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Abstract
Finding the stiffness map of biological tissues is of great importance in evaluating their healthy or
pathological conditions. However, due to the heterogeneity and anisotropy of biological fibrous
tissues, this task presents challenges and significant uncertainty when characterized only by
single-mode loading experiments. In this study, we propose a new theoretical framework to map
the stiffness landscape of fibrous tissues, specifically focusing on brain white matter tissue. Initially,
a finite element (FE) model of the fibrous tissue was subjected to six loading cases, and their
corresponding stress–strain curves were characterized. By employing multiobjective optimization,
the material constants of an equivalent anisotropic material model were inversely extracted to best
fit all six loading modes simultaneously. Subsequently, large-scale FE simulations were conducted,
incorporating various fiber volume fractions and orientations, to train a convolutional neural
network capable of predicting the equivalent anisotropic material properties solely based on the
fibrous architecture of any given tissue. The proposed method, leveraging brain fiber tractography,
was applied to a localized volume of white matter, demonstrating its effectiveness in precisely
mapping the anisotropic behavior of fibrous tissue. In the long-term, the proposed method may
find applications in traumatic brain injury, brain folding studies, and neurodegenerative diseases,
where accurately capturing the material behavior of the tissue is crucial for simulations and
experiments.

1. Introduction

Biological tissues are complex materials that play
essential roles in the structure and function of liv-
ing organisms, making their characterization a cru-
cial aspect of many fields of study [1]. The accurate
characterization of mechanical properties of biolo-
gical structures is vital for understanding the healthy
functioning of tissues and diagnosing diseases [1, 2].
Alterations in mechanical properties, such as stiffness
and elasticity, can provide important insights into
disease progression, tissue damage, and other patho-
logical conditions [3, 4]. The hierarchical and com-
posite nature of biological tissues results in nonlinear,
heterogeneous, and anisotropic mechanical behavior

that making it challenging to accurately characterize
their mechanical properties [5].

As a good example of a complex composite struc-
ture, human brain white matter tissue shows a highly
nonlinear, anisotropic, and heterogeneous mechan-
ical response, with a noticeable compression-tension
asymmetry [6, 7]. The complex mechanical beha-
vior of white matter tissue is attributable to the pres-
ence of stiff myelinated axons embedded within the
soft extracellular matrix (ECM) [8–11]. It has been
shown that finding localized stress, strain, or stiff-
ness maps in white matter is of notable importance
to many applications such as traumatic brain injury
(TBI), diffusive axonal injury (DAI), and neurode-
generative brain disorders [12–19]. However, most
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experimental studies using classical tension, com-
pression, and shear tests report the average mech-
anical properties for gray and white matter within
macroscopic regions of interest, without accounting
for variations in localized material behavior [7, 20–
27]. While the bulk material properties of brain tis-
sue have been extensively studied through common
mechanical tests [7, 27–29], it is crucial to highlight
that the connection between microscale and macro-
scale material properties of the brain tissue, given
its complex, heterogeneous, and anisotropic nature,
has not been well-explored. Currently, magnetic res-
onance elastography (MRE) is used to quantify the
in vivo mechanical properties of the brain in health
and disease [3, 15, 30–35].

MRE is an imaging technique used to measure
the mechanical properties of tissues, such as stiff-
ness. It works by applying low-frequency mechan-
ical vibrations to the tissue using external sources,
such as acoustic transducers or mechanical actuat-
ors, which generate shear waves within the tissue.
Magnetic resonance imaging (MRI) is then used to
capture the movement of these shear waves as they
propagate through the tissue. The resulting images
are analyzed, and the displacement field acquired
from MRE is inverted to estimate mechanical prop-
erties, such as stiffness and damping, based on the
speed and behavior of the shear waves [36–39]. In
recent years, significant efforts have been made to
improve the estimation of brain stiffness using MRE
[30, 40], with a growing focus on incorporating aniso-
tropy into the analysis. Traditionally, MRE predomin-
antly relied on inversion models that assumed mech-
anical isotropy, but recent advancements are shift-
ing toward more accurate anisotropic modeling [41–
46]. Among the various applications of MRE, the
study of brain stiffness and viscoelasticity in the
context of TBI and neurodegenerative diseases has
garnered increasing attention [27]. Recent studies
have highlighted the role of MRE in detecting subtle
changes in brain mechanical properties that are often
associated with neurodegenerative processes, such as
Alzheimer’s disease [40, 47, 48], and the mechanical
impact of TBI [49]. Despite the promising advant-
ages of MRE, there are ongoing efforts to improve
the accuracy of the entire process, including imaging,
wave generation, actuation frequency, acquisition
strategy, physiological vibration analysis, inversion
algorithms, and processing pipelines. These improve-
ments are crucial to address reported contradictions
in global and regional brain stiffness measurements,
such as the reported decrease [32, 33] or increase [50]
in brain shear stiffness in normal pressure hydroceph-
alus, or discrepancies in findings where some stud-
ies report no significant effects of age or dementia
[3, 51–53], while others indicate increases with age
[54] versus decreases [55, 56]. Nevertheless, consid-
ering all recent advancements in tissue mechanics,

the correlation between the independent mechan-
ical properties of the microscopic constituent ele-
ments and the composite bulk macroscopic mechan-
ical properties of the tissue has not been understood
very well.

Recent studies on the brain white matter tissue
have shown that material parameters identified for a
single loading mode (for example compression) can-
not be used to accurately predict the realistic mechan-
ical response of the white matter tissue under other
loading modes (for instance shearing) or multiaxial
loading [7]. However, a majority of prior white mat-
ter constitutive models assume isotropy or transverse-
isotropy [10, 11, 57–59]. Isotropic hyperelastic mater-
ial models such as neo-Hookean, Ogden, Mooney–
Rivlin, Hyperfoam, Polynomial, and Arruda–Boyce
[7, 23, 25, 60] have been proposed, as well as some
anisotropic models [9, 61–64]. Still, all of these
models define only the mechanical response of the
assumed composite bulk and homogenized white
matter at a macroscopic scale and cannot explicitly
capture the link between the microstructural com-
position and the bulk anisotropic mechanical prop-
erties of the tissue. Thus, it is crucial to systematic-
ally characterize the mechanical properties of brain
tissue under multiple loading modes and establish
a multiscale structure-property relationship between
the local microstructural composition and the bulk
mechanical properties of the tissue.

In our recent study using micromechanical mod-
eling and multiobjective optimization [65], we pre-
dicted the independent mechanical properties of
axonal fibers and ECM based on seven (or six) previ-
ously reported experimental mechanical tests for bulk
white matter tissue from the corpus callosum (CC)
[7]. The result of the study showed that the independ-
ent mechanical properties of white matter micro-
structure, which have been inversely predicted from
the bulk tissue using single or dual mechanical load-
ing modes, do not adequately describe the response
of the tissue under all simple or complex combin-
atorial loading modes [65–69]. We used a finite ele-
ment (FE) representative volume element (RVE) with
periodic boundary conditions to link the mechanical
responses of heterogeneous bulk tissue and micro-
scale constituents. The multiple loading modes of
the bulk tissue were used to have an accurate pre-
diction of the mechanical properties of the micro-
scale constituents. Although the use of RVEs in the FE
method (FEM) is a convenient approach for determ-
ining mechanical behavior of a complex bio-tissue
such as white matter, it is computationally expensive
and time-consuming.

To address this issue and accelerate the mater-
ials design process, various machine learning and
deep learning (DL) algorithms [70–73] have been
used to construct surrogate models of structure-
property relationships for fast forward prediction.
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For instance, a Galerkin reduced order model was
constructed to approximate the nonlinear beha-
vior of materials with intricate three-dimensional
(3D) microstructures based on proper orthogonal
decomposition [74]. An active learning algorithm
called Bayesian optimization was adopted to effect-
ively explore the search space and identify suitable
candidates for guiding experiments or simulations
in order to accelerate materials design [75]. A 3D
convolutional neural network (CNN) was used to
capture the nonlinear mapping between the micro-
structure and its macroscale effective stiffness [76].
However, this homogenization-based 3D CNN model
cannot reveal the underlying stress–strain relation-
ships. A 2D CNN model with the U-Net architec-
ture was trained to predict the stress field maps of
fiber-reinforced matrix composite material system
[77]. Principal component analysis and CNN were
combined to predict the stress–strain curves of 2D
binary composites [78]. A game theory–based con-
ditional generative adversarial neural network was
applied to directly predict stress or strain fields from
2D microstructure geometry [70]. Furthermore, a
3D-CNN DL model was trained to predict the aniso-
tropic effective material properties for RVEs with ran-
dom inclusions [78]. While CNN models have been
successfully employed in tasks such as image analysis
and segmentation of human brain white matter tissue
[79, 80], they have not yet been applied to construct
structure-property relationships in the same way they
have for engineered materials. Recent years witnessed
a significant shift in the application of DL-based
brain biomechanics with emphasize the increasing
the modeling accuracy. In recent years, there has been
a significant advancement in DL-based brain bio-
mechanics, with a growing emphasis on improving
the accuracy of predictive models. These advance-
ments include the incorporation of more complex
geometric representations, enhanced data assimila-
tion techniques, and the integration of multimodal
imaging data, such as diffusion MRI and tracto-
graphy, to better capture the anisotropic properties
of brain tissue [81]. Furthermore, the development of
physics-informed neural networks and hybrid models
that combine DL with traditional biomechanics has
led to more accurate and robust simulations of brain
behavior under various physiological and patholo-
gical conditions [82, 83].

This study aims to establish a theoretical found-
ation for predicting the heterogeneous stiffness map
of human brain white matter tissue, with potential
applicability to other fibrous tissues. The first object-
ive is to develop a technique for automatically extract-
ing the bulk stress–strain curves of fibrous tissue, con-
sidering its microscale constituents’ material proper-
ties and architecture. A 3D CNN model is trained
using FE models (in the order of thousands) to extract
stress–strain curves based solely on the distribution

of fibers and material properties of fibers and ECM.
This technique directly extracts stress–strain curves
for bulk tissue with arbitrary fiber distribution and
volume fraction without the need for FE simulations.
The second objective is to determine the material con-
stants of an equivalent anisotropic material model for
any bulk tissue based on its stress–strain curves in
multiple directions. The 3D CNN-extracted stress–
strain curves, combined with a multiobjective optim-
ization technique, are used to inversely predict aniso-
tropic material parameters that best fit all stress–
strain curves simultaneously. This results in an accur-
ate equivalent anisotropic material model for bulk tis-
sue with arbitrary fiber distribution and volume frac-
tion. The final objective is to apply the developed
method to imaging data of white matter to test its
performance in predicting the heterogeneous stiffness
map of the brain.

2. Materials andmethods

2.1. FEmodel
2.1.1. Model reconstruction
Our first objective is to develop a technique for auto-
matically extracting the bulk stress–strain curves of
fibrous tissue, considering its microscale constituents’
material properties and architecture. To train the DL
model later, we constructed a base FE model of a
3D cubic composite structure composed of distrib-
uted fibers and a soft matrix as the ECM. The edge
length of the cube was set at 5 mm, and the diameter
of each individual fiber bundle was randomly selec-
ted within the range of 50–200 µm [84, 85], using
a uniform distribution. Fibers were distributed ran-
domly, aligned, or oriented primarily in a specific
direction to account for all possible scenarios. The
construction and distribution of the fibers were per-
formed using a Python code within the Abaqus FE
package. The fiber volume fraction (FVF), defined as
the ratio of the volume of the fibers to the volume of
the cube, varied from 10% to 30%. This range was
obtained through the distribution of fibers within the
matrix to avoid any overlap between fibers during the
construction of the model geometry. The fibers were
meshed with truss elements and embedded in the
ECM using the embedded element method [86–89].
After conducting the mesh sensitivity analysis, the ele-
ment size was established at 0.3 mm, as shown in
figure S1 in the Supplementary Information. We used
the C3D4H and T3D2 element types for the ECM and
fibers, respectively. The incompressible neo-Hookean
hyperelastic material properties of the ECM were
adopted from our previous work [65]. For the fibers,
a linear elastic material model with no-compression
behavior was used. The elastic modulus and shear
modulus of the fibers and ECM were assigned val-
ues of 2.28 and 0.07 kPa, respectively [65]. Figure 1(a)
illustrates a model with fiber distribution inside the
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Figure 1. Reconstruction of the FE model and binary phase. (a) Fibers are embedded inside the ECM to create a composite
structure. (b) Six uniaxial loading cases are applied to the FE model. Three tension and three compressions in x, y, and z
directions. (c) A binary phase of the FE model is created. In a binary voxel, 1 was assigned for the voxels that fibers pass through
them (blue), and zero was assigned to the voxels that include ECM (red). Each binary model has 125000 (50× 50× 50) voxels.

ECM, with FVF = 29.8% and the main orientation of
A =−0.25i+ 0.73j− 0.63k. By embedding the fibers
within the ECM, a 3D model was created.

2.1.2. Mechanical loadings
As mentioned in the introduction, multiple loading
cases are necessary to precise characterization of the
anisotropic material properties of soft fibrous tissue.
First, a preliminary study was conducted to determ-
ine the appropriate number and type of loading cases
for extracting the anisotropic material parameters of
the cubes. According to the results, out of nine pos-
sible loading cases for a cubic sample (three ten-
sion, three compression, and three shear), six cases
involving tension and compression in the x, y, and z
directions were selected to inversely predict the equi-
valent anisotropic material parameters (figure 1(b)).

This selection was made because the six tension and
compression loading cases provided sufficient data
to accurately predict the material parameters, while
the inclusion of the three shear loading cases had a
negligible effect on the predicted values. However,
this does not suggest that shear is an insignificant
loading case; rather, it indicates that the six selected
cases are adequate to accurately determine the mater-
ial parameters and replicate the stress–strain curves.
Additionally, including shear loading for each cube
in the FE models, which number in the thousands,
would significantly increase the computational cost
of the simulations used for training the DL model.
The rationale behind this decision will be quantitat-
ively explained in the next section, along with further
details. A 20% strain was applied to each model for
each loading case, and the resulting reaction forces
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were recorded. Then, the extracted reaction force–
displacement curves were converted to stress–strain
curves for each loading case. In this study, we used the
engineering stress definition and used the initial area
of the cube to calculate the stress. The six stress–strain
curves for each model were simultaneously used to
inversely predict the material constants of an equi-
valent anisotropic material model for each compos-
ite model (see next section). The computational cost
of the FE simulations was quantified as 3.16 Service
Units (SUs) per loading case, where 1 SU corresponds
to running a serial job on a single CPU core for one
hour.

2.1.3. Equivalent anisotropic material properties for
the cubic composite model
In this section, we aimed to replace the cubic compos-
ite model with an equivalent anisotropic continuum
material. To capture the large-strain and anisotropic
response of the tissue, the Holzapfel–Gasser–Ogden
(HGO) [90] material model was used to find the equi-
valent and direction-dependent mechanical proper-
ties of each FE model. The HGO material model is one
of the most prevalent anisotropic hyperelastic mod-
els. The energy density function of HGO is presented
by equation (1):

ψHGO =
µ

2
(I1 − 3)+

1

D1
(J− 1)2

+
k1

2k2

N
∑

i=1

{

exp
[

k2⟨Ei⟩
2
]

− 1
}

(1)

where µ is the shear modulus of the ECM, I1 is the
first invariant of the Cauchy–Green tensor, k1is the
fiber stiffness, k2 is the fiber nonlinearity, and Ei can
be calculated from equation (2):

Ei = κ(I1 − 3)+ (1− 3κ)(I4ii − 1) (2)

where κ is the fiber dispersion and I4ii is the forth
invariant of the Cauchy–Green tensor (I4ii = aT

i Cai).
The unit vector of the direction of the ith fiber fam-
ily is ai and C is the right Cauchy–Green tensor. A
model with κ= 0 denotes a full transverse isotropy
with fully aligned fibers, while κ= 1/3 is for isotropic
randomly oriented fibers.

The second Piola–Kirchhoff stress equation of
the HGO model (see appendix and equation (A.10))
is first translated into code tailored for each load-
ing condition, including compression and tension in
three different directions. This code is then integrated
into an optimization loop. We used an archive-based
microgenetic algorithm to determine the material
constants of the HGO model for each FE simulation.
For every set of parameters, six simulations corres-
ponding to the six loading cases are conducted. In
each case, the results from the FE simulations serve
as the ground truth. During each cycle, the sum of

the absolute area differences between the stress–strain
curves from the simulations and the HGO model is
calculated. The optimization process aims to collect-
ively minimize the sum of these differences across all
six loading cases. The optimization process inversely
determines five independent material parameters: k1,
κ, and the unit vector of dominant orientation of
fibers (Ax, Ay, and Az) to best fit all six loading cases
simultaneously [65]. The algorithm’s population size
was set to n= 100. The termination criterion involved
running 500 generations and ensuring that the aver-
age root mean square error (RMSE) for all loading
cases (six curves, each with 11 data points) was less
than 4 MPa. Finding the material constants of each
model based on six loading modes guarantees that
the results are accurate. For each loading mode, we
derived the second Piola–Kirchhoff stress, which was
then used to fit the FE models, ultimately enabling the
prediction of the HGO material constants. Further
details can be found in the appendix.

We also investigated the effect of including shear
loading cases in the extracted anisotropic material
parameters. Nine different scenarios, with varying
dispersions and FVFs, were considered. The mater-
ial parameters (k1, κ, Ax, Ay, Az) were obtained from
the optimization cycle both with and without the
inclusion of shear results. Although the specific para-
meter values varied across scenarios (table S1), it was
observed that the parameters could compensate for
each other, resulting in similar overall stress–strain
behavior (figure S2). This compensatory effect led to
only negligible discrepancies in the stress–strain res-
ults between the two cases. Figure S2 shows the stress–
strain curves generated using the material paramet-
ers derived with and without shear results, demon-
strating a close alignment in most cases under tension
and compression in three directions. These findings
reinforce the conclusion that including shear loading
cases does not enhance the accuracy of predictions
but does increase computational costs.

2.2. DL
2.2.1. Reconstruction of voxel-based binary model
We developed a custom code to convert each cubic
composite model, including fibers and ECM, into
binary phase data on regular Euclidean grids using
a level-set function. This prepares the data for util-
ization by the DL algorithm. Figure 1(c) depicts the
composite model and its associated binary phase,
depicting the fiber-containing voxels alongside the
surrounding ECM voxels. Initially, all voxels are set
to a value of zero. As each fiber’s path is traced, any
voxel whose center falls within the fiber’s dimensions
is assigned a value of one (figure 1(c)-right image).
This results in a binary voxel representation where a
value of one signifies the presence of fibers, and zero
represents the ECM. To ensure accuracy, the size of
the voxels was selected small enough to approximately
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Figure 2.Histogram of fiber volume fraction (FVF). Cases with (a) low FVF and low dispersion, (b) low FVF and high dispersion,
(c) medium FVF and low dispersion, (d) medium FVF and high dispersion, (e) high FVF and low dispersion, and (f) high FVF
and high dispersion. Definitions: Low FVF (FVF < 13%), Medium FVF (13%< FVF < 18%), High FVF (18%< FVF < 30%),
low dispersion (κ < 0.2), medium dispersion (0.2 < κ< 0.26), high dispersion (κ > 0.26).

produce the same FVF in the binary model compared
to the FE model (ground-truth). The voxel size was
iteratively refined until the difference in FVF between
the FE model with circular cross-section fibers and
the discrete binary model was less than 5%. Our pre-
liminary results showed that to achieve less than 5%
FVF discrepancy, each cubic model should be discret-
ized by 50 elements on each edge (125 000 voxels in
total). The produced binary phase model in a format
of NumPy (.npy) was used to train the subsequent DL
model.

2.2.2. Dataset
In this study, we trained a CNN-based DL model
using generated large-scale FE models. We generated
2000 binary phase data points with varying FVF ran-
ging from 10% to 30%, along with different fiber
dispersion and main fiber orientation. Figure 2 dis-
plays the histogram depicting the distribution of FVFs
across all the cases. Our preliminary results indic-
ated that fibers have a minimal impact on the aniso-
tropic behavior of the cubes when the FVF is low
(below 12%), particularly in cases of medium to
high dispersion; therefore, fewer cases with volume
fractions below 12% were considered. Conversely, as
the volume fraction increases, the number of cases
decreases due to the challenge of distributing numer-
ous random fibers within the matrix without any
overlap between them. We categorized all FE cases
into nine groups based on the FVF and dispersion.
To ensure sufficient data for statistical analysis in each
FVF category, we categorized cases with an FVF less
than 13% as low, 13%–18% as medium, and more
than 18% up to 30% as high. To categorize cases based
on dispersion, we calculated the difference between

the maximum stress and minimum stress in tension
along three different axes. We then categorized cases
based on the stress difference, considering less than
10 MPa as high, 10 MPa to 20 MPa as medium,
and higher than 20 MPa as low dispersion. Using the
material prediction code, we determined the actual
κ for the categorized cases. Consequently, we estab-
lished cases with an average κ less than 0.2 as having
low dispersion, from 0.2 to 0.26 as medium disper-
sion, and higher than 0.26 as high dispersion. Figure 2
illustrates six models with varying dispersion levels
and FVFs, including both high and low dispersion,
as well as low, medium, and high FVFs. The ECM is
transparent, allowing for a clear visualization of the
fibers present within it. This visualization enables a
clear observation of the variations in dispersion and
volume fraction across the different cases. Each of
the 2000 binary phase data points represents an FE
model with a shape of 50× 50× 50, in total of 125 000
voxels, where each voxel is assigned a value of either 1
or 0. The corresponding labels for these binary phase
data points are stress–strain curves obtained from six
loading cases applied to the model along the x, y,
and z directions. More specifically, each binary phase
has corresponding stress–strain curves resulting from
three compressive and three tensile loadings applied
along each of the x, y, and z directions.

2.2.3. Architecture of 3D Resnet model
We adopted a 3D Resnet to predict the strain–
stress curve using simulation data from the FE mod-
els. Resnet [91] is a well-established DL structure
that has demonstrated remarkable success in tasks
such as image processing, recognition, and classific-
ation. Unlike conventional DL models, which may
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Figure 3. The architecture of the 3D Resnet model.

encounter issues such as gradient dispersion or explo-
sion when simply increasing the number of layers,
the Resnet architecture incorporates shortcut connec-
tions to directly pass input to the subsequent layers.
This approach effectively mitigates problems associ-
ated with gradient dispersion or explosion when deal-
ing with deeper networks. To process the binary phase
data and predict stress–strain curves, we utilized a
pretrained 3D CNN model called Resnet18 [91]. This
model, originally pretrained on the ImageNet dataset
[92], which contains 2D images, provides general-
izable feature representations that are transferable
to 3D tasks. By fine-tuning the pretrained ResNet18
model on our brain white matter dataset, we adapted
it for constructing structure-property relationships,
thereby improving its performance and reducing the
required training time. The Resnet18 model consists
of 18 layers of neural network with 4 residual blocks
(Resblocks). Each Resblock comprises four 3D con-
volutional layers, with the first layer being a 3D con-
volutional layer and the last layer being a fully con-
nected layer. Additionally, each convolutional layer is
followed by an activation layer and a pooling layer.
The convolutional operation utilizes 3D filters with
a size of 3× 3× 3, while the pooling operation uses
2× 2× 2 filters. To introduce nonlinearity, the activ-
ation layer employs the rectified linear unit activation
function, f(x) = max (0,x), which performs an ele-
mentwise nonlinear transformation. As depicted in
figure 3, the 3D Resent takes the 50× 50× 50 bin-
ary phase model as input; the output channel for
each Resblock is 64, 128, 256, 512. The fully connec-
ted layer receives the output tensor from the previ-
ous layer and maps it to the desired output, corres-
ponding to the ground-truth stress–strain curve. The
detailed architecture of this model is illustrated in
figure 3.

2.2.4. Training of the 3D Resnet model
The 3D Resnet model was implemented with PyTorch
framework in python program language. The input
data has a shape of 50× 50× 50, and the output shape
is 66 × 1, which represents stress–strain curves under
six different loading conditions, with each loading
condition containing eleven data points (11 × 1).
Here the mean squared error (MSE) loss function
was adopted for minimizing the difference between
the model’s output and corresponding stress–strain
labels, as shown in equation (3):

L =
1

n

n
∑

i=1

6
∑

l=1

(σil − σ̂il)
2
. (3)

In equation (3), n denotes total number of
samples, l indicates the index of six different loading
cases, σil is ground-truth stress value and σ̂il is pre-
dicted stress true value.

To assess the effectiveness of the proposed model,
a total of 2000 FE models were used for both
training and testing. The dataset was divided into
three distinct subsets, with a distribution of 60%
for training, 20% for validation, and 20% for test-
ing. The training dataset was used to optimize the
model’s parameters, while the validation dataset was
employed during training to fine-tune the model’s
hyperparameters and monitor its performance. The
unseen test dataset, comprising entirely independ-
ent data that was not used during the training
or validation phases, provided an unbiased evalu-
ation of the model’s generalization capabilities. This
separation of data ensured that the model’s per-
formance metrics were not influenced by overfitting
to the training or validation data, offering a reli-
able assessment of its predictive accuracy on new,
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Figure 4. Fiber tractography of a human brain and the selected region for material characterization. The region is
10 × 10 × 10 mm which includes eight cubes with 5 × 5 × 5 mm.

unseen cases. Prior to model training, all the train-
ing data and their corresponding labels were nor-
malized to ensure consistency and enhance conver-
gence. To optimize the prediction accuracy of the
model, we employed a technique called Ray Tune
[93] for hyperparameter optimization, ensuring the
attainment of the best possible results. To achieve
this, we first constructed a list of potential values for
two key hyperparameters: learning rate and train-
ing batch size, which are [10−5, 5× 10−4, 10−4,
5× 10−3, 10−3] and [5, 10, 20, 40], respectively.
Additionally, the maximum training epoch was set at
200. It is worth noting that Ray Tune incorporates
an algorithm known as Asynchronous HyperBand
Scheduler (ASHAScheduler) [94] that can early stop
certain training sessions whose performance has lim-
ited improvement after certain epoch. The main
objective of ASHAScheduler is to identify and ter-
minate underperforming trials (i.e. configurations
of hyperparameters) early, thereby saving computa-
tional resources and time. If a trial is not among the
top performers in its bracket after a certain check-
point, it is stopped early. This decision is based
on the trial’s accuracy. As summarized in table S2
in the supplementary information, we conducted
a rigorous exploration of hyperparameters for 3D
Resnet by sampling 20 different training sessions

from the high-dimensional search space. Each session
was assigned specific learning rates and batch sizes,
and the optimal hyperparameters were determined
with the assistance of Ray Tune. Session 13 emerged as
the standout performer, with a learning rate of 10−3

and a batch size of 40. Training the DL model required
200 epochs, with a total training time of 5021.8 s on
two NVIDIA GeForce RTX 3090 GPUs. Once trained,
however, the DL model offers a much more efficient
alternative for evaluation, taking only 5.86 s per test
case. This represents a significant speed-up of approx-
imately 1940 times compared to the FE simulation for
each evaluation.

2.3. Application of the FEM-based DLmodel for
predicting white matter stiffness map
The developed method was used to demonstrate its
effectiveness in predicting the stiffness map of a loc-
alized region within the human brain white matter.
We aimed to map the stiffness landscape of a small
part of the white matter tissue by dividing it into
homogenized cubes with equivalent directional prop-
erties individually determined according to the tis-
sue microstructure by using the developed DL model.
To accomplish this, a fiber tractography of a human
brain segment measuring 10× 10× 10 mm was used
as shown in figure 4.
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To construct the fiber tractography, we used
diffusion tensor imaging (DTI) data as follows:
Initially, skull-stripping and eddy current correc-
tions were applied to the DTI data. In diffu-
sion spectrum imaging (DSI) Studio, a model-
free generalized Q-sampling imaging method was
employed to estimate the diffusion density of water
across different orientations. A multi-shell diffusion
scheme was utilized, with b-values of 1000, 2000,
and 3000 s mm−2, and 90 diffusion sampling dir-
ections for each shell. The in-plane resolution and
slice thickness were both set to 1.25mm. Restricted
diffusion was quantified using restricted diffusion
imaging [95]. For data reconstruction, generalized
Q-sampling imaging was performed with a diffu-
sion sampling length ratio of 1.25. Fiber tracking
was conducted using a deterministic streamline track-
ing algorithm, enhanced with additional strategies to
improve reproducibility [96]. Anisotropy threshold-
ing was applied within a random range of 0.5–
0.7 using the Otsu method. Tracks were filtered to
fall within a length range of 30.0 to 200.0 mm,
and a total of 1000000 seed points were used for
tracking.

Using the multiple points provided by the fiber
tractography for each fiber bundle, the fiber bundles
were modeled with truss elements pathing through
these points. We evaluated all the fiber bundles
within the designated area and assigned them ran-
dom diameters falling between 50 µm and 200 µm.
Subsequently, we calculated the minimum distance
between these fiber bundles. If any two fiber bundles
overlapped, one of them was randomly removed to
eliminate the overlap. This approach resulted in vary-
ing FVF values across different parts of the spe-
cified region. Given that our trained model dimen-
sion was set as a 5× 5× 5 mm cube, a total of
eight separate cubes were obtained alongside a 10×
10× 10 mm model. Binary phase data was gener-
ated for each cube, and the stress–strain curve was
predicted for each of them. These predicted curves
are then used to derive a set of material parameters,
enabling the most accurate prediction of the mech-
anical behavior of the cube under six distinct load-
ing cases. In conclusion, the stress–strain data of a
10× 10× 10 mm model with eight different mater-
ial parameters for each region, under six loading
cases, was compared to the stress–strain curves of
the 10× 10× 10 mm model with fiber bundles. This
comparison serves to demonstrate that our approach
allows us to replace the complex composite tissue
model, including both axonal fibers and ECM, with
an equivalent anisotropic continuum material and
create a compatible model without the need for
an enormous number of fibers in our simulation.
The assembly of the anisotropic response of all the
cubes in an anatomical region can produce a stiffness
map.

3. Results

Our aim was to develop and train a surrogate DL
model for the FE composite model, allowing us
to predict the stress–strain curves of the compos-
ite structure and provide the material constants of
an equivalent anisotropic material characterized by
six loading cases simultaneously. By discretizing a
large and complex composite structure, such as white
matter, into smaller composite cubes and replacing
the anisotropic material model for each cube, we
can assemble those cubes to create a stiffness map
of the structure. In this section, we present the
results of the proposed integrated FEM-DL frame-
work, as well as its performance and potential
applications.

3.1. FE results
Figure 5 presents a comparative analysis of the mech-
anical behavior of different composites under the
influence of fiber dispersion, fiber main orientation,
and FVF. Nine distinct cases are depicted in a 3D
view to visually represent the variations in FVF, dis-
persion, and main orientation of fibers. Additionally,
the figure includes stress–strain curves for each case
under six uniaxial loadings, providing insights into
the effects of these factors on the mechanical response
of material.

The first row of figure 5 presents three cases
with a fixed FVF of 11%. Progressing from left to
right, the dispersion of fibers increases, with the left-
most model representing nearly aligned fibers, and
the rightmost model depicting a random distribu-
tion of fibers. Analyzing the stress–strain curves, it
is evident that in the model with aligned fibers (left
model), the stress in tension along the fiber direction
(‘X’) is notably greater compared to the other two
uniaxial tension directions. Conversely, when com-
paring compression along the fiber direction, the
stress is lower than in the other two directions. This
behavior is attributed to our assumption that fibers,
modeled as truss elements, are incapable of bear-
ing compressive stress. Consequently, in compression
loading conditions along the fibers, the fibers do not
carry any load due to their lack of compressive prop-
erties. However, in compression loading conditions
transverse to the fiber orientation, the incompressib-
ility of the ECM leads to tensile loads being applied
on fibers, resulting in higher stress in these loading
conditions.

The models are arranged in increasing order of
FVF from top to bottom (11%, 15%, and 20%). In
the first column, it is evident that enhancing the
FVF significantly increases the stress in tension along
the fibers, as a greater number of fibers resist ten-
sion. Additionally, the stress variation between dif-
ferent directions is more pronounced in the model
with a higher FVF. These observations hold true
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Figure 5. Stress–strain curves for nine distinct FE composite models subjected to six loading cases. The first row presents
stress–strain curves for models with an FVF of 11% and varying levels of dispersion (low, medium, and high). Similarly, the
second and third rows exhibit corresponding results for models with 15% and 20% FVF, respectively. The colors blue, red, and
green correspond to the x, y, and z directions, respectively. Definitions: Low FVF (FVF < 13%), Medium FVF
(13%< FVF < 18%), High FVF (18%< FVF < 30%), low dispersion (κ < 0.2), medium dispersion (0.2 < κ< 0.26), high
dispersion (κ > 0.26).

in models with medium fiber dispersion as well
(0.2 < κ < 0.26), but the magnitude of variations is
comparatively less in these cases. In all cases with a
high dispersion of fibers (κ > 0.26), whether with a
low or high FVF, the stress–strain curves exhibit con-
sistency in all loading directions for both tension and
compression. These results suggest that a tissue char-
acterized by a high fiber dispersion demonstrates iso-
tropic behavior under both tension and compression.
The variations observed between tension and com-
pression behaviors can be attributed to the inherent
tension-compression asymmetry concept, but apart
from that, the tissue displays consistent behavior
across different loading cases, whether in tension or
compression.

3.2. DL results
The DL model was trained on a dataset consist-
ing of 2000 FE simulation cases. In each case, the
input was represented by a binary 3D matrix, while
the output consisted of stress–strain curves corres-
ponding to six distinct loading cases. This session
achieved a remarkable minimum validation loss of
4.0652× 10−4. Notably, this validation loss is sig-
nificantly lower than the typical values reported in
similar DL approaches for structure-property predic-
tions, where validation losses generally range from
10−3–10−2 [97, 98]. This suggests a high level of
accuracy and generalization for the current model.
As future work expands to more complex models

and datasets, validation metrics will remain essen-
tial for evaluating model performance. The train-
ing and validation loss curves associated with this
optimal hyperparameter setting are depicted in figure
S3 in the supplementary information. The train-
ing and validation loss were both small and close
to each other at the end of the training, mean-
ing that the DL model was neither underfitted nor
overfitted.

Additionally, we assessed the performance of
unseen test data using checkpoints from these 20
training sessions. In this work, model checkpoints
were saved every five epochs during the 20 training
sessions, allowing us to preserve the model’s state at
different stages and select the version that performed
best on the validation dataset, thus avoiding over-
fitting. Remarkably, session 13 consistently excelled,
exhibiting the lowest test loss of 3.8940× 10−3, align-
ing with the previously identified minimum valida-
tion loss. The boxplot in figure 6 displays the dis-
tribution of RMSE of test data for different loading
conditions. Here, the RMSE indicates the discrepancy
between the stress–strain curves obtained from the
FE simulations and those predicted by the DL model.
The mean RMSEs are below 2 MPa for all compres-
sion loadings and the tension loading along the ‘X’
direction, whereas the mean RMSEs are below 4 MPa
for tension loadings along the ‘Y ’ and ‘Z’ direction.
This can be explained by the greater influence of fibers
under tension, given their no-compression behavior
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Figure 6. RMSE between the stress–strain curves predicted by the FE simulations and the DL model for all test data across six
loading cases.

in both the HGO material model and FE simulations.
As a result, predictions under compression tend to be
more consistent across different cases, leading to bet-
ter performance in the DL model. Beyond compres-
sion cases, the variation in RMSEs for test data under
different tension directions may be due to an imbal-
anced training dataset. Despite applying uniform ran-
domness for the input parameters, the dataset con-
tained more instances with low dispersion in certain
tension directions. In cases with high fiber disper-
sion, the fibers tend to be randomly oriented, redu-
cing directional bias. Conversely, cases with low dis-
persion provide more consistent directional informa-
tion, improving the model’s accuracy in those specific
directions.

This imbalance may affect the FEM-DL frame-
work’s generalizability, potentially limiting its reliab-
ility when applied to loading conditions that were
underrepresented in the training data. To mitig-
ate this, we plan to apply data augmentation and
reweighting techniques to create a more balanced
dataset in future work. These methods will help
ensure that different tension directions and fiber
dispersion conditions are equally represented, thus
improving the framework’s robustness and predictive
accuracy across all scenarios. Based on the above ana-
lysis, we adopted the optimal hyperparameter con-
figuration, comprising a learning rate of 10−3 and
a batch size of 40, for the subsequent DL models,
ensuring the highest possible performance across the
board.

Figure 7 shows the results of the DL predictions
for the stress–strain curves of the three random FE
testing cases. By comparing the presented results, it
is qualitatively evident that the Resnet model success-
fully predicted the stress–strain curves under various
loading conditions. Table S3 quantify the perform-
ance of the DL model in predicting the stress–strain
curves of all the samples under various loading cases,
FVF, and dispersion. According to table S3, and con-
sidering the overall comparison of all the test cases
with varying fiber orientations and FVFs, our uni-
versal DL model consistently proves its proficiency
in reliably forecasting stress–strain curves under a
diverse range of loading cases. The average RMSE for
all test cases is less than 4 MPa.

3.3. Optimization results and equivalent
anisotropic material properties
The stress–strain data predicted by the DL model
were used to determine the material constants of
the HGO model for each individual case through an
optimization algorithm. Within the HGO material
model, C10 corresponds to the matrix of the compos-
ite, C10 =

µ

2 in equation (1). As the material proper-
ties of the matrix are the same and constant in our
models, C10 is maintained at a constant value of 70 Pa
[65]. Moreover, the values of D and k2 in equation (1)
were also held constant at 0.002 and zero, respectively,
considering the materials incompressibility and the
linear mechanical behavior of the fibers. The remain-
ing five material parameters (k1, κ, Ax, Ay, and Az)
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Figure 7. Comparison of DL and FE (ground-truth) predictions for stress–strain curves of composite models under six loading
cases. (a) FVF is high (FVF = 15.2%) and fibers are highly dispersed (κ > 0.26). (b) Fibers are mainly aligned in ‘z’ direction
(FVF = 16.9%). (c) FVF is medium (FVF = 13.9%) and fibers are mediumly dispersed (0.2 < κ< 0.26). The unit vectors
representing the primary fiber orientations are displayed below each cube.

were inversely estimated for each individual case,
employing the stress–strain curves predicted by the
DL model and a simultaneous fitting for all six load-
ing cases.

Figure 8 presents the obtained material constants
for three cases, alongside a comparison between the
stress–strain curves obtained from the FE models
and the optimized anisotropic material constants
under the six different loading cases. Notably, the
predicted stress–strain curves from the DL model

were not included in this figure to emphasize the
differences between the predicted equivalent aniso-
tropic material model and the FE results. The res-
ults affirm the success and accuracy of the proposed
method. By providing the composite fiber-ECM
architecture, we can replace the composite model
with an equivalent anisotropic continuum mater-
ial, satisfying mechanical behavior in all six loading
cases without the necessity of conducting further FE
simulations.
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Figure 8. Prediction of the anisotropic material constants for the composite models in figure 7 using the stress–strain curves
predicted by DL and inverse simultaneous fitting to the six loading cases. The figures in (a), (b), and (c) correspond to the (a),
(b), and (c) figures in figure 7. The material parameters that are fixed are indicated with an asterisk (∗).

3.4. Application of the FEM-based DLmodel for
predicting the stiffness map of white matter
We applied the presented method to analyze the
human brain tissue, aiming to demonstrate the effi-
ciency and application of the method in prediction
of stiffness landscape of the human white matter
tissue. Specifically, we selected a region measuring
10× 10× 10 mm from human brain fiber tracto-
graphy and constructed two models: one with fibers
and another with the predicted equivalent anisotropic

material properties assigned to each cube in figure 4.
By comparing the results obtained from both mod-
els, we can validate the effectiveness of our approach
in accurately simulating the mechanical behavior of
brain tissue while significantly reducing the com-
plexity associated with explicitly modeling individual
fibers. Since the size of the selected region is 10× 10×
10 mm, eight cubes with 5× 5× 5 mm dimensions
are extracted in figure 4. For each cube a binary phase
model cube is generated for the DL model. Figure 9
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Figure 9. Prediction of stress–strain curves for diverse cubic samples using human brain fiber tractography (refer to figure 4) and
the developed DL model. The predicted stress–strain curves are compared with the stress–strain curves from the FE models
(ground-truth).

illustrates the comparison between the stress–strain
curves obtained from the FE and DL models for each
cube. Despite assuming straight fiber in our train-
ing data while the fiber tractography includes curved
fiber bundles, we observe a remarkable agreement
between DL predictions and FE results. The aver-
age RMSE of all cases is 2.59 MPa. Given that we
used actual fiber tractography data, each cube exhibits
unique characteristics, including FVF, main orienta-
tion, and dispersion, as depicted in figure 9.

The stress–strain curves for each cube in each
loading case are obtained from both FE models and
DL. The key distinction is that, in FE models, each
cube requires separate analysis for each loading case,

while the DL utilizes the binary model to predict the
results for all loading cases instantly. The following
results showcase the stress–strain curves of each cube,
along with the corresponding predicted outcomes
from the DL analysis. The training set focused solely
on straight fibers within a specific range of FVF. In
contrast, the brain model tested, based on real tracto-
graphy images, includes curved fibers. This curvature,
along with other potential procedural errors, likely
contributes to the observed discrepancies in some
loading cases. For instance, in Cube 7, the majority
of fibers are curved and have an FVF of 7.83%, which
falls outside the FVF range used in the training set.
This mismatch likely contributes to the higher RMSE
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values. Despite these differences, including the pres-
ence of curved fibers and low FVF not covered in the
training dataset, the method still demonstrates com-
mendable performance. Furthermore, it is important
to note that the RMSE is calculated as the sum of
discrepancies across all 11 points on the stress–strain
curves of the FE and CNN models, rather than a single
point.

In the next step, a set of equivalent anisotropic
material parameters is obtained for each cube by run-
ning an optimization cycle based on the predicted
DL’s stress–strain curves, figures 10(a)–(d). At the
end, one model with explicit fibers (eight cubes) and
one model with equivalent material properties for
each cube were generated and subjected to six load-
ing cases. In figure 10(e), the stress–strain curves of
the two models under different loading cases are dis-
played. The results indicate an excellent agreement
between the stress–strain curves of the continuum
model with the stress–strain curves of the model
incorporating axonal fiber bundles. The maximum
RMSE between the model with fibers and the con-
tinuum model is 3.37, demonstrating the accuracy
and validation of this method. This promising result
demonstrates that by discretizing entire brain white
matter tissue into fine voxels, determining their equi-
valent anisotropic material properties, and assem-
bling them, we can create a comprehensive stiffness
landscape of the human brain. This map can provide
valuable insights into the local anisotropic mater-
ial properties of brain tissue, addressing a current
knowledge gap. Additionally, this method offers the
advantage of characterizing material properties and
stiffness maps across six loading cases, ensuring inde-
pendence from loading mode biases present in TBI
and DAI models that currently implement signific-
antly diverse material properties. It is worth noting
that, in this study, our focus was on establishing the
theoretical framework and assessing its accuracy. To
evaluate the performance of the proposed framework
in characterizing anisotropic behavior and represent-
ing the heterogeneous stiffness landscape of brain
white matter tissue or other fibrous tissues, it is essen-
tial to conduct combined experimental mechanical
tests and in vitro fiber tractography of the tissue. This
will be the topic of our forthcoming research.

4. Discussion

This study highlights the significant potential of
combining FEM with DL to establish a connection
between structure and properties in soft fibrous tis-
sues. By adopting equivalent anisotropic and con-
tinuum material properties across multiple load-
ing cases simultaneously and leveraging DL, we can
accurately predict the material properties of complex
composites without explicitly modeling numerous
fibers. Understanding the multiscale mechanics of

structure-property linkages is crucial to develop-
ing unbiased models for accurate predictions of
skin aging [99], brain folding [100–104], DAI, TBI,
neurosurgery [105–107], and neuroglial disorders.
This study established a new multidisciplinary frame-
work to link the mechanical properties across the
scales. This is important as accurately determining
the mechanical properties at a local level has the
potential to enhance both sensitivity and specificity
in diagnosing diseases, given that numerous neuro-
logical disorders often originate in specific localized
areas or exhibit distinct regions of tissue damage. It
has been shown that finding localized stiffness map
in white matter is notably important for the study
of neurodegenerative brain disorders [15–18]. For
example, global or local reductions in brain stiffness
have been reported in those afflicted with Parkinson’s
or Alzheimer’s diseases [16, 17, 30, 48, 108].

It is worth noting that the proposed method is
still in the early stages of development. To advance
and validate the theoretical framework for practical
implementation in biomedical applications, addi-
tional experimental tissue testing and imaging studies
are essential. One direct application of the current-
stage proposed method could be in simulating of
DAI and TBI. Recent brain injury models have trans-
formed fiber tractography data into FE models with
explicit representations of fiber bundles as physical
entities [13, 109–112]. Hence, the proposed method
can be implemented to convert models with explicit
representation of fiber bundles into an assemblage of
voxels, each with distinct anisotropic material prop-
erties, similar to figure 10. The produced model can
resolve any potential singularity or excessive shear
issues regarding the fiber-ECM interaction and may
save computational time for finding the global or
local deformation or stress field. In this study, we used
a cubic voxel with an edge length of 5 mm to train
the DL model and discretized the white matter tis-
sue. However, any smaller edge lengths can be used
depending on the requested resolution and the res-
olution of imaging data. It is worth noting that in
this study, we only discussed the hyperelastic mater-
ial properties, while for DAI and TBI applications,
the viscoelastic material properties should also be
provided. A similar methodology to the one presen-
ted can be used to find the viscoelastic properties
of the bulk tissue based on the viscoelastic material
properties of fibers and ECM. The viscoelastic mater-
ial properties of the fibers and ECM can be provided
with a set of Prony series [66, 113] in the FE simula-
tions to ultimately train a DL model.

Currently, contemporary models mainly define
the response of the composite bulk and homogen-
ized white matter at macroscopic scales but fail to
explicitly capture the connection between the inde-
pendent material properties of microscopic constitu-
ents and bulk mechanical behavior. Moreover, the
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Figure 10. Finding the stiffness map of brain tissue. (a) Fiber tractography of a human brain. (b) A random 3D region of the
brain tissue, represented by a large cube, is divided into eight smaller cubes. The larger cube has an edge size of 10 mm, while the
smaller cubes measure 5 mm each. (c) S11 stress contour for the large cube in (b) when it undergoes a 20% strain in the ‘x’
direction, including explicit fibers. (d) S11 stress contour of the continuum model with eight equivalent anisotropic material
properties provided by the DL model and optimization process. For each small cube, the predicted HGO anisotropic material
parameters by the DL framework are listed in the figure. For all other predefined parameters: C10 = 70 Pa, D = 0.002, k2 = 0. (e)
Comparison of six stress–strain curves between the model with explicit fibers and the equivalent continuum model. The
predicted equivalent continuum model, produced by the DL framework, discretizes the selected 3D region into a stiffness map
using eight cubes, which accurately replicates the mechanical properties of the brain tissue including fibers. The average RMSE for
all loading cases is less than 2 MPa.

implemented material models, based on a single
mode, cannot accurately replicate tissue responses
in other loading modes [7, 65]. Therefore, it is not
surprising that multiscale biomechanical models of
the brain implement mechanical properties which

vary widely; in some cases by up to two orders of
magnitude [12, 13, 84, 111, 114–117]. As a result, cur-
rent biomechanical models simulating white matter
tissue for various applications are intrinsically limited
by the multiscale material properties employed. These
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challenges are not limited to brain tissue alone but are
widespread across many hierarchical and connective
tissues, including skin [118], muscle [119], ligaments
[120], arteries [121], heart [122], and interverteb-
ral discs [123]. The proposed framework is a power-
ful tool to study the heterogeneity in the mechanical
properties of the tissue as it counts the FVF and the
orientation of fibers. For example, significant hetero-
geneity has been observed in CC of the brain white
matter where the genu, body, and splenium exhibit
different stiffness [124]. This heterogeneity is not lim-
ited to CC, and heterogeneous mechanical properties
have been observed in the corona radiata (CR) of the
white matter as well [124]. This heterogeneity mainly
stems from the differences in fiber density, fiber dia-
meter distribution, and fiber orientation distribution.
The CC has shown significantly higher storage mod-
ulus than the CR according to the MRE data [124].
The fibers of the CR, extending laterally from the CC,
exhibit a lower degree of stiffness compared to the CC,
where the fibers are presumed to be densely packed
within its highly organized arrangement [124]. Our
models also confirm that any change in the FVF,
alignment, and dispersion of fibers alter the mechan-
ical properties.

More recently, MRE has successfully integrated
anisotropy considerations to derive the stiffness map
of the brain. An incompressible, transversely isotropic
material model with three parameters has been used
to characterize anisotropic fibrous tissues, including
brain white matter [125, 126]. It has been demon-
strated that precise parameter estimates depend on
having multiple shear waves with different propaga-
tion directions to account for directionality effects
[127]. Therefore, multi-excitation MRE has been
introduced and used as a promising technique for
anisotropic inversion [41, 125]. Similar to multi-
excitation MRE, our proposed method uses multiple
loading cases simultaneously to predict equivalent
anisotropic mechanical properties. However, the pro-
posed method predicts the tissue response based on
the material properties of the tissue constituents and
their architecture. Among various inversion meth-
ods of MRE [128–130], the FE-based, transversely-
isotropic nonlinear inversion [130] algorithm has
shown great promise in recovering accurate het-
erogenous parameter fields and repeatable property
estimates for in vivo human brain [44]. Very recently,
using this method, longitudinal anisotropic mechan-
ical properties of the minipig brain were estimated
from displacement fields and DTI’s fiber directions
[131]. The study revealed that the white matter is
stiffer than gray matter in shear in any plane contain-
ing the fiber direction and in tension in any direc-
tion with a component of fiber direction. A current
challenge in predicting the anisotropic material prop-
erties of brain tissue, through the synergy of MRE
and DTI, is that the used material model captures the

behavior of a material with a single dominant fiber
direction. This results in parameter estimates that can
be inaccurate or challenging to interpret in regions
with crossing fibers [131]. This so-called ‘crossing-
fiber’ problem cannot be adequately described using
the diffusion tensor model [132]. DTI assumes a
single primary orientation of fiber bundles in each
voxel, leading to difficulties in accurately represent-
ing areas with crossing or branching fibers. Similar
to MRE, our proposed model can also be affected
by this limitation as it uses DTI data for the con-
struction of fiber paths. Recently, advanced diffusion
imaging techniques, such as high-angular-resolution
diffusion imaging and DSI, have been developed to
address this limitation [133–135]. These techniques
enable a more detailed characterization of complex
fiber orientations and provide a more accurate rep-
resentation of fiber crossings. Consequently, integ-
rating the proposed framework or MRE with fiber
tractography from advanced diffusion imaging meth-
ods can improve method accuracy. In this context,
recent studies have investigated shear wave propaga-
tion in HGO material models with one [136] or
two fiber families [137] to evaluate MRE’s potential
for estimating HGO model parameters from experi-
mental data. These studies demonstrated that shear
wave speeds are influenced by the HGO material
parameters as well as the direction and amplitude of
pre-deformations. As a result, it is feasible to nonin-
vasively estimate anisotropic material parameters in
vivo using experimental shear wave imaging data.

The advantage of predicting the stiffness map
using the proposed framework lies in its ability to
simultaneously quantify material parameters across
six loading cases. Furthermore, the method can be
readily extended to include shear loading models.
This approach, which directly and automatically pre-
dicts bulk tissue anisotropy based on microscale
architecture and properties, lays the foundation for
an innovative framework for the inverse prediction of
the architecture and material behavior of microscale
constituents according to multiple loading modes of
bulk tissue [65, 138]. The inverse framework has
potential to address the long-lasting challenges of
direct testing of microscale constituents. The dir-
ect testing methods, such as atomic force micro-
scopy, are facing several challenges in characteriz-
ation of small scale constituent, because they typ-
ically: characterize the material properties only for
small deformations [139], without consideration of
anisotropy [140, 141]; characterize the material prop-
erty only by a single mode of loading; perform tests
on components that are taken out from the natural
environment [142]. The material property of the sep-
arated component from ECM can be very different
from when they are embedded in ECM [143–148].
It is critical to characterize microstructure material
properties when they are in their host environment
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[149]; consider simplified equations and assumptions
such as Poisson’s ratio as 0.5 [139]. The need for mul-
tiple or combined loading modes for the material
characterization of soft fibrous tissues is not limited
to the brain white matter tissue. As an example, the
myocardial tissue of the heart [150, 151], as a com-
plex composite tissue, displays an orthotropic mater-
ial behavior. Recent experimental studies, employing
either simple shear or biaxial deformations, under-
score the orthotropic nature of the tissue and high-
light the limitations associated with biaxial tests [152,
153]. Therefore, to establish a more comprehensive
framework, it is crucial to note that relying solely on
biaxial data is insufficient for an adequate character-
ization of the mechanical response of fibrous ortho-
tropic/anisotropic tissues. To accomplish this task, a
broader range of data, including a combination of
shear and bi/triaxial extension data [154], is needed
for a better understanding of the direction-dependent
material behavior of soft fibrous tissues such as the
myocardium and brain.

Another key advantage of the proposed method
is its flexibility and adaptability. By employing a bin-
ary phase representation (or multiple phases), the
method can model any anisotropic tissue with diverse
microscale components, including different geomet-
ries such as spherical shapes rather than slender ones.
The approach allows for discretizing and represent-
ing any geometrical features with discrete voxels.
Moreover, it can be adapted to explore regional dif-
ferences within the same tissue by modifying the
material properties and geometries of its microscale
constituents. Consequently, this method is broadly
applicable to any composite tissue, irrespective of the
specific tissue type being modeled. Therefore, as the
HGO model has been previously used for multiscale
modeling of myocardial tissue [152, 153], the pro-
posed framework in this study can be adapted and
used in accordance with available experimental data
with multiple loading modes [154–157].

In summary, our work paves the way for accur-
ately and rapidly predicting stiffness maps in the
human brain or other connective tissues by captur-
ing the complex, nonlinear, and asymmetric mater-
ial behavior of tissue microstructure. By integrating
FEM and DL, we contribute to the ongoing advance-
ments in computational tissue mechanics, opening
doors to a deeper understanding of brain mech-
anics and its implications in various neurological
conditions.

5. Limitations and future work

In this study, similar to other computational sim-
ulations, there are multiple inherent simplifications
and limitations. While we currently divided the tis-
sue into two components, axonal fibers and ECM, it
is worth noting that other constituents, such as glial

cells [158], can also influence the material behavior
of brain tissue. Nonetheless, the proposed method is
highly adaptable and can be expanded to accommod-
ate multiple microscale constituents with varying
mechanical properties. This approach is not limited
to fibrous tissues and can be applied to model com-
posite tissues with constituents of different shapes.
The method used to prepare the binary phase can be
readily employed for various composite tissues. The
FVF of the models ranges from 10% to 30% to pre-
vent fiber intersections. However, it is known that
in soft fibrous tissues, the fiber density can be sig-
nificantly higher. Nevertheless, the performance of
the proposed framework performance remains unaf-
fected, and it can effectively model tissues with vary-
ing FVFs by providing the binary map. To determ-
ine the stiffness map of brain tissue, we calculated
the FVF of each cube based on the number of fiber
tracts obtained from fiber tractography and a random
fiber diameter ranged from 50 to 200 µm. In real-
ity, the FVF of each cube or discretized voxel should
be derived from experimental histology or imaging
data. Studies have demonstrated that FVF can be cal-
culated from fractional anisotropy for fully aligned
fibers [159]. Additionally, there exists a relationship
between fiber dispersion and fractional anisotropy
that should be applied in practical scenarios [64, 160].

In this study, to determine the equivalent aniso-
tropic material properties for each composite cube,
we held the material properties of the ECM constant
and assumed that the anisotropic behavior of tissue
resulted from variations in the FVF, orientation, and
dispersion of fibers. However, in reality, the mechan-
ical properties of the ECM may also vary based on
the microscale constituents and anatomical location.
We conducted the optimization step outside of the DL
framework for the sake of simplicity. However, it can
be conveniently incorporated into the DL model by
adding another loss term of mechanical properties to
create a unified framework.

In this study, we used a cubic voxel with an edge
length of 5 mm to train the DL model and discret-
ized the white matter tissue. We selected 5 mm cube to
facilitate future comparative studies based on recent
mechanical tests conducted on bulk brain tissue [7].
However, smaller edge lengths can be employed based
on the requested resolution and the resolution of
imaging data, considering that the typical resolu-
tion of MRE is 1.5 mm volumetric [42]. Hence, the
edge length of the cubes can be reduced to 1.5 mm
for future studies, facilitating comparison with MRE
studies. While smaller edge lengths offer better rep-
resentation of fiber alignment, they can increase com-
putation time. The aim of this study was to balance
accuracy and resolution.

It is important to note that the embedded ele-
ment technique should be employed with caution,
as stiffness redundancy increases the overall model
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stiffness and may lead to altered results if not care-
fully addressed. In the current study, the use of
truss elements for fibers and solid elements for the
ECM complicates the straightforward elimination of
material redundancy by reducing the shear modu-
lus of the ECM from the fibers’ shear modulus [65,
66]. However, it is crucial to highlight that, in this
study, the FE models and DL model, operating based
on overestimated stiffness values, do not adversely
affect the performance of the proposed method in
predicting material properties. The impact is con-
fined to the absolute values of the material proper-
ties. Nevertheless, for practical applications and closer
alignment with experimental data, resolving stiffness
redundancy should be addressed through customized
methods.

In our study, the maximum applied strain is
20%, which aligns with quasi-static mechanical tests
of white matter tissue [7, 161]. However, investigat-
ing the effects of varying strain levels, particularly at
higher strains, could significantly impact the mech-
anical characterization of white matter. Increasing
the strain range may introduce greater nonlinear-
ity into the stress–strain curves, potentially affect-
ing the accuracy of the predicted material constants.
Understanding how different strain levels influence
the mechanical properties of white matter is essential,
especially for future applications involving diverse
strain conditions or different tissue types.

In future studies, we aim to link imaging para-
meters like fractional anisotropy and radial diffusiv-
ity to the DL framework to enhance the practicality
of our models. This will also help connect our pro-
posed method to recent studies focused on estimat-
ing the material parameters of the HGO model from
in vivo MRE imaging data [136, 137]. We will con-
duct combined experimental mechanical tests and
in vitro fiber tractography to evaluate the perform-
ance of the proposed framework in characterizing
anisotropic behavior and representing the heterogen-
eous stiffness landscape of brain white matter tissue.

6. Conclusion

Finding the stiffness map of biological tissues is a
challenging task due to the heterogeneity and aniso-
tropy of connective tissues. To tackle this challenge,
in this study, we proposed a new method to map
the stiffness landscape of fibrous tissues, specifically
focusing on brain white matter tissue. To do so, a
DL framework was established based on large-scale
FE models of fibrous tissue under six loading cases
and an optimization process. The trained and tested
framework was capable of predicting the equivalent
anisotropic material properties solely based on the
fibrous architecture of any given tissue. The method
was applied to imaging data of brain white matter tis-
sue, demonstrating its effectiveness in precisely map-
ping the anisotropic behavior of fibrous tissue. This

study serves as the foundation for predicting the het-
erogeneous stiffness map of human brain white mat-
ter tissue, with potential applicability to other fibrous
tissues as well. The performance of the proposed
method, which aims to link multiscale mechanical
properties of real tissue, will be evaluated through tis-
sue mechanical tests and imaging data, with a focus
on potential future biomedical applications.
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Appendix. HGOmodel

The HGO model incorporates the neo–Hookean
model for the isotropic ground material, while the
anisotropic component includes families of fibers.
Thus, the strain-energy function can be represented
as [162]:

ψHGO = ψ iso +ψ aniso. (A.1)

For convenience, we have separated the derivation
of the isotropic and anisotropic components. The
neo-Hookean strain energy function can also be par-
titioned into two components, representing the volu-
metric and isochoric responses of the material.

ψ iso =
µ

2
(I1 − 3)

︸ ︷︷ ︸

isochoric

+
1

D1
(J− 1)2

︸ ︷︷ ︸

volumetric

(A.2)
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where µ and D1 are temperature-dependent mater-
ial parameters. J is the Jacobian or the volume ratio
defined as the determinant of the deformation tensor
F, and I1 is the first deviatoric strain invariant which
can be derive from the principal stretches,

I1 = λ2
1 +λ2

2 +λ2
3. (A.3)

The second Piola–Kirchhoff stress tensor for the
volumetric and isochoric can be determined by

S = Sisochoric + Svolumetric = 2
∂ψ isochoric

(
C
)

∂C

+ 2
∂ψ volumetric (J)

∂C
(A.4)

where C is the right Cauchy–Green tensor defined
as C = FTF and C is modified right Cauchy–Green
tensor defined as C = J−2/3C. The volumetric and
isochoric second Piola–Kirchhoff stress tensors can be
shown in the following terms:

Sisochoric = J−2/3µ

(

−
1

3
I1C

−1
+ I

)

(A.5)

Svolumetric = J1/3 (J− 1)
2

D1
C
−1
. (A.6)

The strain energy function of the anisotropic
segment comprise families of fibers represented by
pseudo-invariants, I4(ii). The pseudo-invariant rep-
resents the directions of fiber families, and the dir-
ection of these fibers are represented by unit vectors
ai,

ψ aniso

(
C,ai

)
=

k1

2k2

N∑

i=1

{

exp
[

k2⟨Ei ⟩
2
]

− 1
}

(A.7)

where k1, k2 are temperature-dependent material
parameters; N is the number of families of fibers
(N ⩽ 3); and ‘⟨⟩’ operator stands for the Macauley
bracket and is defined as ⟨x⟩= 1

2 (|x|+ x). Ei can be
obtained by

Ei = κ(I1 − 3)+ (1− 3κ)
(
I4(ii) − 1

)
. (A.8)

Here, κ represents a temperature-dependent
material parameter that signifies the dispersion of
fibers. In our study, we considered only one family of
fibers, N = 1.

The second Piola–Kirchhoff stress tensor for the
anisotropic segment can be determined by

S = 2
∂ψ aniso

∂C
= 2

k1

k2

{

2k2⟨Ei ⟩exp
[

k2⟨Ei ⟩
2
] ∂⟨Ei ⟩

∂C

}

(A.9)

S = 2k1κ⟨Ei ⟩exp
[

k2⟨Ei ⟩
2
]

I+ 2k1 (1− 3k)⟨Ei ⟩

× exp
[

k2⟨Ei ⟩
2
]

ai ⊗ ai (A.10)

where ‘⊗’ represents the dyadic product. The total
second Piola–Kirchhoff stress is the sum of both the
isotropic and anisotropic components of the stresses.
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