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ABSTRACT Given their potential to demonstrate near-term quantum advantage, variational quantum al-

gorithms (VQAs) have been extensively studied. Although numerous techniques have been developed for

VQA parameter optimization, it remains a signi�cant challenge. A practical issue is that quantum noise is

highly unstable and thus it is likely to shift in real time. This presents a critical problem as an optimized

VQA ansatz may not perform effectively under a different noise environment. For the �rst time, we explore

how to optimize VQA parameters to be robust against unknown shifted noise. We model the noise level as

a random variable with an unknown probability density function (PDF), and we assume that the PDF may

shift within an uncertainty set. This assumption guides us to formulate a distributionally robust optimization

problem, with the goal of �nding parameters that maintain effectiveness under shifted noise. We utilize a

distributionally robust Bayesian optimization solver for our proposed formulation. This provides numerical

evidence in both the quantum approximate optimization algorithm and the variational quantum eigensolver

with hardware-ef�cient ansatz, indicating that we can identify parameters that perform more robustly under

shifted noise. We regard this work as the �rst step toward improving the reliability of VQAs in�uenced by

shifted noise from the parameter optimization perspective.

INDEX TERMS Bayesian optimization (BO), distributionally robust optimization (DRO), noise shift,

variational quantum algorithms (VQAs).

I. INTRODUCTION

Variational quantum algorithms (VQAs) [1] have the poten-

tial to demonstrate quantum advantage and have been applied

in diverse �elds, such as optimization [2], [3], �nance [4], [5],

[6], machine learning [7], [8], [9], quantum simulation [10],

[11], [12], and chemistry [13], [14], [15]. However, parame-

ter optimization is a substantial challenge for VQAs [16].

Numerous efforts have been made to optimize VQA

parameters [17], [18], [19], [20]. One critical challenge

for VQA parameter optimization is quantum noise [21],

[22], [23], which limits their capabilities and introduces

additional complexities to parameter optimization. Model-

ing and mitigating hardware noise is a core part of noisy

intermediate-scale quantum (NISQ) algorithms [24], [25],

[26]. Quantifying and improving the reliability and ro-

bustness of a VQA has been an important task and has

gained increasing attention recently. To name a few, machine

learning methods have been used to estimate the reliability of

a quantum circuit [27]; noise-aware ansatz design method-

ologies [28] and robust circuit realization from a lower level

abstraction [29], [30] have also been investigated.

A more challenging yet practical problem is the instability

of quantum noise. Suppose that we have an accurate model

of the quantum noise as a reference. However, the quan-

tum noise can change signi�cantly under different environ-

mental conditions in real time, making the reference noise

model inaccurate. Burnett et al. [31] showed that the noise

�uctuation is usually less disinclined. Some studies [32],

[33] have considered the reproducibility and stability un-

der different noise models. We refer to this phenomenon

of noise change as “noise shift.” The optimization of varia-

tional quantum circuits and error mitigation under real-time

noise has gained attention recently [34], [35], [36], [37],

[38].
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FIG. 1. Overview of the distributionally robust VQAs. Given an ideal ansatz and noise model, we assume that the noise level is a random variable that
can change in real time. We have samples of the noise level variable ξ from a reference distribution, ansatz parameter θ, and the corresponding VQA
performance f (θ, ξ). With the shifted noise, the VQA landscape and its optimum θ can potentially change. Specifically, the optimal θ under a certain noise
level may not perform well under another noise level. Likewise, an optimal θ under a reference noise level PDF may not perform well under another
noise level PDF. To address the landscape shift, we reformulate the parameter optimization problem as a min–max formulation to find a robust
parameter θ. In other words, we aim to optimize the performance under the worst-case noise level PDF. We use a distributionally robust BO solver to
solve the new parameter optimization formulation, which is still handled by classical computers.

In this article, we ask a fundamental question: Can we

optimize the VQA parameters such that they are robust to

potentially shifted (unknown) noise?We assume that we have

access to a �xed noise model, but the actual noise level is an

unknown random variable with an unknown probability den-

sity function (PDF). This �xed PDF represents our limited

knowledge about the potential noise shift.

To optimize VQA parameters under such unknown noise,

for the �rst time, we propose a new min–max optimiza-

tion formulation. Such an optimization formulation is called

distributionally robust optimization (DRO) in the classical

operation research community [39], [40], [41], [42]. DRO

is an advanced optimization framework that aims to �nd

solutions resilient against a range of possible probability dis-

tributions rather than a single expected distribution. In our

context, we aim to optimize parameters against the worst-

case distribution of noise levels. This task, while distinct,

complements error mitigation efforts. Rather than attempting

to reduce quantum noise, our approach focuses on optimizing

parameters in the presence of potentially shifting noise. Fur-

thermore, our method allows for seamless integration with

various error mitigation techniques.

Article contributions: In this work, we investigate the

problem formulation, numerical solver, and validation of

VQA training under unknown shifted noise. The overview

is illustrated in Fig. 1. Our speci�c contributions include the

following.

1) To be robust against the shifted noise, we formulate

the problem of optimizing VQA algorithms as a DRO

that aims to optimize a targeted performance under

the worst-case noise distribution. We characterize the

quantum noise using a �xed noise model with uncer-

tain and varying levels of strengths, where the noise

level is a random variable with an unknown PDF.

2) To solve the DRO, we model the unknown PDF as a

distributional uncertainty set that is de�ned by max-

imum mean discrepancy (MMD). We then solve the

min–max problem utilizing a distributionally robust

Bayesian optimization (DRBO) method [43], [44],

[45]. Recently, Bayesian optimization (BO) has at-

tracted attention in the �eld of quantum algorithm op-

timization [46], [47], [48], [49], [50], [51], [52], [53],

[54], [55], [56].

3) We validate the proposed min–max formulation on

two well-recognized VQAs, namely, quantum approx-

imate optimization algorithm (QAOA) for the MaxCut

problem and variational quantum eigensolver (VQE)

with hardware-ef�cient ansatz for the 1-D Heisen-

berg model. Numerical results show that the proposed

parameter optimization algorithm outperforms con-

ventional methods under shifted noise conditions.

II. PROBLEM FORMULATION

VQAs are a class of algorithms in quantum computing that

utilize a hybrid approach, combining classical and quantum

computing resources to solve computational problems. They

are especially pertinent for use with NISQ devices, which are

the currently available quantum hardware.
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The core idea of VQAs is to de�ne a parameterized quan-

tum circuit (ansatz) that manipulates the state of a quantum

system in a way that depends on a set of parameters θ. These

parameters are then optimized classically to minimize an ob-

jective function 〈ψ(θ)|O|ψ(θ)〉, where ψ(θ) is the resulting

noiseless quantum state from the parameterized anstaz, O is

an observable of interest, and the objective function is eval-

uated by the quantum system. However, due to the hardware

noise, the actual ansatz and the resulting noisy quantum state

P differ from the ideal ones.

The quantum noise N for a quantum system with state P

is characterized as

N (P) =
∑

i

EiPE
†
i

(1)

where Ei are Kraus operators satisfying
∑

i EiE
†
i

= I. In this

article, we use amplitude and phase damping channels as the

noise model because such a noise model has been shown to

shift the optimal parameter of a VQA [57]. The amplitude

damping noise describes the energy dissipation of quantum

systems, whose Kraus operator formulation on a single qubit

is

N (P) = E0PE
†
0
+ E1PE

†
1

(2)

with E0 =
(

1 0

0
√
1 − pad

)

and E1 =
(

0
√
pad

0 0

)

. The phase

damping noise describes the quantum information loss with-

out the energy loss, whose Kraus operator formulation on a

single qubit is

N (P) = E0PE
†
0
+ E1PE

†
1

(3)

with E0 =
(

1 0

0
√

1 − ppd

)

and E1 =
(

0 0

0
√
ppd

)

. To integrate

these two amplitude and phase damping noise channels, the

combined Kraus operator is as follows:

N (P) =
2

∑

i=0

EiPE
†
i

(4)

with E0 =
(

1 0

0
√
1 − pad

√

1 − ppd

)

, E1 =
(

0
√
pad

0 0

)

, and E2 =
(

0 0

0
√
1 − pad

√
ppd

)

. The parameters pad and ppd are strongly

related to the T1 and T2 time of quantum hardware. In

this article, we assume an equal probability of two damp-

ing channels pad = ppd = p for simplicity. We do not

expect such noise modeling to capture practical hard-

ware noise accurately but only use it for proof of

concept.

A. DRO FORMULATION OF VQAS

We assume that we have access to the �xed noise model, i.e.,

the �xed Kraus presentation (4), but do not know the precise

noise level p. We model p as a random variable, which fol-

lows a certain PDF ξ ∼ ρ(ξ ). Let f (θ, ξ ) = Tr[P(θ, ξ )O] be

the quantity of interest evaluated by an ansatz parameterized

by θ under a noise level ξ , whereP(θ, ξ ) is the resulting noisy

quantum state. A standard parameter optimization of a VQA

becomes stochastic programming

min
θ

Eρ(ξ )[ f (θ, ξ )]. (5)

Note that we here consider the 1-D noise level for simplicity.

It can be seamlessly extended to a high-dimensional case.

However, due to the real-time �uctuation of quantum

noise, the actual PDF of the noise level can shift and become

unknown. As a result, we assume that ρ(ξ ) is not exactly

known and it can be any PDF inside a set P , which makes it

impossible to obtain a deterministic value of Eρ(ξ )[ f (θ, ξ )].

As a result, we try to optimize the worst-case value of

Eρ(ξ )[ f (θ, ξ )] by solving

min
θ

sup
ρ(ξ )∈P

Eρ(ξ )[ f (θ, ξ )]. (6)

When the uncertainty set degenerates to P = {ρ(ξ )}, prob-
lem (6) degenerates to the standard stochastic optimization

problem in (5). On the other hand, the problem degenerates

to a robust optimization under the worst noise level when the

PDF of a noise level degenerates to a Dirac function.

The distributionally robust circuit optimization (6) may be

intractable in practice because of the following holds:

1) P may contain an in�nite number of PDFs describing

process variations;

2) the min–max problem is hard to solve by nature;

3) we do not have an analytical form for f (θ, ξ ) under the

presence of noise.

III. PROPOSED SOLVER

In this section, we properly de�ne the PDF uncertainty set

P and solve problem (6) leveraging DRBO [43], [45], [58]

developed recently in the machine learning community.

A. DISTRIBUTION UNCERTAINTY SET

Wemodel the PDF uncertainty setP as a ball whose center is

the nominal distribution ρ0(ξ ) of the noise level, and radius

ε is measured by a distribution divergence D

P := B(ρ0) = {ρ : D(ρ0, ρ) ≤ ε}. (7)

There are many options for the divergence D, including

MMD, Wasserstein distance, and ϕ-divergence[39]. Here,

we choose the MMD.

MMD aims to compare the means of samples drawn from

two distributions in a high-dimensional reproducing kernel

Hilbert space (RKHS) induced by a positive de�nite ker-

nel function [59]. For the tractability of the problem, we

discretize the noise level in a �nite space � with n parts.

Then, let HM be an RKHS with corresponding kernel kM :

� × � → R, we can embed the distributions ρ0 (similarly

for ρ) intoHM via the mean embedding

mρ0 := Eξ∼ρ0 [kM (ξ, ·)], such that
〈

mρ0 , kM (ξ
′, ·)

〉

= Eξ∼ρ0 [kM (ξ
′, ξ )], ∀ξ ∈ �.

VOLUME 5, 2024 3102112



Engineeringuantum
Transactions onIEEE

He et al.: DISTRIBUTIONALLY ROBUST VQAs WITH SHIFTED NOISE

Then, the MMD between two distributions ρ0 and ρ over �

is de�ned as

D(ρ0, ρ) := ‖mρ0 − mρ‖H (8)

where ‖ · ‖H =
√

〈·, ·〉 is the Hilbert norm. Let wi = ρ0(ξi)

and w
′
i = ρ(ξi) be the density probability of two dis-

crete distributions, if we replace the expectation with the

empirical expectation, i.e., mρ =
∑n

i=1 wikM (ξi, ·) and

mρ′ =
∑n

i=1 w
′
iw

′
ikM (ξi, ·), (8) can be written as

D(ρ0, ρ) =
√

(w − w′)TM(w − w′) (9)

where Mi j = kM (ξi, ξ j ) is the kernel matrix.

B. DRO MAIN WORKFLOW

By modeling the distribution uncertainty set de�ned via

MMD, the DRO problem (6) becomes tractable. The main

steps are summarized below.

1) Step 1: Characterize the nominal noise distribution ρ0.

2) Step 2: Given a current θ, solve the inner problem to

determine the worst-case PDF of ξ

sup
ρ(ξ ):D(ρ0,ρ)≤ε

Eρ(ξ )[ f (θ, ξ )] =

max
w′:‖w′‖1=1,

0≤w
′
j≤1 ∀ j∈[n],√

(w−w′ )TM(w−w′ )≤ε

〈w′, fθ〉 (10)

where fθ := f (θ, ·) ∈ R
n is the output with a given

parameter θ.

3) Step 3: Solve the outer problem to update θ

min
θ

〈w′, fθ〉. (11)

4) Step 4: If not converge, go back to Step 2.

Speci�cally, Step 2 can be solved analytically via convex

programming as it is a second-order cone programming with

respect to the worst-case distributionw′. Step 3 can be solved
via a numerical optimizer. However, one of the challenges in

steps 2 and 3 is that we need to simulate multiple f (θ, ξ ),

which can be expensive in practice. To address the computa-

tional issue, we apply a BO solver to the work�ow. The key

idea is to sequentially learn a surrogate model of f (θ, ξ ) and

optimize it by iteratively adding informative samples.

C. BO SOLVER FOR DRO PROBLEM

Next, we explain how to solve DRO via BO with a few quan-

tum circuit simulations. BO sequentially builds a probabilis-

tic surrogate model of f (θ, ξ ) and explores the design space

by minimizing an acquisition function. The overall DRBO

algorithm is summarized in Algorithm 1.

We �rst construct a probabilistic surrogate model f̂ (θ, ξ ),

which can estimate both the output and its uncertainty given

an input (θ, ξ ). Here, we use the Gaussian process regression

(GPR) model GP (θ, ξ ) as the surrogate f̂ (θ, ξ ). Then, we

Algorithm 1: Overall DRBO Algorithm With GP.

Input: Initial sample set S0 = {θi, ξ i, f (θi, ξ i)}Mi=1,

reference PDF of noise level ρ0(ξ ) with

ρ0(ξi) = wi,∀i = [n], uncertainty ball radius ε,

maximum iteration T

Output: The optimal circuit design variables θ�

1: for t = 1, 2, . . .,T do

2: Construct a GP model as the probabilistic

surrogate model f̂ (θ, ξ ) = GP (θ, ξ ) based on

St−1

3: De�ne

LCB(θ, ξ ) := μ(GP (θ, ξ )) − β · σ (GP (θ, ξ ))

4: De�ne the PDF of the worst-case distribution

w′ := argmaxw〈w′,LCB(θ, ξ )〉 s.t.
w′ : ‖w′‖1 = 1, 0 ≤ w

′
j ≤ 1,∀ j ∈ [n], and

‖w′ − w‖M ≤ ε

5: Solve the robust parameter

θt = argminθ〈w′,LCB(θ, ξ )〉
6: Sample K noise levels from the reference PDF

ξk ∼ ρ0 and simulate f (θt , ξk ), for

k = 1, 2, . . . ,K

7: Augment data set

St ← St−1 ∪ {(θt , ξt , f (θt , ξk ))}Kk=1

8: end for

9: Return optimal θ�

use its lower con�dence bound (LCB) to replace the original

objective function f (θ, ξ ) in (10) and (11) in steps 2–4

f (θ, ξ ) → LCB(θ, ξ ) = μ(GP (θ, ξ )) − β · σ (GP (θ, ξ ))

(12)

where μ(·) and σ (·) denote the estimated mean and standard

deviation, respectively, and β is a parameter to balance the

model exploitation and exploration.

Gaussian Process Surrogate: To build the GPR model, we

need to prede�ne the mean functionm(·) and the kernel func-
tion kGP (·, ·). Given a dataset X = {xi}Mi=1 = {θi, ξ i}Mi=1 and

their simulation outputs y = { f (xi) + ε}Mi=1, the GP model

assumes that the simulation outputs follows a Gaussian

distribution[60]:

Prob(y) = N (y|μ,K) (13)

where μ ∈ R
M is the mean vector with μi = m(x) and, K ∈

R
M×M is the covariance matrix with Ki, j = kGP (xi, x j ). The

measurement noise is characterized as a white noise ε in the

simulation output.

Then, the GP model can offer a probabilistic prediction of

a new data x′, GP (x′) ∼ N(μ(x′), σ 2(x′)), as follows:

μ(x′) = kGP
(

x′,X
)T

(

K + ε2I
)−1

y

σ 2
(

x′) = kGP
(

x′, x′) − kGP
(

x′,X
)T

(

K + ε2I
)−1

kGP
(

X, θ′) .
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In our cases, we choose the prior mean as m(x) = 0 and

use the RBF kernel kGP (xi, x j ) = e
− ‖xi−x) j‖2

2 l2 . Note that the

kernel kGP used in GPR differs from the kernel function kM
employed in MMD. Apart from the Gaussian process, there

are various other surrogate models that can be utilized.

Optimal Selection: Regarding the selection of an optimal

solution, it turns out to be nontrivial. Since we want to es-

timate the expectation over the noise distribution, it will be

too expensive to estimate with real quantum devices. Instead,

we choose the solution with maximized model posterior, i.e.,

we choose the θ = argmaxθ Eρ(ξ )[μ( f̂ (θ, ξ ))] = 〈w, μ( f̂θ )〉,
where f̂θ is the mean prediction from f̂ with a given param-

eter θ. It is a common strategy for similar conditions [61],

[62].

In addition, an accurate estimation over f̂ (θ, ·) will bene�t
our model output. For this motivation, at the end of each

iteration in Algorithm 1, we can add a batch of samples of

ξ from � in step 3. It can help build a better probabilistic

model and fasten the BO solver convergence.

Remarks: One possible further improvement is to treat the

BO solver as a warm-start procedure. After returning a few

high-quality solutions from BO, we can conduct the local

numerical optimization by taking them as the initial. The

local search step may introduce additional computational

cost and need more calling of f (θ, ξ ) instead of the surrogate

model, but it can lead to a potentially better solution. The

hybrid of different solvers is also a common strategy in VQA

parameter optimization [49], [63].

The proposed DRO can easily degenerate into stochastic

optimization or robust optimization. Stochastic optimization,

namely (5), does not consider the real-time change of the

noise. Robust optimization degenerates the PDF of the noise

level ρ(ξ ) to a single scalar. This case can easily lead to

overconservative parameter optimization.

The current distribution uncertainty set modeling ofMMD

has the great power of capturing the worst-case distribution.

However, we need to discretize the noise level PDF in or-

der to estimate the MMD ef�ciently. There exist some other

approaches to modeling the uncertainty set that do not dis-

cretize the noise level such as f -divergence modeling [45].

Meanwhile, some alternative uncertainty set modeling could

potentially reduce the computational overhead of estimating

worst-case distribution (10) [45], [64], [65] iteratively. How-

ever, they may not perform well in our experiments due to

the un�tted modeling of shifted noise level distribution.

IV. NUMERICAL EXPERIMENTS

We validate the distributionally robust formulation of opti-

mizing VQA parameters (6) in two widely used VQA appli-

cations: one is using QAOA for MaxCut and the other one is

using VQE for a 1-D Heisenberg model.

Here, we conduct the numerical experiments on a sim-

ulator in order to adjust the noise level easily and corre-

spondingly to validate themethod. To apply the distributional

robustness formulation in hardware experiments, the estima-

tion of the noise model and noise level is another challenge,

which is out of the scope of this work.

Baselines: We compared the proposed DRBO solver to

two standard BO methods for solving stochastic optimiza-

tion, one is with an LCB acquisition function (BO-LCB) and

the other one is with an expectation improvement acquisition

function (BO-EI) [66], and robust BO (BO-Stable) [67].

In BO-LCB, we target problem (5) with a �xed refer-

ence distribution of noise level ρ0(ξ ) using a BO approach.

We use the same GP surrogate model and its LCB as (12),

but without solving the outer problem (11). Speci�cally,

the lines 4 and 5 of Algorithm 1 are combined as solving

minθ〈w,LCB(θ, ξ )〉.
In BO-EI, we replace the above LCB function with the

EI acquisition function. Let θ− be the best sample with the

smallest value f (θ−, ξ ) so far. The EI acquisition function is

de�ned as

EI(θ, ξ ) = �(z)
(

f (θ−, ξ ) − μ(GP (θ, ξ ))
)

+ φ(z)σ (GP (θ, ξ )) (14)

where

z =

{

f (θ−,ξ )−μ(GP (θ,ξ ))
σ (GP (θ,ξ ))

, σ (GP (θ, ξ )) > 0

0, σ (GP (θ, ξ )) = 0

and �(·) and φ(·) are the cumulative distribution function

and the PDF of the standard normal distribution, respectively.

In the literature of applying BO for learning VQAs, there

exists the usage of variant kernel functions and acquisition

functions under different noisy environments. However, they

can all be categorized as standard BO as they consider a �xed

noise model only.

In BO-Stable, we target a shift-aware problem but only

focus on the worst noise level instead of the worst distribu-

tional noise level. We use the same GP surrogate model and

its LCB as (12). Differing from using DRBO for problem (6),

the lines 4 and 5 of Algorithm 1 are replaced with solving

minθ LCB(θ, ξ
�) where given a θ, the worst ξ � is de�ned as

ξ � := argmaxξ LCB(θ, ξ ).

To compare these different VQA parameter optimization

methods, we �rst obtain their different optimized parameters

and evaluate them under different levels of noise ρ(ξ ). In

the simulation, we used the qiskit_aer noisy simulator with

the statevector backend, whose simulation algorithm is the

Monte Carlo trajectory approach. In one circuit trajectory,

a Kraus operator is randomly applied on an ideal gate with

probability that is de�ned by the noise channel. The multi-

qubit noise channel is de�ned as the tensor product of single-

qubit noise ones (4).

A. NUMERICAL EXPERIMENTS ON QAOA

QAOA is a leading VQA for combinatorial optimiza-

tion problems. It alternatively applies two operators, a

phase-separation operator and a mixer operator, to drive a

quantum system to the target solution state. A noiseless

VOLUME 5, 2024 3102112
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FIG. 2. Results for solving N = 14 3-regular graph MaxCut problems via QAOA. The x-axis denotes the significance of noise shift, where the noise level
PDF is the reference one at x = 0. The y-axis is the expectation of the approximation ratio of the QAOA solution evaluated at different noise PDFs. We
report the average result over ten nonisomorphic graphs. As we can see, the standard BO-LCB and BO-EI solutions have the best performance under the
reference noise. However, under an increasingly shifted noise, the DRBO solution begins to outperform the standard BO solutions. Meanwhile, the
BO-Stable solution is overconservative with respect to the noise. It significantly scarifies the performance under the reference PDF and the slightly
shifted PDFs to gain an improvement under significant shifts. These observations are consistent in the experiments with different QAOA depths.

QAOA solution is denoted as ψ(θ) = e−iβpHMe−iγpHP · · ·
e−iβ1HMe−iγ1HP |ψ0〉.
We will take the MaxCut problem as a case study of

QAOA. Given a graph G = (V,E ) with verticesV and edges

E, the MaxCut problem aims to �nd a cut that partitions the

graph vertices into two sets with the largest number of edges.

Its cost function is written as

C =
∑

(i, j)∈E
1 − sis j (15)

where si and s j are binary variables associated with the ver-

tices in V , which assume value 1 or −1 depending on which

of the two partitions de�ned by the cut are assigned. Its

cost Hamiltonian is de�ned as HC =
∑

(u,v)∈E
1
2
(I − ZiZ j ),

where Zi denotes a Pauli-Z operator.

In applying QAOA for solving the MaxCut problem,

given a noise model with noise level ξ , we aim to opti-

mize the QAOA parameters θ = (γ,β) such that the re-

sulting quantum state P(θ, ξ ) has minimal energy f (θ, ξ ) =
Tr[P(θ, ξ )HC]. Considering the uncertainty and �uctuation

of noise level, we aim to �nd parameters θ that make QAOA

performance more robust toward the shifted noise by solving

the DRO problem (6).

Here, we discretize the noise level into 20 bins in [0,0.08]

evenly. We assume that the reference noise follows a trun-

cated Gaussian distribution, with the noise �uctuation shift-

ing its mean to a larger value. We �rst generate a truncated

Gaussian distribution with mean −0.01 and standard devi-

ation 0.01. We estimate the probability density at each dis-

cretized level and do the normalization to obtain the refer-

ence PDF of the noise level. We follow a similar procedure

to generate the PDF of shifted noise by shifting the mean of

the initial truncated Gaussian distribution.

To begin with, for a depth-p QAOA ansatz, we initialize

the sampling set S0 = {θi, ξ i, f (θi, ξ i)}Mi=1 by taking M =
20p, where θi is drawn from the design space based on a

Latin hypercube approach [68], and the noise level samples

ξ i are drawn from the reference distribution ρ0(ξ ). We set the

maximum BO iterations as T = 20p.

As shown in Fig. 2, we evaluate different BO-based pa-

rameter optimization results on ten graphs with degree-3

and graph size N = 14. We report the average approxima-

tion ratio results under different shifted noise levels. The

x-axis denotes the index of the levels of noise shift, with

a higher one denoting a more signi�cant shift, and index-0

denotes the reference noise. Since we solve the optimal θ

under shifted noise, the DRBO-solved QAOA is expected

to perform worse than the one solved from a standard BO

solver under the reference noise. However, as the noise shift

becomes more and more signi�cant, the DRBO solution be-

gins to show its advantages. Notably, BO-Stable performs

better than BO-LCB and BO-EI under a signi�cantly shifted

noise as well. However, it is also overconservative under the

reference noise since it only considers a single worst noise

level. The results and observations are consistent over differ-

ent QAOA depths.

We plot the solution during the BO iterations in Fig. 3.

During the iteration, the performance is evaluated under the

optimal solution selected from the maximum posterior rather

than from the solution of an acquisition function. We show

the performance evaluated under the reference noise and

the shifted noise. During the iterations, DRBO consistently

converges to a shifted-noise preferred solution, whereas the

LCB converges to a reference-noise preferred one. We also

show the PDFs of the reference noise, shifted noise, and the

worst case that is estimated by the DRBO algorithm. We can

see that the MMD approach successfully captures the shifted

noise under the worse-case distribution, enabling the DRBO

to explore the parameters space that performs better under

shifted noise.

More results on MaxCut with graph size N = 8, 10, 12

and QAOA depth p = 1, 2, 3 are shown in Fig. 4. The results
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FIG. 3. One example of evolving of solution in different BO algorithms. The x-axis is the iterations in a BO algorithm, and the y-axis is the expectation of
cost function evaluated over noise level at a θ. The evaluated θ at one iteration is obtained by maximizing the model posterior, which is unnecessary to
be the explored θ at that iteration. Under the reference noise PDF, the BO-LCB algorithm converges to a better solution, whereas the DRBO converges to
a better solution under the shifted noise. The rightmost figure shows the example PDFs of the reference noise level, shifted noise level, and the
estimated worst-case noise level from the DRBO algorithm.

FIG. 4. More results on the MaxCut experiments with graph sizes N = 8, 10, 12 and QAOA depth p = 1, 2, 3. While potentially sacrificing the
performance under the reference noise a little, the DRBO solution performs better than standard BO methods under the significantly shifted noise.
Meanwhile, BO-Stable solutions are overconservative.

are consistent with the ones in Fig. 2. The DRBO solution

performs better than the baselines under signi�cantly shifted

noise, which demonstrates that our method could optimize

the VQA parameters that are more robust to the shifted noise.

One example of the newly sampled θ with p = 1 is plotted

in Fig. 5. The DRBO algorithm explores the parameter space

toward the optimal one under a shifted noise, while the other

algorithms exploit the space surrounding the optimal param-

eter under the reference noise. Therefore, the DRBO could

�nd a parameter that performs better under shifted noise.

B. NUMERICAL EXPERIMENTS ON VQE

VQE is another popular VQA, speci�cally designed to sim-

ulate quantum systems and �nd the ground state energy

VOLUME 5, 2024 3102112
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FIG. 5. Example of explored θ in p = 1 noisy QAOA cost landscape in a
N = 8 MaxCut problem. The optimum θ differs from the noiseless
optimum. Compared with the BO-LCB and BO-Stable, the DRBO explores
the parameter space that performs well under the shifted noise.

of quantum systems. We use the VQE algorithm with a

hardware-ef�cient ansatz [69] for simulating the ground en-

ergy of a 1-D Heisenberg model de�ned as

H = J
∑

i

XiXi+1 + YiYi+1 + ZiZi+1 + B
∑

i

Zi (16)

where J is the strength of the spin–spin interaction and B

is the magnetic �eld along the Z-direction. Here, we use

a hardware-ef�cient ansatz to implement the VQE algo-

rithm. Given an ansatz parameterized by θ and under a noise

model with noise level ξ , we denote the state as P(θ, ξ ). The

noisy VQE algorithm cost function is de�ned as f (θ, ξ ) =
Tr[P(θ, ξ )H]. Here, we aim to �nd the ansatz parameters that

lead to robust performance under shifted noise by solving the

DRO problem (6).

Here, we discretize the noise level into 20 bins in [0,0,08]

evenly. We assume that the reference noise follows a trun-

cated Gaussian distribution, and the changing noise shifts

its mean to a larger value. The hardware-ef�ciency ansatz

is set up, as shown in Fig. 6. The number of parameters

grows quickly and becomes challenging for a BO solver. For

simplicity, we only optimize the last N parameters and �x

the others, similar to the idea of layerwise optimization in

[70]. For the demonstration purpose, the �xed parameters are

obtained through a multistart classical optimization routine.

We follow the same procedure as QAOA to set up the noise

level distribution of both the reference and the shifted ones.

In Fig. 7, we show the ground energy solved for a 6-

spin system with J = 1 and B = 0.2, whose ground state

FIG. 6. Schematic of the hardware-efficient ansatz for VQE. The layers of
two-qubit entanglement and one-qubit rotation gates are repeated for
L–1 times.

FIG. 7. Results for solving the ground energy of a 6-spin,
J = 1 and B = 0.2 1-D Heisenberg model via VQE with two-layer
hardware efficient ansatz. The x-axis denotes the significance of noise
shift, where the noise level PDF is the reference one at x = 0. We first
obtained the optimal parameter θ0 in a noiseless simulation, which
solves the problem perfectly with f (θ0 ) = −4.8. Then, we report the

relative improvement of the energy
Eρ(ξ)[f (θ,ξ)]−Eρ(ξ)[f (θ0,ξ)])

Eρ(ξ)[f (θ0,ξ)]
. Under all the

shifted distributions, BO-LCB performs close to θ0. DRBO scarifies limited
performance under mild noise and performs much better than the
BO-LCB, BO-EI, and noiseless optimal θ0 in significantly shifted noise.
BO-LCB and BO-EI are almost overlapping since they both have solutions
close to θ0. While the BO-Stable can also find the robust parameter
under the shifted noise, it does not perform as well as DRBO, especially
when the noise shift is mild.

is highly entangled, from a two-layer hardware-ef�ciency

ansatz. Aiming to optimize the last layer parameters, we

initialize the sampling set withM = 40 and set the maximum

BO iteration T = 40 as well. Similar to the QAOA results,

DRBO performs better than BO-LCB and BO-EI under a

signi�cantly shifted noise. Furthermore, the DRBO solution

minimally compromises the reference noise performance,

whereas Bo-Stable tends to produce overly conservative re-

sults.
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V. DISCUSSION

A. RELATED WORKS OF BO

BO has been a prominent technique in addressing VQA

learning tasks. For instance, Self et al. [48] implemented

a parallel optimization scheme, enhancing the ef�ciency of

optimizing VQA parameters across multiple similar prob-

lems by leveraging information sharing within BO. Duf�eld

et al. [47] used Bayesian inference to reduce the redundancy

of the parameterized circuit, ending with a shallower and

more robust VQA ansatz. Iannelli and Jansen [46] used the

standard BO techniques to optimize parameters for noisy

VQE. Müller et al. [49] proposed a hybrid approach, utiliz-

ing BO solutions as warm starts and transitioning to multi-

start local search from optimized Bayesian samples. Tibaldi

et al. [50] speci�cally applied BO to optimize QAOA param-

eters. Finžgar et al. [51] demonstrated the ef�ciency of BO

in optimizing parameterized quantum annealing schedules.

Tamiya and Yamasaki [52] introduced stochastic gradient

line BO, leveraging BO to adjust step sizes in stochastic gra-

dient descent, thereby reducing measurement-shot costs in

optimizing VQA parameters. Kim and Wang [53] extended

standard QAOA with two mixers and optimized circuit pa-

rameters through BO. Buenache andMontserrat [54] utilized

a VQE-kernel to construct a Gaussian process model, lever-

aging speci�c circuit properties as physics-informed priors

and introducing a novel acquisition function to exploit the

inductive bias of the kernel. Ravi et al. [55] aimed to initialize

good ansatz by fully exploring the Clifford parameter space

through BO, where all simulations can be performed clas-

sically. Cheng et al. [56] introduced a novel BO approach,

optimizing QAOA parameters by constructing a surrogate

model with constraints derived from two adaptive regions.

Among all the above literature, it is hard to justify the best

BO techniques since they use different surrogate modeling

techniques, acquisition functions under different noise mod-

els, and target different applications. However, they can be

all viewed as standard BO setups as they all aim to optimize

either the parameter or ansatz architecture of VQA under

a �xed noise environment. None of them shared the same

shift-aware problem setup as ours.

B. LANDSCAPE SHIFT

Sharma et al. [57] showed that the optimal variational param-

eters are unaffected by a broad class of noise models, such as

measurement noise, gate noise, and Pauli channel noise. This

phenomenon is called optimal parameter resilience. Mean-

while, some noise can shift the location of minima. A rich of

work has studied how quantum noise can in�uence the VQA

landscape [71], [72], [73].We highlight that the shift location

of optimal parameters motivates our work, i.e., given that

the optimal parameter will change under different (shifted)

noise, we aim to �nd optimal parameters with robust perfor-

mance under the shifted noise environment.

In our simulation, we use the phase and amplitude damp-

ing noise model, which has been shown to change the values

of optimal parameters. The landscape with a changed or un-

changed optimum is illustrated in Fig. 8.

C. VARIANT PROBLEM FORMULATION

Radius varying formulation: Beyond optimization under

varying noise, another case where the DRO can be applied

is to calibrate the noise estimation. Assume that we do not

have a precise enough estimation of the real noise level dis-

tribution as the reference distribution. The key idea is that as

we collect more data on the noise level, we can have a more

accurate estimation of its PDF. Therefore, as the iteration

continues, we can gradually re�ne the center ρ0(ξ ) of the

uncertainty ball and reduce its radius ε.

Gate error modeling: Beyond modeling hardware noise,

another possible modeling is on the gate error f (θ + ξ) of a

parameterized quantum circuit, which assumes that the gate

parameters are not exactly implemented but suffer from some

coherent errors. In such a formulation, under different error

levels of ξ, the optimal θ will clearly have different values.

The DRO formulation can optimize the VQA to �nd param-

eters that are robust to the shifted gate errors. A robustness

analysis of such a formulation is discussed in [74]. It is also of

great interest to connect the gate error with a more detailed

control error and apply the proposed shift-aware optimiza-

tion at the physical level, but it is out of the scope of this

article.

VI. CONCLUSION AND OPPORTUNITIES

Quantum noise has been a major obstacle to the practical

applications of near-term quantum computers, particularly

in VQAs. Despite various error mitigation techniques have

been intensively studied, the dynamic nature of quantum

noise presents a formidable challenge. Optimized VQA pa-

rameters may perform suboptimally when exposed to differ-

ent noise environments.

In this article, we have presented a DRO formulation de-

signed to enhance the robustness of VQA parameters against

varying quantum noise conditions. Our approach leverages

a DRBO solver, ef�ciently tackling the proposed formula-

tion. We validate the proposed method in two widely rec-

ognized VQA benchmarks: QAOA for MaxCut and VQE

with hardware-ef�cient ansatz for 1-D Heisenberg model.

The proposed DRO formulation does not aim to mitigate in-

herent quantum noise directly. Instead, it addresses the noise

at the algorithmic level. It can be potentially integrated with

various error mitigation techniques to further improve the

VQA robustness.

Our formulation can be more impactful in scenarios in-

volving large-size problems. As we scale up to larger prob-

lems or deeper VQA ansatz, even minor �uctuations in

noise levels can signi�cantly affect performance. For in-

stance, implementing QAOA for larger problems necessi-

tates deeper circuit depths, amplifying the in�uence of even

slight shifts in noise levels on VQA performance. Therefore,

optimization VQA parameters under such shifts becomes

increasingly critical.
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FIG. 8. Example of energy landscapes under different noise models. The left heatmap is the depth-1 QAOA landscape for the MaxCut problem. The color
denotes the solved energy. The optimal point in this landscape is highlighted as a triangle. The middle heatmap is the landscape under simple Pauli
errors, which has been shown not to change the VQA optimal and uniformly flatten the landscape. The right heatmap is the landscape under the phase
and amplitude damping noise, where the optimum is shifted and the energy landscape has a different shape. Under the noise, both the middle and the
right ones have worse energies than the left noise-free landscape.

To integrate the proposed distributionally robust formula-

tion intomore practical use cases, a better knowledge of noise

models is highly desired. More speci�cally, in this article, we

characterize quantum noise by a �xed noise model, such as

(4), and model the noise level as a random variable with an

unknown PDF. Suchmathematical modelingmay not capture

the actual hardware noise well since the noise characteri-

zation is in principle challenging. Another point is that we

also need to model the uncertainty ball carefully. To make

sure the optimized parameters perform well under the actual

shifted noise, we need to tune the radius of uncertainty ball ε

such that the shifted noise is lying with the ball and is close

to the worst case within the ball. Otherwise, the proposed

DRBOmay become overconservative, as shown in Figs. 2, 4,

and 7.

To improve the solver of DRO, some better techniques

that do not need to discretize the noise level or ef�ciently

handle high-dimensional parameter optimization of θ can be

developed.

We also have applied a similar DRO formulation for clas-

sical circuit optimization [75], where we identi�ed the shifts

of process variations. In this article, we focus on handling

the parameter optimization of noisy variation quantum al-

gorithms. Differing from the work in [75], the noise source

and modeling in this article are distinct, characterized by a

�xed noise model with different levels of strength. We used

MMD to de�ne the uncertainty ball such that the shift-aware

problem is solved in a two-step process. In addition, we

study its quantum applications from the energy landscape

perspective, which is much less studied in classical circuit

applications. There is a great thread studying the energy land-

scape of VQAs, such as [76], [77], and [78]. We believe our

shift-aware optimization is interesting and could be inspiring

to the community.
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