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1. Introduction 
Code comprehension is an important skill for programmers because it helps them understand code 
and develop debugging skills [1]. The process of code comprehension is unlike comprehending 
natural languages because it involves complex cognitive processing. During cognitive processing, 
a programmer is required to develop or use the appropriate mental models of programming 
constructs, which makes code comprehension difficult for novice programmers [2]. Along with 
cognitive processing, it is important to analyze how students feel during code comprehension 
because the literature suggests that emotions influence different aspects of cognition such as 
attention, reasoning, learning, memory, and problem-solving [3]. Novice programmers may 
experience a variety of emotions while comprehending code. These changes in emotions may 
subsequently influence their academic performance and retention in computing and engineering 
[4]. Therefore, in this study, we aim to understand CS1 students’ emotions and cognitive 
processing during code comprehension. Specifically, we ask the following research questions:  
 

1. What type of cognitive processing do CS1 students perform during code comprehension? 
2. What emotions do CS1 students experience during code comprehension?  
3. How do programmers’ emotions and cognitive processing interact during code 

comprehension?  
 

Answers to these research questions would provide us with an in-depth and nuanced understanding 
of the cognitive events that trigger certain emotions and how students process that information, 
and vice versa.   
 
In this study, we will employ multi-modal data, collected through biometric sensors and concurrent 
think-aloud interviews. These data would provide multiple perspectives and a rich understanding 
of the instructional needs of CS1 students by analyzing their emotions and cognitive processing 
during code comprehension. These instructional needs may include demonstrating programming 
concepts with examples, construction of mental models through visualization, debugging 
strategies, and scaffolding [5]. Based on the instructional needs, appropriate instructional strategies 
(pedagogical, technological, or content-based) could be designed that may provide students with 
good learner support [5].  
 
2. Literature Review 
 
2.1. Theoretical Framework 
This research study is grounded in two theoretical frameworks: Cognitive load theory (CLT) and 
Control-value theory of achievement emotions (CVT). In the following sections, we briefly 
explain these theories.  
 
2.1.1. Cognitive Load Theory: According to CLT, cognitive load is a construct that measures 
the load, imposed by a task on the cognitive system of an individual [6]. The load can be 
characterized as task-based (mental load) and learner-based (mental effort). Task-based cognitive 
load is imposed by task demands. These demands could be due to the complexity of the task or the 



instructional design [6]. Learner-based cognitive load indicates the amount of cognitive capacity 
allocated by the person to meet the task demands [6].  
 
Learning to program is a cognitively demanding task because it imposes cognitive requirements 
such as mental load and mental effort [5]. Solving a programming task requires an understanding 
of the program, its syntax, and semantics, understanding the developing environment, checking 
code output, compilation, and debugging. The simultaneous holding of this information in working 
memory imposes the cognitive load and makes the programming task demanding [5].  

2.1.2. Control Value Theory of Achievement Emotions: Control value theory (CVT) provides 
a theoretical framework to study emotions in the academic context. It suggests that academic 
emotions influence academic performance and learning, and they link directly with achievement 
activities and outcomes [4]. According to CVT, achievement emotions are studied in three 
dimensions i.e., object focus, activation, and valence. Object focus refers to the activity students 
engage in or the outcome of the activity. Valance dimension describes emotion as pleasant/positive 
or unpleasant/negative whereas activation refers to the arousal of emotion due to a physiological 
response to a particular emotion. These dimensions categorize the emotions in four categories 
(pleasant/activating, unpleasant/activating pleasant/deactivating, and unpleasant/deactivating) [4]. 
 
2.2. Reasons why Repetition Structures are Hard: There are various reasons that make the 
repetition structures hard to learn. In this section, we define three main reasons. The first reason is 
that novice programmers do not have prior mental models to learn programming constructs [7]. 
The absence of mental models leads to misconceptions caused by inappropriate memory 
transfer [8]. These misconceptions occur when a certain term in programming does not have the 
same meaning as it has in the English language. Various programming languages use words 
like “while” and “for”, to represent loops, which may not have the same meaning for programming 
as they have in the English language or may have multiple meanings in English [8]. For instance, 
“while” in the English language can be used as a noun, conjunction, adverb, and verb. However, 
in programming, it means that the computer will repeat a statement or set of statements while a 
certain condition remains true. This may confuse a novice, who will initially try to use their 
existing mental models from English to understand “while” and “for” in programming.  
 
The second reason is dealing with troublesome cases and skipping certain values. A simple loop 
that displays a list of numbers on the screen may not be very hard for the student to grasp. 
However, the literature suggests that in some cases, loops become extremely difficult for novices, 
and sometimes even for expert programmers. A classic scenario in which loops are difficult for 
students to learn is the rainfall problem [9, 10]. This problem uses the while loop to read the 
integers(rainfall) as input and output the average of these integers. While computing the average, 
the program excludes negative numbers and stops when the input is 99999. These types 
of loops are hard because students must accurately convert the problem into code while taking into 
consideration special cases, which may not be apparent to them initially. This is more a challenge 
of proper problem understanding than a matter of correct syntax. 
 
 The third reason is the manipulation of the control variable of the loop, especially in the “for” 
loop. In the “for” loop, the value of the control variable changes on each iteration of the loop. This 
change in value could be sequential (increment or decrement by a constant number) or may involve 



an expression. Since the value of the control variable is hidden, the programmer may fail to see 
the internal changes to the value [11, 12].  
 
2.3. Emotions and Cognition: Emotional experiences play an important role in an academic 
setting because they modulate different aspects of cognition such as attention, reasoning, learning, 
memory, and problem-solving [13-17]. During exams, tests, and projects, students engage in 
cognitive processing tasks, and these activities are associated with emotional states of anxiety, 
frustration, and boredom [3]. Moreover, the subject of study also influences emotions that affect 
the ability of a person to learn and remember. For instance, in introductory programming courses, 
students face many difficulties like understanding programming concepts, the syntax of the 
language, and debugging [7]. Students may feel many different emotions because of these 
difficulties, subsequently influencing their learning and academic performance [4]. Therefore, it is 
important to design courses by considering the influence of emotions and maximizing the learning 
and retention of subject knowledge [18]. 
 
2.4. Code Comprehension: Programming is not a single task, it involves multiple processes such 
as reading, comprehending, tracing, summarizing, writing, and debugging the code [19]. In this 
study, we will focus on one such aspect of programming, which is code comprehension. 
Comprehension is usually described as a process in which an individual constructs his or her 
mental representation of the program [20]. During code comprehension, students deal with many 
concepts and integrate them to form a mental model of the dynamic aspects of the program 
execution [21]. 
 
2.4.1. Data Collection Methods for Code Comprehension: Research studies in programming 
for code comprehension have used different methods for data collection such as questionnaires, 
interview-based methods, and eye-tracking [22, 23]. In a study by the Leeds group, the authors 
created a questionnaire of code comprehension tasks to investigate why students find programming 
hard [24]. They found that many students performed poorly in code comprehension problems, 
"suggesting that such students have a fragile grasp of skills that are a pre-requisite for problem-
solving". Later, Whalley, J.L et al., claimed that the choice of code comprehension tasks by the 
Leeds group was not informed by the theoretical model [25]. Therefore, they extended the work 
of the Leeds group by developing a set of code comprehension tasks based on SOLO and Bloom 
taxonomies. From the analysis of their framework, they found a relation between the cognitive 
level of questions with the performance of students.  
 
Adelson prepared a set of eight code comprehension questions in pascal to compare the 
performance of novice and expert computing students [26]. The author found that experts always 
outperformed on well-written tasks while on unstructured (poorly written) tasks, sometimes 
novices outperformed experts. Cynthia and Susan created six short programming segments to 
identify what kind of information novice students used to comprehend the program and how they 
connected different parts of information [27]. Their findings suggest that novice students create 
concrete and detailed mental representations of code during comprehension. In recent years, eye-
tracking technology has gained attention as a method for data collection for code comprehension 
studies [23]. The rationale is that eye-tracking provides near real-time and in-depth insights into 
the cognitive processes that the programmer engages in while comprehending the code [1].  



2.4.1.1. Eye Movement: Eye movement helps to understand the person’s cognitive processing 
by observing the viewing pattern of a person on the stimulus [23]. The most important and 
frequently used eye movement metrics are fixation duration, fixation count, saccades, and scan 
path [28]. Fixation tells us where the person is looking at a particular time [23]. Fixation can last 
for milliseconds or up to several seconds, the total time of fixation is called fixation duration. 
Fixation duration is associated with the attention being paid to the stimulus. The longer the 
duration, the more interesting or complex is the stimulus [28]. A saccade is a rapid movement of 
the eye between fixations, it helps to understand the viewing pattern of the person on the screen 
[23]. A scan path is a combination of saccades and fixations. It is described as a path formed by 
the directed sequence of saccades between fixations [28]. The eye movement metrics are usually 
measured for part(s) of the screen (such as a section of code) where the researcher wants to observe 
a person’s behavior. The selected part of the screen is known as the area of interest (AOI) [23].  
Another metric that is measured through eye trackers is pupil dilation which refers to the change 
in pupil size due to the autonomic nervous system (ANS) activity [29]. Change in pupil size is 
associated with emotional arousal in the human body [30-32]. 
 
2.4.1.2. Understanding Cognitive Processing using Eye Movements: A range of studies have 
used eye-movement metrics (fixation duration, fixation count, saccades, and scan path) to analyze 
the cognitive processing [23]. Christoph and Crosby used eye-tracking to study the code 
comprehension patterns of novice programmers and expert programmers [33]. They used eye 
fixation as a measure of attention and found that highly experienced developers use less time on 
comments and more time on complex statements compared to novice developers.   

 
Just and Carpenter identified the relation between fixation of the eye and cognitive processing of 
students during comprehension of scientific passages [34]. They measured the level of cognitive 
processing of a text by calculating fixation duration on each word of text [34]. Chen et al., used 
eye blinks, fixation, and saccades to measure the cognitive load. They found that eye blinks got 
stuck during attention-demanding tasks to maximize the stimulus perception. Whereas fixation and 
saccades metrics were controlled by the effort required to spread attention on the task-related 
objects [35]. Recently, Philipp et al., used fixation time on areas of interest (AOI) to identify the 
effect of code composition style and familiarity of code on the complexity of code comprehension 
[21]. 
 
2.5. Understanding Emotions through Biometric Data: Besides eye-tracking for identifying the 
cognitive processing of programmers, biometric data such as electroencephalography (EEG), 
electrodermal activity (EDA), blood volume pulse (BVP), and heart rate (HR) could be used to 
analyze the programmers’ emotions [30-32]. Biometric data represent the activity of the human 
body’s automatic nervous system and central nervous system. Some forms of these data may 
represent changes in emotions along with other nervous system activities [36, 37]. For instance, 
signals from electrodermal activity (EDA) represent the changes in levels of sweat produced by 
the human body. EDA signal has two components i.e., tonic, and phasic. Tonic signals show the 
basic level of skin conductance in the human body whereas phasic signals show the changes in 
skin conductance due to external stimuli like noises, sound, and lighting [38]. The phasic signal 
also reflects changes in emotional intensity like high arousal [38].  
 



In literature, a few studies have used biometric data to analyze the programmers’ emotions. Girardi 
et al., used EEG, EDA, BVP, and HR to identify emotions experienced by the developers and the 
events that trigger those emotions [39]. They found that although developers experience a wide 
range of emotions during programming tasks, emotions related to negative valence and high 
arousal were most common. These emotions were triggered by unexpected code behavior, missing 
documentation, time pressure, and self-perceived low productivity. Fritz and Muller conducted 
multiple studies to analyze the perceived progress of a developer, task difficulty, and boosting the 
developer’s productivity by using biometric data [30-32].  They found that developers experience 
many emotions which affect their perceived progress. Further, they suggested that identifying the 
emotions of developers may help to improve their productivity. For instance, by providing 
suggestions and resources when developers are found stuck and make no progress.  
 
2.6. Gaps in Literature: From the literature review, it is evident that eye-tracking metrics are 
useful to understand cognitive processing but measuring cognitive load is not a simple task. It is a 
multidimensional construct and needs multiple sources to confirm the accuracy of the measure [6]. 
Therefore, in this study, we will use eye movement metrics along with concurrent think-aloud 
interviews with participants to understand the cognitive processing of students as they comprehend 
code. Along with cognitive processing, it is important to analyze how students feel during code 
comprehension because the literature suggests that emotions influence different aspects of 
cognition such as attention, reasoning, learning, memory, and problem-solving. Therefore, in this 
study, we aim to understand CS1 students’ cognitive processing as well as emotions during code 
comprehension by using multi-modal data to get multiple perspectives and a rich understanding of 
emotions and cognitive processing that students experience while comprehending code. 
 
3. Research Methodology 

 
3.1. Context and Participants: The Ohio State University (OSU) is a large university in the 
midwestern United States. It is well-known for engineering and has traditional-aged undergraduate 
students. The Computer Science and Engineering department offers a suite of introductory 
programming courses in different languages (e.g., C++, Python, and Java). The context for this 
study is the introductory programming course in Java (CSE-1223). CSE-1223 is offered year-
round at OSU and the student population in each semester is different. This course is offered to 
students from all majors including students who wish to pursue CS as a major. CSE-1223 is taught 
using active, blended, and project-based learning methodologies.  
 
3.2. Selection Criteria: For this study, novice programming students who would be taking CSE-
1223 for the first time during the summer or autumn 2022 semesters would be considered. In the 
context of this study, novices are students who have not had any programming experience before 
taking CSE-1223, and they may or may not be taking another programming course in 
parallel. Since this is a small-scale exploratory study, we will perform purposive sampling from 
the selected novice students. Through sampling, we will recruit 20 students that ensure diversity 
and multiple perspectives [40]. Students’ emotions may be influenced by the background factors, 
which as result may impact their academic performance and retention in computing [41]. 
Therefore, we will consider diversity regarding gender, major field of study, and ethnicity during 
sampling. 



3.3. Research Design: For this study, we will present two short programs written in java to the 
participants. These programs will be based on loops because loops are hard to understand for 
various reasons. Some of the reasons include handling the loop variable, dealing with troublesome 
cases, skipping certain values, and different contextual meaning of loop keywords “for” and 
“while” in the English language. The primary task for the participants is to comprehend these 
programs. While comprehending code, participants will concurrently talk about their thought 
process, which will be audio recorded. Additionally, we will collect participants’ biometric data 
(eye movements, pupil dilation, and EDA). Figure 1 describes the research design. 
 

 
Figure 1: Research Design of Study 

 
3.3.1. Programming Tasks: The two short programs that we are planning to use in this study are 
the minimum sun and the rainfall problem. The minimum sum problem provides the program with 
an array of integers as input and adds the sum of all elements of the array and the minimum value 
of the array. The rainfall program uses a sentinel-controlled while loop to read the integers 
(rainfall) as input and output the average of these integers. The sentinel condition stops taking 
input when the user enters 99999. Additionally, the program excludes negative numbers while 
calculating the average. These programs are appropriate for this study as they test students’ 
conceptual understanding of loops and other basic programming concepts such as reading input 
from users, conditional statements, and operators [21, 42, 43]. Furthermore, these programs have 
been extensively used in research studies related to code comprehension and hence these problems 
have been tested for their complexity and appropriateness [21].   
 
3.3.2. Data Collection Methods: To answer our research questions, we will collect multiple 
forms of data. First, we will audio record the participants’ verbal think-aloud responses as they 
comprehend parts of the code. This technique is called a concurrent think-aloud interview [44]. 
Concurrent think-aloud interview enables students to think aloud about their cognitive and 
emotional processes as they are in the process of comprehension instead of after the task to avoid 
the loss of information [44]. Second, we will collect multiple forms of biometric data (eye-gaze, 
EDA, and pupil dilation). These data provide near real-time information about participants’ 
cognitive functioning, and emotional arousal. For biometric data, we will use iMotions [45] with 



non-invasive devices such as Shimmer [46] to capture electrodermal activity (EDA) for emotion 
arousal, and Smart Eye eye-tracker [47] for cognitive processes.  
 
3.3.3. Data Analysis Methods: For the data analysis of this study, we plan to perform both 
qualitative and quantitative analysis.  
 
3.3.3.1. Quantitative Data Analysis: Biometric data will be used to perform quantitative data 
analysis. We will identify areas of interest (AOI) on the tasks and calculate the fixation duration 
and saccades on those areas from the eye tracker. These metrics will help to understand the 
students’ cognitive processing. For emotion analysis, we will use EDA signals and pupil dilations 
as quantitative measurements because previous research studies have identified them as a measure 
of emotional arousal [30-32]. 
 
3.3.3.2. Qualitative Data Analysis: We will use thematic analysis to analyze data from the 
concurrent-think-aloud interview [44]. The goal of qualitative data analysis is to supplement the 
findings of biometric data and provide more insights into students’ emotions and cognitive 
processes during programming.  
 
3.3.3.3. Triangulation of Quantitative and Qualitative Findings: Once we have conducted 
both qualitative and quantitative data analysis, we will triangulate the findings of both types of 
analyses. Our team has developed a qualitative protocol to triangulate biometric data with 
qualitative excerpts [48]. This protocol temporally aligns graphic visualizations of biometrics with 
qualitative excerpts and then analyzes data simultaneously to assess for convergence and 
divergence. Since the context in this study has changed, the triangulation protocol will be adapted 
to help answer the current research questions. 
 
4. Future Direction 
The immediate future directions for this study include data collection during the summer and fall 
of 2022 and data analysis during spring 2023. 
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