

Understanding Students' Frustration and Confusion
during a Programming Task: A Multimodal

Approach

Rakhi Batra
Department of Computer Science and Engineering

The Ohio State University
 Columbus, USA
 rakhi.1@osu.edu

Zahra Atiq
 Department of Computer Science and Engineering

The Ohio State University
 Columbus, USA
 atiq.2@osu.edu

Abstract— For novice students, learning programming is
hard, hence, inducing a variety of emotions. According to
literature, two of the most commonly occurring emotions that
students experience while learning programming are
frustration and confusion. Although these emotions are
momentary, they may have long-term effects on students'
motivation, performance, and retention in computing. In this
study, we aim to discuss challenges that students report when
they feel frustration and confusion while working on the rainfall
problem. This problem has been used extensively in literature to
understand students’ problem-solving skills. However, little is
understood about how students react emotionally when they
work on this problem.
We recruited twenty-eight students who took CS1 during

Fall 2022. They worked on the problem for twenty minutes while
we collected their biometrics, clickstream, and keystroke data.
A retrospective think-aloud interview was conducted soon after
the task, where participants elaborated on their emotional
experiences while watching the video replay of their
programming task. We analyzed interview data using
qualitative content analysis and triangulated these findings with
biometric, clickstream, and keystroke data. Some of the
challenges that trigger confusion and frustration are getting
unexpected output, inability to resolve compilation and logical
issues, forgetting syntax, and conceptual misunderstanding.
Moreover, we found an alignment between the different data
sources to provide a near real-time view of emotional
experiences. Instructors may use the findings of this study to
design interventions that support problem-solving, such as
problem-based teaching, using interactive programming tools,
and tracing for debugging.

Keywords—confusion, frustration, multimodal data, rainfall
problem, biometrics, triangulation, engineering education

I. INTRODUCTION
Programming is a fundamental skill to learn for computing

students, but it is often challenging because it involves
learning abstract concepts, programming syntax, and complex
problem-solving techniques [1]. Considering the difficulty of
learning programming, a major focus is dedicated to
improving teaching practices, for instance, a computerized
learning environment that captures student behaviors and
provides customized feedback [2]. However, these
environments somewhat neglect the emotions that students
experience while learning programming [3]. Students
experience a variety of emotions throughout their learning and
different emotions impact differently on their performance
and motivation [4]. Literature suggests that emotions, such as
confusion and frustration, occur frequently during computer
programming sessions [3, 5-8] and these states are correlated

with student performance [9]. Moreover, these two emotions
have mixed effects on learning outcomes. Some studies report
a positive effect of confusion and frustration on learning [10,
11] whereas other studies report a negative effect [9]. For
instance, [8] found that brief confusion or frustration results in
positive outcomes and enhances learning whereas longer
confusion leads to frustration, which hinders learning and
affects the outcome negatively. Similarly, [12] reported that if
the positive state of confusion is not resolved, it transitions to
frustration, and ultimately to boredom. Considering the role of
these emotions in learning, the purpose of this study is to
understand students’ confusion and frustration while doing
programming. Specifically, we aim to answer this research
question: “What challenges do students report when they feel
frustration and confusion while working on the rainfall
problem?” For the purpose of answering our research
question, we used a multimodal approach for data collection.
Multimodal data helps capture multi-layered information
about the complexity of human emotions from different
perspectives [13]. The data analysis methods are primarily
qualitative followed by the description of two exemplars that
explain the triangulation between the different modalities.

II. LITERATURE REVIEW

A. Conceptual Framework
The control-value theory (CVT) describes multiple types

of academic emotions. Two types of emotions explained in
CVT are achievement emotions and epistemic emotions. The
terms "affect" and "emotion" are sometimes used
interchangeably in the literature. However, these two are
different. Affect refers to the “basic sense of feeling ranging
from unpleasant to pleasant and idle to activated”, while
emotions are intense and short-term usually triggered by some
event [14].
Frustration is an activity-related achievement emotion. It

triggers as a result of failure in an activity that is not
sufficiently controllable [15]. For instance, during
programming labs, students feel frustrated when they are not
able to identify logical errors in their code, or if they get
incorrect output.
Epistemic emotions, on the other hand, emerge as the

result of solving cognitively demanding tasks. These tasks
usually hinder or aid the learning process [16]. Confusion is
an epistemic emotion because it triggers after cognitive
disequilibrium has occurred while working on a learning task
[10, 16, 17]. Confusion could either be beneficial or
detrimental to the learning process, depending on how it is
induced and resolved [10]. It is important to note that CVT

20
23

 IE
EE

 F
ro

nt
ie

rs
 in

 E
du

ca
tio

n
Co

nf
er

en
ce

 (F
IE

) |
 9

79
-8

-3
50

3-
36

42
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

FI
E5

87
73

.2
02

3.
10

34
34

99

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

does not define confusion as emotion, however, [18] suggests
that confusion shares the properties of emotion such as
identifiable facial markers and appraisal structure, which
makes it enough to be in the emotions and affective science
literature [16, 18, 19].
Confusion turning to frustration and vice versa is

explained by Bosch and D’Mello in their theoretical model of
the affect transitions [12]. According to this model, when
students encounter an impasse during a learning activity, they
experience confusion. If the impasse is not resolved, this
confusion triggers frustration. Moreover, frustration can
transition back to confusion if students encounter new
impasses, or transition into boredom if frustration persists.

B. Confusion and Frustration in Learning Programming
In the past several years, researchers have shown interest

in understanding affect and academic emotions in learning [5,
8]. However, a few researchers have a specific focus on
confusion and frustration because these two emotions have
positive as well as negative effects on learning outcomes [9,
10, 11]. Literature suggests that there is no direct method to
resolve the confusion, however, it requires students to have
skills and knowledge to resolve it or the instructor can provide
scaffolding to help students resolve their confusion [10, 19].
Moreover, if confusion is not resolved and students are not
able to improve their understanding, they do not learn much,
become frustrated, and doubt their abilities [12, 21].
The studies on confusion and frustration have used a

variety of methods to identify these emotions. The most
common method is self-reporting by participants. In a series
of studies by D’Mello et al., the authors have studied novice
students’ affect during two programming phases by analyzing
their self-reported affective judgments [3, 22]. The authors
found that students most frequently experience engagement,
confusion, frustration, and boredom while programming. Self-
reported methods for understanding emotions enhance the
validity of results but these methods are limited in their
applicability [23]. To understand emotions as students work
on a program, Rodrigo et al. used students’ compilation logs
from the integrated development environment (IDE) [24].
They found that a coarse-grained level of frustration can be
identified by analyzing the average time between the number
of errors, compilations, and the number of consecutive
compilations after modifying the same code or getting the
same error. However, they suggested that short-time
compilation logs are not enough to identify students’
frustration.
Considering the importance of the identification of

emotions at the appropriate time, researchers are getting
interested in the automatic identification of emotions using
facial features [25, 26, 27]. In a series of studies by Grafsgaard
et al., facial features were used to predict confusion and
frustration in the programming context [26, 27]. They used a
corpus of computer mediated human-human tutoring sessions,
which contained webcam video, database logs, and skin
conductance. However, for the analysis, the authors only used
facial expressions to build a regression model. They found that
brow lowering was positively correlated with frustration.
Using similar facial features as Grafsgaard et al., but a
significantly different data collection mechanism, Bosch et al.
used the Computer Expression Recognition Toolbox (CERT)1
to detect the academic emotions of students while they were

1 CERT tracks facial features based on the Facial Action Coding System
(FACS).

learning Python using a computerized learning environment
[25]. The authors built the models based on facial features and
found that confusion, uncertainty, and frustration were
distinguished from all other emotions using the CERT.
Emotions are complex and require multi-layered processing to
understand their complexity [13]. For example, in a study by
Lee and Sumi, students’ facial features were used in
combination with students’ typing and compilation logs, self-
reported emotions, and one action state label (which includes
reading, writing, thinking, finding, unfocused, fixing, or other)
to predict emotions [28, 29]. The authors trained Hidden
Markov Models (HMM) on the sequences and action units of
facial expressions of engagement, confusion, and frustration.
Although limiting the use of their data collection method (self-
report), authors found that the inclusion of self-reported action
states in model training can increase the performance of the
model for identifying engagement and frustration and to some
extent confusion and boredom.
In real life, facial expressions are a good source of

identifying emotions however, there are other physiological
measures that reflect changes when a person feels certain
emotions [30, 31, 32]. For instance, Pachman et al. used eye
gaze data to detect confusion in puzzle-solving tasks [33]. The
authors collected students’ eye-gaze data during the tasks and
self-reported data after the completion of tasks. During self-
reporting participants retrospectively described the thoughts
they had during a puzzle-solving process and reported the
confusion level. The authors calculated the fixation on areas
of interest and counted the instances where confusion ratings
were high. The authors found that participants mostly got
confused about the non-relevant areas of the problem.
From the summary of the literature, it is possible to

automatically detect certain emotions by using compilation
logs, typing logs, facial features, and eye-gaze data but this
may compromise the validity of results because in most
studies these data sources are used in isolation. The validity of
results increases by incorporating multiple sources of data
[34]. Hence, we are using a multimodal approach for data
collection and analysis. More specifically, we collect eye-
gaze, EDA, clickstream, and retrospective think-aloud
interviews (self-report) to provide a fine-grained and near
real-time understanding of students’ confusion and frustration
during a programming task.

III. RESEARCH METHODOLOGY

A. Context
The Ohio State University, located in the Midwestern United
States, is a large and well-known university in the field of
engineering. It enrolls full-time, residential, and traditional-
aged undergraduate students in a variety of engineering
disciplines. The context for this study is composed of three
introductory programming courses (CS1): CSE-1222 (C++),
CSE 1223 (Java), and CSE 1224 (Python). These introductory
courses are three credits offered each semester to students of
all majors. These courses cover introductory programming
concepts such as branching statements, loops, and handling
user input. These courses employ different teaching methods,
including active learning, blended learning, and project-based
approaches. Students attend lectures and collaborate with their
peers to solve problems during lectures. Additionally, they
watch online modules outside of the classroom, work on

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

interactive readings, and complete self-check questions and
projects. Each week students have a lab during which they
work on problems and get help and feedback from graduate
teaching assistants. Each section of these courses has an
enrollment of up to 160 students. The weekly lab is divided
into smaller sections of 40 students each.

B. Selection Criteria
First, we considered students’ who were novices because

novices may experience a range of emotions while taking a
programming course [35]. In the context of this study, novices
are students who have no experience or limited programming
experience before taking these courses, and they are not
repeating the course. Second, we used purposive sampling
[36] to consider the students who represent diversity regarding
gender, ethnicity, and major field of study.

C. Participants
Using the selection criteria defined above, we recruited 28

students who took CS1 during Fall 2022. The course-wise
breakdown of participants is CSE 1222 (3), CSE 1223 (19),
and CSE 1224 (6). The gender breakdown of participants is
Male (17), Female (9), and Others (2). The ethnicity
breakdown of the participants is White (11), Asian (8), Black
or African American (4), Hispanic or Latino (2), and Biracial
(3). For confidentiality purposes, we assigned pseudonyms to
all the participants. A $20 Amazon gift card was given to each
participant as compensation.

D. Data Collection Methods
For data collection, we used self-report data (think-aloud

interview), physiological biomarkers (electrodermal activity
and eye-tracking), keystroke, and clickstream data.

1) Retrospective think-aloud interview: In the retrospective
think-aloud interview, participants provide a description of
their experiences of performing a task by watching the video
of the task [37]. The retrospective think-aloud interview is a
suitable choice when participants engage in cognitively
demanding tasks because these tasks require complete
attention. However, the retrospective think-aloud interview is
prone to recall bias that may lead to the participants not being
able to recall critical information [38]. To minimize recall
bias, we overlaid the video of the participant’s task with
mouse movements and eye-gaze data. We also recorded
participants' facial expressions during the task and presented
them along with the task recording during the retrospective
think-aloud interview.
2) Biometric Data: Research has shown that emotional
arousal can be correlated with biometric measures, such as
electrodermal activity [30]. The psychological states are
influenced by the person and the task that is being performed,
and in turn, may affect their actions [39]. Based on the relation
between biometric and psychological states, biometric data
could provide a near real-time understanding of students’
emotions that they experience while doing the programming
task.
Eye-related biometric features include eye movement and

pupil dilation. There are multiple measures of eye movement,
however, we used eye fixations (gaze position on a specific
object) [40, 41]. From fixation, we can calculate fixation
duration (which indicates attention required by stimulus) [42]
and fixation count (which indicates areas referred to multiple
times) [32]. These metrics provide insights into the attention
of a person and task complexity [41]. Skin-related biometric
features include skin temperature and electrodermal activity

(EDA) [41]. When a person is aroused, the sweat glands in the
skin produce more sweat which increases the electrical
conductance of the skin. The change in electrical conductance
is measured by EDA [43].
3) ClickStream and Keystroke Data: Clickstream and
keystroke data represent the sequential collection of user
activities or events during an interaction with a computer. It
includes data such as typing something, mouse clicks and
movement, and navigation paths. These data provide valuable
insights into user behavior, preferences, and search patterns
[44].

E. Research Design
Fig. 1 explains the research design and the order of data

collection modalities within the research design.

1) Data Collection
 In this study, we used iMotions software for data

collection [45]. iMotions collects data related to human
behavior by integrating and synchronizing different sources of
data such as surveys, screen recordings, biometric sensors, and
video [45]. We collected multimodal data in two sessions. In
the first session, participants’ biometric data, the
programming task, and self-reported surveys were collected
using iMotions. In the second session, we did a retrospective
think-aloud interview with each participant. Details about
both sessions are provided in the following sections:

First Session (Programming session): In this session, first,
participants’ baseline data of biometrics were collected. After
that, participants filled out the survey to report their
prospective emotions before the programming task and then
started to work on the programming task. Participants were
given twenty minutes to work on the problem. After
completing the task, participants filled out the post-survey to
report the retrospective emotions experienced during and
after the programming task. For this study, we are not using
the pre-, and post-survey data. We asked participants to
choose among three programming languages and IDE to
work on: Java (Eclipse), Python (VS code), and C++
(Eclipse).
Programming Task: We selected the rainfall problem as a
programming task for this study, which is defined as follows:
“Write a program that repeatedly prompts the user to enter
numbers (integers). Once the user enters the number 999,
output the average of the non-negative numbers entered by the
user, do not include 999 in the calculation of the average.”
The rainfall problem uses multiple programming

constructs (such as input from the user, loops, conditional
statements, and identifying division by zero error) to test
students’ problem-solving abilities [46]. Previous research has
used the rainfall problem to understand how students plan and

Fig. 1. Research Design

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

compose a programming problem and considered it a
challenging problem for novices [47, 48]. While working on
this challenging problem, students face problem-solving
difficulties [47] that could trigger negative emotions and may
affect students’ performance. Hence, it is important to
understand the problem-solving difficulties that trigger
confusion and frustration to help students overcome those
difficulties.

Second Session (Retrospective Think-Aloud Interview): The
second session of the study started approximately ten minutes
after the completion of the first session. During this session,
the researcher conducted a retrospective think-aloud interview
with the students, where they replayed the screen-captured
video (annotated with eye gaze data and mouse movement) of
the students’ programming task and paused the video every
two minutes to ask students to explain their emotional
experiences and actions they might take to deal with their
emotions. Moreover, students were provided with a list of
emotions to help describe their emotions [49].

F. Data Analysis
Directed Content Analysis (DCA): DCA is a qualitative
content analysis approach that is used for the flexible analysis
of text data [50]. In DCA, an existing theory or theoretical
framework is used to guide qualitative data analysis. We used
DCA to perform the qualitative content analysis on the
interview data.
First, we extracted the definitions of emotions of our

interest (confusion, frustration, confusion plus frustration)
from the relevant literature. Second, we selected a process
model that describes the behaviors and emotions experienced
by students while programming. This process model is based
on prior theory and literature on achievement emotions and
CS education research [51] and is refined by the second author
[5]. The six stages of the process model are getting started
(GS), typing code (TC), encountering difficulties (ED),
dealing with difficulties (DD), succeeding (SC), and stopping
(ST). For more details on these stages and the process model
refer to [5, 52].
Third, we reviewed the transcripts and highlighted all text

that contained confusion and frustration. Fourth, we coded the
highlighted text using the predetermined categories wherever
possible. While coding we also referred to unhighlighted text
as it might contain the text that aligns with the operational
definitions of emotions or help in understanding the context.
Fifth, we used the coded data to discuss and describe the data
that supports, extends, or disapproves the theory.
Biometric Data Analysis: We used biometric data for
triangulation with the qualitative findings to provide a near
real-time and fine-grained understanding of students’
emotions. Since we conducted the retrospective interviews in
two-minute intervals, we aligned the biometric data into two-
minute segments. The alignment of all data sources makes it
easy to analyze data and provide a temporal snapshot of
students’ emotions and behaviors at a certain point in time.
The biometric data were cleaned and processed using Python
scripts.

IV. FINDINGS
The findings of this study are primarily qualitative, followed
by the triangulation with biometric data. The qualitative
findings are categorized into three groups based on the stages
in the process model: 1) Getting started, 2) Debugging

(typing code, encountering difficulties, and dealing with
difficulties), and 3) Ending (succeeding and stopping) [5].
Participants reported confusion and frustration frequently
during the debugging stages. Therefore, we only discuss the
challenges encountered in the debugging stages in the
subsequent sections.
We have tried to tease out the different stages of debugging.
However, it must be noted that participants may be engaged
in two stages at the same time, for instance, they may be
typing code while dealing with difficulties or encountering
more difficulties while doing trial-and-error (dealing with
difficulties).

A. Challenges that Trigger Confusion and Frustration
during Debugging
While debugging, participants transition between typing

code (TC), encountering difficulties (ED), and dealing with
difficulties (DD) [5]. The number of transitions depends upon
participants’ progress with writing the code. For instance,
students get stuck if they cannot fix issues in the code and
repeatedly transition between TC to ED, ED to DD, or DD to
TC. On the other hand, they work in flow if the code executes
successfully, and they may just transition from TC to ST and
then SC.

1. Typing Code
While typing code, participants were also monitoring what

they were doing. During monitoring, participants sometimes
get confused in selecting the appropriate programming
construct for solving the programming task. For instance,
Mario was anticipating that his code had something missing,
as shown in the following excerpt.
“Um, the same as before, but I think my confidence started to drop 'cause I
got confused between like whether I should use a while or if, or even like, a
for loop 'cause I know there had to be like some nested loop; I just couldn't

figure it out.” - Mario
Mario was confused about which construct to use. His

confusion probably stems from the fact that Mario is a novice,
and his conceptual understanding of programming is still in its
infancy, hence he is unable to decide if he needs to use a
conditional statement or a loop. He was also confused about
which type of loop to use (while vs. for). Mario’s experience
is explained by [1] which suggests that novices typically have
many deficits in programming strategies such as the way
knowledge is used and applied (for instance, using an
appropriate loop in a program). Moreover, Mario’s confusion
in using a programming construct aligns with the findings that
novice students experience difficulty in using the appropriate
plans while solving the rainfall problem [46].
While typing code, participants also experienced

frustration when they had negative expectations about the
output of the programming task. For instance, Bella explained
that she overcomplicated the task and perceived that she could
not finish the task in a given time although she knew how to
do the task.
 “Um, um, I was getting worried that I wasn't gonna be able to finish it and
then I kind of was feeling a little bit bad because I was like, okay, this
doesn't seem like that hard of a question. And I was probably over

complicating it and so I was like feeling a little bit frustrated with myself
because I probably should have been able to finish it in the 20 minutes

time” -Bella
Bella perceived that the task as simple and doable in

twenty minutes because of which she had a positive
perception. However, her actual experience (not being able to
complete the task and getting some errors) changed her

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

perception which resulted in her feeling frustrated. Bella’s
experience is in accordance with [46], which suggests that
positive perception and negative programming episodes
induce negative emotions such as frustration.

2. Encountering Difficulties
2.1. When the code does not work
The most frequent reason for experiencing confusion and
frustration is when the code does not work. More specifically,
when participants expected that the code would work but it did
not work, they felt confused. On the other hand, unsuccessful
attempts at resolving unexpected behavior of code resulted in
frustration. For instance, Kevin got confused because he
assumed that his code was right. However, when he executed
the code, it did not work as expected.
“Um, so I basically thought I got it all right … and then after I pressed
999, it still asks for the number. And so, at this point my emotion was like,
confusion.[…] Because, I mean, so the-the confidence meant that I wrote,
like, wrote everything and... yeah; I felt like it was right to, like to some
extent, but obviously when I looked at it, like afterwards, after I looked at
the error, this is like I noticed, okay, this is a pretty major flaw. And I --

shame, shame would also be there." – Kevin
Kevin’s confusion aligns with the literature which states

that when students encounter inconsistent or contradictory
information while working on a task they feel confused [18].
Some participants got stuck when their code did not work due
to syntax errors. They were not able to fix issues in their code
even after spending a significant amount of time. For instance,
in the following excerpt, Smith explains his emotional
experience when his code did not work.
 “I think I was pretty frustrated at this point 'cuz I tried it a couple times
and it still wouldn't run, so I just spent most of it reading through

everything to try to figure out what was wrong -- and I was pretty confused
because I couldn't figure out what -- why it wasn't working.” Smith
Smith’s emotional experience aligns with existing

literature which suggests the long-term cognitive impasse
changes confusion to frustration [3].

2.2. Forgot how something worked
Most participants experienced frustration when they forgot
how something worked. This was particularly relevant for
participants working in Java and they encountered challenges
when they forgot how to take user input or initialize an array.
For instance, in the following excerpt by Katie, she mentions
that she understood the task and she could have done it in
under five minutes if she had some help. For her programming
class, she normally relied on notes to understand how syntax
worked.
 “I think I was more frustrated at this point because I felt like I knew it, and
then, […] I'm just too reliant on just, previous works.[…] I was like, really
frustrated at myself, […] I needed like that small little booster help to

figure -- like, to finish it, […] I knew I could have finished this in like under
five minutes --” Katie

Katie’s experience aligns with the definition of frustration by
the CVT [15], which suggests that when participants have low
control over the activity, failure in that activity induces
frustration. During the programming task, Katie was not
allowed to use outside help. She tried to use IDE-based help
but could not get any useful information. Due to limited
control in getting help, she could not do the task and felt
frustrated.
 To solve the rainfall problem, some participants tried to

use an array because they considered an array to be an
appropriate data structure that could store multiple inputs. The
following excerpt by Brandon explains how he forgot to
initialize an array.

“A little bit more frustration: um, I was getting very frustrated. I
couldn't remember the syntax, uh, to declare an array and create an arry,
um, but I was still trying to analytically work my way through it.” -Brandon
 Brandon wrote code in Java where the size of the array
needs to be known before creation, but in the given rainfall
problem, the number of inputs is unknown, leading to an
unknown array size. Literature suggests that the rainfall
problem can be solved using a single variable instead of arrays
[47, 54]. Brandon’s decision to use an array indicates a gap in
the understanding of programming constructs for novice

Segment 05: it would either display like, a error message -- if
something was wrong before like the average, […] or it would
just straight up display the averages and then that, and then
like some random number that maybe was wrong, but like still
would display something.
Segment 06: I was just like looking it over --- and like trying
to see like look for mistakes and like, I was like, trying to, um,
do different things and like output things --
Segment 07: I figured that it was like, actually like printing
out what I coded and it was like -- like just like outputting like
something else, like some other program at the end, but like, I
don't know, <laugh>; I might be wrong, but [..] I couldn't
figure out why it wasn't like printing out like the average part,
and I was like really trying to like change around and like
trying to see what I was doing wrong, but like -- I don't know
-- like I was very focused.
Segment 08: I already was like, I do not know why is not doing
anything that I'm like putting in here -[..] I think I'm doing this
right; like, there's something wrong with computer, not me.
Segment 09: this shouldn't display like over and over again
'cuz it's not in a while loop. So, this is what it should be
printing out here, but it's not printing the same thing as it is
here in the program, […] -I was trying to think like if I was
running the program wrong or something like that.
Segment 10: I was confident that I did it right like then, but I
was like, mostly confused why it wasn't running. Like, if I was
-- like the coding part where I had written, I was -- I saw that
it was right; well, at least like I did my best.

a b
Fig. 2 (a) Jane’s Eye-gaze (top), EDA (middle), and Clickstream and Keystroke (bottom) graphs over the 2-minute segments and the table
on the bottom shows the occurrence of confusion (C) and frustration (F) during different stages of the process model (b) Interview excerpts

of segments where the participant experienced confusion and frustration.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

students. His experience confirms with literature [1, 54],
which suggests that novices face difficulties in solving
programming problems due to semantic misinterpretation of
programming constructs.

3. Dealing with Difficulties
One of the main ways that novices deal with difficulties is

by engaging in trial and error [5]. Our data also confirm this
behavior of novices. During this stage, participants experience
confusion and frustration when they try to fix something
repeatedly, but it still does not work. This is evidenced by the
following excerpt by George.

“Yeah, I was definitely confused. -- definitely because I did not know
what wasn't -- like why it wasn't displaying, and I was trying to look for

anything in my code that wasn't working. I don't -- I think I was just like very
frustrated, like at the program and like, I was just like looking it over -- and
like trying to see like look for mistakes and like, I was like, trying to, um, do
different things and like output things -- and like reading over just to see like

what the program was doing..”-George
George was doing trial and error to fix issues in his code

but could not succeed. First, the unexpected code behavior
confused him and after multiple unsuccessful attempts, he got
frustrated. George’s experience explains that students feel
confused when they find a discrepancy between their existing
mental model of programming knowledge and the actual
output [18]. When their confusion is unsolved for a long time,
they get frustrated [3, 8].

B. Triangulation of Multi-Modal Data
Qualitative findings in the previous section provide an

overarching summary of the findings from the retrospective
think-aloud interview. However, we selected two exemplars
where we provide a more fine-grained, near real-time, and
multimodal perspective on how students experience confusion
and frustration and what behaviors they exhibit when they
experience these emotions. Moreover, these two exemplars

are selected based on the successful completion or non-
completion of the rainfall problem. These exemplars confirm
that for the most part, there is alignment between the different
data sources. In Fig. 2 and Fig. 3, in the clickstream and
keystroke graph (bottom) blue bars represent the count of
keyboard events, while the other colors show mouse events.
Exemplar 1 (Task not completed): Jane is a

Hispanic/Latino female student. She was taking CSE-1222 in
Fall 2022 for the first time. Before taking this course, she did
AP Computer Science. Fig 2 shows Jane’s biometric and
clickstream graphs and relevant excerpts from the interview
data.
Jane's excerpts explain that she started to feel confused

during segment 5 [see Fig 2 (b)] when she executed the code
and did not get the expected output. In the subsequent
segments, she explained that she was trying to figure out the
issues in the code which is also evident from Jane’s eye-gaze
data. As we can see in Jane’s eye gaze graph [Fig 2 (a)], during
segment 4 and onwards Jane’s fixation counts are mostly
higher than fixation duration which means that she was
looking all around the code screen to find the errors and was
not just focusing on particular code sections.
Jane’s EDA graphs depict that she was mostly aroused

once she encountered difficulties and could not resolve them.
However, her EDA started to go down as she was approaching
the end of the task. One reason for the change in EDA could
be Jane’s positive belief that her task was right and that she
did her best as explained by her in segment 10 [Fig 2 (b)] [39].
 Moreover, Jane’s clickstream data also supports the

findings from her qualitative data that she was mostly engaged
in finding errors rather than typing the code. According to
literature, patterns of mouse behavior such as frequency of
visiting a page (or section of a page) and duration of visits are
highly related to eye gaze behavior and indicate the debugging
experience of students [53, 54]. Jane’s eye gaze movements
for searching errors and frequency of mouse events in the

Segment 04: I was, uh, reading sample run one, and I
was just gonna put in the same, um, inputs that, that,
um, like the example showed, and then I was going to
hopefully get the right, the same average as that one
did, which I didn't; [..] I was like, this challenge seemed
so easy, how don't -- how didn't I get it right like the
first time.
Segment 05: I was sitting here like, what am I doing
wrong; and I start to get like a little bit worried, like, as
in the next like, 10 minutes are gonna go by, and I'm
still not gonna figure it out what I did wrong.
Segment 06: knowing that I wasn't working properly; I
started to question whether the-the samples themselves
were wrong, but then I was like, they probably aren't
wrong 'cuz they're like, you're probably supposed to use
them in order to get the right
Segment 07: It was something with the sample numbers
that was different than my own numbers, [..] I would
figure it out probably 'cuz I was just narrowing down
like what was the difference between the sample and my
own.
Segment 08: And when I got the like divide by zero
error, I knew that I could just like, fix that by -- with like
an if statement --[..] at first when that came up, I was
like, oh great, that's another problem that I have to fix,
um, but I just kind of figured I would get it out of the
way so I could focus on the bigger problem, which is me
not getting the right numbers.

a b

Fig. 3 (a) Jerry’s Eye-gaze (top), EDA (middle), and Clickstream and Keystroke (bottom) graphs over the 2-minute segments and the table
on the bottom shows the occurrence of confusion (C) and frustration (F) during different stages of the process model (b) Interview excerpts

of segments where the participant experienced confusion and frustration.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

clickstream graphs [segment 4 and onwards in Fig 2 (a)] show
similar patterns thus indicating that she was engaged in
debugging, as suggested by literature.
Exemplar 2 (Completed): Jerry is a White male

participant. He was taking CSE-1223 in Fall 2022 for the first
time. Before taking this course, he had some experience with
website development. Fig 3 shows Jerry’s biometric and
clickstream graphs and relevant excerpts from the interview
data. Jerry completed the task successfully but he encountered
difficulties during his programming session. During segment
4 in Fig 3 (b) he completed the code and executed it for the
first time. His code was executed successfully but he did not
get the expected output and experienced confusion and
frustration because he perceived that the task was simple and
he thought he could do it correctly. His emotional arousal is
also evident by peaks in the EDA graph during segment 4 [see
Fig 3 (a)]. When Jerry encountered this unexpected behavior,
he entered into the debugging process. As we can see in
excerpts of segments 5, 6, and 7 in Fig 3 (b) he was trying to
resolve the issues. His eye-gaze graph also shows he was
searching for issues by looking all over the code [41] as we
can see some gaps in fixation counts and duration during
segments 5, 6, and 7 [Fig 3 (a)]. Moreover, during these
segments, his EDA was fluctuating (not going into baseline
but there are changes), which could explain that he was doing
trial-and-error, where he might have perceived that he had
figured out the issue and updated the code (feeling positive)
but could not get the expected output [55]. His clickstream
data also shows a mix of mouse and keyboard events during
this time. Furthermore, we could confirm from Jerry’s EDA
data that encountering difficulties in programming could
affect physiological data and emotions [55]. For instance,
during segment 8 [see Fig 3 (a)] Jerry’s EDA data shows an
increase, as he got the division by zero error and felt
frustration.

V. DISCUSSION

A. Challenges that Trigger Confusion and Frustration
Students reported experiencing confusion and frustration

when they encountered challenges like forgetting the syntax
of commands (taking user input and initialization of array),
not understanding how to do the problem (such as choosing
the appropriate loop, sentinel value, and taking multiple user
inputs), and not being able to debug logical, or syntax errors.
Most of the challenges reflect the problem-solving deficiency
of novice students. According to literature, novices face
difficulties due to their semantic misconception of
programming concepts (incorrect mental models) or their lack
of understanding of program composition strategies [1, 46],
52].
As participants write code, they develop some

expectations about the output of the code and their progress.
When their expectations did not match reality, they feel
negative emotions. This was observed in a few participants
who could not manage to complete the task in the given time.
The literature also suggests that perception about the outcome
and negative programming episodes induced negative
emotions such as frustration [51]. Moreover, other
participants experienced extreme confusion when they
encountered difficulties repeatedly. Mainly, two cases were
reported: 1) the output of the program did not match the
expected output and 2) the participants got errors (syntax
errors, division by zero, and infinite loop). Frustration was
more prominent when participants forgot the commands such

as the import statement and scanner initialization for user
input in Java and declaration of the array. To solve the rainfall
problem using an array is the least favorable solution because
this problem requires storing the sum of inputs rather than
each input and also the number of user inputs is unknown [47].
However, using an array is also possible but novice students
do not have enough knowledge to use this data structure when
the length is unknown [47]. The decision to use an array by
participants indicates that novices have inaccurate mental
models of programming concepts, which subsequently
confused them [1]. As confusion persisted due to the incorrect
use of an array, participants became frustrated [3].
 Another event that triggered confusion and frustration was
when participants did not know how to solve the problem.
Participants were able to understand the task requirements and
they had a solution in their mind, but they could not translate
it into complete code. For instance, Smith (section 2.1)
mentioned that he felt frustrated because he was unable to
write the code for taking multiple user inputs. Students’
difficulty in translating the problem description into code
could be explained by the literature that suggests that novice
students have knowledge of programming concepts, but they
face difficulty in merging different programming concepts to
do the programming task [46].
Participants were engaged in dealing with the difficulties

stage by doing trial-and-error to find and fix issues in the code.
At this stage, participants experienced confusion and
frustration when they could not fix issues after repeated trial-
and-error. This behavior of students explains that students
become confused when they encounter an impasse [3]. This
impasse results from the discrepancy between their existing
mental models and the actual output [18]. If students make
efforts to use their knowledge effectively or get some help to
update their mental models, they can resolve confusion and
continue to make progress in the code [10]. As in this study,
the participants who encountered syntax errors were able to
fix them by understanding the error messages and completed
the task. However, when the students could not resolve their
confusion, they experience frustration and eventually get
bored if the frustration persists. For instance, participants in
this study experienced frustration when they forgot the
commands and eventually got bored because they could not
use any help and had nothing to do to make progress in the
code [3, 8].

B. Triangulation of Multimodal Data
Triangulation of biometric (eye-gaze and EDA) and

behavioral (clickstream and keystroke) data with interview
data support our findings of qualitative analysis. This
triangulation gives a picture of students' real-time
physiological behaviors accompanied by the fine-grained
analysis of students’ self-report responses, hence enhancing
the validity of the findings [13, 34].
From the triangulation, we observed that eye-gaze data

could be indicative of students’ difficulty in finding useful
information or focusing on important sections of code as
suggested by [32, 41, 42]. Moreover, some parts of EDA data
indicated changes in signals (peaks) when students
experienced confusion and frustration. However, changes in
EDA data could be due to other emotional experiences such
as shame and anger that students reported at the same time.
Even so, it confirms the relation between EDA data and
emotional arousal [30, 55], and subsequently triangulation of
EDA data with students’ self-report responses confirmed our

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

findings. The patterns in clickstream data also validated our
findings of the participants’ debugging behavior during the
programming session. Our data suggests that there are more
mouse events when participants try to find issues in code
whereas keystroke events are more prominent when
participants type code or deal with difficulties along with
typing code. Our findings align with previous work [29] that
suggests students’ log-based data could help in identifying
engagement and frustration.

VI. LIMITATIONS AND FUTURE DIRECTIONS
This study is conducted in a controlled lab setting which

limits the generalizability of findings. However, participants
were not required to complete the task to get a grade, or their
performance in the task was not associated with any grade
which is usually the case when students do programming in
their course. Due to this difference in grading mechanism,
students may experience certain emotions during course-
related programming that they experienced during this study.
Moreover, the institutional review board (IRB) asked to

use a secure room and secure system (computer installed with
security protocols and without any internet connectivity) to
protect participants’ privacy. Therefore, it was not possible for
the participants to use online help. We also did not provide
them with other external help resources (such as lecture notes
or tablets) because that would have caused unnecessary
movement and hence, would have compromised the quality of
the biometric data. Whereas, in real settings, students are not
restricted from using resources for help. This difference in the
environment may affect the emotional experience of students.
In this study, participants used IDEs that were different

from their courses (participants used Zybooks and Repl.it in
their courses which were not possible to use on the secure
system). Hence, it is possible that some confusion and
frustration were also triggered by compilation or IDE-related
events.
In this study the challenges for the most frequent emotions

of confusion and frustration are explored, however, we
observed that students also experience other emotions that
impact their performance and perception of their abilities to
do the programming. We aim to extend this work by exploring
other emotions and their interaction with students’ self-
efficacy beliefs. Additionally, the triangulation of multimodal
data is presented for two participants that we would extend to
other participants to find more meaningful patterns of
emotional experiences using machine learning techniques.

VII. IMPLICATIONS AND SUGGESTIONS FOR INSTRUCTORS
Understanding students’ emotions while programming is

important to keep them engaged in solving problems and
enhance their learning [16]. In this study, we found that
students experience confusion and frustration when they
encounter certain problem-solving related challenges such as
the use of “for” and “while” loop. To prevent the negative
emotions that trigger due to such problem-solving challenges,
instructors may need to use appropriate strategies for teaching
programming. One strategy is “Problem-based learning”, in
which teachers could explain worked programming examples
that show the different use cases of programming constructs
in solving problems [56]. The problem-based learning could
facilitate students to build correct mental models of
programming constructs [57].
Teachers could also use interactive tools to support the
learning of abstract programming concepts. For instance,
SICAS2 is a tool that helps students to create programs using

flowcharts and see the execution of these programs through
the animation [58].
Students find difficulty in converting the problem

description into code. One strategy is to teach students
“stepwise refinement” which explains how to extract
requirements from problem descriptions in the form of goals
and subgoals [46]. By identifying the main goal and the
subgoals(subproblems) required to solve the problem,
students could plan and solve each subgoal individually,
making the problem simpler. An important part of this strategy
is teaching them how to connect the subgoals. Connecting the
subgoals could be facilitated by teaching students the use of
flowcharts or explicitly defining the input and output for each
subgoal as per the relation among subgoals. However,
successful implementation of this strategy relies on students’
knowledge and understanding of relevant programming
concepts.

VIII. CONCLUSION
This study provides a fine-grained and near-real-time
analysis of how confusion and frustration manifest
themselves when students are working on a programming
problem. In literature, researchers have mostly discussed the
reasons for confusion and frustration while learning to
program and how these two emotions transition from each
other during learning. In this study, we ask students to do a
programming task without providing (teaching) them any
learning lesson just before the task. So, students were
required to solve the task by using the existing knowledge
that they had obtained in their course. We used the rainfall
problem because it helps in identifying the basic problem-
solving behavior of students. So, our focus was to study the
students’ problem-solving related challenges that trigger
confusion and frustration. Programming instructors could use
the findings of this study for an in-depth understanding of
what problem-solving techniques students lack so that they
could design the appropriate interventions that enhance the
conceptual understanding of students.

ACKNOWLEDGMENT
This material is based upon work supported, in part, by the
National Science Foundation: NSF IIS 2104729. Any
opinions, findings, conclusions, or recommendations
expressed in this material do not necessarily reflect those of
the NSF.

REFERENCES
[1] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching

Programming: A Review and Discussion,” Computer Science
Education, vol. 13, no. 2, pp. 137–172, Jun. 2003, doi:
10.1076/csed.13.2.137.14200.

[2] I.-H. Hsiao, S. Sosnovsky, and P. Brusilovsky, “Guiding students to
the right questions: adaptive navigation support in an E-Learning
system for Java programming: Adaptive navigation support in E-
Learning,” Journal of Computer Assisted Learning, vol. 26, no. 4,
pp. 270–283, Jul. 2010, doi: 10.1111/j.1365-2729.2010.00365.x.

[3] N. Bosch and S. D’Mello, “Sequential Patterns of Affective States of
Novice Programmers”.

[4] R. Pekrun, “The Impact of Emotions on Learning and Achievement:
Towards a Theory of Cognitive/Motivational Mediators,” Applied
Psychology, vol. 41, no. 4, pp. 359–376, Oct. 1992, doi:
10.1111/j.1464-0597.1992.tb00712.x.

[5] Z. Atiq and M. Loui, “A Qualitative Study of Emotions Experienced
by First-year Engineering Students during Programming Tasks,”

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

TOCE, vol. 22, no. 3, pp. 1–26, Sep. 2022, doi:
https://doi.org/10.1145/3507696.

[6] J. F. Grafsgaard, R. M. Fulton, K. E. Boyer, E. N. Wiebe, and J. C.
Lester, “Multimodal analysis of the implicit affective channel in
computer-mediated textual communication,” in Proceedings of the
14th ACM international conference on Multimodal interaction, in
ICMI ’12. New York, NY, USA: Association for Computing
Machinery, Oct. 2012, pp. 145–152. doi: 10.1145/2388676.2388708.

[7] D. M. C. Lee, Ma. M. T. Rodrigo, R. S. J. d. Baker, J. O. Sugay, and
A. Coronel, “Exploring the Relationship between Novice
Programmer Confusion and Achievement,” in Affective Computing
and Intelligent Interaction, S. D’Mello, A. Graesser, B. Schuller, and
J.-C. Martin, Eds., in Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer, 2011, pp. 175–184. doi: 10.1007/978-3-642-
24600-5_21.

[8] Z. Liu, V. Pataranutaporn, and J. Ocumpaugh, “Sequences of
Frustration and Confusion, and Learning,” in Proceedings of the 6th
international conference on educational data mining, pp. 114–120.

[9] Ma. M. T. Rodrigo et al., “Affective and behavioral predictors of
novice programmer achievement,” in Proceedings of the 14th annual
ACM SIGCSE conference on Innovation and technology in computer
science education, in ITiCSE ’09. New York, NY, USA: Association
for Computing Machinery, Jul. 2009, pp. 156–160. doi:
10.1145/1562877.1562929.

[10] S. D’Mello, B. Lehman, R. Pekrun, and A. Graesser, “Confusion can
be beneficial for learning,” Learning and Instruction, vol. 29, pp.
153–170, Feb. 2014, doi: 10.1016/j.learninstruc.2012.05.003.

[11] B. Lehman et al., “Inducing and Tracking Confusion with
Contradictions during Complex Learning,” International Journal of
Artificial Intelligence in Education, vol. 22, no. 1–2, pp. 85–105, Jan.
2013, doi: 10.3233/JAI-130025.

[12] S. D’Mello and A. Graesser, “Dynamics of affective states during
complex learning,” Learning and Instruction, vol. 22, no. 2, pp. 145–
157, Apr. 2012, doi: 10.1016/j.learninstruc.2011.10.001.

[13] I. V. Alarcón and S. Anwar, “Situating multi-modal approaches in
engineering education research,” Journal of Engineering Education,
vol. 111, no. 2, pp. 277–282, 2022, doi: 10.1002/jee.20460.

[14] L. F. Barrett, “The Origin of Feeling,” in How Emotion are Made:
The Secret Life of Brain, Pan Macmillan, 2017.

[15] R. Pekrun, “The Control-Value Theory of Achievement Emotions:
Assumptions, Corollaries, and Implications for Educational
Research and Practice,” Educ Psychol Rev, vol. 18, no. 4, pp. 315–
341, Nov. 2006, doi: 10.1007/s10648-006-9029-9.

[16] R. Pekrun and E. J. Stephens, “Academic emotions.,” in APA
educational psychology handbook, Vol 2: Individual differences and
cultural and contextual factors., K. R. Harris, S. Graham, T. Urdan,
S. Graham, J. M. Royer, and M. Zeidner, Eds., Washington:
American Psychological Association, 2012, pp. 3–31. doi:
10.1037/13274-001.

[17] N. Li, J. D. Kelleher, and R. Ross, “Detecting Interlocutor Confusion
in Situated Human-Avatar Dialogue: A Pilot Study,” 2021, doi:
10.21427/bsd0-7326.

[18] S. K. D’Mello and A. C. Graesser, “Confusion,” in International
Handbook of Emotions in Education, Routledge, 2013. doi:
10.4324/9780203148211.ch15.

[19] S. D’Mello and A. Graesser, “Confusion and its dynamics during
device comprehension with breakdown scenarios,” Acta
Psychologica, vol. 151, pp. 106–116, Sep. 2014, doi:
10.1016/j.actpsy.2014.06.005.

[20] R. A. Calvo and S. D’Mello, “Affect Detection: An Interdisciplinary
Review of Models, Methods, and Their Applications,” IEEE
Transactions on Affective Computing, vol. 1, no. 1, pp. 18–37, Jan.
2010, doi: 10.1109/T-AFFC.2010.1.

[21] G. V. Caprara et al., “Longitudinal analysis of the role of perceived
self-efficacy for self-regulated learning in academic continuance and
achievement.,” Journal of Educational Psychology, vol. 100, no. 3,
pp. 525–534, Aug. 2008, doi: 10.1037/0022-0663.100.3.525.

[22] N. Bosch and S. D’Mello, “The Affective Experience of Novice
Computer Programmers,” Int J Artif Intell Educ, vol. 27, no. 1, pp.
181–206, Mar. 2017, doi: 10.1007/s40593-015-0069-5.

[23] R. Pekrun, “Self-Report is Indispensable to Assess Students’
Learning,” FLR, vol. 8, no. 3, pp. 185–193, Mar. 2020, doi:
10.14786/flr.v8i3.637.

[24] Ma. M. Rodrigo, J. Sugay, R. Baker, and E. Tabanao, “Monitoring
Novice Programmer Affect and Behaviors to Identify Learning
Bottlenecks,” Department of Information Systems & Computer

Science Faculty Publications, Jan. 2009, [Online]. Available:
https://archium.ateneo.edu/discs-faculty-pubs/123

[25] “It’s Written on Your Face: Detecting Affective States from Facial
Expressions while Learning Computer Programming |
SpringerLink.” https://link.springer.com/chapter/10.1007/978-3-
319-07221-0_5 (accessed Apr. 21, 2023).

[26] J. F. Grafsgaard, K. E. Boyer, and J. C. Lester, “Predicting Facial
Indicators of Confusion with Hidden Markov Models,” in Affective
Computing and Intelligent Interaction, S. D’Mello, A. Graesser, B.
Schuller, and J.-C. Martin, Eds., in Lecture Notes in Computer
Science, vol. 6974. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 97–106. doi: 10.1007/978-3-642-24600-5_13.

[27] J. F. Grafsgaard, J. B. Wiggins, K. E. Boyer, E. N. Wiebe, and J. C.
Lester, “Automatically Recognizing Facial Indicators of Frustration:
A Learning-centric Analysis,” in 2013 Humaine Association
Conference on Affective Computing and Intelligent Interaction, Sep.
2013, pp. 159–165. doi: 10.1109/ACII.2013.33.

[28] T. J. Tiam-Lee and K. Sumi, “Adaptive Feedback Based on Student
Emotion in a System for Programming Practice,” in Intelligent
Tutoring Systems, R. Nkambou, R. Azevedo, and J. Vassileva, Eds.,
in Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2018, pp. 243–255. doi: 10.1007/978-3-319-91464-
0_24.

[29] T. J. Tiam-Lee and K. Sumi, “Analysis and Prediction of Student
Emotions While Doing Programming Exercises,” in Intelligent
Tutoring Systems, A. Coy, Y. Hayashi, and M. Chang, Eds., in
Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2019, pp. 24–33. doi: 10.1007/978-3-030-22244-4_4.

[30] A. Haag, S. Goronzy, P. Schaich, and J. Williams, “Emotion
Recognition Using Bio-sensors: First Steps towards an Automatic
System,” in Affective Dialogue Systems, E. André, L. Dybkjær, W.
Minker, and P. Heisterkamp, Eds., in Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer, 2004, pp. 36–48. doi:
10.1007/978-3-540-24842-2_4.

[31] S. T. Iqbal, X. S. Zheng, and B. P. Bailey, “Task-evoked pupillary
response to mental workload in human-computer interaction,” in
CHI ’04 Extended Abstracts on Human Factors in Computing
Systems, in CHI EA ’04. New York, NY, USA: Association for
Computing Machinery, Apr. 2004, pp. 1477–1480. doi:
10.1145/985921.986094.

[32] Z. Sharafi, B. Sharif, Y.-G. Guéhéneuc, A. Begel, R. Bednarik, and
M. Crosby, “A practical guide on conducting eye tracking studies in
software engineering,” Empir Software Eng, vol. 25, no. 5, pp. 3128–
3174, Sep. 2020, doi: 10.1007/s10664-020-09829-4.

[33] M. Pachman, A. Arguel, L. Lockyer, G. Kennedy, and J. Lodge, “Eye
tracking and early detection of confusion in digital learning
environments: Proof of concept,” AJET, vol. 32, no. 6, Dec. 2016,
doi: 10.14742/ajet.3060.

[34] I. V. Alarcón, S. Anwar, and Z. Atiq, “How Multi-modal Approaches
Support Engineering and Computing Education research,”
unpublished.

[35] W. Sun and X. Sun, “Teaching Computer Programming Skills to
Engineering and Technology Students with a Modular Programming
Strategy,” in 2011 ASEE Annual Conference & Exposition
Proceedings, Vancouver, BC: ASEE Conferences, Jun. 2011, p.
22.1378.1-22.1378.11. doi: 10.18260/1-2--18625.

[36] M. Q. Patton, Qualitative Research & Evaluation Methods:
Integrating Theory and Practice. SAGE Publications, 2014.

[37] S. Elling, L. Lentz, and M. de Jong, “Retrospective think-aloud
method: using eye movements as an extra cue for participants’
verbalizations,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, in CHI ’11. New York, NY,
USA: Association for Computing Machinery, May 2011, pp. 1161–
1170. doi: 10.1145/1978942.1979116.

[38] A. Hyrskykari, S. Ovaska, P. Majaranta, K.-J. Räihä, and M.
Lehtinen, “Gaze Path Stimulation in Retrospective Think-Aloud,”
JEMR, vol. 2, no. 4, Nov. 2008, doi: 10.16910/jemr.2.4.5.

[39] J. M. Basch and C. Fisher, “Affective events - emotions matrix: a
classification of work events and associated emotions,” 1998.
Accessed: Mar. 03, 2023. [Online]. Available:
https://www.semanticscholar.org/paper/Affective-events-emotions-
matrix%3A-a-classification-Basch-
Fisher/660d4211ba7b0b80a9370b2b01aba7df482922ce

[40] T. Fritz and S. C. Muller, “Leveraging Biometric Data to Boost
Software Developer Productivity,” in 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

(SANER), Suita, Osaka, Japan: IEEE, Mar. 2016, pp. 66–77. doi:
10.1109/SANER.2016.107.

[41] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A Survey on the
Usage of Eye-Tracking in Computer Programming,” ACM Comput.
Surv., vol. 51, no. 1, pp. 1–58, Jan. 2019, doi: 10.1145/3145904.

[42] F. Hauser, J. Mottok, and H. Gruber, “Eye Tracking Metrics in
Software Engineering,” in Proceedings of the 3rd European
Conference of Software Engineering Education, in ECSEE’18. New
York, NY, USA: Association for Computing Machinery, Jun. 2018,
pp. 39–44. doi: 10.1145/3209087.3209092.

[43] D. Girardi, F. Lanubile, and N. Novielli, “Emotion detection using
noninvasive low cost sensors,” in 2017 Seventh International
Conference on Affective Computing and Intelligent Interaction
(ACII), San Antonio, TX: IEEE, Oct. 2017, pp. 125–130. doi:
10.1109/ACII.2017.8273589.

[44] R. Hanamanthrao and S. Thejaswini, “Real-time clickstream data
analytics and visualization,” in 2017 2nd IEEE International
Conference on Recent Trends in Electronics, Information &
Communication Technology (RTEICT), May 2017, pp. 2139–2144.
doi: 10.1109/RTEICT.2017.8256978.

[45] “iMotions: Unpack Human Behavior,” Imotions.
https://imotions.com/ (accessed Feb. 09, 2022).

[46] E. Soloway, “Learning to program = learning to construct
mechanisms and explanations,” Communications of the ACM, vol.
29, no. 9, pp. 850–858, Sep. 1986, doi: 10.1145/6592.6594.

[47] K. Fisler, “The recurring rainfall problem,” in Proceedings of the
tenth annual conference on International computing education
research - ICER ’14, Glasgow, Scotland, United Kingdom: ACM
Press, 2014, pp. 35–42. doi: 10.1145/2632320.2632346.

[48] P. Kather, R. Duran, and J. Vahrenhold, “Through (Tracking) Their
Eyes: Abstraction and Complexity in Program Comprehension,”
ACM Trans. Comput. Educ., vol. 22, no. 2, pp. 1–33, Jun. 2022, doi:
10.1145/3480171.

[49] R. Pekrun and L. Linnenbrink-Garcia, International Handbook of
Emotions in Education. 2014.

[50] H.-F. Hsieh and S. E. Shannon, “Three Approaches to Qualitative
Content Analysis,” Qual Health Res, vol. 15, no. 9, pp. 1277–1288,
Nov. 2005, doi: 10.1177/1049732305276687.

[51] P. Kinnunen and B. Simon, “CS majors’ self-efficacy perceptions in
CS1: results in light of social cognitive theory,” in Proceedings of
the seventh international workshop on Computing education
research, in ICER ’11. New York, NY, USA: Association for
Computing Machinery, Aug. 2011, pp. 19–26. doi:
10.1145/2016911.2016917.

[52] A. Ebrahimi, “Novice programmer errors: language constructs and
plan composition,” International Journal of Human-Computer
Studies, vol. 41, no. 4, pp. 457–480, Oct. 1994, doi:
10.1006/ijhc.1994.1069.

[53] “Eye Gaze and Mouse Cursor Relationship in a Debugging Task |
SpringerLink.” https://link.springer.com/chapter/10.1007/978-3-
642-39473-7_93 (accessed May 15, 2023).

[54] “Eye-mouse coordination patterns on web search results pages | CHI
’08 Extended Abstracts on Human Factors in Computing Systems.”
10.1145/1358628.135879 (accessed May 15, 2023).

[55] J. Gorson, K. Cunningham, M. Worsley, and E. O’Rourke, “Using
Electrodermal Activity Measurements to Understand Student
Emotions While Programming,” in Proceedings of the 2022 ACM
Conference on International Computing Education Research V.1,
Lugano and Virtual Event Switzerland: ACM, Aug. 2022, pp. 105–
119. doi: 10.1145/3501385.3543981.

[56] I. de Jong and J. Jeuring, “Computational Thinking Interventions in
Higher Education: A Scoping Literature Review of Interventions
Used to Teach Computational Thinking,” in Koli Calling ’20:
Proceedings of the 20th Koli Calling International Conference on
Computing Education Research, in Koli Calling ’20. New York, NY,
USA: Association for Computing Machinery, Nov. 2020, pp. 1–10.
doi: 10.1145/3428029.3428055.

[57] A. West and P. Lombardi, “Scaffolding,” in Instructional Methods,
Strategies and Technologies to Meet the Needs of All Learners,

[58] A. Ferreira, A. Gomes, and A. J. Mendes, “SICAS2: Interactive Tool
to Support Programming Learning,” in 2022 International
Symposium on Computers in Education (SIIE), Nov. 2022, pp. 1–5.
doi: 10.1109/SIIE56031.2022.9982323.

Authorized licensed use limited to: The Ohio State University. Downloaded on August 13,2025 at 13:35:19 UTC from IEEE Xplore. Restrictions apply.

