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Abstract: Connectivity between physical and cyber systems has been dramatically invested over
the last forty years, enabled by the advances of communication networks, computing power and
automation. In this chapter, discuss the impact of such cyber-physical integration in chemical and
energy processes, and how the advances in process monitoring, process modeling and digital twin,
control and optimization, coupled with artificial intelligence (AI) and machine learning (ML)
networks can play a key role in improving the safety, efficiency and productivity of cyber-physical
systems (CPS). We also examine challenges and future directions in this field.
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8.1 Introduction

Cyber-Physical Systems (CPS) refer to interconnected networks of physical components and
computational algorithms that interact with each other and their environment. The term "Cyber-
Physical Systems" (CPS) was officially introduced by Helen Gill at the National Science
Foundation around 2006 [1,2]. This definition underscores the integration of computational and
physical processes. The concept of CPS builds upon earlier ideas in fields like mechatronics,
embedded systems, and pervasive computing. The term's roots can be traced back even further,
linking to concepts from cybernetics, a term coined by Norbert Wiener to describe the control and
communication between the animal and the machine [3]. As illustrated in Fig. 1, the general
architecture of a CPS includes a physical system and a cyber system featuring the convergence of
physical processing, sensing, computation, communication, and control [4]. The physical system
comprises physical processes, sensors, and actuators. Typically, physical processes function as
prototype units or plants, which are managed by the cyber system. On the other hand, the cyber
system encompasses communication networks, computing, and control centers [5].
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Figure 1. Typical structure of cyber-physical systems (CPS)

With the development of internet and data technology, CPS and related technologies have
advanced, leading to a yearly increase in corresponding publications. In Figure 2, the number of
publications on CPS has rapidly increased, from 1,336 in 2015 to 3,349 in 2023. CPS applications
have expanded across various disciplines such as electrical and electronic engineering, computer
science, automation control systems, energy and fuels, and chemical engineering, as illustrated in
Figure 3. It's worth noting that CPS in the chemical and energy sectors represents a smaller portion
of the total.

This chapter aims to provide a general summary of CPS in chemical engineering, focusing on
process safety, control, and optimization. The remainder of the chapter is organized as follows:
Section 8.2 discusses the components and architecture of CPS. Section 8.3 presents the
applications of CPS in the chemical and energy sectors. Section 8.4 summarizes the challenges
and future directions. Finally, Section 8.5 introduces a cyber-physical prototype for safer energy
production, illustrated through a modeling and optimization framework.
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8.2 Components and Architecture of Cyber-Physical Systems
8.2.1 Components of Cyber-Physical Systems:
a. Sensors and Actuators

Sensors in energy systems encompass a diverse range of technologies, including temperature
sensors, pressure sensors, flow meters, and proximity sensors. Each type of sensor serves a specific
purpose, capturing physical parameters crucial for monitoring and control. For instance,
temperature sensors are employed in thermal power plants to monitor heat exchange processes,
while flow meters measure fluid flow rates in pipelines and reactors. Sensors play a pivotal role in
providing real-time data on process variables, equipment condition, and environmental parameters.
This data serves as input for computational systems, enabling predictive analytics, fault detection,
and adaptive control strategies. By continuously monitoring key parameters, sensors facilitate
proactive decision-making and optimization of energy processes.

Actuators convert control signals from computational systems into physical actions, exerting
control over various components and processes within energy systems. Examples of actuators
include control valves, motorized dampers, variable frequency drives, and hydraulic actuators.
These actuators modulate flow rates, adjust equipment settings, and regulate energy output to
maintain desired operating conditions. Actuators are instrumental in implementing control
strategies to optimize energy efficiency, enhance system reliability, and mitigate operational risks.
By modulating process variables in response to feedback from sensors and computational
algorithms, actuators enable dynamic adjustments and fine-tuning of energy processes. This
dynamic control capability is essential for adapting to changing demand patterns, equipment
failures, and external disturbances.

b. Computational Systems

Embedded control systems serve as the computational backbone of energy systems, executing
control algorithms and decision-making logic in real-time. These systems integrate sensor data,
process models, and control strategies to orchestrate the operation of energy processes. Examples
include programmable logic controllers (PLCs) [6,7], distributed control systems (DCS)[8,9], and
supervisory control and data acquisition (SCADA) systems [10-13]. Computational systems
analyze sensor data, implement control algorithms, and optimize energy processes to achieve
predefined objectives such as maximizing efficiency, minimizing costs, or ensuring safety.
Advanced computational techniques such as model predictive control (MPC), adaptive control,
and machine learning enable predictive maintenance, energy forecasting, and adaptive
optimization in energy systems.

c. Communication Infrastructure:

A robust communication infrastructure is essential for facilitating seamless interaction between
different components of CPS. This infrastructure encompasses wired and wireless networks,
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protocols, and standards for data exchange. Examples include Ethernet, Wi-Fi, and protocols like
Message Queuing Telemetry Transport (MQTT) [14-16] and OPC Unified Architecture (OPC
UA)[17-19], which enable data transmission and interoperability in energy management systems.

8.2.2 Architecture of Cyber-Physical Systems:
a. Layered Architecture:

CPS often adopt a layered architecture [20-22], dividing the system into distinct layers based on
functionality and abstraction level. Common layers include physical layer, cyber-physical layer
and cyber layer demonstrating perception, processing, communication, and actuation. Each layer
interacts with adjacent layers and the cyber and physical environments to achieve system
objectives. In energy systems, this architecture enables hierarchical control and optimization of
energy generation, transmission, and consumption [20, 23, 24].

For example, Guzman et al. introduced a multi-layered CPS master diagram toward a combined
safety and security risk analysis, as shown in Figure 4 [20]. The physical layer constitutes the lower
level of the system, including the physical components, operators, and the physical dynamics that
reflect their interactions. The middle layer, known as the cyber-physical layer, encompasses real-
time communication functions. This involves data acquisition through sensors, transmission of
data for processing, and further monitoring and control with the deployment of control actions by
actuators. At the top level, the cyber layer incorporates SCADA, HMIs, and supervisory computers
that utilize cloud platforms for data visualization and parameter adjustments, among other
functions.
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Figure 4. Multi-layered representation of CPS and environments with information and energy
flows. [20] [https://doi.org/10.1002/sys.21509]

b. Distributed Control Systems:

Distributed control systems (DCS) decentralize control functions across multiple nodes within the
CPS [25, 26]. This architecture enhances system resilience and scalability by distributing
computational tasks and decision-making processes. In energy systems, DCS enables localized
control of renewable energy sources, demand response mechanisms, and grid stability measures
[26].

c. Edge Computing and Cloud Integration:

With the proliferation of Internet of Things (IoT) devices, edge computing has emerged as a critical
component of CPS architecture [27-29]. Edge devices process data locally, reducing latency and
bandwidth requirements, while cloud integration enables centralized storage, analytics, and
management of data [30-33]. In chemical engineering, edge computing is deployed for real-time
monitoring of processes, while cloud-based analytics enable predictive maintenance and
optimization [34].

8.2.3 Integration of Sensors, Actuators, and Computational Systems

Actuators are closely integrated with computational systems, receiving control signals generated
by higher-level algorithms based on sensor inputs and system objectives. This integration enables
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closed-loop control, where actuators continuously adjust process parameters to maintain desired
operating conditions and respond to dynamic changes in the environment.

8.3 Applications of Cyber-Physical Integration in Energy Systems

The integration of Cyber-Physical Systems (CPS) in energy systems, particularly within the
domain of chemical and energy industry, offers transformative opportunities for enhancing
efficiency, sustainability, and resilience. In what follows, we explore various applications of CPS
integration in energy systems, focusing on their implications for chemical processes. Through
detailed analysis and case studies drawn from literature, we elucidate the role of CPS in optimizing
energy utilization, improving process control, and enabling the transition towards sustainable
energy solutions.

8.3.1 CPS Integration in Chemical Process Design:
a. Real-Time Optimization and Control:

CPS integration enables real-time optimization and control of chemical processes [35, 36],
allowing for dynamic adjustments based on changing operating conditions and energy availability.
Literature showcases examples of model predictive control (MPC) [37, 40, 41] and advanced
process control (APC) strategies implemented through CPS to enhance energy efficiency and
product quality in chemical plants [38,39].

b. Energy-Efficient Operation:

By integrating CPS, chemical processes can be operated more energy efficiently, with real-time
monitoring of energy consumption and process variables [42, 43]. Advanced control algorithms,
coupled with sensor networks and actuators, facilitate energy-aware decision-making, resulting in
reduced energy costs and environmental impact [44,45].

8.3.2 CPS Integration in Renewable Energy Systems:
a. Integration of Renewable Energy Sources:

CPS plays a crucial role in the integration of renewable energy sources, such as solar and wind,
into chemical processes [46, 47]. Literature highlights case studies where CPS-enabled smart grids
optimize the utilization of intermittent renewable energy [46, 48], enabling chemical plants to
adjust production schedules and energy consumption patterns accordingly[49]. For instance, this
work discusses the use of advanced sensors, data analytics, and digital controls to enhance energy
efficiency and real-time optimization, which highlights the importance of IloT-enabled smart
assets and data infrastructure for effective energy management [50]. Besides, Edgar et al presented
a comprehensive framework for smart manufacturing that incorporates renewable hydrogen
production. The paper introduces the Renewable Hydrogen Production and Utility Testbed
(REHPUT), which integrates renewable power sources like solar and wind with a Proton Exchange
Membrane (PEM) electrolyzer to produce hydrogen. This system includes hydrogen purification,
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storage, and electricity generation, demonstrating a complete cycle of renewable energy utilization
[51].

b. Energy Storage and Grid Integration:

CPS integration enables efficient energy storage and grid integration solutions for chemical
engineering applications [52-56]. Through the deployment of smart energy storage systems and
demand response mechanisms [57-59], chemical plants can participate in grid balancing activities,
contributing to grid stability and the integration of renewable energy. Kakodkar et al. proposed a
framework that integrates renewable power generation, various energy storage technologies, and
carbon capture, utilization, and sequestration (CCUS). This study explores the use of
electrochemical storage, pumped storage hydropower, and compressed air energy storage for
efficient energy storage solutions. Additionally, it addresses the integration of these storage
solutions with the grid, considering factors like round-trip efficiency, discharge rates, and storage
losses, thereby supporting the grid's resilience and stability [60].

8.3.3 CPS Integration in Process Safety and Reliability:
a. Predictive Maintenance and Safety Systems:

CPS integration enhances process safety and reliability through predictive maintenance and safety
monitoring systems. By leveraging sensor data and machine learning algorithms, CPS-enabled
systems can identify potential equipment failures and safety hazards, enabling proactive
maintenance[61, 62] and risk mitigation measures [63]. EI-Kady et al demonstrated the use of
digital twin (DT) models for predicting failures, enhancing system reliability, and enabling
proactive maintenance. The paper also highlights the integration of IoT sensors for continuous
monitoring and early warning systems to improve safety and reduce unscheduled downtimes [64].
Additionally, Amin et al developed a holistic framework that employs Bayesian Networks (BN) to
model the probabilistic nature of safety and security events, facilitating real-time risk analysis and
predictive maintenance [65].

b. Fault Detection and Diagnosis:

CPS integration facilitates fault detection and diagnosis in chemical processes, minimizing
downtime and improving operational efficiency. Case studies demonstrate the implementation of
CPS-enabled fault detection algorithms, which analyze sensor data to detect abnormal process
behavior and diagnose root causes of equipment malfunctions [66,67]. Alauddin et al presents a
robust neural network model for fault detection in the presence of mislabeled data. By
incorporating data quality metrics based on Mahalanobis distances and trusted centers, the model
enhances fault detection accuracy and robustness [68]. Wen et al. developed a risk model to
distinguish between faults and cyberattacks, using game theory to explain conflicts, and applying
the model to Continuous Stirred Tank Reactor (CSTR) systems. The proposed framework
enhances fault detection and diagnosis by accurately identifying and mitigating the impact of
cyberattacks [69].



8.4 Challenges and Future Directions
8.4.1 Advanced Modeling and Control Optimization Algorithms

CPS in chemical engineering has revolutionized the approach to process systems, particularly in
energy systems. The intersection of physical processes with digital controls offers unparalleled
precision, efficiency, and adaptability. A critical component of this integration is the development
and implementation of advanced modeling and control optimization algorithms. These algorithms
are pivotal in addressing the dynamic and complex nature of chemical processes, ensuring optimal
performance, and adapting to changing conditions in real-time.

Advanced modeling techniques in CPS for chemical engineering encompass a range of methods
designed to accurately represent the behavior of chemical processes. These include mechanistic
models, data-driven models, and hybrid models. Mechanistic models are based on fundamental
physical and chemical principles [70, 71]. They provide detailed insights into the process dynamics
by incorporating equations derived from mass, energy, and momentum balances. An example is
the use of computational fluid dynamics (CFD) to provide precise simulations of fluid behavior
and enhancing manufacturing processes. By integrating CFD with Augmented Reality (AR),
engineers gain improved cognitive abilities for problem-solving through interactive visualization.
CFD's low cost, low risk, and meaningful insights offer competitive advantages in smart factories
[72]. Additionally, CFD aids in optimizing ventilation, conditioning, and mitigating virus spread
in industrial environments. The combination of CFD with cloud computing and big data analytics
supports real-time decision-making and efficient system design and operation [73].

With the advent of big data and machine learning, data-driven models have gained prominence.
These models utilize historical process data to predict future behavior without requiring explicit
knowledge of the underlying physical phenomena. Techniques such as neural networks and
support vector machines have been applied to model complex processes like distillation columns
[74-76] and polymerization reactors [77,78].

Combining the strengths of mechanistic and data-driven approaches, hybrid models offer a
balanced solution. They leverage mechanistic models to ensure physical plausibility and use data-
driven methods to capture complex, nonlinear relationships that are difficult to model
mechanistically [79]. An example is the hybrid modeling framework combining a nominal term,
based on physicochemical principles, with a deviation term, which captures the effects of high-
dimensional factors using machine learning. This approach enhances modeling accuracy by
leveraging comprehensive state space (CSS) for real-time data and visualization. [80]

Control optimization in CPS involves developing algorithms that can handle the complexity and
variability of chemical processes. These algorithms aim to achieve objectives such as maximizing
efficiency, minimizing energy consumption, and maintaining product quality. Model predictive
control (MPC) is widely used due to its ability to handle multivariable control problems with
constraints. It predicts future process behavior using a dynamic model and optimizes control
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actions by solving a finite-horizon optimization problem at each time step. For example, the
integration of stochastic MPC allows for handling probabilistic constraints, further improving CPS
resilience and efficiency by allowing controlled violations of constraints when necessary [81].
Moreover, MPC in CPS enhances security and efficiency by leveraging cloud-edge computing.
The MPCaaSS framework optimizes control parameters in the cloud and executes real-time control
at the edge, ensuring robust performance against cyber threats and external disturbances through
secure data transmission protocols [82]. The MPC strategy was employed to enhance CPS
resilience by mitigating the effects of Denial-of-Service (DoS) attacks. It ensures stability and
performance through optimization, even under constrained communication conditions [83].

Reinforcement Learning (RL) is an emerging approach in control optimization, where an agent
learns optimal control strategies through trial and error interactions with the process environment.
This method has been applied to coordinate actions among agents in dynamic environments,
improving system robustness to changes. Specifically, RL applied to energy optimization in CPS,
such as micro-grids with variable electricity prices, enhances the adaptive response of agents to
environmental fluctuations, resulting in efficient energy usage and high productivity across
interconnected systems.[84]. The parallel RL framework uses bidirectional LSTM networks for
energy management in hybrid electric powertrains, optimizing control strategies in dynamic
environments. This approach significantly improves fuel economy and system performance
compared to traditional methods [85].

Robust and adaptive control techniques are designed to maintain optimal performance in the
presence of uncertainties and disturbances, which ensure stability and performance across a range
of operating conditions, while adaptive control methods adjust control parameters in real-time
based on process feedback. Examples include adaptive control for mitigating sensor and actuator
attacks.[86-88]. He et al summarized the role of robust control in addressing the challenges posed
by multiple uncertainties, such as unknown disturbances, time-varying delays, and stochastic
malicious attacks. By utilizing Lyapunov—Krasovskii functional (LKF) with advanced integral
inequalities, robust control strategies ensure system stability with less conservatism. Applications,
like load frequency control (LFC) in power systems, demonstrate the effectiveness of these
methods in real-world scenarios.[89]

The future of CPS in chemical engineering relies heavily on the continued development and
refinement of advanced modeling and control optimization algorithms. These tools are essential
for addressing the challenges of complex, dynamic processes and unlocking new levels of
efficiency and sustainability in energy systems. As these algorithms evolve, they will enable more
intelligent, responsive, and resilient chemical processes, paving the way for significant
advancements in the field.

8.4.2 Artificial Intelligence (AI) and Machine Learning (ML) for Data Analytics

The advent of CPS in chemical engineering has opened new avenues for optimizing process
systems, particularly in energy systems. A pivotal aspect of this transformation is the application
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of Al and ML for data analytics. These technologies enable the extraction of valuable insights from
vast amounts of process data, driving improvements in efficiency, reliability, and sustainability.
This section delves into the advanced Al and ML techniques used in data analytics, their
applications in chemical engineering, and future directions for research and development.

Supervised learning algorithms are widely used for predictive modeling in chemical processes.
Techniques such as linear regression [90-92], support vector machines (SVM) [93,94], and neural
networks [95,96] learn from historical data to predict future outcomes.

Unsupervised learning methods, including clustering [97] and principal component analysis
(PCA)[98,99], are crucial for exploratory data analysis. These techniques help identify patterns
and anomalies in process data without prior labels. Clustering algorithms like k-means have been
used to segment operational states in chemical plants, facilitating better process monitoring and
control [100,101].

Deep learning, particularly deep neural networks (DNN), has revolutionized data analytics by
enabling the modeling of highly complex, nonlinear relationships in process data. For instance,
convolutional neural networks (CNNs) has applied in CPS for detecting anomalies and cyber
attacks in industrial control systems (ICS). They achieve this by extracting local features from time
series data. Compared to traditional recurrent neural networks, CNNs offer faster training and
execution, and they excel in handling complex multivariate time series prediction tasks [102]. Also,
recurrent neural networks (RNNs) are essential in CPS for modeling dynamic, nonlinear processes
in chemical engineering. They excel in handling high settling times and frequent interventions,
making them suitable for system dynamics, real-time predictions, and optimizing control processes
[103].

The future of AI and ML in data analytics for chemical engineering lies in several key areas. The
integration of Al and ML with IoT devices will enhance real-time data collection and analysis.
This synergy will enable more responsive and adaptive process control, improving efficiency and
reducing waste [104]. As Al models become more complex, there is a growing need for explainable
artificial intelligence (XAI) techniques aim to make Al decisions transparent and understandable,
which is crucial for gaining trust and ensuring compliance with safety regulations in chemical
engineering [105-106]. Besides, deploying Al algorithms at the edge, closer to the data source, can
significantly reduce latency and improve real-time decision-making [107]. This approach is
particularly beneficial for time-sensitive applications in chemical processes. In addition,
combining mechanistic models with AI and ML techniques will enhance the robustness and
accuracy of process models [108,109]. These hybrid models can leverage the strengths of both
approaches, providing more comprehensive solutions for complex chemical engineering problems.
In addition, Al and intelligence augmentation (IA) enable proactive monitoring and predictive
maintenance, reducing downtime, optimizing operations, and improving safety, where IA
collaborates with humans for decision-making, ensuring a balance between efficiency and safety
[110]. Last but not least, Al and ML are transforming data analytics in chemical engineering,
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particularly in the context of cyber-physical systems in energy systems [111]. These technologies
enable more efficient, reliable, and sustainable process operations by extracting valuable insights
from data. As Al and ML continue to evolve, their integration with emerging technologies and
methodologies will drive further advancements, addressing the challenges and unlocking new
opportunities in chemical engineering.

8.4.3 Data Security and Privacy Concerns

The integration of Cyber-Physical Systems (CPS) in energy systems brings forth significant data
security and privacy concerns. As these systems rely heavily on data collection, communication,
and analysis, ensuring the confidentiality, integrity, and availability of sensitive information
becomes paramount.

The proliferation of cyber threats poses a constant risk to CPS in energy systems [112,113].
Malicious actors may exploit vulnerabilities in communication networks or compromise sensor
data, leading to potential disruptions or sabotage. The collection and storage of vast amounts of
data raise concerns about data privacy [114]. Unauthorized access or disclosure of sensitive
information could violate privacy regulations and undermine public trust. Establishing secure
communication channels between components of CPS is essential to prevent unauthorized access
and data tampering. Encryption, authentication, and access control mechanisms must be
implemented to safeguard data in transit [113].

Blockchain technology offers a decentralized and tamper-proof approach to data management,
enhancing security and transparency in CPS for energy systems [115-117]. By leveraging
blockchain-based solutions, stakeholders can ensure the integrity and immutability of critical data
[118,119]. Advancements in privacy-preserving techniques, such as homomorphic encryption and
differential privacy, enable the analysis of sensitive data without compromising individual privacy
[120]. By integrating these techniques into CPS, energy systems can mitigate privacy concerns
while leveraging data for optimization and decision-making.

8.4.4 Interoperability and Standardization

Interoperability and standardization remain key challenges in the integration of CPS within energy
systems. As CPS components are often sourced from different vendors and operate within
heterogeneous environments, ensuring seamless communication and interoperability becomes
complex.

CPS components, including sensors, actuators, and computational systems, may employ diverse
technologies, communication protocols, and data formats. Integrating these components into a
cohesive system requires addressing interoperability challenges [121, 122]. Legacy systems
existing within chemical infrastructure may lack standardized interfaces or protocols, hindering
their integration with modern CPS solutions. Retrofitting legacy systems to ensure interoperability
presents additional challenges. The absence of universally accepted standards for CPS in energy
systems complicates interoperability efforts. Without standardized interfaces and protocols,
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achieving seamless integration and communication between heterogeneous components becomes
arduous [123].

Collaborative standardization efforts among industry stakeholders, regulatory bodies, and research
institutions are crucial for defining common interfaces, protocols, and data models for CPS in
energy systems. Standardization initiatives such as the Industrial Internet Consortium (IIC) [124]
and IEEE P2413 [125] provide frameworks for interoperability and integration. Middleware
platforms and middleware-as-a-service (MaaS) offerings provide abstraction layers and
standardized interfaces to facilitate interoperability between diverse CPS components. By
adopting middleware solutions, energy systems can achieve plug-and-play integration and
scalability[126,127].

8.4.5 Scalability and Complexity Management

Scalability and complexity management pose significant challenges in the deployment and
operation of CPS within energy systems. As systems expand in size and scope, managing
complexity while ensuring scalability becomes increasingly critical.

CPS in energy systems exhibit inherent complexity due to the integration of diverse components,
processes, and stakeholders. Managing this complexity requires robust design, modeling, and
optimization techniques. As energy systems evolve and expand, accommodating growing volumes
of data, devices, and users presents scalability challenges [128]. Ensuring that CPS architectures
can scale efficiently to meet evolving demands is essential for long-term viability. Resource
constraints, such as computational power, memory, and bandwidth, impose limitations on the
scalability of CPS within energy systems. Balancing resource allocation and performance
optimization becomes crucial to ensure efficient operation [129].

Distributed architectures, such as edge computing and fog computing, decentralize computational
tasks and data processing closer to the source of data generation. By distributing workload and
reducing reliance on centralized infrastructure, distributed architectures enhance scalability and
alleviate resource constraints [ 130]. Model-based design methodologies enable the abstraction and
modularization of CPS components, simplifying system design, analysis, and optimization. By
employing model-based approaches, energy systems can manage complexity effectively while
facilitating scalability and maintainability [131,132].

8.5 Cyber-Physical Prototype for Safer Energy Production — An Example via
a Modeling and Optimization Framework

The parametric optimization and control (PAROC) framework proposed by Pistikopoulos et al.
significantly contributes to the development and application of CPS by integrating various
advanced methodologies and techniques [133-139]. Figure 5 shows a step-wise procedure that
includes:
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1. Developing and validating high-fidelity models to ensure accurate representation of the
process system.

2. Simplifying complex models through system identification and model reduction
techniques to make them computationally feasible for optimization.

3. Utilizing multi-parametric programming for optimization under uncertainty and
developing explicit/multi-parametric model predictive control (mp-MPC) strategies.

4. Implementing model-predictive control and reactive scheduling to continuously update the
optimization model based on real-time data.
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Figure 5. The architecture of PAROC framework [133]
[https://www.sciencedirect.com/science/article/pii/S0009250915001451]

By combining these methodologies within the PAROC software platform, the framework supports
the design, operational optimization, and advanced control of various process systems, enhancing
their efficiency and adaptability in real-time scenarios.

In hydrogen energy systems, CPS enhances the efficiency, reliability, and safety of both hydrogen
production and utilization processes. This integration is crucial for advancing hydrogen as a viable
and sustainable energy source. Pistikopoulos et al. have been at the forefront of integrating CPS
into hydrogen fuel cells and electrolysis cells. By deploying advanced sensors, they facilitate
continuous real-time monitoring of key parameters such as temperature and electrical output. The
data collected was processed in real-time, enabling adaptive control algorithms to dynamically
adjust operating conditions. This ensures operational safety, enhances efficiency, and prolongs the
lifespan of the stacks. For example, Ogumerem et al developed a smart metal hydride hydrogen
storage (MHHS) system as shown in Figure 6 [40]. This system employs a high-fidelity dynamic
model and an explicit model predictive control (eMPC) strategy, optimized through the PAROC
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framework. The approach ensures efficient thermal management and optimal refueling operations,
maintaining safe operating temperatures and enhancing hydrogen storage efficiency. The
integration of eMPC into a microcontroller allows real-time control, reducing energy consumption
and improving the overall efficiency of the hydrogen storage process in fuel cell electric vehicles
(FCEVs) [40]. Besides, Ogumerem et al proposed an optimal thermal management strategy, which
was designed using the PAROC framework, effectively controls the operating temperature of the
proton exchange membrane water electrolysis (PEMWE) system as depicted in Figure 7 [41]. By
maintaining the differential water temperature across the electrolyzer within a safe range, the
strategy prevents thermal degradation of the polymer membranes, thus enhancing system
durability and efficiency [41]. Furthermore, Ziogou et al developed a combined approach by
integrating nonlinear model predictive control (NMPC) with multiparametric programming [ 140].
The framework was applied to a PEM fuel cell in Figure 5, maintaining stable and efficient real-
time operation under varying conditions by adjusting power, temperature, and gas flows.
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Figure 6. Process flow diagram of metal hydride hydrogen storage (MHHS) system [40]
[ https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.16680?casa_token=egfB GlpDMYA
AAAA%3AuV8Axbg82mvXjyRTdTGEFxqzpFiLORbVgbPmtwrOKnA 1JPu2eCOQYL1Rsdg5
PCWZDAgt4CY_60091k]
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Figure 7. Experimental setup of proton exchange membrane water electrolysis
(PEMWE)[41]] https://www.sciencedirect.com/science/article/abs/pii/S0959152420302092]

8.6. Conclusion

This chapter has presented a brief overview of CPS in the context of process safety, with a focus
on chemical and energy processes. We discussed how modeling, control, monitoring, and
optimization can play a significant role in the advancement of such systems towards enhancing
their efficiency, productivity, and real-time safety. We also presented a methodology framework
applied to laboratory-based energy systems, to highlight some of the challenges in the future
directions in this field.
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