ASEE 2022 ANNUAL CONFERENCE

[X(elle“(e Through DiverSity MINNEAPOI.IS‘, MINNESOTA, jUNé j;;i/-ﬁ”, 2022:.;5‘;SEE-

Paper ID #37268

Work in Progress: Understanding CS1 Students’ Code
Comprehension Behaviors using Multi-modal Data

FNU Rakhi

NA

Syedah Zahra Atiq (Assistant Professor of Practice) (The Ohio State
University)

I am an Assistant Professor of Practice at the Ohio State University

© American Society for Engineering Education, 2022

Understanding CS1 Students’ Code Comprehension Behaviors using Multi-
modal Data

1. Introduction

Code comprehension is an important skill for programmers because it helps them understand code
and develop debugging skills [1]. The process of code comprehension is unlike comprehending
natural languages because it involves complex cognitive processing. During cognitive processing,
a programmer is required to develop or use the appropriate mental models of programming
constructs, which makes code comprehension difficult for novice programmers [2]. Along with
cognitive processing, it is important to analyze how students feel during code comprehension
because the literature suggests that emotions influence different aspects of cognition such as
attention, reasoning, learning, memory, and problem-solving [3]. Novice programmers may
experience a variety of emotions while comprehending code. These changes in emotions may
subsequently influence their academic performance and retention in computing and engineering
[4]. Therefore, in this study, we aim to understand CS1 students’ emotions and cognitive
processing during code comprehension. Specifically, we ask the following research questions:

1. What type of cognitive processing do CS1 students perform during code comprehension?
What emotions do CS1 students experience during code comprehension?

3. How do programmers’ emotions and cognitive processing interact during code
comprehension?

Answers to these research questions would provide us with an in-depth and nuanced understanding
of the cognitive events that trigger certain emotions and how students process that information,
and vice versa.

In this study, we will employ multi-modal data, collected through biometric sensors and concurrent
think-aloud interviews. These data would provide multiple perspectives and a rich understanding
of the instructional needs of CS1 students by analyzing their emotions and cognitive processing
during code comprehension. These instructional needs may include demonstrating programming
concepts with examples, construction of mental models through visualization, debugging
strategies, and scaffolding [5]. Based on the instructional needs, appropriate instructional strategies
(pedagogical, technological, or content-based) could be designed that may provide students with
good learner support [5].

2. Literature Review

2.1. Theoretical Framework

This research study is grounded in two theoretical frameworks: Cognitive load theory (CLT) and
Control-value theory of achievement emotions (CVT). In the following sections, we briefly
explain these theories.

2.1.1. Cognitive Load Theory: According to CLT, cognitive load is a construct that measures
the load, imposed by a task on the cognitive system of an individual [6]. The load can be
characterized as task-based (mental load) and learner-based (mental effort). Task-based cognitive
load is imposed by task demands. These demands could be due to the complexity of the task or the

instructional design [6]. Learner-based cognitive load indicates the amount of cognitive capacity
allocated by the person to meet the task demands [6].

Learning to program is a cognitively demanding task because it imposes cognitive requirements
such as mental load and mental effort [5]. Solving a programming task requires an understanding
of the program, its syntax, and semantics, understanding the developing environment, checking
code output, compilation, and debugging. The simultaneous holding of this information in working
memory imposes the cognitive load and makes the programming task demanding [5].

2.1.2. Control Value Theory of Achievement Emotions: Control value theory (CVT) provides
a theoretical framework to study emotions in the academic context. It suggests that academic
emotions influence academic performance and learning, and they link directly with achievement
activities and outcomes [4]. According to CVT, achievement emotions are studied in three
dimensions i.e., object focus, activation, and valence. Object focus refers to the activity students
engage in or the outcome of the activity. Valance dimension describes emotion as pleasant/positive
or unpleasant/negative whereas activation refers to the arousal of emotion due to a physiological
response to a particular emotion. These dimensions categorize the emotions in four categories
(pleasant/activating, unpleasant/activating pleasant/deactivating, and unpleasant/deactivating) [4].

2.2. Reasons why Repetition Structures are Hard: There are various reasons that make the
repetition structures hard to learn. In this section, we define three main reasons. The first reason is
that novice programmers do not have prior mental models to learn programming constructs [7].
The absence of mental models leads to misconceptions caused by inappropriate memory
transfer [8]. These misconceptions occur when a certain term in programming does not have the
same meaning as it has in the English language. Various programming languages use words
like “while” and “for”, to represent loops, which may not have the same meaning for programming
as they have in the English language or may have multiple meanings in English [8]. For instance,
“while” in the English language can be used as a noun, conjunction, adverb, and verb. However,
in programming, it means that the computer will repeat a statement or set of statements while a
certain condition remains true. This may confuse a novice, who will initially try to use their
existing mental models from English to understand “while” and “for” in programming.

The second reason is dealing with troublesome cases and skipping certain values. A simple loop
that displays a list of numbers on the screen may not be very hard for the student to grasp.
However, the literature suggests that in some cases, loops become extremely difficult for novices,
and sometimes even for expert programmers. A classic scenario in which loops are difficult for
students to learn is the rainfall problem [9, 10]. This problem uses the while loop to read the
integers(rainfall) as input and output the average of these integers. While computing the average,
the program excludes negative numbers and stops when the input is 99999. These types
of loops are hard because students must accurately convert the problem into code while taking into
consideration special cases, which may not be apparent to them initially. This is more a challenge
of proper problem understanding than a matter of correct syntax.

The third reason is the manipulation of the control variable of the loop, especially in the “for”
loop. In the “for” loop, the value of the control variable changes on each iteration of the loop. This
change in value could be sequential (increment or decrement by a constant number) or may involve

an expression. Since the value of the control variable is hidden, the programmer may fail to see
the internal changes to the value [11, 12].

2.3. Emotions and Cognition: Emotional experiences play an important role in an academic
setting because they modulate different aspects of cognition such as attention, reasoning, learning,
memory, and problem-solving [13-17]. During exams, tests, and projects, students engage in
cognitive processing tasks, and these activities are associated with emotional states of anxiety,
frustration, and boredom [3]. Moreover, the subject of study also influences emotions that affect
the ability of a person to learn and remember. For instance, in introductory programming courses,
students face many difficulties like understanding programming concepts, the syntax of the
language, and debugging [7]. Students may feel many different emotions because of these
difficulties, subsequently influencing their learning and academic performance [4]. Therefore, it is
important to design courses by considering the influence of emotions and maximizing the learning
and retention of subject knowledge [18].

2.4. Code Comprehension: Programming is not a single task, it involves multiple processes such
as reading, comprehending, tracing, summarizing, writing, and debugging the code [19]. In this
study, we will focus on one such aspect of programming, which is code comprehension.
Comprehension is usually described as a process in which an individual constructs his or her
mental representation of the program [20]. During code comprehension, students deal with many
concepts and integrate them to form a mental model of the dynamic aspects of the program
execution [21].

2.4.1. Data Collection Methods for Code Comprehension: Research studies in programming
for code comprehension have used different methods for data collection such as questionnaires,
interview-based methods, and eye-tracking [22, 23]. In a study by the Leeds group, the authors
created a questionnaire of code comprehension tasks to investigate why students find programming
hard [24]. They found that many students performed poorly in code comprehension problems,
"suggesting that such students have a fragile grasp of skills that are a pre-requisite for problem-
solving". Later, Whalley, J.L et al., claimed that the choice of code comprehension tasks by the
Leeds group was not informed by the theoretical model [25]. Therefore, they extended the work
of the Leeds group by developing a set of code comprehension tasks based on SOLO and Bloom
taxonomies. From the analysis of their framework, they found a relation between the cognitive
level of questions with the performance of students.

Adelson prepared a set of eight code comprehension questions in pascal to compare the
performance of novice and expert computing students [26]. The author found that experts always
outperformed on well-written tasks while on unstructured (poorly written) tasks, sometimes
novices outperformed experts. Cynthia and Susan created six short programming segments to
identify what kind of information novice students used to comprehend the program and how they
connected different parts of information [27]. Their findings suggest that novice students create
concrete and detailed mental representations of code during comprehension. In recent years, eye-
tracking technology has gained attention as a method for data collection for code comprehension
studies [23]. The rationale is that eye-tracking provides near real-time and in-depth insights into
the cognitive processes that the programmer engages in while comprehending the code [1].

2.4.1.1. Eye Movement: Eye movement helps to understand the person’s cognitive processing
by observing the viewing pattern of a person on the stimulus [23]. The most important and
frequently used eye movement metrics are fixation duration, fixation count, saccades, and scan
path [28]. Fixation tells us where the person is looking at a particular time [23]. Fixation can last
for milliseconds or up to several seconds, the total time of fixation is called fixation duration.
Fixation duration is associated with the attention being paid to the stimulus. The longer the
duration, the more interesting or complex is the stimulus [28]. A saccade is a rapid movement of
the eye between fixations, it helps to understand the viewing pattern of the person on the screen
[23]. A scan path is a combination of saccades and fixations. It is described as a path formed by
the directed sequence of saccades between fixations [28]. The eye movement metrics are usually
measured for part(s) of the screen (such as a section of code) where the researcher wants to observe
a person’s behavior. The selected part of the screen is known as the area of interest (AOI) [23].
Another metric that is measured through eye trackers is pupil dilation which refers to the change
in pupil size due to the autonomic nervous system (ANS) activity [29]. Change in pupil size is
associated with emotional arousal in the human body [30-32].

2.4.1.2. Understanding Cognitive Processing using Eye Movements: A range of studies have
used eye-movement metrics (fixation duration, fixation count, saccades, and scan path) to analyze
the cognitive processing [23]. Christoph and Crosby used eye-tracking to study the code
comprehension patterns of novice programmers and expert programmers [33]. They used eye
fixation as a measure of attention and found that highly experienced developers use less time on
comments and more time on complex statements compared to novice developers.

Just and Carpenter identified the relation between fixation of the eye and cognitive processing of
students during comprehension of scientific passages [34]. They measured the level of cognitive
processing of a text by calculating fixation duration on each word of text [34]. Chen et al., used
eye blinks, fixation, and saccades to measure the cognitive load. They found that eye blinks got
stuck during attention-demanding tasks to maximize the stimulus perception. Whereas fixation and
saccades metrics were controlled by the effort required to spread attention on the task-related
objects [35]. Recently, Philipp et al., used fixation time on areas of interest (AOI) to identify the
effect of code composition style and familiarity of code on the complexity of code comprehension
[21].

2.5. Understanding Emotions through Biometric Data: Besides eye-tracking for identifying the
cognitive processing of programmers, biometric data such as electroencephalography (EEG),
electrodermal activity (EDA), blood volume pulse (BVP), and heart rate (HR) could be used to
analyze the programmers’ emotions [30-32]. Biometric data represent the activity of the human
body’s automatic nervous system and central nervous system. Some forms of these data may
represent changes in emotions along with other nervous system activities [36, 37]. For instance,
signals from electrodermal activity (EDA) represent the changes in levels of sweat produced by
the human body. EDA signal has two components i.e., tonic, and phasic. Tonic signals show the
basic level of skin conductance in the human body whereas phasic signals show the changes in
skin conductance due to external stimuli like noises, sound, and lighting [38]. The phasic signal
also reflects changes in emotional intensity like high arousal [38].

In literature, a few studies have used biometric data to analyze the programmers’ emotions. Girardi
et al., used EEG, EDA, BVP, and HR to identify emotions experienced by the developers and the
events that trigger those emotions [39]. They found that although developers experience a wide
range of emotions during programming tasks, emotions related to negative valence and high
arousal were most common. These emotions were triggered by unexpected code behavior, missing
documentation, time pressure, and self-perceived low productivity. Fritz and Muller conducted
multiple studies to analyze the perceived progress of a developer, task difficulty, and boosting the
developer’s productivity by using biometric data [30-32]. They found that developers experience
many emotions which affect their perceived progress. Further, they suggested that identifying the
emotions of developers may help to improve their productivity. For instance, by providing
suggestions and resources when developers are found stuck and make no progress.

2.6. Gaps in Literature: From the literature review, it is evident that eye-tracking metrics are
useful to understand cognitive processing but measuring cognitive load is not a simple task. It is a
multidimensional construct and needs multiple sources to confirm the accuracy of the measure [6].
Therefore, in this study, we will use eye movement metrics along with concurrent think-aloud
interviews with participants to understand the cognitive processing of students as they comprehend
code. Along with cognitive processing, it is important to analyze how students feel during code
comprehension because the literature suggests that emotions influence different aspects of
cognition such as attention, reasoning, learning, memory, and problem-solving. Therefore, in this
study, we aim to understand CS1 students’ cognitive processing as well as emotions during code
comprehension by using multi-modal data to get multiple perspectives and a rich understanding of
emotions and cognitive processing that students experience while comprehending code.

3. Research Methodology

3.1. Context and Participants: The Ohio State University (OSU) is a large university in the
midwestern United States. It is well-known for engineering and has traditional-aged undergraduate
students. The Computer Science and Engineering department offers a suite of introductory
programming courses in different languages (e.g., C++, Python, and Java). The context for this
study is the introductory programming course in Java (CSE-1223). CSE-1223 is offered year-
round at OSU and the student population in each semester is different. This course is offered to
students from all majors including students who wish to pursue CS as a major. CSE-1223 is taught
using active, blended, and project-based learning methodologies.

3.2. Selection Criteria: For this study, novice programming students who would be taking CSE-
1223 for the first time during the summer or autumn 2022 semesters would be considered. In the
context of this study, novices are students who have not had any programming experience before
taking CSE-1223, and they may or may not be taking another programming course in
parallel. Since this is a small-scale exploratory study, we will perform purposive sampling from
the selected novice students. Through sampling, we will recruit 20 students that ensure diversity
and multiple perspectives [40]. Students’ emotions may be influenced by the background factors,
which as result may impact their academic performance and retention in computing [41].
Therefore, we will consider diversity regarding gender, major field of study, and ethnicity during
sampling.

3.3. Research Design: For this study, we will present two short programs written in java to the
participants. These programs will be based on loops because loops are hard to understand for
various reasons. Some of the reasons include handling the loop variable, dealing with troublesome
cases, skipping certain values, and different contextual meaning of loop keywords “for” and
“while” in the English language. The primary task for the participants is to comprehend these
programs. While comprehending code, participants will concurrently talk about their thought
process, which will be audio recorded. Additionally, we will collect participants’ biometric data
(eye movements, pupil dilation, and EDA). Figure 1 describes the research design.

DATA COLLECTION DATA ANALYSIS DATA COLLECTION
Program 1: Program 2: Rainfall
Minimum Sum Problem
* Concurrent Qualitative Data " * Concurrent
think-aloud Analysis B think-aloud
Interview Interview

Triangulation and

: * Biometrics
Interpretation

* Biometrics

(eye-gaze, (eye-gaze,
EDA, pupil - Quantitative Data [EDA, pupil
1 n

dilation) Analysis dilation)

Figure 1: Research Design of Study

3.3.1. Programming Tasks: The two short programs that we are planning to use in this study are
the minimum sun and the rainfall problem. The minimum sum problem provides the program with
an array of integers as input and adds the sum of all elements of the array and the minimum value
of the array. The rainfall program uses a sentinel-controlled while loop to read the integers
(rainfall) as input and output the average of these integers. The sentinel condition stops taking
input when the user enters 99999. Additionally, the program excludes negative numbers while
calculating the average. These programs are appropriate for this study as they test students’
conceptual understanding of loops and other basic programming concepts such as reading input
from users, conditional statements, and operators [21, 42, 43]. Furthermore, these programs have
been extensively used in research studies related to code comprehension and hence these problems
have been tested for their complexity and appropriateness [21].

3.3.2. Data Collection Methods: To answer our research questions, we will collect multiple
forms of data. First, we will audio record the participants’ verbal think-aloud responses as they
comprehend parts of the code. This technique is called a concurrent think-aloud interview [44].
Concurrent think-aloud interview enables students to think aloud about their cognitive and
emotional processes as they are in the process of comprehension instead of after the task to avoid
the loss of information [44]. Second, we will collect multiple forms of biometric data (eye-gaze,
EDA, and pupil dilation). These data provide near real-time information about participants’
cognitive functioning, and emotional arousal. For biometric data, we will use iMotions [45] with

non-invasive devices such as Shimmer [46] to capture electrodermal activity (EDA) for emotion
arousal, and Smart Eye eye-tracker [47] for cognitive processes.

3.3.3. Data Analysis Methods: For the data analysis of this study, we plan to perform both
qualitative and quantitative analysis.

3.3.3.1. Quantitative Data Analysis: Biometric data will be used to perform quantitative data
analysis. We will identify areas of interest (AOI) on the tasks and calculate the fixation duration
and saccades on those areas from the eye tracker. These metrics will help to understand the
students’ cognitive processing. For emotion analysis, we will use EDA signals and pupil dilations
as quantitative measurements because previous research studies have identified them as a measure
of emotional arousal [30-32].

3.3.3.2. Qualitative Data Analysis: We will use thematic analysis to analyze data from the
concurrent-think-aloud interview [44]. The goal of qualitative data analysis is to supplement the
findings of biometric data and provide more insights into students’ emotions and cognitive
processes during programming.

3.3.3.3. Triangulation of Quantitative and Qualitative Findings: Once we have conducted
both qualitative and quantitative data analysis, we will triangulate the findings of both types of
analyses. Our team has developed a qualitative protocol to triangulate biometric data with
qualitative excerpts [48]. This protocol temporally aligns graphic visualizations of biometrics with
qualitative excerpts and then analyzes data simultaneously to assess for convergence and
divergence. Since the context in this study has changed, the triangulation protocol will be adapted
to help answer the current research questions.

4. Future Direction
The immediate future directions for this study include data collection during the summer and fall
of 2022 and data analysis during spring 2023.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant
2104729. Any opinions, findings, conclusions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

[1] T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of code reading to gain more insight in program
comprehension,” in Proceedings of the 11th Koli Calling International Conference on Computing Education
Research - Koli Calling ’11, Koli, Finland, 2011, p. 1. DOI: 10.1145/2094131.2094133.

[2] T. Busjahn ef al., “Eye Movements in Code Reading: Relaxing the Linear Order,” in Proceedings of the 2015
IEEE 23rd International Conference on Program Comprehension, ltaly, 2015, pp. 255-265. DOLI:
10.5555/2820282.2820320.

[3] C.M.Tyng, H. U. Amin, M. N. M. Saad, and A. S. Malik, “The Influences of Emotion on Learning and Memory,”
Front. Psychol., vol. 8, p. 1454, Aug. 2017, DOI: 10.3389/fpsyg.2017.01454.

[4] R. Pekrun and R. P. Perry, “Control-Value Theory of Achievement Emotions,” in International Handbook of
Emotions in Education, 1st ed., 2014, pp. 130-151.

[5] I T. C. Mow, “Issues and Difficulties in Teaching Novice Computer Programming,” in Innovative Techniques
in Instruction Technology, E-learning, E-assessment, and Education, M. Iskander, Ed. Dordrecht: Springer
Netherlands, 2008, pp. 199-204. DOI: 10.1007/978-1-4020-8739-4 36.

[6] J. Sweller, J. J. G. van Merrienboer, and F. G. W. C. Paas, “Cognitive Architecture and Instructional Design,”
Educ. Psychol. Rev., vol. 10, no. 3, pp. 251-296, Sep. 1998, DOI: 10.1023/A:1022193728205.

[7] A. Robins, J. Rountree, and N. Rountree, “Learning and Teaching Programming: A Review and Discussion,”
Comput. Sci. Educ., vol. 13, no. 2, pp. 137-172, Jun. 2003, DOI: 10.1076/csed.13.2.137.14200.

[8] Michael Clancy, “Misconceptions and attitudes that interfere with learning to program.,” in Computer science
education research, Taylor & Francis., 2005, pp. 95-110.

[91 M. Guzdial, “Learner-Centered Design of Computing Education: Research on Computing for Everyone,” Synth.
Lect. Hum.-Centered Inform., vol. 8 mno. 6, pp. 1-165, Nov. 2015, DOL:
10.2200/S00684ED1V01Y201511HCIO033.

[10] E. Soloway, J. Bonar, and K. Ehrlich, “Cognitive strategies and looping constructs: an empirical study,” Commun.
ACM, vol. 26, no. 11, pp. 853-860, Nov. 1983, DOI: 10.1145/182.358436.

[11] B. Du Boulay, “Some Difficulties of Learning to Program,” J. Educ. Comput. Res., vol. 2, no. 1, pp. 57-73, Feb.
1986, doi: 10.2190/3LFX-9RRF-67T8-UVKO.

[12] T. Sirkid and J. Sorva, “Exploring programming misconceptions: an analysis of student mistakes in visual
program simulation exercises,” in Proceedings of the 12th Koli Calling International Conference on Computing
Education Research - Koli Calling °12, Koli, Finland, 2012, pp. 19-28. DOI: 10.1145/2401796.2401799.

[13] P. Vuilleumier, “How brains beware: neural mechanisms of emotional attention,” Trends Cogn. Sci., vol. 9, no.
12, pp. 585-594, Dec. 2005, DOI: 10.1016/j.tics.2005.10.011.

[14] E. A. Phelps, “Human emotion and memory: interactions of the amygdala and hippocampal complex,” Curr.
Opin. Neurobiol., vol. 14, no. 2, pp. 198-202, Apr. 2004, DOI: 10.1016/j.conb.2004.03.015.

[15] Um, E., Plass, J.L, Hayward, E.O, and Homer, B.D, “Emotional design in multimedia learning,” J. Educ.
Psychol., vol. 104, no. 2, p. 485, 2012, DOI: https://doi.org/10.1037/a0026609.

[16] N. Jung, C. Wranke, K. Hamburger, and M. Knauff, “How emotions affect logical reasoning: evidence from
experiments with mood-manipulated participants, spider phobics, and people with exam anxiety,” Front.
Psychol., vol. 5,2014, DOI: 10.3389/fpsyg.2014.00570.

[17] Isen, A. M, Daubman, K. A, and Nowicki, G. P., “Positive affect facilitates creative problem solving.,” J. Pers.
Soc. Psychol., vol. 52, no. 6, pp. 1122-1131, 1987, DOI: 10.1037%2F0022-3514.52.6.1122.

[18] L. Shen, M. Wang, and R. Shen, “Affective e-Learning: Using ‘Emotional’ Data to Improve Learning in
Pervasive Learning Environment,” J. Educ. Technol. Soc., vol. 12, no. 2, pp. 176-189, 2009.

[19] C. Izu ef al., “Fostering Program Comprehension in Novice Programmers - Learning Activities and Learning
Trajectories,” in Proceedings of the Working Group Reports on Innovation and Technology in Computer Science
Education, Aberdeen Scotland Uk, Dec. 2019, pp. 27-52. DOI: 10.1145/3344429.3372501.

[20] C. Schulte, T. Clear, A. Taherkhani, T. Busjahn, and J. H. Paterson, “An introduction to program comprehension
for computer science educators,” in Proceedings of the 2010 ITiCSE working group reports, New York, NY,
USA, Jun. 2010, pp. 65-86. DOI: 10.1145/1971681.1971687.

[21] P. Kather, R. Duran, and J. Vahrenhold, “Through (Tracking) Their Eyes: Abstraction and Complexity in
Program Comprehension,” ACM Trans. Comput. Educ., vol. 22, no. 2, pp. 1-33, Jun. 2022, DOI:
10.1145/3480171.

[22]J. Sheard, S. Simon, M. Hamilton, and J. Lonnberg, “Analysis of research into the teaching and learning of
programming,” in Proceedings of the fifth international workshop on Computing education research workshop -
ICER 09, Berkeley, CA, USA, 2009, p. 93. DOI: 10.1145/1584322.1584334.

[23] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng, “A Survey on the Usage of Eye-Tracking in Computer
Programming,” ACM Comput. Surv.,vol. 51, no. 1, pp. 1-58, Jan. 2019, DOI: 10.1145/3145904.

[24] R. Lister et al., “A multi-national study of reading and tracing skills in novice programmers,” ACM SIGCSE
Bull., vol. 36, no. 4, pp. 119-150, Jun. 2004, DOI: 10.1145/1041624.1041673.

[25]17J. L. Whalley et al., “An Australasian study of reading and comprehension skills in novice programmers, using
the bloom and SOLO taxonomies,” Dec. 2006, Accessed: May 12, 2022. [Online]. Available:
https://opus.lib.uts.edu.au/handle/10453/5050

[26] B. Adelson, “When novices surpass experts: The difficulty of a task may increase with expertise.,” J. Exp.
Psychol. Learn. Mem. Cogn., vol. 10, no. 3, p. 483, 19850101, DOI: 10.1037/0278-7393.10.3.483.

[27] C. L. Corritore and S. Wiedenbeck, “What do novices learn during program comprehension?” Int. J. Human—
Computer Interact., vol. 3, no. 2, pp. 199-222, Jan. 1991, DOI: 10.1080/10447319109526004.

[28] F. Hauser, J. Mottok, and H. Gruber, “Eye Tracking Metrics in Software Engineering,” in Proceedings of the 3rd
European Conference of Software Engineering Education, New York, NY, USA, Jun. 2018, pp. 39—44. DOIL:
10.1145/3209087.3209092.

[29] P. Ren, A. Barreto, J. Huang, Y. Gao, F. R. Ortega, and M. Adjouadi, “Off-line and On-line Stress Detection
Through Processing of the Pupil Diameter Signal,” Ann. Biomed. Eng., vol. 42, no. 1, pp. 162—176, Jan. 2014,
DOI: 10.1007/s10439-013-0880-9.

[30] T. Fritz and S. C. Muller, “Leveraging Biometric Data to Boost Software Developer Productivity,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), Suita, Osaka,
Japan, Mar. 2016, pp. 66-77. DOI: 10.1109/SANER.2016.107.

[31] S. C. Muller and T. Fritz, “Stuck and Frustrated or in Flow and Happy: Sensing Developers’ Emotions and
Progress,” in 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, Italy,
May 2015, pp. 688—699. DOI: 10.1109/ICSE.2015.334.

[32] S. C. Miiller and T. Fritz, “Using (bio)metrics to predict code quality online,” in Proceedings of the 38th
International Conference on Software Engineering, Austin Texas, May 2016, pp. 452-463. DOI:
10.1145/2884781.2884803.

[33] A, Christoph, and M Crosby, “Code scanning patterns in program comprehension,” presented at the Proceedings
of the 39th Hawaii international conference on system sciences, 2006.

[34] M. A. Just and P. A. Carpenter, “A theory of reading: From eye fixations to comprehension.,” Psychol. Rev., vol.
87, no. 4, pp. 329-354, 1980, DOI: 10.1037/0033-295X.87.4.329.

[35] S. Chen, J. Epps, N. Ruiz, and F. Chen, “Eye activity as a measure of human mental effort in HCI,” in Proceedings
of the 15th international conference on Intelligent user interfaces - IUI ’11, Palo Alto, CA, USA, 2011, p. 315.
DOI: 10.1145/1943403.1943454.

[36] W. Szwoch, “Emotion Recognition Using Physiological Signals,” in Proceedings of the Multimedia, Interaction,
Design and Innovation, New York, NY, USA, Jun. 2015, pp. 1-8. DOI: 10.1145/2814464.2814479.

[37] L. Li and J. Chen, “Emotion Recognition Using Physiological Signals,” in Advances in Artificial Reality and
Tele-Existence, vol. 4282, Z. Pan, A. Cheok, M. Haller, R. W. H. Lau, H. Saito, and R. Liang, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 437-446. DOI: 10.1007/11941354 44.

[38] D. Girardi, F. Lanubile, and N. Novielli, “Emotion detection using noninvasive low-cost sensors,” in 2017
Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX,
Oct. 2017, pp. 125-130. DOI: 10.1109/ACI1.2017.8273589.

[39] D. Girardi, N. Novielli, D. Fucci, and F. Lanubile, “Recognizing developers’ emotions while programming,” in
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering, New York, NY, USA,
Jun. 2020, pp. 666—677. DOI: 10.1145/3377811.3380374.

[40]J. Walther, N. W. Sochacka, and N. N. Kellam, “Quality in Interpretive Engineering Education Research:
Reflections on an Example Study,” J. Eng. Educ., vol. 102, no. 4, pp. 626—659, Oct. 2013, DOI:
10.1002/jee.20029.

[41] S. Secules, A. Gupta, A. Elby, and C. Turpen, “Zooming Out from the Struggling Individual Student: An Account
of the Cultural Construction of Engineering Ability in an Undergraduate Programming Class.,” J. Eng. Educ.,
vol. 107, no. 1, pp. 56-86, Jan. 2018, DOI: 10.1002/jee.20191.

[42] E. Soloway and J. C. Spohrer, Eds., Studying the Novice Programmer, 0 ed. Psychology Press, 2013. DOI:
10.4324/9781315808321.

[43] E. Soloway, “Learning to program = learning to construct mechanisms and explanations,” Commun. ACM, vol.
29, no. 9, pp. 850-858, Sep. 1986, DOI: 10.1145/6592.6594.

[44] M. van den Haak, M. De Jong, and P. Jan Schellens, “Retrospective vs. concurrent think-aloud protocols: Testing
the usability of an online library catalogue,” Behav. Inf. Technol., vol. 22, no. 5, pp. 339-351, Sep. 2003, DOI:
10.1080/0044929031000.

[45] iMotions. [Online]. Available: https://imotions.com/platform/

[46] “Shimmer Wearable Sensor Technology | Wireless IMU | ECG | EMG | GSR,” Shimmer Wearable Sensor
Technology. https://shimmersensing.com/ (accessed May 15, 2022).

[47] “Aurora,” Smart Eye. https://smarteye.se/research-instruments/aurora/ (accessed May 15, 2022).

[48] E. Wert, J. Grifski, S. Luo, and Z. Atiq, “A Multi-Modal Investigation of Self-Regulation Strategies Adopted by
First-Year Engineering Students During Programming Tasks,” in Proceedings of the 17th ACM Conference on
International Computing Education Research, Virtual Event USA, Aug. 2021, pp. 446-447. DOL:
10.1145/3446871.3469795.

