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Abstract

This paper discusses the construction, fine-
tuning, and deployment of BeaverTalk!, a cas-
caded system for speech-to-text translation as
part of the IWSLT 2025 simultaneous transla-
tion task. The system architecture employs a
VAD segmenter for breaking a speech stream
into segments, Whisper Large V2 for automatic
speech recognition (ASR), and Gemma 3 12B
for simultaneous translation. Regarding the si-
multaneous translation LLM, it is fine-tuned
via low-rank adaptors (LoRAs) for a conver-
sational prompting strategy that leverages a
single prior-sentence memory bank from the
source language as context. The cascaded sys-
tem participated in the English—German and
English—Chinese language directions for both
the low and high latency regimes. In partic-
ular, on the English—German task, the sys-
tem achieves a BLEU of 24.64 and 27.83 ata
StreamLAAL of 1837.86 and 3343.73, respec-
tively. Then, on the English—Chinese task, the
system achieves a BLEU of 34.07 and 37.23
at a StreamLLAAL of 2216.99 and 3521.35, re-
spectively.

1 Introduction

This paper covers Oregon State University’s simul-
taneous translation system, BeaverTalk, for IWSLT
2025. The system constructed takes in a speech
stream input and outputs text translation in a cas-
caded manner for two language pairs, those being
English—German (en—de) and English—Chinese
(en—zh). Unique to IWSLT 2025’s simultaneous
translation task (Abdulmumin et al., 2025), this
system generates translation for unsegmented au-
dio. Architecture-wise, the system includes a VAD
speech segmenter (Team, 2024), breaking a speech
stream into segments, Whisper Large V2 (Radford
et al., 2022) performing automatic speech recogni-
tion (ASR), and a fine-tuned Gemma 3 12B model

'Our fine-tuning and evaluation code is available at https:
//github.com/0SU-STARLAB/BeaverTalk

(Team et al., 2025) that performs context-aware
conversational prompting to generate a simultane-
ous translation.

The simultaneous translation portion of this cas-
caded system is fine-tuned on OpenSubtitles v2018
(Lison et al., 2018) across both language pairs.
Given the unsegmented source for this task, lever-
aging additional context is possible and likely to
improve results, based on prior work (Papi et al.,
2024). As such, our system utilizes a single-
sentence memory bank for the source language
as context. This memory bank required modifying
the typical conversational prompting structure for
simultaneous translation(Wang et al., 2024).

Although a fine-tuned Gemma 3 12B leveraging
conversational prompting is a powerful model for
simultaneous translation, its application in a cas-
caded architecture suffers from typical issues of
error propagation (Tran et al., 2022; Zhou et al.,
2024). As such, maximizing the capabilities of a
powerful simultaneous translation LLM requires
minimizing these errors in the preceding steps, con-
sisting of the VAD segmenter and Whisper ASR
model. As such, we conduct an extensive inference
time hyperparameter search aimed at minimizing
error propagation. From the joint contributions of
our cascaded simultaneous translation system and
minimization of error propagation, we achieve im-
pressive results on the ACL 60/60 development set.
For example, on the English—German language
pair, our cascaded system achieves a BLEU of
24.64 and 27.83 at a streamLAAL of 1837.86 and
3343.73. Furthermore, on the English—Chinese
task, our system achieves a BLEU of 34.07 and
37.23 at a streamLAAL of 2216.99 and 3521.35.

2 Task Description

Simultaneous translation, generally speaking, is
the process of taking in some source context and
making translation decisions to another language
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Figure 1: Depiction of the cascaded system described in this technical paper. Unsegmented source audio is taken in
and fed into an ASR pipeline that segments the audio and then transcribes it into a hard text data modality. This
segmented, running transcription is then fed into a simultaneous translation pipeline powered by Gemma 3. The
transcription and current translation are fed into a conversational prompt constructor, adapted from prior work.

in a manner that does not rely on that source con-
text being complete. For example, typical neural
machine translation (NMT) might act on a sentence-
to-sentence basis, taking in a source sentence and
outputting a target sentence. In comparison, a si-
multaneous translation must balance the lagging
factor of output translations (i.e., the time it takes
from a piece of source context to a correspond-
ing piece of the output translation) with translation
quality, making translation decisions with only par-
tial context.

As previously mentioned, the IWSLT 2025 si-
multaneous translation task (Abdulmumin et al.,
2025) is fundamentally a speech-to-text task with
two tracks governing what systems participants
are expected to build: text-to-text where partici-
pants only construct a simultaneous agent for text
data and prepend this system with an ASR model
and speech-to-text where the simultaneous system
takes in raw speech and outputs target translations
in text without the need for a conversion to a text
data modality. Our constructed system targets the
text-to-text track, and since it is applied to the
English—German (en—de) and English—Chinese
(en—zh) language directions, it is restricted to pre-
defined high and low latency regimes specified by
the task. These two latency regimes, as specified
below, are governed by non-computationally aware
StreamLAAL in seconds (s):

* en—de: 0-2s (low), 2-4s (high);

e en—zh: 0-2.5s (low), 2.5-4s (high).

The required development set for en—de and
en—zh is ACL 60/60. A blind test set is employed
for final evaluations.

3 BeaverTalk: A System Description

Our simultaneous translation system consists of a
cascaded architecture, which is divided into a VAD
segmenter utilizing a Silero VAD model (Team,
2024), Whisper Large V2 (Radford et al., 2022),
and a fine-tuned Gemma 3 (Team et al., 2025) for
simultaneous translation. In the system, Gemma
3 was fine-tuned for a conversational prompting
strategy (Wang et al., 2024), which is designed to
mimic a streaming setting. Our complete system is
provided in Figure 1.

Our choice of a cascaded architecture rather than
an end-to-end system hinges on our desire to (1)
leverage the language modeling capabilities of an
LLM to overcome contextual obstacles faced dur-
ing simultaneous translation, (2) take advantage
of an LL.Ms context understanding capabilities to
harness prior sentence context in a stream of data,
and (3) benchmark the fine-tuning and multilin-
gual capabilities of the recent Gemma 3 (Team
et al., 2025). To provide a deeper understanding of
our designed system, we will first explain the fine-
tuning approach for our translation LLM to enable
conversational prompting, followed by a deeper
explanation of our cascaded translation system.

3.1 SFT Conversational Prompting

We conduct supervised fine-tuning (SFT) for our
Gemma 3 LLM for translation using a conversa-
tional prompting strategy that leverages a prior sen-
tence memory bank as context. The prompting
strategy is designed whereby provided a source se-
quence S = [s1, 82, ..., 5|g|] and a target sequence
T = [t1,t2, ..., t7|] the prompt will interleave sub-
sequences from S and 7" leveraging delimiting to-
kens to separate the subsequences. Now suppose
we had prior sentence context C' = [¢y, ¢a, ..., c|C|],
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Use the following sentence as context: ci, . . ., ¢|¢|
Now translate the following sentence from X to Y Assistant:

{ SEREBGi 000 56 8i</t>ty, ..., t;</s> } @ [ <S><E>Sp, .y 8 S|s|</t>ty, .. tip|</s> }

Figure 2: An example conversational prompt for translating for source language X to target language Y using source
and target sequences S = [s1, 52, ..., |g|] and T = [t1,t, ..., 7] with context C' = [c1, ¢a, ..., ¢|¢|]-

then an example of a conversational prompt con-
structed from these components is provided in Fig-
ure 2.

Aside from the prior sentence memory bank,
which we inject into our prompt, our conversa-
tional prompting follows a similar implementation
to Wang et al. (2024). The approach for generating
this conversational prompting (the green region in
Figure 2) can be broken into the following three
steps:

1. Generate the alignments between words in the
source and the target sequences. Unlike Wang
et al. (2024), which uses fast-align (Dyer et al.,
2013), we use the Itermax method from the
SimAlign toolkit leveraging XLM-RoBERTa
base to align words due to their work reporting
better alignments (Jalili Sabet et al., 2020;
Conneau et al., 2019).

2. Segment the graph into subsequences such
that all the word dependencies for each tar-
get subsequence are available in or before the
respective source subsequence. For example,
assuming we did not perform step 3, in Fig-
ure 2 every word in the subsequence t1, ...t;
aligns with each word in sy, ..., s;.

3. Merge and shift subsequences to break the
ideal alignments. Such a step is necessary to
aid in making the LLM flexible for different
variations of subsequences received during
inference.

Once the prompt is constructed, we fine-tune our
LLM using a causal language modeling objective
using cross-entropy loss. We ensure that loss is
only computed for tokens between the delimiting
tokens </t>, not inclusive, and </s>, inclusive.
Suppose our conversational prompt possesses K
conversation intervals (ie. the number of times<s>
appears in the prompt of Figure 2), where the be-
ginning and end of each conversation interval are
at index si and e;. Then we can represent such a
loss objective with Equation 1.

K eg
L= logpp(ti| s<i) (1)

k=1 i:Sk

The purpose of such a loss is to ensure that the
model learns to predict </s> whenever it has insuf-
ficient context at inference. In doing so our LLM
learns a portion of the decision policy in conjunc-
tion with the translation objective.

3.2 Streaming Cascaded SimulST System

As we leverage a cascaded architecture we will
break our explanation into (1) the Segmented ASR
Pipeline, the part responsible for segmenting and
transcribing a speech stream (shown in the left half
of Figure 1), and (2) the Simultaneous Translation
LLM Pipeline, the part responsible for translating
the transcribed speech (shown in the right half of
Figure 1).

3.2.1 Segmented ASR Pipeline

The first part of our Segmented ASR Pipeline is
the VAD segmenter. As previously mentioned, it
segments a speech signal. This segmentation is
based on (1) the maximum segment duration, (2)
the maximum unvoiced duration, and (3) the voice
probability threshold. As the name implies, the
maximum segment duration determines the max-
imum length of a valid segment. If the segment
duration exceeds the maximum segment duration,
it is cut. The maximum unvoiced duration and
the voice probability threshold alternatively rely
on one another to determine when to segment the
speech input prior to reaching the maximum seg-
ment duration. The first part of this second facet
of segmentation begins with the Silero VAD model
(Team, 2024). This VAD model outputs a proba-
bility score of a specific sample containing audio
of a speaker’s voice. If the score falls below the
voice probability threshold, it is determined that
there is currently no voice from the speaker. When
the score has been below the probability threshold
for longer than the maximum unvoiced duration,
the speech is segmented. Such a condition would
be ideally met between pauses in speech or at the
end of a sentence.

The Whisper ASR model (Radford et al., 2022)
interacts with the VAD segmenter by receiving the
segmented audio inputs. The Whisper portion of
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the Segmented ASR Pipeline is designed to have
Whisper transcribe the audio input using a stable
transcription policy, leveraging a context mech-
anism. The stable transcription policy followed
aims to create consistent, accurate transcriptions.
It works by committing a transcription to a sta-
ble transcription buffer once it repeats a transcrip-
tion for a given audio interval. For example, if on
the first interval Whisper transcribes the sequence
s1, S2, S3, 54 and then on the second interval it tran-
scribes s1, s2, 83, ), S5, 6, only the s1, s2, s3 will
be committed to the stable transcription. Once com-
mitted as a stable transcription, it becomes avail-
able to the Simultaneous Translation LLM Pipeline
for translation. To further improve transcription
quality, Whisper is also provided with additional
context from a context buffer. The context buffer
is designed to provide Whisper with the transcript
from the previous segment. However, if the pre-
vious segment exceeds the cutoff threshold, the
number of context words is limited to be equal to
the cutoff threshold.

3.2.2 Simultaneous Translation LLLM Pipeline

As previously explained in Section 3.1, our Gemma
3 (Team et al., 2025) based simultaneous trans-
lation model follows a conversational prompting
strategy utilizing a prior sentence memory bank as
context. It is designed to firstly place the running
stream of transcription chunks from the Segmented
ASR Pipeline into a buffer upon receipt. Such a
buffer will retain already translated portions of the
transcript so long as the sentence these translated
portions are associated with has yet to be com-
pleted.

Once the buffer has been extended, it is passed to
a Spacy sentence tokenizer, which splits the buffer
of words into sentences. Upon splitting the buffer
into sentences, the pipeline will enter a translation
generation loop, where a translation action will
occur if one of two conditions is met. These condi-
tions consist of (1) the length of untranslated words
in the buffer has exceeded a prespecified minimum
chunk size or (2) the sentence tokenizer has split
the buffer into more than 1 sentence.

Once a translation action is triggered, the first
step is to construct a conversational prompt. The
conversational prompt is constructed identically to
the one in Figure 2 by appending the new source
subsequence from the oldest sentence in the buffer
after a <t> delimiter following the previous trans-
lation action conversational prompt. In order to

ensure the model understands it is a conversation
phase after the source sequence, the </t> delimiter
is appended. The new source subsequence length
is equal to the untranslated word count present in
the current sentence. We require such a condition
as allowing for multiple sentences in the source
subsequence would deviate from the fine-tuning
setting, where only a single sentence was allowed
at any time in the conversational prompt (a restric-
tion by the dataset). Once constructed, the prompt
is provided to the LLM to produce a translation
until it outputs the delimiting token </s>. The out-
put translation is added to a running translation to
be reused in prompt construction for subsequent
translation phases.

Upon completing the translation, if the sentence
tokenizer determined there was more than a single
sentence in the buffer, it would signify that the
current sentence had completed translation. As
such, the translated sentence transcript is cached
to be used as context for the subsequent sentence.
Additionally, its contents would be removed from
the transcription buffer. Further translation phases
would occur if conditions (1) and (2) were once
again met.

4 Experimental Setup

The dataset of choice for fine-tuning is OpenSubti-
tles v2018. This corpus is particularly noisy (e.g.
some Chinese translations are almost entirely En-
glish, mismatched translations to transcriptions,
etc.), rendering it difficult to achieve reasonable
initial results. Given that, some cleaning of the
dataset is required. This occurs in four steps, the
third of which only occurs for the en—zh dataset
split:

1. Filtering all samples on length such that the
source and memory bank sequence are greater
than or equal to 25 characters.

2. Filtering all samples with ..., ’[’,’], ’(, ’)’,
or consisting of only capital letters and replac-

ing ’-’ with empty space.

3. Filtering all samples in the en—zh language
split that contain English words in the target

column.
4. Filtering all remaining samples via
CometKiwi (Rei et al.,, 2022) with a

thresholding score of 0.6 to ensure semantic
similarity between the transcription and
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Table 1: Comparison table for simultaneous translation experiments, organized by language pair and model size.

Language Pair | Model Size | Latency Regime | BLEU 1 | StreamLAAL |

4B low 23.64 1958.22

en_de high 25.22 3503.46
12B low 24.64 1837.86

high 27.83 3343.73

AB low 32.81 2249.32

en_zh high 34.62 3190.68
19B low 34.07 2216.99

high 37.23 3521.35

the reference translation. This is meant to 5 Results

minimize the likelihood of a mismatched
transcription and translation.

The fine-tuning pipeline that employs the afore-
mentioned dataset is based on frameworks for si-
multaneous translation with LLMs provided in
prior work (Agostinelli et al., 2024; Raffel et al.,
2024), which were then adapted for unsegmented
fine-tuning and evaluation.

Fine-tuning occurred on Gemma 3 4B/12B via
LoRAs with quantization (Hu et al., 2021; Dettmers
et al., 2023). The LoRA adapters were applied to
all attention projections and all the feed-forward
network linear projections. We chose a LoRA r
of 64, a LoRA « of 16, and a LoRA dropout of
0.1. Our quantization quantized to 4-bit floating
point via NormalFloat with a compute data type of
bfloat16. We used the Paged 32-bit Adamw opti-
mizer and an inverse sqrt learning rate scheduler
with an effective batch size of 64, a learning rate of
2¢~4, a weight decay of 0.1, a max gradient norm
of 1, and a warm-up ratio of 0.03.

We evaluate the translation quality of our models
using BLEU score with sacreBLEU (Post, 2018).
The latency is reported using StreamLAAL (Papi
et al., 2024). For the en—de language direction,
the latency and BLEU scores are reported at the
word level using the 13a tokenizer. Alternatively,
for the en—zh language direction, the latency and
BLEU scores are reported at the character level.

Our fine-tuning and evaluation for the Gemma
12B models was conducted on an NVIDIA H200.
Alternatively, the Gemma 4B models were trained
on a NVIDIA A40 and evaluated on a NVIDIA
V100.

5.1 Inference Hyperparameter Tuning

For our system, we tuned the maximum unvoiced
duration (MUD), the voice probability threshold
(VPT), the maximum segment duration (MSD), and
the minimum chunk size (MCS). We immediately
found that a maximum unvoiced duration greater
than 0.1 s would deteriorate performance, so we
kept that constant for our experimentation. Due
to our 12B Gemma 3 model requiring an H200 to
evaluate (a byproduct of memory requirements),
we selected inference hyperparameters using a 4B
Gemma 3 model, which could run on a V100. Such
a choice is feasible due to the cascaded structure of
our architecture. This is a byproduct of the maxi-
mum unvoiced duration, voice probability thresh-
old, and maximum segment duration only influenc-
ing the quality of the transcriptions from the Seg-
mented ASR Pipeline. If the transcription related
hyperparameters are tuned properly, the Gemma 3
translation model will perform better irrespective
of the model size.

We began our inference hyperparameter search
by fixing our translation minimum chunk size to 3
words on the en—de language pair and 5 words on
the en—zh language pair. These minimum chunk
sizes were chosen to accommodate the en—de lan-
guage pair, having a low latency cutoff of 2s, and
the en—zh language pair, having a low latency
cutoff of 2.5s. We then iteratively searched for
the optimal maximum segment duration and voice
probability threshold for both the low and high la-
tency regimes. We report these results in Tables
2 and 3 for en—de and en—zh language pairs, re-
spectively.

From observing, Table 2 we can see for the low
latency regime of the en—de language pair the only
selection of hyperparameters that fall below the 2s
threshold is with a voice probability threshold of
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Table 2: Simultaneous translation results for en—de
organized by voice probability threshold (VPT) and
maximum segment duration (MSD) with a minimum
chunk size of 3.

VPT | MSD | BLEU 1 | StreamLAAL |
0.1 0.5 23.43 2079.14
0.1 1 24.86 2677.30
0.1 1.5 25.02 3114.15
0.3 0.5 23.36 2047.62
0.3 1 25.01 24717.67
0.3 1.5 25.05 2877.81
0.5 0.5 23.59 1940.58
0.5 1 24.96 2356.68
0.5 1.5 24.82 2804.01

Table 3: Simultaneous translation results for en—zh
organized by voice probability threshold (VPT) and
maximum segment duration (MSD) with a minimum
chunk size of 5.

VPT | MSD | BLEU 1 | StreamLAAL |
0.1 0.5 33.16 2294.95
0.1 1 33.57 2979.20
0.1 1.5 34.11 3382.83
0.3 0.5 32.47 2307.56
0.3 1 33.36 2851.60
0.3 1.5 33.70 3206.28
0.5 0.5 32.81 2249.32
0.5 1 33.31 2728.01
0.5 1.5 34.62 3190.68

0.5 and a maximum segment duration of 0.5s. Al-
ternatively, for the high latency regime, we select a
voice probability threshold of 0.3 and a maximum
segment duration of 1. We chose the maximum
segment duration of 1s rather than 1.5s due to the
increase in StreamLLAAL. We report our final se-
lected maximum unvoiced duration, voice proba-
bility threshold, and maximum segment duration
in Table 4 for the en—de language pair.

Table 4: Inference hyperparameters for en—de.

Latency | MUD | VPT | MSD | MCS
low 0.1 0.5 0.5 3
high 0.1 0.3 1 7

On the high latency regime of the en—zh from
observing Table 3 we chose a voice probability
threshold of 0.5 with a maximum segment duration
of 1.5s due to the high BLEU achieved. Then, for
the low-latency regime, we chose a voice probabil-

Table 5: Inference hyperparameters for en—zh.

Latency | MUD | VPT | MSD | MCS
low 0.1 0.5 0.5 5
high 0.1 0.5 1.5 7

ity threshold of 0.5 and a maximum segment dura-
tion of 0.5 to align with our high-latency regime.
We report our final selected maximum unvoiced
duration, voice probability threshold, and maxi-
mum segment duration in Table 5 for the en—zh
language pair.

Using the optimal maximum unvoiced duration,
voice probability threshold, and maximum segment
duration from Tables 4 and 5 of our previous search,
we iteratively step through a minimum chunk size
of 1, 3, 5, and 7. We report the results for the
BLEU and StreamLLAAL for each given chunk size
for both language pairs at the low and high latency
regimes in Figure 3. Our final selected minimum
chunk size for each latency regime is reported in
Tables 2 and 3.

36 —e— enf‘de—high ‘ ‘ /./‘.—_‘.
32 | o Sen < |
D en-zh-low
m 28| N
—
SEDYAR //—.—4 )
20 L | | | | | i
1,000 1,500 2,000 2,500 3,000 3,500 4,000

StreamLLAAL

Figure 3: BLEU score plotted against StreamLLAAL on
the en—de and en—zh language pairs for minimum
chunk sizes of 1, 3, 5, 7.

5.2 Quality and Latency Results on Dev set

We provide the quality and latency of our system
in Table 1 on the ACL 60/60 dev set for the en—de
and en—zh language pairs. For each language pair,
we show the influence of model size on our sys-
tem’s BLEU score. From the results in Table 1, we
can see that increasing the model size from 4B to
12B can offer approximately a 2 BLEU increase.
We choose to submit the 12B Gemma 3 transla-
tion model version of our cascaded architecture to
the IWSLT 2025 simultaneous track (Abdulmumin
et al., 2025). On the en—de language pair, we
achieve a BLEU of 24.64 and 27.83 on the low and
high latency regimes. Then on the en—zh language
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pair, we achieve a BLEU of 34.07 and 37.23 on the
low and high latency regimes.

6 Conclusion

In this paper, we provide Oregon State University’s
system, BeaverTalk, designed for the low and high
latency regimes of the en—de and en—zh language
pairs as a part of the IWSLT 2025 simultaneous
track. Our system consists of a cascaded archi-
tecture composed of a VAD speech segmenter, a
Whisper ASR model, and a Gemma 3 translation
LLM using conversational prompting. We provide
an extensive inference hyperparameter search for
our system and demonstrate its performance uti-
lizing a 4B and 12B translation LLM. Our final
submitted model, composed of the 12B translation
LLM, demonstrates strong results on the en—de
and en—zh language pairs for both the low and
high latency categories.
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