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ABSTRACT Given their potential to demonstrate near-term quantum advantage, variational quantum al-
gorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for
VQA parameter optimization, it remains a significant challenge. A practical issue is that quantum noise is
highly unstable and thus it is likely to shift in real time. This presents a critical problem as an optimized
VQA ansatz may not perform effectively under a different noise environment. For the first time, we explore
how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as
a random variable with an unknown probability density function (PDF), and we assume that the PDF may
shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization
problem, with the goal of finding parameters that maintain effectiveness under shifted noise. We utilize a
distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical
evidence in both the quantum approximate optimization algorithm and the variational quantum eigensolver
with hardware-efficient ansatz, indicating that we can identify parameters that perform more robustly under
shifted noise. We regard this work as the first step toward improving the reliability of VQAs influenced by
shifted noise from the parameter optimization perspective.

INDEX TERMS Bayesian optimization (BO), distributionally robust optimization (DRO), noise shift,

variational quantum algorithms (VQAsS).

I. INTRODUCTION
Variational quantum algorithms (VQAs) [1] have the poten-
tial to demonstrate quantum advantage and have been applied
in diverse fields, such as optimization [2], [3], finance [4], [5],
[6], machine learning [7], [8], [9], quantum simulation [10],
[11], [12], and chemistry [13], [14], [15]. However, parame-
ter optimization is a substantial challenge for VQAs [16].
Numerous efforts have been made to optimize VQA
parameters [17], [18], [19], [20]. One critical challenge
for VQA parameter optimization is quantum noise [21],
[22], [23], which limits their capabilities and introduces
additional complexities to parameter optimization. Model-
ing and mitigating hardware noise is a core part of noisy
intermediate-scale quantum (NISQ) algorithms [24], [25],
[26]. Quantifying and improving the reliability and ro-
bustness of a VQA has been an important task and has
gained increasing attention recently. To name a few, machine

learning methods have been used to estimate the reliability of
a quantum circuit [27]; noise-aware ansatz design method-
ologies [28] and robust circuit realization from a lower level
abstraction [29], [30] have also been investigated.

A more challenging yet practical problem is the instability
of quantum noise. Suppose that we have an accurate model
of the quantum noise as a reference. However, the quan-
tum noise can change significantly under different environ-
mental conditions in real time, making the reference noise
model inaccurate. Burnett et al. [31] showed that the noise
fluctuation is usually less disinclined. Some studies [32],
[33] have considered the reproducibility and stability un-
der different noise models. We refer to this phenomenon
of noise change as “noise shift.” The optimization of varia-
tional quantum circuits and error mitigation under real-time
noise has gained attention recently [34], [35], [36], [37],
[38].
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FIG. 1. Overview of the distributionally robust VQAs. Given an ideal ansatz and noise model, we assume that the noise level is a random variable that
can change in real time. We have samples of the noise level variable £ from a reference distribution, ansatz parameter 6, and the corresponding VQA
performance £ (¢, £). With the shifted noise, the VQA landscape and its optimum 6 can potentially change. Specifically, the optimal 6 under a certain noise
level may not perform well under another noise level. Likewise, an optimal ¢ under a reference noise level PDF may not perform well under another
noise level PDF. To address the landscape shift, we reformulate the parameter optimization problem as a min-max formulation to find a robust
parameter 6. In other words, we aim to optimize the performance under the worst-case noise level PDF. We use a distributionally robust BO solver to
solve the new parameter optimization formulation, which is still handled by classical computers.

In this article, we ask a fundamental question: Can we
optimize the VQA parameters such that they are robust to
potentially shifted (unknown) noise? We assume that we have
access to a fixed noise model, but the actual noise level is an
unknown random variable with an unknown probability den-
sity function (PDF). This fixed PDF represents our limited
knowledge about the potential noise shift.

To optimize VQA parameters under such unknown noise,
for the first time, we propose a new min—-max optimiza-
tion formulation. Such an optimization formulation is called
distributionally robust optimization (DRO) in the classical
operation research community [39], [40], [41], [42]. DRO
is an advanced optimization framework that aims to find
solutions resilient against a range of possible probability dis-
tributions rather than a single expected distribution. In our
context, we aim to optimize parameters against the worst-
case distribution of noise levels. This task, while distinct,
complements error mitigation efforts. Rather than attempting
to reduce quantum noise, our approach focuses on optimizing
parameters in the presence of potentially shifting noise. Fur-
thermore, our method allows for seamless integration with
various error mitigation techniques.

Article contributions: In this work, we investigate the
problem formulation, numerical solver, and validation of
VQA training under unknown shifted noise. The overview
is illustrated in Fig. 1. Our specific contributions include the
following.

1) To be robust against the shifted noise, we formulate
the problem of optimizing VQA algorithms as a DRO

3102112

that aims to optimize a targeted performance under
the worst-case noise distribution. We characterize the
quantum noise using a fixed noise model with uncer-
tain and varying levels of strengths, where the noise
level is a random variable with an unknown PDF.

2) To solve the DRO, we model the unknown PDF as a
distributional uncertainty set that is defined by max-
imum mean discrepancy (MMD). We then solve the
min-max problem utilizing a distributionally robust
Bayesian optimization (DRBO) method [43], [44],
[45]. Recently, Bayesian optimization (BO) has at-
tracted attention in the field of quantum algorithm op-
timization [46], [47], [48], [49], [50], [51], [52], [53],
[54], [55], [56].

3) We validate the proposed min—max formulation on
two well-recognized VQAs, namely, quantum approx-
imate optimization algorithm (QAOA) for the MaxCut
problem and variational quantum eigensolver (VQE)
with hardware-efficient ansatz for the 1-D Heisen-
berg model. Numerical results show that the proposed
parameter optimization algorithm outperforms con-
ventional methods under shifted noise conditions.

Il. PROBLEM FORMULATION

VQAs are a class of algorithms in quantum computing that
utilize a hybrid approach, combining classical and quantum
computing resources to solve computational problems. They
are especially pertinent for use with NISQ devices, which are
the currently available quantum hardware.
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The core idea of VQAs is to define a parameterized quan-
tum circuit (ansatz) that manipulates the state of a quantum
system in a way that depends on a set of parameters 6. These
parameters are then optimized classically to minimize an ob-
jective function (¥ (0)|O|¥(0)), where ¥(0) is the resulting
noiseless quantum state from the parameterized anstaz, O is
an observable of interest, and the objective function is eval-
uated by the quantum system. However, due to the hardware
noise, the actual ansatz and the resulting noisy quantum state
P differ from the ideal ones.

The quantum noise N for a quantum system with state P
is characterized as

NP) = ZEiPEj (1)

where E; are Kraus operators satisfying > " E,-EZ.L = L In this
article, we use amplitude and phase damping channels as the
noise model because such a noise model has been shown to
shift the optimal parameter of a VQA [57]. The amplitude
damping noise describes the energy dissipation of quantum
systems, whose Kraus operator formulation on a single qubit
is

N (P) = EoPE} + EPE] )
with Eg = <(1) J%) and E| = (g */5‘7>. The phase

damping noise describes the quantum information loss with-
out the energy loss, whose Kraus operator formulation on a
single qubit is

N(P) = EoPE{ + E(PE] 3)
with Eg = ((1) \/127,,[1) and E| = ((0) \/EW) . To integrate

these two amplitude and phase damping noise channels, the
combined Kraus operator is as follows:

2
N®) =) EPE] @)
i=0
. _ 1 0 _ 0 \/M _
with Eg = (0 mm), E = (o o ), and E; =
0 0
(o VT~ pu m) The parameters p,q and p,q are strongly

related to the 77 and 7, time of quantum hardware. In
this article, we assume an equal probability of two damp-
ing channels puq = ppq = p for simplicity. We do not
expect such noise modeling to capture practical hard-
ware noise accurately but only use it for proof of
concept.

A. DRO FORMULATION OF VQAS

We assume that we have access to the fixed noise model, i.e.,
the fixed Kraus presentation (4), but do not know the precise
noise level p. We model p as a random variable, which fol-
lows a certain PDF & ~ p(&). Let f(0, &) = Tr[P(0, £)O] be
the quantity of interest evaluated by an ansatz parameterized
by @ under a noise level &, where P(0, &) is the resulting noisy
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quantum state. A standard parameter optimization of a VQA
becomes stochastic programming

min - By)[f(8. )] (&)

Note that we here consider the 1-D noise level for simplicity.
It can be seamlessly extended to a high-dimensional case.
However, due to the real-time fluctuation of quantum
noise, the actual PDF of the noise level can shift and become
unknown. As a result, we assume that p(£) is not exactly
known and it can be any PDF inside a set P, which makes it
impossible to obtain a deterministic value of E,)[f(0, §)].
As a result, we try to optimize the worst-case value of

E,e)[f (8, £)] by solving

min sup
€

Eoe)lf(8,8)]. (6)
0 p@E)ep

When the uncertainty set degenerates to P = {p(§)}, prob-
lem (6) degenerates to the standard stochastic optimization
problem in (5). On the other hand, the problem degenerates
to a robust optimization under the worst noise level when the
PDF of a noise level degenerates to a Dirac function.

The distributionally robust circuit optimization (6) may be
intractable in practice because of the following holds:

1) P may contain an infinite number of PDFs describing
process variations;

2) the min—max problem is hard to solve by nature;

3) we do not have an analytical form for f(6, £ ) under the
presence of noise.

11l. PROPOSED SOLVER

In this section, we properly define the PDF uncertainty set
‘P and solve problem (6) leveraging DRBO [43], [45], [58]
developed recently in the machine learning community.

A. DISTRIBUTION UNCERTAINTY SET

We model the PDF uncertainty set P as a ball whose center is
the nominal distribution pg(&) of the noise level, and radius
¢ is measured by a distribution divergence D

P = B(po) = {p : D(po, p) < ¢} (7

There are many options for the divergence D, including
MMD, Wasserstein distance, and ¢-divergence[39]. Here,
we choose the MMD.

MMD aims to compare the means of samples drawn from
two distributions in a high-dimensional reproducing kernel
Hilbert space (RKHS) induced by a positive definite ker-
nel function [59]. For the tractability of the problem, we
discretize the noise level in a finite space E with n parts.
Then, let Hj, be an RKHS with corresponding kernel &y :
E x E — R, we can embed the distributions pg (similarly
for p) into H,, via the mean embedding

mp, ‘= EENpO [kM(E9 )]a
<mp0’ kM(E/a )) = Eé‘"’po [kM(g/’ S)]a

such that

V&€ € E.
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Then, the MMD between two distributions pg and p over &
is defined as

D(po, p) := llmp, —mypll3 ®)

where || - ||y = +/{-, -) is the Hilbert norm. Let w; = po(&;)
and w; = p(&) be the density probability of two dis-
crete distributions, if we replace the expectation with the
empirical expectation, i.e., m, = Z?:l wiky (&, -) and
my =Y wwiky(&, ), (8) can be written as

Dipo, p) = /(W — W) M(w — W) ©)

where M;; = ky(&;, &;) is the kernel matrix.

B. DRO MAIN WORKFLOW
By modeling the distribution uncertainty set defined via
MMD, the DRO problem (6) becomes tractable. The main
steps are summarized below.

1) Step 1: Characterize the nominal noise distribution pg.
2) Step 2: Given a current 6, solve the inner problem to
determine the worst-case PDF of &

sup E,e)[f (0, 6)] =
p(&):D(po,p)<e
max (W, fo) (10)
wiw =1,
O=wi<l Vjelnl,

A/ (w—w’)TM(w—w’)Ss

where fp := f(0,-) € R" is the output with a given
parameter 6.
3) Step 3: Solve the outer problem to update 6

m(}n (W, fa). (11
4) Step 4: If not converge, go back to Step 2.

Specifically, Step 2 can be solved analytically via convex
programming as it is a second-order cone programming with
respect to the worst-case distribution w’. Step 3 can be solved
via a numerical optimizer. However, one of the challenges in
steps 2 and 3 is that we need to simulate multiple f(6, &),
which can be expensive in practice. To address the computa-
tional issue, we apply a BO solver to the workflow. The key
idea is to sequentially learn a surrogate model of f(6, &) and
optimize it by iteratively adding informative samples.

C. BO SOLVER FOR DRO PROBLEM

Next, we explain how to solve DRO via BO with a few quan-
tum circuit simulations. BO sequentially builds a probabilis-
tic surrogate model of f(@, &) and explores the design space
by minimizing an acquisition function. The overall DRBO
algorithm is summarized in Algorithm 1.

We first construct a probabilistic surrogate model f 0, %),
which can estimate both the output and its uncertainty given
aninput (0, £). Here, we use the Gaussian process regression
(GPR) model GP(#, &) as the surrogate f (0, &). Then, we
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Algorithm 1: Overall DRBO Algorithm With GP.

Input: Initial sample set Sy = {6", &7, £(6", )M,
reference PDF of noise level py(&) with
po(&i) = w;, Vi = [n], uncertainty ball radius &,
maximum iteration 7’

Output: The optimal circuit design variables 6*

1: fort=1,2,...,7T do

2: Construct a GP model as the probabilistic
surrogate model f(0, &) = GP(8, &) based on
Si—1

3: Define
LCB(0,§) := n(GP(0,§)) — B-0(GP8,§))

4. Define the PDF of the worst-case distribution
w' := argmax,, (W, LCB(0, &)) s.t.
wwl;=1,0< w} <1,Vj € [n], and
W —wly <e

5: Solve the robust parameter
0, = argming(w’, LCB(®, &))

6: Sample K noise levels from the reference PDF
& ~ po and simulate f(0;, &), for
k=1,2,...,K

7: Augment data set
S < S U0, &, f(0,, ék))}szl

8: end for

9:  Return optimal 6*

use its lower confidence bound (LCB) to replace the original
objective function (6, &) in (10) and (11) in steps 2—4

f(6,8) — LCB(8, &) = n(GP0.§)) — B-o(GP8,§))
(12)
where (+) and o (+) denote the estimated mean and standard
deviation, respectively, and § is a parameter to balance the
model exploitation and exploration.

Gaussian Process Surrogate: To build the GPR model, we
need to predefine the mean function m(-) and the kernel func-
tion kgp(-, -). Given a dataset X = {x'}¥, = {#', £}" | and
their simulation outputs y = {f(x') + €};Z,, the GP model
assumes that the simulation outputs follows a Gaussian
distribution[60]:

Prob(y) = N(ylu, K) 13)

where p € RM is the mean vector with ui = m(x) and, K €
RMXM js the covariance matrix with K; j = kgp(x;,Xx;). The
measurement noise is characterized as a white noise € in the
simulation output.

Then, the GP model can offer a probabilistic prediction of
anew data X', GP(x') ~ N(u(x), o2(x')), as follows:

-1
nx) =kep (. X)" (K+€1) 'y

o? (x') = kgp (X, X') —kgp (X, X)T<K + 621)71
kgp (X, 0).
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In our cases, we choose the prior mean a; m(x) =0 and
I1%;=x),1

use the RBF kernel kgp(X;,X;) =¢ 212” . Note that the

kernel kgp used in GPR differs from the kernel function ky,

employed in MMD. Apart from the Gaussian process, there

are various other surrogate models that can be utilized.

Optimal Selection: Regarding the selection of an optimal
solution, it turns out to be nontrivial. Since we want to es-
timate the expectation over the noise distribution, it will be
too expensive to estimate with real quantum devices. Instead,
we choose the solution with maximized model posterior, i.e.,
we chogse the @ = argmax, Ep(g)[u(f(ﬁ, EN] = (w, u(fp)),
where fp is the mean prediction from f with a given param-
eter 6. It is a common strategy for similar conditions [61],
[62].

In addition, an accurate estimation over f (0, -) will benefit
our model output. For this motivation, at the end of each
iteration in Algorithm 1, we can add a batch of samples of
& from E in step 3. It can help build a better probabilistic
model and fasten the BO solver convergence.

Remarks: One possible further improvement is to treat the
BO solver as a warm-start procedure. After returning a few
high-quality solutions from BO, we can conduct the local
numerical optimization by taking them as the initial. The
local search step may introduce additional computational
cost and need more calling of f(0, &) instead of the surrogate
model, but it can lead to a potentially better solution. The
hybrid of different solvers is also a common strategy in VQA
parameter optimization [49], [63].

The proposed DRO can easily degenerate into stochastic
optimization or robust optimization. Stochastic optimization,
namely (5), does not consider the real-time change of the
noise. Robust optimization degenerates the PDF of the noise
level p(&) to a single scalar. This case can easily lead to
overconservative parameter optimization.

The current distribution uncertainty set modeling of MMD
has the great power of capturing the worst-case distribution.
However, we need to discretize the noise level PDF in or-
der to estimate the MMD efficiently. There exist some other
approaches to modeling the uncertainty set that do not dis-
cretize the noise level such as f-divergence modeling [45].
Meanwhile, some alternative uncertainty set modeling could
potentially reduce the computational overhead of estimating
worst-case distribution (10) [45], [64], [65] iteratively. How-
ever, they may not perform well in our experiments due to
the unfitted modeling of shifted noise level distribution.

IV. NUMERICAL EXPERIMENTS
We validate the distributionally robust formulation of opti-
mizing VQA parameters (6) in two widely used VQA appli-
cations: one is using QAOA for MaxCut and the other one is
using VQE for a 1-D Heisenberg model.

Here, we conduct the numerical experiments on a sim-
ulator in order to adjust the noise level easily and corre-
spondingly to validate the method. To apply the distributional
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robustness formulation in hardware experiments, the estima-
tion of the noise model and noise level is another challenge,
which is out of the scope of this work.

Baselines: We compared the proposed DRBO solver to
two standard BO methods for solving stochastic optimiza-
tion, one is with an LCB acquisition function (BO-LCB) and
the other one is with an expectation improvement acquisition
function (BO-EI) [66], and robust BO (BO-Stable) [67].

In BO-LCB, we target problem (5) with a fixed refer-
ence distribution of noise level po (&) using a BO approach.
We use the same GP surrogate model and its LCB as (12),
but without solving the outer problem (11). Specifically,
the lines 4 and 5 of Algorithm 1 are combined as solving
ming(w, LCB(#, §)).

In BO-EI, we replace the above LCB function with the
EI acquisition function. Let §~ be the best sample with the
smallest value f(0~, &) so far. The EI acquisition function is
defined as

EI(0,&) = ®(2) (f(07, &) — n(GP(8, £)))
+ ¢(2)o (GP(0. §)) (14)

where

__ [Leaparesn o gp.e) > 0
0. o (GP®,£) =0

and ®(-) and ¢(-) are the cumulative distribution function
and the PDF of the standard normal distribution, respectively.
In the literature of applying BO for learning VQAs, there
exists the usage of variant kernel functions and acquisition
functions under different noisy environments. However, they
can all be categorized as standard BO as they consider a fixed
noise model only.

In BO-Stable, we target a shift-aware problem but only
focus on the worst noise level instead of the worst distribu-
tional noise level. We use the same GP surrogate model and
its LCB as (12). Differing from using DRBO for problem (6),
the lines 4 and 5 of Algorithm 1 are replaced with solving
ming LCB(#, £*) where given a 6, the worst £* is defined as
§* := argmax; LCB(0, &).

To compare these different VQA parameter optimization
methods, we first obtain their different optimized parameters
and evaluate them under different levels of noise p(&). In
the simulation, we used the giskit_aer noisy simulator with
the statevector backend, whose simulation algorithm is the
Monte Carlo trajectory approach. In one circuit trajectory,
a Kraus operator is randomly applied on an ideal gate with
probability that is defined by the noise channel. The multi-
qubit noise channel is defined as the tensor product of single-
qubit noise ones (4).

A. NUMERICAL EXPERIMENTS ON QAOA

QAOA is a leading VQA for combinatorial optimiza-
tion problems. It alternatively applies two operators, a
phase-separation operator and a mixer operator, to drive a
quantum system to the target solution state. A noiseless
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FIG. 2. Results for solving N = 14 3-regular graph MaxCut problems via QAOA. The x-axis denotes the significance of noise shift, where the noise level
PDF is the reference one at x = 0. The y-axis is the expectation of the approximation ratio of the QAOA solution evaluated at different noise PDFs. We
report the average result over ten nonisomorphic graphs. As we can see, the standard BO-LCB and BO-El solutions have the best performance under the
reference noise. However, under an increasingly shifted noise, the DRBO solution begins to outperform the standard BO solutions. Meanwhile, the
BO-Stable solution is overconservative with respect to the noise. It significantly scarifies the performance under the reference PDF and the slightly
shifted PDFs to gain an improvement under significant shifts. These observations are consistent in the experiments with different QAOA depths.

QAOA solution is denoted as ¥ (#) = e BrHue=ivpHr ..
e BBy o=iyiHp |0y

We will take the MaxCut problem as a case study of
QAOA. Given a graph G = (V, E) with vertices V and edges
E, the MaxCut problem aims to find a cut that partitions the
graph vertices into two sets with the largest number of edges.
Its cost function is written as

C= Y l-ss; (15)

(i,))eE

where s; and s are binary variables associated with the ver-
tices in V, which assume value 1 or —1 depending on which
of the two partitions defined by the cut are assigned. Its
cost Hamiltonian is defined as He = Z(w)eE %(I —7Z,Z)),
where Z; denotes a Pauli-Z operator.

In applying QAOA for solving the MaxCut problem,
given a noise model with noise level &, we aim to opti-
mize the QAOA parameters § = (p, ) such that the re-
sulting quantum state P(#, &) has minimal energy f(0, £) =
Tr[P(#, £)Hc]. Considering the uncertainty and fluctuation
of noise level, we aim to find parameters 6 that make QAOA
performance more robust toward the shifted noise by solving
the DRO problem (6).

Here, we discretize the noise level into 20 bins in [0,0.08]
evenly. We assume that the reference noise follows a trun-
cated Gaussian distribution, with the noise fluctuation shift-
ing its mean to a larger value. We first generate a truncated
Gaussian distribution with mean —0.01 and standard devi-
ation 0.01. We estimate the probability density at each dis-
cretized level and do the normalization to obtain the refer-
ence PDF of the noise level. We follow a similar procedure
to generate the PDF of shifted noise by shifting the mean of
the initial truncated Gaussian distribution.

To begin with, for a depth-p QAOA ansatz, we initialize
the sampling set Sy = {¢", &', £(6", )M, by taking M =
20p, where @' is drawn from the design space based on a
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Latin hypercube approach [68], and the noise level samples
&' are drawn from the reference distribution po(£). We set the
maximum BO iterations as 7 = 20p.

As shown in Fig. 2, we evaluate different BO-based pa-
rameter optimization results on ten graphs with degree-3
and graph size N = 14. We report the average approxima-
tion ratio results under different shifted noise levels. The
x-axis denotes the index of the levels of noise shift, with
a higher one denoting a more significant shift, and index-0
denotes the reference noise. Since we solve the optimal
under shifted noise, the DRBO-solved QAOA is expected
to perform worse than the one solved from a standard BO
solver under the reference noise. However, as the noise shift
becomes more and more significant, the DRBO solution be-
gins to show its advantages. Notably, BO-Stable performs
better than BO-LCB and BO-EI under a significantly shifted
noise as well. However, it is also overconservative under the
reference noise since it only considers a single worst noise
level. The results and observations are consistent over differ-
ent QAOA depths.

We plot the solution during the BO iterations in Fig. 3.
During the iteration, the performance is evaluated under the
optimal solution selected from the maximum posterior rather
than from the solution of an acquisition function. We show
the performance evaluated under the reference noise and
the shifted noise. During the iterations, DRBO consistently
converges to a shifted-noise preferred solution, whereas the
LCB converges to a reference-noise preferred one. We also
show the PDFs of the reference noise, shifted noise, and the
worst case that is estimated by the DRBO algorithm. We can
see that the MMD approach successfully captures the shifted
noise under the worse-case distribution, enabling the DRBO
to explore the parameters space that performs better under
shifted noise.

More results on MaxCut with graph size N = §, 10, 12
and QAOA depth p = 1, 2, 3 are shown in Fig. 4. The results
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FIG. 3. One example of evolving of solution in different BO algorithms. The x-axis is the iterations in a BO algorithm, and the y-axis is the expectation of
cost function evaluated over noise level at a ¢. The evaluated ¢ at one iteration is obtained by maximizing the model posterior, which is unnecessary to
be the explored ¢ at that iteration. Under the reference noise PDF, the BO-LCB algorithm converges to a better solution, whereas the DRBO converges to
a better solution under the shifted noise. The rightmost figure shows the example PDFs of the reference noise level, shifted noise level, and the
estimated worst-case noise level from the DRBO algorithm.

-+ BO-EI =~ —— BO-LCB --F-- BO-Stable —4- DRBO

0.8

0.7

0.6
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FIG. 4. More results on the MaxCut experiments with graph sizes N = 8, 10, 12 and QAOA depth p = 1, 2, 3. While potentially sacrificing the
performance under the reference noise a little, the DRBO solution performs better than standard BO methods under the significantly shifted noise.
Meanwhile, BO-Stable solutions are overconservative.

are consistent with the ones in Fig. 2. The DRBO solution algorithms exploit the space surrounding the optimal param-
performs better than the baselines under significantly shifted eter under the reference noise. Therefore, the DRBO could
noise, which demonstrates that our method could optimize find a parameter that performs better under shifted noise.

the VQA parameters that are more robust to the shifted noise.

One example of the newly samp]ed 0 with pP= 1is plotted B. NUMERICAL EXPERIMENTS ON VQE

in Fig. 5. The DRBO algorithm explores the parameter space VQE is another popular VQA, specifically designed to sim-
toward the optimal one under a shifted noise, while the other ulate quantum systems and find the ground state energy
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FIG. 5. Example of explored 6 in p = 1 noisy QAOA cost landscape in a
N = 8 MaxCut problem. The optimum ¢ differs from the noiseless
optimum. Compared with the BO-LCB and BO-Stable, the DRBO explores
the parameter space that performs well under the shifted noise.

of quantum systems. We use the VQE algorithm with a
hardware-efficient ansatz [69] for simulating the ground en-
ergy of a 1-D Heisenberg model defined as

H=J) XXj1 +Y Yy +ZiZip  +BY Z; (16)
1 l

where J is the strength of the spin—spin interaction and B
is the magnetic field along the Z-direction. Here, we use
a hardware-efficient ansatz to implement the VQE algo-
rithm. Given an ansatz parameterized by 6 and under a noise
model with noise level &, we denote the state as P(@, £). The
noisy VQE algorithm cost function is defined as f(8, &) =
Tr[P(#, £ )H]. Here, we aim to find the ansatz parameters that
lead to robust performance under shifted noise by solving the
DRO problem (6).

Here, we discretize the noise level into 20 bins in [0,0,08]
evenly. We assume that the reference noise follows a trun-
cated Gaussian distribution, and the changing noise shifts
its mean to a larger value. The hardware-efficiency ansatz
is set up, as shown in Fig. 6. The number of parameters
grows quickly and becomes challenging for a BO solver. For
simplicity, we only optimize the last N parameters and fix
the others, similar to the idea of layerwise optimization in
[70]. For the demonstration purpose, the fixed parameters are
obtained through a multistart classical optimization routine.
We follow the same procedure as QAOA to set up the noise
level distribution of both the reference and the shifted ones.

In Fig. 7, we show the ground energy solved for a 6-
spin system with J = 1and B = 0.2, whose ground state
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FIG. 6. Schematic of the hardware-efficient ansatz for VQE. The layers of
two-qubit entanglement and one-qubit rotation gates are repeated for
L-1 times.
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FIG. 7. Results for solving the ground energy of a 6-spin,

J =1 and B = 0.2 1-D Heisenberg model via VQE with two-layer
hardware efficient ansatz. The x-axis denotes the significance of noise
shift, where the noise level PDF is the reference one at x = 0. We first
obtained the optimal parameter 6, in a noiseless simulation, which
solves the problem perfectly with f(6o) = —4.8. Then, we report the

E&)[f0.01-E () [f6g,
relative improvement of the energy M. Under all the
o(5)[f00,)]

shifted distributions, BO-LCB performs close to ¢,. DRBO scarifies limited
performance under mild noise and performs much better than the
BO-LCB, BO-El, and noiseless optimal 0, in significantly shifted noise.
BO-LCB and BO-El are almost overlapping since they both have solutions
close to 6y. While the BO-Stable can also find the robust parameter
under the shifted noise, it does not perform as well as DRBO, especially
when the noise shift is mild.

is highly entangled, from a two-layer hardware-efficiency
ansatz. Aiming to optimize the last layer parameters, we
initialize the sampling set with M = 40 and set the maximum
BO iteration T = 40 as well. Similar to the QAOA results,
DRBO performs better than BO-LCB and BO-EI under a
significantly shifted noise. Furthermore, the DRBO solution
minimally compromises the reference noise performance,
whereas Bo-Stable tends to produce overly conservative re-
sults.
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V. DISCUSSION
A. RELATED WORKS OF BO
BO has been a prominent technique in addressing VQA
learning tasks. For instance, Self et al. [48] implemented
a parallel optimization scheme, enhancing the efficiency of
optimizing VQA parameters across multiple similar prob-
lems by leveraging information sharing within BO. Duffield
et al. [47] used Bayesian inference to reduce the redundancy
of the parameterized circuit, ending with a shallower and
more robust VQA ansatz. Iannelli and Jansen [46] used the
standard BO techniques to optimize parameters for noisy
VQE. Miiller et al. [49] proposed a hybrid approach, utiliz-
ing BO solutions as warm starts and transitioning to multi-
start local search from optimized Bayesian samples. Tibaldi
et al. [50] specifically applied BO to optimize QAOA param-
eters. FinZgar et al. [51] demonstrated the efficiency of BO
in optimizing parameterized quantum annealing schedules.
Tamiya and Yamasaki [52] introduced stochastic gradient
line BO, leveraging BO to adjust step sizes in stochastic gra-
dient descent, thereby reducing measurement-shot costs in
optimizing VQA parameters. Kim and Wang [53] extended
standard QAOA with two mixers and optimized circuit pa-
rameters through BO. Buenache and Montserrat [54] utilized
a VQE-kernel to construct a Gaussian process model, lever-
aging specific circuit properties as physics-informed priors
and introducing a novel acquisition function to exploit the
inductive bias of the kernel. Ravi et al. [55] aimed to initialize
good ansatz by fully exploring the Clifford parameter space
through BO, where all simulations can be performed clas-
sically. Cheng et al. [56] introduced a novel BO approach,
optimizing QAOA parameters by constructing a surrogate
model with constraints derived from two adaptive regions.
Among all the above literature, it is hard to justify the best
BO techniques since they use different surrogate modeling
techniques, acquisition functions under different noise mod-
els, and target different applications. However, they can be
all viewed as standard BO setups as they all aim to optimize
either the parameter or ansatz architecture of VQA under
a fixed noise environment. None of them shared the same
shift-aware problem setup as ours.

B. LANDSCAPE SHIFT
Sharma et al. [57] showed that the optimal variational param-
eters are unaffected by a broad class of noise models, such as
measurement noise, gate noise, and Pauli channel noise. This
phenomenon is called optimal parameter resilience. Mean-
while, some noise can shift the location of minima. A rich of
work has studied how quantum noise can influence the VQA
landscape [71], [72], [73]. We highlight that the shift location
of optimal parameters motivates our work, i.e., given that
the optimal parameter will change under different (shifted)
noise, we aim to find optimal parameters with robust perfor-
mance under the shifted noise environment.

In our simulation, we use the phase and amplitude damp-
ing noise model, which has been shown to change the values
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of optimal parameters. The landscape with a changed or un-
changed optimum is illustrated in Fig. 8.

C. VARIANT PROBLEM FORMULATION

Radius varying formulation: Beyond optimization under
varying noise, another case where the DRO can be applied
is to calibrate the noise estimation. Assume that we do not
have a precise enough estimation of the real noise level dis-
tribution as the reference distribution. The key idea is that as
we collect more data on the noise level, we can have a more
accurate estimation of its PDF. Therefore, as the iteration
continues, we can gradually refine the center py(§) of the
uncertainty ball and reduce its radius ¢.

Gate error modeling: Beyond modeling hardware noise,
another possible modeling is on the gate error f(6 + &) of a
parameterized quantum circuit, which assumes that the gate
parameters are not exactly implemented but suffer from some
coherent errors. In such a formulation, under different error
levels of &, the optimal @ will clearly have different values.
The DRO formulation can optimize the VQA to find param-
eters that are robust to the shifted gate errors. A robustness
analysis of such a formulation is discussed in [74]. It is also of
great interest to connect the gate error with a more detailed
control error and apply the proposed shift-aware optimiza-
tion at the physical level, but it is out of the scope of this
article.

VI. CONCLUSION AND OPPORTUNITIES

Quantum noise has been a major obstacle to the practical
applications of near-term quantum computers, particularly
in VQAs. Despite various error mitigation techniques have
been intensively studied, the dynamic nature of quantum
noise presents a formidable challenge. Optimized VQA pa-
rameters may perform suboptimally when exposed to differ-
ent noise environments.

In this article, we have presented a DRO formulation de-
signed to enhance the robustness of VQA parameters against
varying quantum noise conditions. Our approach leverages
a DRBO solver, efficiently tackling the proposed formula-
tion. We validate the proposed method in two widely rec-
ognized VQA benchmarks: QAOA for MaxCut and VQE
with hardware-efficient ansatz for 1-D Heisenberg model.
The proposed DRO formulation does not aim to mitigate in-
herent quantum noise directly. Instead, it addresses the noise
at the algorithmic level. It can be potentially integrated with
various error mitigation techniques to further improve the
VQA robustness.

Our formulation can be more impactful in scenarios in-
volving large-size problems. As we scale up to larger prob-
lems or deeper VQA ansatz, even minor fluctuations in
noise levels can significantly affect performance. For in-
stance, implementing QAOA for larger problems necessi-
tates deeper circuit depths, amplifying the influence of even
slight shifts in noise levels on VQA performance. Therefore,
optimization VQA parameters under such shifts becomes
increasingly critical.
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FIG. 8. Example of energy landscapes under different noise models. The left heatmap is the depth-1 QAOA landscape for the MaxCut problem. The color
denotes the solved energy. The optimal point in this landscape is highlighted as a triangle. The middle heatmap is the landscape under simple Pauli
errors, which has been shown not to change the VQA optimal and uniformly flatten the landscape. The right heatmap is the landscape under the phase
and amplitude damping noise, where the optimum is shifted and the energy landscape has a different shape. Under the noise, both the middle and the

right ones have worse energies than the left noise-free landscape.

To integrate the proposed distributionally robust formula-
tion into more practical use cases, a better knowledge of noise
models is highly desired. More specifically, in this article, we
characterize quantum noise by a fixed noise model, such as
(4), and model the noise level as a random variable with an
unknown PDF. Such mathematical modeling may not capture
the actual hardware noise well since the noise characteri-
zation is in principle challenging. Another point is that we
also need to model the uncertainty ball carefully. To make
sure the optimized parameters perform well under the actual
shifted noise, we need to tune the radius of uncertainty ball ¢
such that the shifted noise is lying with the ball and is close
to the worst case within the ball. Otherwise, the proposed
DRBO may become overconservative, as shown in Figs. 2, 4,
and 7.

To improve the solver of DRO, some better techniques
that do not need to discretize the noise level or efficiently
handle high-dimensional parameter optimization of @ can be
developed.

We also have applied a similar DRO formulation for clas-
sical circuit optimization [75], where we identified the shifts
of process variations. In this article, we focus on handling
the parameter optimization of noisy variation quantum al-
gorithms. Differing from the work in [75], the noise source
and modeling in this article are distinct, characterized by a
fixed noise model with different levels of strength. We used
MMD to define the uncertainty ball such that the shift-aware
problem is solved in a two-step process. In addition, we
study its quantum applications from the energy landscape
perspective, which is much less studied in classical circuit
applications. There is a great thread studying the energy land-
scape of VQAs, such as [76], [77], and [78]. We believe our
shift-aware optimization is interesting and could be inspiring
to the community.

ACKNOWLEDGMENT
The views, opinions, and/or findings expressed are those of
the authors and should not be interpreted as representing the

3102112

official views or policies of the Department of Defense, the
Department of Energy, or the U.S. Government.

REFERENCES

[1] M. Cerezo et al., “Variational quantum algorithms,” Nature Rev. Phys.,
vol. 3, no. 9, pp. 625-644, 2021, doi: 10.1038/s42254-021-00348-9.

[2] N. Moll et al., “Quantum optimization using variational algorithms
on near-term quantum devices,” Quantum Sci. Technol., vol. 3, no. 3,
Jun. 2018, Art. no. 030503, doi: 10.1088/2058-9565/aab822.

[3] D. J. Egger, J. Marecek, and S. Woerner, “Warm-starting quantum
optimization,” Quantum, vol. 5, 2021, Art. no. 479, doi: 10.48550/
arXiv.2009.10095.

[4] Z.He et al., “Alignment between initial state and mixer improves QAOA
performance for constrained optimization,” npj Quantum Inf., vol. 9, no. 1,
2023, Art. no. 121, doi: 10.1038/s41534-023-00787-5.

[5] R. Orts, S. Mugel, and E. Lizaso, “Quantum computing for finance:
Overview and prospects,” Rev. Phys., vol. 4, 2019, Art. no. 100028,
doi: 10.1016/j.revip.2019.100028.

[6] D. Herman et al., “Quantum computing for finance,” Nature Rev. Phys.,
vol. 5, no. 8, pp. 450-465, 2023, doi: 10.1038/s42254-023-00603-1.

[7] J.Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195-202,
2017, doi: 10.1038/nature23474.

[8] M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, and P. J. Coles, “Chal-
lenges and opportunities in quantum machine learning,” Nature Comput.
Sci., vol. 2, no. 9, pp. 567-576, 2022, doi: 10.1038/s43588-022-00311-3.

[9] J. Liu et al., “Towards provably efficient quantum algorithms for large-
scale machine-learning models,” Nature Commun., vol. 15, no. 1, 2024,
Art. no. 434, doi: 10.1038/s41467-023-43957-x.

[10] A. Miessen, P. J. Ollitrault, F. Tacchino, and I. Tavernelli, “Quantum
algorithms for quantum dynamics,” Nature Comput. Sci., vol. 3, no. 1,
pp- 25-37, 2023, doi: 10.1038/543588-022-00374-2.

[11] B. Peng, S. Gulania, Y. Alexeev, and N. Govind, “Quantum time dy-
namics employing the Yang-Baxter equation for circuit compression,”
Phys. Rev. A, vol. 106, no. 1, 2022, Art. no. 012412, doi: 10.1103/Phys-
RevA.106.012412.

[12] S. Gulania, Z. He, B. Peng, N. Govind, and Y. Alexeev, “QuYBE-an
algebraic compiler for quantum circuit compression,” in Proc. IEEE/ACM
7th Symp. Edge Comput., 2022, pp.406-410, doi: 10.1109/SEC
54971.2022.00060.

[13] D. A.Fedorov, B. Peng, N. Govind, and Y. Alexeev, “VQE method: A short
survey and recent developments,” Mater. Theory, vol. 6, no. 1, pp. 1-21,
2022, doi: 10.1186/s41313-021-00032-6.

[14] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan,
“Quantum computational chemistry,” Rev. Modern Phys., vol. 92, no. 1,
2020, Art. no. 015003, doi: 10.1103/RevModPhys.92.015003.

VOLUME 5, 2024



He et al.: DISTRIBUTIONALLY ROBUST VQAs WITH SHIFTED NOISE

@IEEE Transactions on,
uantumEngineering

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

Y. Cao et al., “Quantum chemistry in the age of quantum com-
puting,” Chem. Rev., vol. 119, no. 19, pp. 10856-10915, 2019, doi:
10.1021/acs.chemrev.8b00803.

L. Bittel and M. Kliesch, “Training variational quantum algorithms is
NP-hard,” Phys. Rev. Lett., vol. 127, no. 12, 2021, Art. no. 120502,
doi: 10.1103/PhysRevLett.127.120502.

K. J. Sung et al., “Using models to improve optimizers for varia-
tional quantum algorithms,” Quantum Sci. Technol., vol. 5, no. 4, 2020,
Art. no. 044008, doi: 10.1088/2058-9565/abb6d9.

X. Bonet-Monroig et al., “Performance comparison of optimization meth-
ods on variational quantum algorithms,” Phys. Rev. A, vol. 107, no. 3,
2023, Art. no. 032407, doi: 10.1103/PhysRevA.107.032407.

A. Gilyén, S. Arunachalam, and N. Wiebe, “Optimizing quantum opti-
mization algorithms via faster quantum gradient computation,” in Proc.
30th Annu. ACM-SIAM Symp. Discrete Algorithms, 2019, pp. 1425-1444,
doi: 10.5555/3310435.3310522.

R. Shaydulin, P. C. Lotshaw, J. Larson, J. Ostrowski, and T. S. Humble,
“Parameter transfer for quantum approximate optimization of weighted
MaxCut,” ACM Trans. Quantum Comput., vol. 4, no. 3, pp. 1-15, 2023,
doi: 10.1145/3584706.

D. Stilck Franca and R. Garcia-Patron, “Limitations of optimization al-
gorithms on noisy quantum devices,” Nature Phys., vol. 17, no. 11,
pp. 1221-1227, 2021, doi: 10.1038/s41567-021-01356-3.

G. Gonzilez-Garcia, R. Trivedi, and J. I. Cirac, “Error propagation in
NISQ devices for solving classical optimization problems,” PRX Quan-
tum, vol. 3, no. 4, 2022, Art. no. 040326, doi: 10.1103/PRXQuan-
tum.3.040326.

G. De Palma, M. Marvian, C. Rouzé, and D. S. Franca, “Limita-
tions of variational quantum algorithms: A quantum optimal trans-
port approach,” PRX Quantum, vol. 4, no. 1, 2023, Art. no. 010309,
doi: 10.1103/PRXQuantum.4.010309.

R. Harper, S. T. Flammia, and J. J. Wallman, “Efficient learning of
quantum noise,” Nature Phys., vol. 16, no. 12, pp. 1184-1188, 2020,
doi: 10.1038/s41567-020-0992-8.

S.Endo, S. C. Benjamin, and Y. Li, “Practical quantum error mitigation for
near-future applications,” Phys. Rev. X, vol. 8, no. 3,2018, Art. no. 031027,
doi: 10.1103/PhysRevX.8.031027.

Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, “Quantum error mit-
igation as a universal error reduction technique: Applications from
the NISQ to the fault-tolerant quantum computing eras,” PRX Quan-
tum, vol. 3, no. 1, 2022, Art. no. 010345, doi: 10.1103/PRXQuantum.
3.010345.

J. Liu and H. Zhou, “Reliability modeling of NISQ-era quantum com-
puters,” in Proc. IEEE Int. Symp. workload characterization, 2020,
pp. 94-105, doi: 10.1109/IISWC50251.2020.00018.

H. Wang et al., “QuantumNAS: Noise-adaptive search for robust quantum
circuits,” in Proc. IEEE Int. Symp. High- Perform. Comput. Archit., 2022,
pp. 692-708, doi: 10.1109/HPCA53966.2022.00057.

A. B. Magann et al., “From pulses to circuits and back again: A quan-
tum optimal control perspective on variational quantum algorithms,” PRX
Quantum, vol. 2,no. 1,2021, Art. no. 010101, doi: 10.1103/PRXQuantum.
2.010101.

Z. Liang et al., “Hybrid gate-pulse model for variational quantum algo-
rithms,” in Proc. 60th ACM/IEEE Des. Automat. Conf., 2023, pp. 1-6,
doi: 10.1109/DAC56929.2023.10247923.

J. J. Burnett et al., “Decoherence benchmarking of superconduct-
ing qubits,” npj Quantum Inf., vol. 5, no. 1, 2019, Art. no. 54,
doi: 10.1038/s41534-019-0168-5.

S. Dasgupta and T. S. Humble, “Assessing the stability of noisy quan-
tum computation,” in Quantum Communications and Quantum Imag-
ing XX, vol. 12238, Bellingham, WA, USA: SPIE, 2022, pp. 44-49,
doi: 10.1117/12.2631809.

S. Dasgupta and T. S. Humble, “Characterizing the reproducibility of
noisy quantum circuits,” Entropy, vol. 24, no. 2, 2022, Art. no. 244,
doi: 10.3390/e24020244.

Z. Hu, R. Wolle, M. Tian, Q. Guan, T. Humble, and W. Jiang, “Toward
consistent high-fidelity quantum learning on unstable devices via efficient
in-situ calibration,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2023,
pp. 848-858, doi: 10.1109/QCES57702.2023.00099.

J. Zhang et al., “DISQ: Dynamic iteration skipping for variational quan-
tum algorithms,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., 2023,
pp. 1062-1073, doi: 10.1109/QCE57702.2023.00120.

VOLUME 5, 2024

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

S. Dasgupta and T. S. Humble, “Reliable devices yield stable quantum
computations,” in Proc. IEEE Int. Conf. Quantum Comput. Eng., vol. 2,
2023, pp. 223-226, doi: 10.1109/QCE57702.2023.10218.

S. Dasgupta, T. S. Humble, and A. Danageozian, “Adaptive mitigation of
time-varying quantum noise,” in Proc. IEEE Int. Conf. Quantum Comput.
Eng., 2023, pp. 99-110, doi: 10.1109/QCE57702.2023.00020.

G. S. Ravi et al., “Navigating the dynamic noise landscape of variational
quantum algorithms with QISMET,” in Proc. 28th ACM Int. Conf. Ar-
chitectural Support Program. Lang. Operating Syst., 2023, pp. 515-529,
doi: 10.1145/3575693.3575739.

H. Rahimian and S. Mehrotra, “Distributionally robust optimization: A
review,” 2019, arXiv:1908.05659, doi: 10.48550/arXiv.1908.05659.

F. Lin, X. Fang, and Z. Gao, “Distributionally robust optimization: A re-
view on theory and applications,” Numer. Algebra Control Optim., vol. 12,
no. 1, pp. 159-212, 2022, doi: 10.3934/naco.2021057.

D. Kuhn, P. M. Esfahani, V. A. Nguyen, and S. Shafieezadeh-Abadeh,
“Wasserstein distributionally robust optimization: Theory and applica-
tions in machine learning,” INFORMS TutORials Oper. Res., 2019,
pp. 130-166, doi: 10.1287/educ.2019.0198.

E. Delage and Y. Ye, “Distributionally robust optimization under moment
uncertainty with application to data-driven problems,” Operations Res.,
vol. 58, no. 3, pp. 595-612, 2010, doi: 10.1287/0opre.1090.0741.

J. Kirschner, I. Bogunovic, S. Jegelka, and A. Krause, “Distributionally
robust Bayesian optimization,” in Proc. Int. Conf. Artif. Intell. Statist.,
2020, pp. 2174-2184, doi: 10.48550/arXiv.2002.09038.

S. S. Tay, C. S. Foo, U. Daisuke, R. Leong, and B. K. H. Low, “Efficient
distributionally robust Bayesian optimization with worst-case sensitivity,”
in Proc. Int. Conf. Mach. Learn., 2022, pp. 21180-21204. [Online]. Avail-
able: https://proceedings.mlr.press/v162/tay22a.html

H. Husain, V. Nguyen, and A. v. d. Hengel, “Distributionally robust
Bayesian optimization with ¢-divergences,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., vol. 36, 2024.

G. Iannelli and K. Jansen, “Noisy
variational  quantum  eigensolvers,’
doi: 10.48550/arXiv.2112.00426.

S. Duffield, M. Benedetti, and M. Rosenkranz, “Bayesian learning of
parameterised quantum circuits,” Mach. Learn. Sci. Technol., vol. 4, no. 2,
2023, Art. no. 025007, doi: 10.1088/2632-2153/acc8b7.

C. N. Self et al., “Variational quantum algorithm with informa-
tion sharing,” npj Quantum Inf., vol. 7, no. 1, pp.1-7, 2021,
doi: 10.1038/s41534-021-00452-9.

J. Miiller, W. Lavrijsen, C. Iancu, and W. de Jong, “Accelerating
noisy VQE optimization with Gaussian processes,” in Proc.
IEEE Int. Conf. Quantum Comput. Eng., 2022, pp.215-225,
doi: 10.1109/QCE53715.2022.00041.

S. Tibaldi, D. Vodola, E. Tignone, and E. Ercolessi, “Bayesian op-
timization for QAOA,” IEEE Trans. Quantum Eng., vol. 4, 2023,
Art. no. 3102611, doi: 10.1109/TQE.2023.3325167.

J. R. Finzgar, M. J. Schuetz, J. K. Brubaker, H. Nishimori, and H. G.
Katzgraber, “Designing quantum annealing schedules using Bayesian
optimization,” Phys. Rev. Res., vol. 6, no. 2, 2024, Art. no. 023063,
doi: 10.1103/PhysRevResearch.6.023063.

S. Tamiya and H. Yamasaki, “Stochastic gradient line Bayesian opti-
mization for efficient noise-robust optimization of parameterized quan-
tum circuits,” npj Quantum Inf., vol. 8, no. 1, 2022, Art. no. 90,
doi: 10.1038/s41534-022-00592-6.

J. E. Kim and Y. Wang, “Quantum approximate Bayesian opti-
mization algorithms with two mixers and uncertainty quantifica-
tion,” IEEE Trans. Quantum Eng., vol. 4, 2023, Art. no. 3102817,
doi: 10.1109/TQE.2023.3327055.

A. Benitez-Buenache and Q. Portell-Montserrat, “Bayesian parameterized
quantum circuit optimization (BPQCO): A task and hardware-dependent
approach,” 2024, arXiv:2404.11253, doi: 10.48550/arXiv.2404.11253.
G. S. Ravi et al., “CAFQA: A classical simulation bootstrap for vari-
ational quantum algorithms,” in Proc. 28th ACM Int. Conf. Archi-
tectural Support Program. Lang. Operating Syst., 2022, pp. 15-29,
doi: 10.1145/3567955.3567958.

L. Cheng, Y.-Q. Chen, S.-X. Zhang, and S. Zhang, “Quantum
approximate  optimization via learning-based adaptive  opti-
mization,” Commun. Phys., vol. 7, no. 1, 2024, Art. no. 83,
doi: 10.1038/s42005-024-01577-x.

Bayesian optimization for
2021,  arXiv:2112.00426,

3102112



Q

IEEE Transactions on

uantumEngineering

He et al.: DISTRIBUTIONALLY ROBUST VQAs WITH SHIFTED NOISE

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

3102

K. Sharma, S. Khatri, M. Cerezo, and P. J. Coles, “Noise resilience
of variational quantum compiling,” New J. Phys., vol. 22, no. 4, 2020,
Art. no. 043006, doi: 10.1088/1367-2630/ab784c.

T. Nguyen, S. Gupta, H. Ha, S. Rana, and S. Venkatesh,
“Distributionally ~robust Bayesian quadrature optimization,” in
Proc. Int. Conf. Artif. Intell. Statist., 2020. [Online]. Available:
https://proceedings.mlr.press/v108/nguyen20a.html

K. Muandet et al., “Kernel mean embedding of distributions: A review and
beyond,” Found. Trends Mach. Learn., vol. 10, no. 1/2, pp. 1-141, 2017,
doi: 10.1561/2200000060.

C. E. Rasmussen, “Gaussian processes in machine learning,” in Sum-
mer School on Machine Learning, Berlin, Germany: Springer, 2003,
pp. 63-71, doi: 10.1007/978-3-540-28650-9_4.

P. 1. Frazier, “A tutorial on Bayesian optimization,”
arXiv:1807.02811, doi: 10.48550/arXiv.1807.02811.

S. Cakmak, R. Astudillo Marban, P. Frazier, and E. Zhou, “Bayesian
optimization of risk measures,” in Proc. Adv. Neural Inf. Process. Syst.,
2020, pp. 20130-20141. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/hash/e8f2779682fd11fa2067beffc27a9192- Abstract.html

W. Lavrijsen, A. Tudor, J. Miiller, C. Iancu, and W. De Jong, “Clas-
sical optimizers for noisy intermediate-scale quantum devices,” in
Proc. IEEE Int. Conf. Quantum Comput. Eng., 2020, pp.267-277,
doi: 10.1109/QCE49297.2020.00041.

F. Farokhi, “Distributionally-robust optimization with noisy data for dis-
crete uncertainties using total variation distance,” IEEE Control Syst. Lett.,
vol. 7, pp. 1494-1499, 2023, doi: 10.1109/LCSYS.2023.3271434.

P. M. Esfahani and D. Kuhn, “Data-driven distributionally robust op-
timization using the Wasserstein metric: Performance guarantees and
tractable reformulations,” Math. Program., vol. 171, no. 1/2, pp. 115-166,
2018, doi: 10.1007/s10107-017-1169-9.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian pro-
cess optimization in the bandit setting: No regret and experimen-
tal design,” in Proc. Int. Conf. Mach. Learn., 2010, pp. 1015-1022,
doi: 10.48550/arXiv.0912.3995.

1. Bogunovic, J. Scarlett, S. Jegelka, and V. Cevher, “Adversarially robust
optimization with Gaussian processes,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 5765-5775, doi: 10.48550/arXiv.1810.10775.

K. Q. Ye, “Orthogonal column Latin hypercubes and their applica-
tion in computer experiments,” J. Amer. Stat. Assoc., vol. 93, no. 444,
pp. 1430-1439, 1998, doi: 10.2307/2670057.

2018,

112

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

A. Kandala et al., “Hardware-efficient variational quantum eigensolver
for small molecules and quantum magnets,” Nature, vol. 549, no. 7671,
pp. 242-246, 2017, doi: 10.1038/nature23879.

X. Liu, A. Angone, R. Shaydulin, I. Safro, Y. Alexeev, and L. Cincio,
“Layer VQE: A variational approach for combinatorial optimization on
noisy quantum computers,” IEEE Trans. Quantum Eng., vol. 3, 2022,
Art. no. 3100920, doi: 10.1109/TQE.2021.3140190.

S. Wang, P. Czarnik, A. Arrasmith, M. Cerezo, L. Cincio, and P.
J. Coles, “Can error mitigation improve trainability of noisy varia-
tional quantum algorithms?” Quantum, vol. 82024, Art. no. 1287,
doi: 10.22331/q-2024-03-14-1287.

S. Wang et al., “Noise-induced barren plateaus in variational quan-
tum algorithms,” Nature Commun., vol. 12, no. 1, 2021, Art. no. 6961,
doi: 10.1038/s41467-021-27045-6.

E. Fontana, M. Cerezo, A. Arrasmith, I. Rungger, and P. J. Coles,
“Non-trivial symmetries in quantum landscapes and their resilience
to quantum noise,” Quantum, vol. 6, 2022, Art. no. 804, doi:
10.48550/arXiv.2011.08763.

D. Rabinovich, E. Campos, S. Adhikary, E. Pankovets, D. Vinichenko,
and J. Biamonte, “Robustness of variational quantum algorithms against
stochastic parameter perturbation,” Phys. Rev. A, vol. 109, no. 4, 2024,
Art. no. 042426, doi: 10.1103/PhysRevA.109.042426.

Y. Pan, Z. He, N. Guo, and Z. Zhang, “Distributionally robust cir-
cuit design optimization under variation shifts,” in Proc. IEEE/ACM
Int. Conf. Comput. Aided Des., 2023, pp.1-8, doi: 10.1109/1C-
CAD57390.2023.10323948.

T. Hao, K. Liu, and S. Tannu, “Enabling high performance debug-
ging for variational quantum algorithms using compressed sensing,”
in Proc. 50th Annu. Int. Symp. Comput. Archit., 2023, pp.1-13,
doi: 10.1145/3579371.3589044.

A. Pérez-Salinas, H. Wang, and X. Bonet-Monroig, “Analyzing variational
quantum landscapes with information content,” npj Quantum Inf., vol. 10,
no. 1, 2024, Art. no. 27, doi: 10.1038/s41534-024-00819-8.

T. Hao, Z. He, R. Shaydulin, M. Pistoia, and S. Tannu, “Variational quan-
tum algorithm landscape reconstruction by low-rank tensor completion,”
2024, arXiv:2405.10941, doi: 10.48550/arXiv.2405.10941.

VOLUME 5, 2024



