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Abstract: Connectivity between physical and cyber systems has been dramatically invested over 
the last forty years, enabled by the advances of communication networks, computing power and 
automation. In this chapter, discuss the impact of such cyber-physical integration  in chemical and 
energy processes, and how the advances in process monitoring, process modeling and digital twin, 
control and optimization, coupled with artificial intelligence (AI) and machine learning (ML) 
networks can play a key role in improving the safety, efficiency and productivity of cyber-physical 
systems (CPS). We also examine challenges and future directions in this field. 
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8.1 Introduction 

Cyber-Physical Systems (CPS) refer to interconnected networks of physical components and 
computational algorithms that interact with each other and their environment. The term "Cyber-
Physical Systems" (CPS) was officially introduced by Helen Gill at the National Science 
Foundation around 2006 [1,2]. This definition underscores the integration of computational and 
physical processes. The concept of CPS builds upon earlier ideas in fields like mechatronics, 
embedded systems, and pervasive computing. The term's roots can be traced back even further, 
linking to concepts from cybernetics, a term coined by Norbert Wiener to describe the control and 
communication between the animal and the machine [3]. As illustrated in Fig. 1, the general 
architecture of a CPS includes a physical system and a cyber system featuring the convergence of 
physical processing, sensing, computation, communication, and control [4]. The physical system 
comprises physical processes, sensors, and actuators. Typically, physical processes function as 
prototype units or plants, which are managed by the cyber system. On the other hand, the cyber 
system encompasses communication networks, computing, and control centers [5]. 
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Figure 1. Typical structure of cyber-physical systems (CPS)  

With the development of internet and data technology, CPS and related technologies have 
advanced, leading to a yearly increase in corresponding publications. In Figure 2, the number of 
publications on CPS has rapidly increased, from 1,336 in 2015 to 3,349 in 2023. CPS applications 
have expanded across various disciplines such as electrical and electronic engineering, computer 
science, automation control systems, energy and fuels, and chemical engineering, as illustrated in 
Figure 3. It's worth noting that CPS in the chemical and energy sectors represents a smaller portion 
of the total. 

This chapter aims to provide a general summary of CPS in chemical engineering, focusing on 
process safety, control, and optimization. The remainder of the chapter is organized as follows: 
Section 8.2 discusses the components and architecture of CPS. Section 8.3 presents the 
applications of CPS in the chemical and energy sectors. Section 8.4 summarizes the challenges 
and future directions. Finally, Section 8.5 introduces a cyber-physical prototype for safer energy 
production, illustrated through a modeling and optimization framework.  
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Figure 2. Analyses in the field of CPS by publication year 

 

Figure 3.  Analyses in the field of CPS - representative disciplines   
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8.2 Components and Architecture of Cyber-Physical Systems 

8.2.1 Components of Cyber-Physical Systems: 

a. Sensors and Actuators 

Sensors in energy systems encompass a diverse range of technologies, including temperature 
sensors, pressure sensors, flow meters, and proximity sensors. Each type of sensor serves a specific 
purpose, capturing physical parameters crucial for monitoring and control. For instance, 
temperature sensors are employed in thermal power plants to monitor heat exchange processes, 
while flow meters measure fluid flow rates in pipelines and reactors. Sensors play a pivotal role in 
providing real-time data on process variables, equipment condition, and environmental parameters. 
This data serves as input for computational systems, enabling predictive analytics, fault detection, 
and adaptive control strategies. By continuously monitoring key parameters, sensors facilitate 
proactive decision-making and optimization of energy processes. 

Actuators convert control signals from computational systems into physical actions, exerting 
control over various components and processes within energy systems. Examples of actuators 
include control valves, motorized dampers, variable frequency drives, and hydraulic actuators. 
These actuators modulate flow rates, adjust equipment settings, and regulate energy output to 
maintain desired operating conditions. Actuators are instrumental in implementing control 
strategies to optimize energy efficiency, enhance system reliability, and mitigate operational risks. 
By modulating process variables in response to feedback from sensors and computational 
algorithms, actuators enable dynamic adjustments and fine-tuning of energy processes. This 
dynamic control capability is essential for adapting to changing demand patterns, equipment 
failures, and external disturbances. 

b. Computational Systems 

Embedded control systems serve as the computational backbone of energy systems, executing 
control algorithms and decision-making logic in real-time. These systems integrate sensor data, 
process models, and control strategies to orchestrate the operation of energy processes. Examples 
include programmable logic controllers (PLCs) [6,7], distributed control systems (DCS)[8,9], and 
supervisory control and data acquisition (SCADA) systems [10-13]. Computational systems 
analyze sensor data, implement control algorithms, and optimize energy processes to achieve 
predefined objectives such as maximizing efficiency, minimizing costs, or ensuring safety. 
Advanced computational techniques such as model predictive control (MPC), adaptive control, 
and machine learning enable predictive maintenance, energy forecasting, and adaptive 
optimization in energy systems. 

c. Communication Infrastructure: 

A robust communication infrastructure is essential for facilitating seamless interaction between 
different components of CPS. This infrastructure encompasses wired and wireless networks, 
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protocols, and standards for data exchange. Examples include Ethernet, Wi-Fi, and protocols like 
Message Queuing Telemetry Transport (MQTT) [14-16] and OPC Unified Architecture (OPC 
UA)[17-19], which enable data transmission and interoperability in energy management systems. 

8.2.2 Architecture of Cyber-Physical Systems: 

a. Layered Architecture: 

CPS often adopt a layered architecture [20-22], dividing the system into distinct layers based on 
functionality and abstraction level. Common layers include physical layer, cyber-physical layer 
and cyber layer demonstrating perception, processing, communication, and actuation. Each layer 
interacts with adjacent layers and the cyber and physical environments to achieve system 
objectives. In energy systems, this architecture enables hierarchical control and optimization of 
energy generation, transmission, and consumption [20, 23, 24].  

For example, Guzman et al. introduced a multi-layered CPS master diagram toward a combined 
safety and security risk analysis, as shown in Figure 4 [20]. The physical layer constitutes the lower 
level of the system, including the physical components, operators, and the physical dynamics that 
reflect their interactions. The middle layer, known as the cyber-physical layer, encompasses real-
time communication functions. This involves data acquisition through sensors, transmission of 
data for processing, and further monitoring and control with the deployment of control actions by 
actuators. At the top level, the cyber layer incorporates SCADA, HMIs, and supervisory computers 
that utilize cloud platforms for data visualization and parameter adjustments, among other 
functions. 
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Figure 4. Multi-layered representation of CPS and environments with information and energy 
flows. [20] [https://doi.org/10.1002/sys.21509] 

b. Distributed Control Systems: 

Distributed control systems (DCS) decentralize control functions across multiple nodes within the 
CPS [25, 26]. This architecture enhances system resilience and scalability by distributing 
computational tasks and decision-making processes. In energy systems, DCS enables localized 
control of renewable energy sources, demand response mechanisms, and grid stability measures 
[26]. 

c. Edge Computing and Cloud Integration:  

With the proliferation of Internet of Things (IoT) devices, edge computing has emerged as a critical 
component of CPS architecture [27-29]. Edge devices process data locally, reducing latency and 
bandwidth requirements, while cloud integration enables centralized storage, analytics, and 
management of data [30-33]. In chemical engineering, edge computing is deployed for real-time 
monitoring of processes, while cloud-based analytics enable predictive maintenance and 
optimization [34]. 

8.2.3 Integration of Sensors, Actuators, and Computational Systems 

Actuators are closely integrated with computational systems, receiving control signals generated 
by higher-level algorithms based on sensor inputs and system objectives. This integration enables 
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closed-loop control, where actuators continuously adjust process parameters to maintain desired 
operating conditions and respond to dynamic changes in the environment. 

8.3 Applications of Cyber-Physical Integration in Energy Systems 

The integration of Cyber-Physical Systems (CPS) in energy systems, particularly within the 
domain of chemical and energy industry, offers transformative opportunities for enhancing 
efficiency, sustainability, and resilience. In what follows, we explore various applications of CPS 
integration in energy systems, focusing on their implications for chemical processes. Through 
detailed analysis and case studies drawn from literature, we elucidate the role of CPS in optimizing 
energy utilization, improving process control, and enabling the transition towards sustainable 
energy solutions. 

8.3.1 CPS Integration in Chemical Process Design: 

a. Real-Time Optimization and Control: 

CPS integration enables real-time optimization and control of chemical processes [35, 36], 
allowing for dynamic adjustments based on changing operating conditions and energy availability. 
Literature showcases examples of model predictive control (MPC) [37, 40, 41] and advanced 
process control (APC) strategies implemented through CPS to enhance energy efficiency and 
product quality in chemical plants [38,39].  

b. Energy-Efficient Operation: 

By integrating CPS, chemical processes can be operated more energy efficiently, with real-time 
monitoring of energy consumption and process variables [42, 43]. Advanced control algorithms, 
coupled with sensor networks and actuators, facilitate energy-aware decision-making, resulting in 
reduced energy costs and environmental impact [44,45].  

8.3.2 CPS Integration in Renewable Energy Systems: 

a. Integration of Renewable Energy Sources: 

CPS plays a crucial role in the integration of renewable energy sources, such as solar and wind, 
into chemical processes [46, 47]. Literature highlights case studies where CPS-enabled smart grids 
optimize the utilization of intermittent renewable energy [46, 48], enabling chemical plants to 
adjust production schedules and energy consumption patterns accordingly[49]. For instance, this 
work discusses the use of advanced sensors, data analytics, and digital controls to enhance energy 
efficiency and real-time optimization, which highlights the importance of IIoT-enabled smart 
assets and data infrastructure for effective energy management [50]. Besides, Edgar et al presented 
a comprehensive framework for smart manufacturing that incorporates renewable hydrogen 
production. The paper introduces the Renewable Hydrogen Production and Utility Testbed 
(REHPUT), which integrates renewable power sources like solar and wind with a Proton Exchange 
Membrane (PEM) electrolyzer to produce hydrogen. This system includes hydrogen purification, 
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storage, and electricity generation, demonstrating a complete cycle of renewable energy utilization 
[51].  

b. Energy Storage and Grid Integration: 

CPS integration enables efficient energy storage and grid integration solutions for chemical 
engineering applications [52-56]. Through the deployment of smart energy storage systems and 
demand response mechanisms [57-59], chemical plants can participate in grid balancing activities, 
contributing to grid stability and the integration of renewable energy. Kakodkar et al. proposed a 
framework that integrates renewable power generation, various energy storage technologies, and 
carbon capture, utilization, and sequestration (CCUS). This study explores the use of 
electrochemical storage, pumped storage hydropower, and compressed air energy storage for 
efficient energy storage solutions. Additionally, it addresses the integration of these storage 
solutions with the grid, considering factors like round-trip efficiency, discharge rates, and storage 
losses, thereby supporting the grid's resilience and stability [60]. 

8.3.3 CPS Integration in Process Safety and Reliability: 

a. Predictive Maintenance and Safety Systems: 

CPS integration enhances process safety and reliability through predictive maintenance and safety 
monitoring systems. By leveraging sensor data and machine learning algorithms, CPS-enabled 
systems can identify potential equipment failures and safety hazards, enabling proactive 
maintenance[61, 62] and risk mitigation measures [63]. EI-Kady et al demonstrated the use of 
digital twin (DT) models for predicting failures, enhancing system reliability, and enabling 
proactive maintenance. The paper also highlights the integration of IoT sensors for continuous 
monitoring and early warning systems to improve safety and reduce unscheduled downtimes [64]. 
Additionally, Amin et al developed a holistic framework that employs Bayesian Networks (BN) to 
model the probabilistic nature of safety and security events, facilitating real-time risk analysis and 
predictive maintenance [65]. 

b. Fault Detection and Diagnosis: 

CPS integration facilitates fault detection and diagnosis in chemical processes, minimizing 
downtime and improving operational efficiency. Case studies demonstrate the implementation of 
CPS-enabled fault detection algorithms, which analyze sensor data to detect abnormal process 
behavior and diagnose root causes of equipment malfunctions [66,67]. Alauddin et al presents a 
robust neural network model for fault detection in the presence of mislabeled data. By 
incorporating data quality metrics based on Mahalanobis distances and trusted centers, the model 
enhances fault detection accuracy and robustness [68]. Wen et al. developed a risk model to 
distinguish between faults and cyberattacks, using game theory to explain conflicts, and applying 
the model to Continuous Stirred Tank Reactor (CSTR) systems. The proposed framework 
enhances fault detection and diagnosis by accurately identifying and mitigating the impact of 
cyberattacks [69]. 
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8.4 Challenges and Future Directions 

8.4.1 Advanced Modeling and Control Optimization Algorithms 

CPS in chemical engineering has revolutionized the approach to process systems, particularly in 
energy systems. The intersection of physical processes with digital controls offers unparalleled 
precision, efficiency, and adaptability. A critical component of this integration is the development 
and implementation of advanced modeling and control optimization algorithms. These algorithms 
are pivotal in addressing the dynamic and complex nature of chemical processes, ensuring optimal 
performance, and adapting to changing conditions in real-time.  

Advanced modeling techniques in CPS for chemical engineering encompass a range of methods 
designed to accurately represent the behavior of chemical processes. These include mechanistic 
models, data-driven models, and hybrid models. Mechanistic models are based on fundamental 
physical and chemical principles [70, 71]. They provide detailed insights into the process dynamics 
by incorporating equations derived from mass, energy, and momentum balances. An example is 
the use of computational fluid dynamics (CFD) to provide precise simulations of fluid behavior 
and enhancing manufacturing processes. By integrating CFD with Augmented Reality (AR), 
engineers gain improved cognitive abilities for problem-solving through interactive visualization. 
CFD's low cost, low risk, and meaningful insights offer competitive advantages in smart factories 
[72]. Additionally, CFD aids in optimizing ventilation, conditioning, and mitigating virus spread 
in industrial environments. The combination of CFD with cloud computing and big data analytics 
supports real-time decision-making and efficient system design and operation [73]. 

With the advent of big data and machine learning, data-driven models have gained prominence. 
These models utilize historical process data to predict future behavior without requiring explicit 
knowledge of the underlying physical phenomena. Techniques such as neural networks and 
support vector machines have been applied to model complex processes like distillation columns 
[74-76] and polymerization reactors [77,78].  

Combining the strengths of mechanistic and data-driven approaches, hybrid models offer a 
balanced solution. They leverage mechanistic models to ensure physical plausibility and use data-
driven methods to capture complex, nonlinear relationships that are difficult to model 
mechanistically [79]. An example is the hybrid modeling framework combining a nominal term, 
based on physicochemical principles, with a deviation term, which captures the effects of high-
dimensional factors using machine learning. This approach enhances modeling accuracy by 
leveraging comprehensive state space (CSS) for real-time data and visualization. [80] 

Control optimization in CPS involves developing algorithms that can handle the complexity and 
variability of chemical processes. These algorithms aim to achieve objectives such as maximizing 
efficiency, minimizing energy consumption, and maintaining product quality. Model predictive 
control (MPC) is widely used due to its ability to handle multivariable control problems with 
constraints. It predicts future process behavior using a dynamic model and optimizes control 
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actions by solving a finite-horizon optimization problem at each time step. For example, the 
integration of stochastic MPC allows for handling probabilistic constraints, further improving CPS 
resilience and efficiency by allowing controlled violations of constraints when necessary [81]. 
Moreover, MPC in CPS enhances security and efficiency by leveraging cloud-edge computing. 
The MPCaaSS framework optimizes control parameters in the cloud and executes real-time control 
at the edge, ensuring robust performance against cyber threats and external disturbances through 
secure data transmission protocols [82]. The MPC strategy was employed to enhance CPS 
resilience by mitigating the effects of Denial-of-Service (DoS) attacks. It ensures stability and 
performance through optimization, even under constrained communication conditions [83]. 

Reinforcement Learning (RL) is an emerging approach in control optimization, where an agent 
learns optimal control strategies through trial and error interactions with the process environment. 
This method has been applied to coordinate actions among agents in dynamic environments, 
improving system robustness to changes. Specifically, RL applied to energy optimization in CPS, 
such as micro-grids with variable electricity prices, enhances the adaptive response of agents to 
environmental fluctuations, resulting in efficient energy usage and high productivity across 
interconnected systems.[84]. The parallel RL framework uses bidirectional LSTM networks for 
energy management in hybrid electric powertrains, optimizing control strategies in dynamic 
environments. This approach significantly improves fuel economy and system performance 
compared to traditional methods [85].  

Robust and adaptive control techniques are designed to maintain optimal performance in the 
presence of uncertainties and disturbances, which ensure stability and performance across a range 
of operating conditions, while adaptive control methods adjust control parameters in real-time 
based on process feedback. Examples include adaptive control for mitigating sensor and actuator 
attacks.[86-88]. He et al summarized the role of robust control in addressing the challenges posed 
by multiple uncertainties, such as unknown disturbances, time-varying delays, and stochastic 
malicious attacks. By utilizing Lyapunov–Krasovskii functional (LKF) with advanced integral 
inequalities, robust control strategies ensure system stability with less conservatism. Applications, 
like load frequency control (LFC) in power systems, demonstrate the effectiveness of these 
methods in real-world scenarios.[89] 

The future of CPS in chemical engineering relies heavily on the continued development and 
refinement of advanced modeling and control optimization algorithms. These tools are essential 
for addressing the challenges of complex, dynamic processes and unlocking new levels of 
efficiency and sustainability in energy systems. As these algorithms evolve, they will enable more 
intelligent, responsive, and resilient chemical processes, paving the way for significant 
advancements in the field. 

8.4.2 Artificial Intelligence (AI)  and Machine Learning (ML) for Data Analytics 

The advent of CPS in chemical engineering has opened new avenues for optimizing process 
systems, particularly in energy systems. A pivotal aspect of this transformation is the application 
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of AI and ML for data analytics. These technologies enable the extraction of valuable insights from 
vast amounts of process data, driving improvements in efficiency, reliability, and sustainability. 
This section delves into the advanced AI and ML techniques used in data analytics, their 
applications in chemical engineering, and future directions for research and development. 

Supervised learning algorithms are widely used for predictive modeling in chemical processes. 
Techniques such as linear regression [90-92], support vector machines (SVM) [93,94], and neural 
networks [95,96] learn from historical data to predict future outcomes.  

Unsupervised learning methods, including clustering [97] and principal component analysis 
(PCA)[98,99], are crucial for exploratory data analysis. These techniques help identify patterns 
and anomalies in process data without prior labels. Clustering algorithms like k-means have been 
used to segment operational states in chemical plants, facilitating better process monitoring and 
control [100,101]. 

Deep learning, particularly deep neural networks (DNN), has revolutionized data analytics by 
enabling the modeling of highly complex, nonlinear relationships in process data. For instance, 
convolutional neural networks (CNNs) has applied in CPS for detecting anomalies and cyber 
attacks in industrial control systems (ICS). They achieve this by extracting local features from time 
series data. Compared to traditional recurrent neural networks, CNNs offer faster training and 
execution, and they excel in handling complex multivariate time series prediction tasks [102]. Also, 
recurrent neural networks (RNNs) are essential in CPS for modeling dynamic, nonlinear processes 
in chemical engineering. They excel in handling high settling times and frequent interventions, 
making them suitable for system dynamics, real-time predictions, and optimizing control processes
[103]. 

The future of AI and ML in data analytics for chemical engineering lies in several key areas. The 
integration of AI and ML with IoT devices will enhance real-time data collection and analysis. 
This synergy will enable more responsive and adaptive process control, improving efficiency and 
reducing waste [104]. As AI models become more complex, there is a growing need for explainable 
artificial intelligence (XAI) techniques aim to make AI decisions transparent and understandable, 
which is crucial for gaining trust and ensuring compliance with safety regulations in chemical 
engineering [105-106]. Besides, deploying AI algorithms at the edge, closer to the data source, can 
significantly reduce latency and improve real-time decision-making [107]. This approach is 
particularly beneficial for time-sensitive applications in chemical processes. In addition, 
combining mechanistic models with AI and ML techniques will enhance the robustness and 
accuracy of process models [108,109]. These hybrid models can leverage the strengths of both 
approaches, providing more comprehensive solutions for complex chemical engineering problems. 
In addition, AI and intelligence augmentation (IA) enable proactive monitoring and predictive 
maintenance, reducing downtime, optimizing operations, and improving safety, where IA 
collaborates with humans for decision-making, ensuring a balance between efficiency and safety 
[110]. Last but not least, AI and ML are transforming data analytics in chemical engineering, 
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particularly in the context of cyber-physical systems in energy systems [111]. These technologies 
enable more efficient, reliable, and sustainable process operations by extracting valuable insights 
from data. As AI and ML continue to evolve, their integration with emerging technologies and 
methodologies will drive further advancements, addressing the challenges and unlocking new 
opportunities in chemical engineering. 

8.4.3 Data Security and Privacy Concerns  

The integration of Cyber-Physical Systems (CPS) in energy systems brings forth significant data 
security and privacy concerns. As these systems rely heavily on data collection, communication, 
and analysis, ensuring the confidentiality, integrity, and availability of sensitive information 
becomes paramount. 

The proliferation of cyber threats poses a constant risk to CPS in energy systems [112,113]. 
Malicious actors may exploit vulnerabilities in communication networks or compromise sensor 
data, leading to potential disruptions or sabotage. The collection and storage of vast amounts of 
data raise concerns about data privacy [114]. Unauthorized access or disclosure of sensitive 
information could violate privacy regulations and undermine public trust. Establishing secure 
communication channels between components of CPS is essential to prevent unauthorized access 
and data tampering. Encryption, authentication, and access control mechanisms must be 
implemented to safeguard data in transit [113]. 

Blockchain technology offers a decentralized and tamper-proof approach to data management, 
enhancing security and transparency in CPS for energy systems [115-117]. By leveraging 
blockchain-based solutions, stakeholders can ensure the integrity and immutability of critical data 
[118,119]. Advancements in privacy-preserving techniques, such as homomorphic encryption and 
differential privacy, enable the analysis of sensitive data without compromising individual privacy 
[120]. By integrating these techniques into CPS, energy systems can mitigate privacy concerns 
while leveraging data for optimization and decision-making. 

8.4.4 Interoperability and Standardization  

Interoperability and standardization remain key challenges in the integration of CPS within energy 
systems. As CPS components are often sourced from different vendors and operate within 
heterogeneous environments, ensuring seamless communication and interoperability becomes 
complex. 

CPS components, including sensors, actuators, and computational systems, may employ diverse 
technologies, communication protocols, and data formats. Integrating these components into a 
cohesive system requires addressing interoperability challenges [121, 122]. Legacy systems 
existing within chemical infrastructure may lack standardized interfaces or protocols, hindering 
their integration with modern CPS solutions. Retrofitting legacy systems to ensure interoperability 
presents additional challenges. The absence of universally accepted standards for CPS in energy 
systems complicates interoperability efforts. Without standardized interfaces and protocols, 
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achieving seamless integration and communication between heterogeneous components becomes 
arduous [123]. 

Collaborative standardization efforts among industry stakeholders, regulatory bodies, and research 
institutions are crucial for defining common interfaces, protocols, and data models for CPS in 
energy systems. Standardization initiatives such as the Industrial Internet Consortium (IIC) [124] 
and IEEE P2413 [125] provide frameworks for interoperability and integration. Middleware 
platforms and middleware-as-a-service (MaaS) offerings provide abstraction layers and 
standardized interfaces to facilitate interoperability between diverse CPS components. By 
adopting middleware solutions, energy systems can achieve plug-and-play integration and 
scalability[126,127]. 

8.4.5 Scalability and Complexity Management 

Scalability and complexity management pose significant challenges in the deployment and 
operation of CPS within energy systems. As systems expand in size and scope, managing 
complexity while ensuring scalability becomes increasingly critical. 

CPS in energy systems exhibit inherent complexity due to the integration of diverse components, 
processes, and stakeholders. Managing this complexity requires robust design, modeling, and 
optimization techniques. As energy systems evolve and expand, accommodating growing volumes 
of data, devices, and users presents scalability challenges [128]. Ensuring that CPS architectures 
can scale efficiently to meet evolving demands is essential for long-term viability. Resource 
constraints, such as computational power, memory, and bandwidth, impose limitations on the 
scalability of CPS within energy systems. Balancing resource allocation and performance 
optimization becomes crucial to ensure efficient operation [129]. 

Distributed architectures, such as edge computing and fog computing, decentralize computational 
tasks and data processing closer to the source of data generation. By distributing workload and 
reducing reliance on centralized infrastructure, distributed architectures enhance scalability and 
alleviate resource constraints [130]. Model-based design methodologies enable the abstraction and 
modularization of CPS components, simplifying system design, analysis, and optimization. By 
employing model-based approaches, energy systems can manage complexity effectively while 
facilitating scalability and maintainability [131,132]. 

8.5 Cyber-Physical Prototype for Safer Energy Production – An Example via  
a Modeling and Optimization Framework  

The parametric optimization and control (PAROC) framework proposed by Pistikopoulos et al. 
significantly contributes to the development and application of CPS by integrating various 
advanced methodologies and techniques [133-139]. Figure 5 shows a step-wise procedure that 
includes:  
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1. Developing and validating high-fidelity models to ensure accurate representation of the 
process system. 

2. Simplifying complex models through system identification and model reduction 
techniques to make them computationally feasible for optimization. 

3. Utilizing multi-parametric programming for optimization under uncertainty and 
developing explicit/multi-parametric model predictive control (mp-MPC) strategies. 

4. Implementing model-predictive control and reactive scheduling to continuously update the 
optimization model based on real-time data. 

 

Figure 5. The architecture of PAROC framework [133] 
[https://www.sciencedirect.com/science/article/pii/S0009250915001451] 

By combining these methodologies within the PAROC software platform, the framework supports 
the design, operational optimization, and advanced control of various process systems, enhancing 
their efficiency and adaptability in real-time scenarios. 

In hydrogen energy systems, CPS enhances the efficiency, reliability, and safety of both hydrogen 
production and utilization processes. This integration is crucial for advancing hydrogen as a viable 
and sustainable energy source. Pistikopoulos et al. have been at the forefront of integrating CPS 
into hydrogen fuel cells and electrolysis cells. By deploying advanced sensors, they facilitate 
continuous real-time monitoring of key parameters such as temperature and electrical output. The 
data collected was processed in real-time, enabling adaptive control algorithms to dynamically 
adjust operating conditions. This ensures operational safety, enhances efficiency, and prolongs the 
lifespan of the stacks. For example, Ogumerem et al developed a smart metal hydride hydrogen 
storage (MHHS) system as shown in Figure 6 [40]. This system employs a high-fidelity dynamic 
model and an explicit model predictive control (eMPC) strategy, optimized through the PAROC 
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framework. The approach ensures efficient thermal management and optimal refueling operations, 
maintaining safe operating temperatures and enhancing hydrogen storage efficiency. The 
integration of eMPC into a microcontroller allows real-time control, reducing energy consumption 
and improving the overall efficiency of the hydrogen storage process in fuel cell electric vehicles 
(FCEVs) [40]. Besides, Ogumerem et al proposed an optimal thermal management strategy, which 
was designed using the PAROC framework, effectively controls the operating temperature of the 
proton exchange membrane water electrolysis (PEMWE) system as depicted in Figure 7 [41]. By 
maintaining the differential water temperature across the electrolyzer within a safe range, the 
strategy prevents thermal degradation of the polymer membranes, thus enhancing system 
durability and efficiency [41]. Furthermore, Ziogou et al developed a combined approach by 
integrating nonlinear model predictive control (NMPC) with multiparametric programming [140]. 
The framework was applied to a PEM fuel cell in Figure 5, maintaining stable and efficient real-
time operation under varying conditions by adjusting power, temperature, and gas flows.  

 

Figure 6. Process flow diagram of metal hydride hydrogen storage (MHHS) system [40] 
[ https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/aic.16680?casa_token=egfB_G1pDMYA
AAAA%3AuV8Axbg82mvXjyRTdTGEFxqzpFiL0RbVgbPmtwrOKnA_lJPu2eCOQYL1Rsdg5
PCWZDAgt4CY_60o9lk] 
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Figure 7. Experimental setup of proton exchange membrane water electrolysis 
(PEMWE)[41][ https://www.sciencedirect.com/science/article/abs/pii/S0959152420302092] 

 

8.6. Conclusion 

This chapter has presented a brief overview of CPS in the context of process safety, with a focus 
on chemical and energy processes. We discussed how modeling, control, monitoring, and 
optimization can play a significant role in the advancement of such systems towards enhancing 
their efficiency, productivity, and real-time safety. We also presented a methodology framework 
applied to laboratory-based energy systems, to highlight some of the challenges in the future 
directions in this field. 
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