same as in li ving photorece ptor cells. We also assume the 
photopigment uses 11- cis -retinal, as all heterologously expressed 
opsins in VPOD were reconstituted using this chromophore. How- 
e v er, this assumption is violated in some organisms because they 
use 13- cis -retinal as the in vivo chromophore [ 23 , 98 , 99 ], which is 
associated with a red shift in λmax [ 35 , 98 ]. At the or gan le v el, fil- 
ters such as oil droplets in bird eyes [ 100–103 ], pigments in butter- 
fly eyes [ 104 ], or a combination of tr ansmissiv e filter and narrow 
band reflector in mantis shrimp larval eyes [ 105 ] each may selec- 
tiv el y influence light r eac hing photor eceptor cells and ther efor e 
animal color sensitivity . Finally , organismal responses to light in- 
volv e neur al pr ocesses, so e v en if an or ganism possesses the phys- 
iological ability to detect certain wa velengths , it still may not have 
a use for that ability. Similar considerations for all these assump- 
tions will a ppl y when using ML to infer other functions from other 
genes. In fact, many genes are more susceptible than opsins (but 
see [ 106 ] showing the pr essur e of ocean depth may slightly affect 
λmax phenotypes) to changes in pH, temper atur e , and other en vi- 
ronmental factors [ 107 ], such that databases compiling these gene 
functions should also record these parameters for use in training 
ML models. 

Perhaps the most important caveat of using ML models to 
accur atel y pr edict phenotype or functional sites is that we as- 
sume there is a genotype–phenotype association that we can 
fit to a function and that our models wer e tr ained using am- 
ple data to ca ptur e these associations. Based on the nonlinear 
fit between size of training dataset and model performance, we 
estimate that including about 200 sequences (and correspond- 
ing λmax ) from a taxonomically and phenotypically diverse range 
still pr ovides impr ov ements to model performance. Above 200 se- 
quences, there is still improvement, but at a diminishing rate con- 
sistent with a r ecipr ocal model ( Supplementary Material 2 (S2) , 
Supplementary Material 3 (S3 ). That said, we encour a ge caution 
when extr a polating these r esults to pr edict model performance 
on training data size alone as the equations we used do not 
account dir ectl y for taxonomic , genetic , or phenotypic diversity. 
When using ML for pr edicting functionall y important sites, the ad- 
dition of experimental mutants to training data that cause large 
phenotypic changes could heavily bias which sites are selected as 
“most important” and potentially mask the importance of other 
sites. Her e a gain, pr oviding a div erse set of genotype–phenotype 
data should allow for the discovery of new functional sites, even 
when including known mutants in the training data with large 
phenotypic effects. Additionall y, pr oviding a large number of mu- 
tations from a limited breadth of taxa can bias model predictions 
as not all mutations will have the same effect on different se- 
quences, especially if they are genetically distant. This makes it all 
the more important to consider the le v el of genetic div ersity used 
to train a model when extr a polating to find potentially important 
functional sites (i.e., if identifying tuning sites for rhodopsins, then 
using a dataset of only rhodopsins would likely be the best ap- 
pr oac h, but if data are sparse or if looking for sites that may largely 
impact spectral tuning across opsin subfamilies, a genetically and 
phenotypicall y br oad dataset may be better). 
Conclusion 
Using opsin sequence data with deepBreaks , w e w ere able to 
tr ain r egr ession-based ML models to r eliabl y pr edict λmax , of- 

ten accounting for nonad diti ve effects of mutations on func- 
tion (intr a genic-epistasis) and identifying amino acid sites critical 
for function. We expect future work will improve these already 
pr omising r esults e v en further thr ough at least 2 gener al dir ec- 
tions. First, adding more data to VPOD will improve results, espe- 
cially adding invertebrate (rhabdomeric opsins) data, as technical 
knowledge impr ov es for expr essing these genes [ 34 ]. In addition, 
phenotypic data—besides the in vitro heter ologous expr ession tar- 
geted here—is expansive, including λmax measurements from mi- 
cr ospectr ophotometry and electr or etinogr ams, but will take con- 
siderable effort to link these phenotypes to specific opsin genes. 
Second, our models can be impr ov ed to take adv anta ge of more in- 
formation. One important addition should be inclusion of physic- 
oc hemical pr operties of the amino acids [ 108 ], as implemented 
with success on a small scale of only 26 amino acid positions of 
microbial opsins to predict red-shifted phenotypes for optogenet- 
ics [ 109 ]. Additionally, information on protein structure could be 
particularl y important, suc h as the distance of an amino acid from 
the binding pocket of the chromophore [ 40 ]. While there are only 
a few solved crystal structures for opsins [ 110 , 111 ] to provide 
suc h data, indir ect tec hniques like homology modeling [ 112 ] or 
neur al network–based structur al pr ediction [ 113 ] might be usable. 
Other information about opsins could also be pr edictiv e, suc h as 
whic h G-pr otein the opsin signals to, allowing pr ediction of whic h 
amino acids dictate G-protein specificity. Opsin kinetics [e.g., 114 ], 
or e v en the habitat depth at whic h the animal liv es in the ocean, 
whic h not onl y influences light envir onment but also alters whic h 
amino acids are used in opsins [ 115 ], could improve predictive 
po w er of the ML models. Finally, we once again caution against 
tr eating pr edictions of λmax uncriticall y, because the quantity 
and quality of genotype–phenotype data used to train a model—
including the taxonomic , genetic , and phenotypic diversity—is 
integral to the reliability of a model’s predictions . T hus , ML models 
like those used here can be considered tools to make predictions 
based on summaries of existing kno wledge, thereb y complement- 
ing traditional experimental methods. 
Potential implications 
Given the high performance demonstrated in this article, cur- 
rent models are already robust enough to allow several appli- 
cations. First, predicting λmax will often be useful, especially for 
v ertebr ate opsins. For example, ML could provide an estimate 
of λmax in a hogfish, whose skin expresses an opsin with un- 
known absorption and where λmax has implications for a concep- 
tual model of c hr omatophor e expansion [ 116 ]. Second, estimates 
of λmax from opsin sequences formed part of an argument that 
changes in gene expression, not sequence, adapted Amazon fishes 
to local light environments [ 117 ]. On broader taxonomic scales, 
predictions of λmax from opsin sequences could expand studies 
of adaptation, molecular evolution, and constraint in compari- 
son to light environments [ 118 ]. Another application could be pro- 
tein design for optogenetics—the use of genetic light sensors to 
induce and study expression or response pathways [ 119–121 ]—
including those associated with embryogenesis [ 122 ,123 ], stress 
and depression [ 124–126 ], or neuronal diseases [ 127 , 128 ]. Finally, 
our models could be used to simulate molecular evolution un- 
der a realistic genotype–phenotype landscape. One shortcoming 
pr esentl y for such simulations is that our models are not trained 
with nonfunctional opsins, so e v en nonfunctional genes would 
be predicted to have functional λmax values. A solution could be 
to add large-scale mutagenesis data to the training set, such as 
that from deep mutational scanning [ 129 ], although the authors 
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indicated the method is only in a proof-of-concept stage, such that 
the r esults ar e too noisy to be useful for model training. As the 
VPOD database expands, there will be many applications for ML, 
and similar techniques can also be applied to other gene families 
such as luciferases [ 16 , 130 , 131 ]. 
Availability of Supporting Source Code and 
Requirements 
Project name : The Visual Physiology Opsin Database (VPOD). 
Pr oject homepa ge: https:// github.com/ VisualPhysiologyDB/ 
visual- physiology- opsin- db [ 56 ]. 
License: GNU General Public License (GPL)—Version 3, 29 June 
2007. 
RRID: SCR_025668. 
Oper a ting system(s) : Windows , MacOS, and Linux. 
Pr ogramming langua ge: Python, R. 
Other requirements : Conda 4.9.2, deepBreaks 1.1.2, GBlocks 0.91b, 
MAFFT 7.520-1, MUSCLE 3.8.31, mySQL workbench 8.0.36, Python 
3.9, RStudio 2023.06.2 + 562. 
Doc k er image of the latest version of the deepBreaks: [ 132 ]. 
The Doc ker ima ge pr o vided abo ve includes a summary of r equir ed 
pac ka ge libr aries and instructions on how to use it. Along with our 
existing online materials with tools used, deepBreaks , we also have 
a Jupyter notebook, instructions for Conda installation, and Code 
Ocean ( RRID:SCR _ 015532 ) capsule [ 133 ], for deepBreaks. 
These resources should help practitioners using the main ML pro- 
gr am we used, deepBr eaks, described else wher e, use the VPOD 
database for Opsin applications. 
Additional Files 
Supplementary Material 1 (S1). Performance metrics across opsin 
subsets and top performing models for VPOD_1.1 . 
Supplementary Material 2 (S2). Tr ac king model performance vs. 
number of sequences in training data. 
Supplementary Material 3 (S3). Three functions fitted to visual- 
ize the relationship between training data size (number of geno- 
types and corresponding phenotypes) vs. model performance ( R 2 ) 
based on results from the vertebrate subset of data. The Akaike 
information criterion (AIC) is a measure used for model selection 
when comparing different statistical models, accounting for both 
the goodness of fit of the model and the simplicity of the model 
(the number of parameters used). The goal is to find a balance 
between a model’s ability to explain the data and its complexity, 
pr e v enting ov erfitting. 
Supplementary Material 4 (S4). Comparing ML predictions on in- 
v ertebr ate and v ertebr ate UVS/SWS opsin MSP data. 
Supplementary Material 5 (S5). Gr a ph of WT model predictions 
for 30 unseen inv ertebr ate opsins, R 2 = 0.887, MAE = 17.5 nm, 
MAPE = 4.05. All the “known” λmax values are from physiolog- 
ical measures, including MSP or ERG measurements (instead 
of purified heter ologousl y expr essed opsins), and ar e linked to 
a particular opsin sequence by in situ hybridization. The light 
gr ay bar surr ounding the tr end line r epr esents a 95% confidence 
interval. 
Supplementary Material 6 (S6). Gr a ph of v ertebr ate model pr e- 
dictions for unseen WT-UVS/SWS data, n = 25, R 2 = 0.914, MAE 
= 7.89 nm, MAPE = 1.90. All sequences were randomly selected 
from the UVS/SWS model under the condition that they were WT 
opsins . T he light gra y bar surr ounding the tr end line r epr esents a 
95% confidence interval. 

Supplementary Material 7 (S7). Comparing performances of ML 
predictions and phylogenetic imputation on a subsample of opsin 
data. 
Supplementary Material 8 (S8). Results for epistasis test on the 
WDS, v ertebr ate, WT, and r od models. 
Supplementary Material 9 (S9). Functionall y c har acterized spec- 
tral tuning sites predicted by the WT models. 
Supplementary Material S10 (S10). Phylogenetic gene tree of all 
wild-type opsins ( n = 362), including ancestral constructs (branch 
lengths = 0), constructed from the VPOD_wt_het_1.1 dataset. In 
this tree, we have annotated the major opsin groups (c-opsins, r- 
opsins, and some tetraopsins), then further annotated the c-opsin 
families (LWS, SWS1, SWS2, Rh1, and Rh2). We have also assigned 
taxonomic annotations by class, which are color-coded and pro- 
vided by the k e y. 
Supplementary Material S11 (S11). Including data from experi- 
mentall y m utated opsin sequences r educes err ors in pr edicting 
λmax . (A) Distributions of errors from predicting λmax of exper- 
imentall y m utated opsin sequences. Blue ar e pr ediction err ors 
when using the WT model, which lacks experimentally mutated 
sequences (root mean square error [RMSE] = 17.6 nm). Orange are 
pr ediction err ors when using the WDS model, whic h includes ex- 
perimentall y m utated sequences (RMSE = 12.6 nm). (B) Data from 
experimental m utants significantl y impr ov es pr edictions of λmax 
when using a model trained with experimental mutants (WDS) 
compared to a model without (WT) experimental mutant data, 
rejecting the null hypotheses of no difference between prediction 
errors based on different models. At top is the distribution of dif- 
fer ences between pr edictions with and without experimental m u- 
tants in the training data for large effect mutations ( > 10 nm). At 
bottom is the same for all mutations. We plot differences of ab- 
solute error instead of squared error in B for easier visualization, 
although P values were calculated using distributions of squared 
err ors. Additionall y, plotting r aw differ ences allows seeing most 
v alues ar e below zer o, meaning pr edictions with WDS (whic h has 
experimental mutants) have less error than those without exper- 
imental data from mutants (WT). 
Supplementary Material 12 (S12). Including data from experi- 
mentall y m utated opsin sequences r educes err ors in pr edicting 
epistatic effects. (A) We analyzed opsins with multiple mutations 
whose known effect on λmax phenotype were nonad diti ve (e pista- 
sis). In purple, we plot the difference (absolute error in nm) be- 
tw een kno wn λmax phenotypes with epistasis, compared to λmax 
phenotypes ignoring epistasis by assuming individual mutations 
are not ad diti ve, which we call epistasis-free ad diti ve mutation 
v alues (EAMVs). Her e r oot mean squar e err or (RMSE) = 29.8 nm. 
In blue, we plot errors when predicting epistatic phenotypes us- 
ing a model trained without opsins containing experimentally 
gener ated m utations (WT), whic h lead to RMSE = 12.4 nm. In 
or ange, we plot err ors when pr edicting epistatic phenotypes us- 
ing a model trained with opsins containing experimentally gener- 
ated mutations but excluding those whose mutational effects are 
nonad diti ve (WDS-min use pi), which lead to RMSE = 12.4. (B) Our 
tests of the null hypotheses of no underlying differences between 
the distribution of squared error for predictions of λmax for the 
111 “epistatic opsins” wer e r ejected with Wilcoxon signed-rank 
tests after Bonferroni correction by the WDS-min use pi model ver- 
sus WT model ( P = 1.24e-06); WDS-min use pi model versus EAV 
( P = 2.56e-09), but not rejected for the WT model versus EAV 
( P = 0.086). The large differences in RMSE and the results of the 
statistical comparisons str ongl y support the idea that the inclu- 
sion of e v en single m utants gr eatl y r educes the err or of ML mod- 
els when predicting epistatic interactions between mutations and 
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that this error is significantly less than the error we would observe 
if our models simply treated mutations as ad diti ve . Con versely, 
the insignificant difference between WT predictions and EAMV 
indicates there is not enough information about epistatic inter- 
actions in wild-type (which excludes artificiall y m utated opsins) 
data alone to accur atel y pr edict intr a genic epistasis. As with S11, 
we plot differences of absolute error instead of squared error in B 
for easier visualization but use squared error for statistical com- 
parison. 
Supplementary Material 13 (S13). Ranked ML algorithm perfor- 
mances. 
Abbreviations 
Adaboost: ada ptiv e boosting; AIC: Akaike information criterion; 
COS1: monk e y kidne y cell line; CV: cr oss-v alidation; EAMV: 
e pistasis-free ad diti ve mutation value; ERG: electroretinogram; 
GBR: gradient boosting regressor; GPCR: G-protein coupled recep- 
tor; HEK293: human embryonic kidney cell line; ISH: in situ hy- 
bridization; KDE: kernel density estimate; LGBM: light gradient 
boosting machine; LWS: long-wave sensitive; MAE: mean abso- 
lute error; MAPE: mean absolute percentage error; ML: machine 
learning; MSE: mean squared error; MSP: microspectrophotom- 
etry; MWS: medium wav elength-sensitiv e; NCBI: National Cen- 
ter for Biotechnology Information; RMSE: root mean square error; 
SWS: short-wav e sensitiv e; T1: type 1 {micr obial opsins}; TMD: 
tr ansmembr ane domain; USS: ultraviolet and short-wave sensi- 
tiv e; UVS: ultr aviolet sensitiv e; VPOD: Visual Physiology Opsin 
Database; WAG: Whelan and Goldman substitution model; WDS: 
whole dataset; WT: wild-type; XGB: extreme gradient boosting; 
λmax : lambda max/wavelength of light with maximal absorbance. 
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