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Safe Control for Nonlinear Systems under Faults
and Attacks via Control Barrier Functions

Hongchao Zhang, Student Member, IEEE, Zhouchi Li, Student Member, IEEE, and Andrew Clark, Senior
Member, IEEE

Abstract— Safety is one of the most important properties
of control systems. Sensor faults and attacks and actuator
failures may cause errors in the sensor measurements and
system dynamics, which leads to erroneous control inputs
and hence safety violations. In this paper, we improve the
robustness against sensor faults and actuator failures by
proposing a class of Fault-Tolerant Control Barrier Func-
tions (FT-CBFs) for nonlinear systems. Our approach main-
tains a set of state estimators according to fault patterns
and incorporates CBF-based constraints to ensure safety
under sensor faults. We then propose a framework for joint
safety and stability by integrating FT-CBFs with Control
Lyapunov Functions. By utilizing redundancy, we proposed
High order CBF-based approach to ensure safety when ac-
tuator failures occur. We propose a sum-of-squares (SOS)
based approach to verify the feasibility of FT-CBFs for
both sensor faults and actuator failures. We evaluate our
approach via two case studies, namely, a wheeled mobile
robot (WMR) system in the presence of a sensor attack and
a Boeing 747 lateral control system under actuator failures.

Index Terms— Fault-tolerant control; higher-order con-
trol barrier functions; stochastic control barrier functions;
analysis of reliability and safety; sensor faults, attacks;
actuator failures.

[. INTRODUCTION

A control system is safe if it remains within a predetermined
safe region for all time [1]. In applications including medicine,
transportation and energy, safety violations can cause catas-
trophic economic damage and loss of human life [2].

Approaches verifiable safe control systems include Hamil-
ton—Jacobi—Isaacs (HJI) equation [3], barrier certificates [4],
and Control Barrier Functions (CBFs) [5]. Among those
methods, CBFs have the advantage that they can be read-
ily integrated into existing control policies by adding linear
constraints on the control input. A CBF is a function of the
system state that goes to zero as the system approaches the
unsafe region. Thus, ensuring safety is equivalent to ensuring
that the CBF stays non-negative. CBF-based approaches show
great promise in safety-critical systems. However, they rely
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on sensor measurements, which sensor faults, attacks, and
actuator failures may compromise.

Sensor faults and malicious attacks provide inaccurate, arbi-
trary readings. These inaccurate measurements bias estimates
of the system state, leading to erroneous control signals that
drive the true system state to an unsafe operating point. When
actuator failures occur, actuators lose effectiveness and hence
render the control system unable to ensure safety or stability
[6]. Sensor faults, attacks and actuator failures can cause arbi-
trary errors in the sensor measurements and system dynamics,
which is challenging for existing CBF-based approaches such
as [7] that assume that noises and disturbances are either
bounded or come from a known probability distribution.

Countermeasures such as Fault-Tolerant Control (FTC)
[8], [9] have been proposed to accommodate faults, attacks
and failures. Existing FTC approaches focus on maintain-
ing performance and do not provide provable safety guar-
antees. Countermeasures incorporating disturbance observer-
based CBF are proposed to ensure robust safety of systems
with model uncertainties [10], [11] and model-free safe rein-
forcement learning [12]. With the growing attention on faults
and attacks, safety guarantees on systems under faulty com-
ponents or adversarial environments have become an active
research area.

In this paper, we propose safe control algorithms for non-
linear systems under sensor and actuator faults. To ensure
safety of nonlinear systems under sensor faults and attacks,
we propose a class of CBFs, which is shown in Figure
1(a) and constructed as follows. We maintain a set of state
estimators, each omitting a set of sensors associated with
one fault pattern and then use CBF constraints to ensure that
each of the estimated states remains within the safe region.
The intuition of our approach is that one can simply ignore
the faulty measurements by omitting the sensors of each
fault pattern and construct CBFs for each estimate. However,
it may be infeasible to satisfy all CBF constraints using a
single control input when faults occur and the state estimates
deviate due to the fault. To resolve conflicts, we propose a
threshold-based method to exclude outlier estimates and relax
the corresponding CBF constraints.

To ensure safety of nonlinear systems under actuator fail-
ures, we propose a class of CBFs, which is shown in Figure
1(b) and constructed as follows. We maintain a set of effective-
ness matrices according to failure patterns and then use CBFs
to ensure the system with each actuator failure remains within
the safe region. The basic idea is to find a single control input
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Fig. 1: Schematic illustration of our proposed approach. Both schemes ensure safety via CBFs in a passive manner.

that satisfies all CBF constraints constructed for each failure
pattern. We propose a sum-of-squares (SOS) based scheme
to verify the feasibility of CBFs for sensor faults/attacks and
actuator failures, respectively.

We make the following specific contributions:

o We propose High-order Stochastic CBFs (HOSCBF) for
the system with high relative degree and propose FI-
SCBFs with high order degree to ensure finite time safety
when sensor faults occur. We propose an SOS-based
scheme to verify the feasibility of constraints of FT-
SCBFs with high relative degree.

e« We compose HOSCBFs with Control Lyapunov Func-
tions (CLFs) to provide joint guarantees on safety and
stability under sensor faults.

o We formulate an HOCBF approach to ensure safety when
actuator failures occur and propose an SOS-based scheme
to verify the feasibility of CBF constraints throughout the
safe region.

o« We evaluate our approach via two case studies. The
proposed HOSCBF-CLF ensures safety and convergence
of a wheeled mobile robot (WMR) system in the presence
of a sensor attack. The proposed HOCBF-based method
ensures safety of a Boeing 747 lateral control system
under actuator failures.

The remainder of this paper is organized as follows. Section

II presents the related work. Section III presents background
and preliminaries. Section IV proposes a HOSCBF-based
control policy for systems under sensor faults and attacks
as well as a scheme to verify the feasibility of HOSCBFs.
Section V proposes a framework for joint safety and stability
via HOSCBF-CLFs. Section VI proposes an HOCBF-based
control policy for systems under actuator failures. Section VII
presents our case studies. Section VIII concludes the paper.

[1. RELATED WORK

Fault-tolerant control systems (FTCS) aim to accommodate
faults and maintain stability of the system with little or
acceptable degradation in performance. See [8] for an in-depth
treatment. FTCS are classified into two main types, namely,
active FTCS and passive FTCS [9]. In active FTCS, Fault
Detection and Isolation (FDI) plays a significant role and has
been studied for decades. See [13] for more details.

Active FTCS against sensor faults and attacks include sta-
tistical hypothesis testing for stochastic systems [14], and un-
known input observers for deterministic systems [15]. Kalman
Filter (KF) and Extended Kalman Filter (EKF) are extensively
used in FDI applications such as [16] for MIMO system. More
recently, data-driven approaches to fault tolerance have shown
promise [17], [18]. While the approach of using Kalman filter
residues to identify potential faults is related to our conflict
resolution approach, safety of the system under faults and
attacks is not addressed. Sliding-mode control, as one of
popular PFTCS, is proposed for singularly perturbed systems
[19], switched systems [20], fuzzy systems, [21], and Markov
Jump Systems [22], [23]. Several of these works aim to
guarantee stability in the presence of faults [24], which is
related to but distinct from the safety criteria we consider.

Passive FTCS against actuator failures is proposed due to its
advantage of fast response. Reliable control for Linear time-
invariant (LTI) system under actuator failure is proposed in
[25] and implemented for LTT aircraft model in [26]. Actuator
failure compensation control (AFCC) has been employed for
LTI system [6] and nonlinear systems [27], [28]. Robust
adaptive FTC is presented in [29] for linear systems with
time-varying parameter uncertainty, external disturbance and
actuator faults. However, the aforementioned methods focus
on ensuring stability but leave safety guarantees less studied.
In this paper, we address the safety of nonlinear systems under
sensor faults/attacks or actuator failures.

Safety verification of control systems is an area of extensive
research, with popular methods including finite-state approx-
imations [30], HJI equation [3], barrier certificates [4], [31],
simulation-driven approaches [32], [33], and counterexample-
guided synthesis [34]. Barrier function-based approaches,
which formulate the safety constraint as inequality over the
control input, have been proposed to guarantee safety [7],
[35]-[40]. Among these methods, CBFs were proposed in
[5]. CBFs for stochastic systems were investigated in [7].
Higher-order CBFs were presented in [37], [41], [42]. CBFs
for safe reinforcement learning were introduced in [43]-[47].
Applications of CBFs to specific domains such as multi-agent
systems [48], autonomous vehicles [49], and UAVs [50] have
also been considered. Recent research [5], [45], [51], [52] have
investigated joint objectives of safety and stability. The work
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[53] investigates the resilience of adversarial agents in multi-
agent systems with higher-order CBFs. None of these existing
works, however, incorporated the effects of faults and attacks
on actuators and sensors.

Ensuring safety under sensor faults and attacks has at-
tracted growing research attention. Barrier certificate based
fault-tolerant Linear quadratic Gaussian (LQG) tracking is
investigated in [54] for LTI system under sensor fault and false
data injection attack and generalized to multiple possible com-
promised sensor sets in [55]. Compared with barrier certificate
method, CBF-based approaches have more advantages on flex-
ibility. In the preliminary conference version of this work [56],
we investigated fault-tolerant control of nonlinear systems, in
which CBF constraints are constructed and imposed to ensure
safety of the system under sensor faults and attacks. However,
systems under actuator failures and fault-tolerant control via
CBF with high relative degree have drawn less attention.
Recent work [57] proposed a model-free learning framework
for an output-based neural fault-detector to detect actuator
faults. However, verifying the feasibility of CBFs under faults
has not yet been investigated. In this paper, we propose FT-
CBFs with high relative degree for nonlinear systems under
sensor faults and attacks and actuator failures. We also propose
a systematical approach to verify the feasibility of CBFs.

CBF constructions depend on factors including system
dynamics and disturbance, which leave it an open problem
to verify whether such constraints can always be satisfied.
A systematic approach to verify the feasibility of CBFs is
proposed in [58] to enable broader adoption of CBFs. How-
ever, feasibility verification of CBFs in faulty or adversarial
environments has not yet been studied. In this work, we
propose an SOS-based scheme to verify the feasibility of
constraints of SCBFs with high relative degree and HOCBFs
for the system under sensor faults/attacks and actuator failures,
respectively.

I1l. PRELIMINARIES

In this section, we present the system model and provide
background on the EKF and CBFs.

A. System Model

Notations. For a set S, we denote int(.S) and 95 as the interior
and boundary of S, respectively. For any vector v, we let [v];
denote the i-th element of v. We let A\(A) denote the magnitude
of the largest eigenvalue of matrix A, noting that this is equal
to the largest eigenvalue when A is symmetric and positive
definite. When the value of A is clear, we write \.

We consider a nonlinear control system with state z; € R"
and input u; € RP at time ¢. The state dynamics and the system
output y; € R? are described by the stochastic differential
equations

drve = (f(wt) + g(we)ur) dt + o AWy (D
dy; = cxy dt + v dV; )
where f : R” — R™ and g : R™ — R"*P are locally Lipschitz,

o € R™*™ W, is an n-dimensional Brownian motion, ¢ €
RI*" p, € R9%9, and V} is a ¢-dimensional Brownian motion.

The safety conditions of a system are specified in terms of
forward invariance of a pre-defined safe region. We define the
safe region as follows.

Definition 1 (Safe Region): The safe region of the system
is a set C C R™ defined by

C=A{z:h(z)>0}, OC={x:h(z)=0} 3)

where h : R™ — R is twice-differentiable on C.

We assume throughout the paper that zy € int(C), i.e., the
system is initially safe. Let f(x,u) = f(z) + g(z)u. The
uniform detectability property is defined as follows.

Definition 2 (Uniform Detectability): The pair [%(m, u), c|
is uniformly detectable if there exists a bounded, matrix-valued
function ©(z) and a real number 1 > 0 such that

W’ (gi(x,u) + @(:c)c) w < —nlfw||?

for all w, u, and x.

B. Background and Preliminary Results

Let Z; denote the EKF estimate of z;. The EKF for the
system described by (1) and (2) is defined by

diy = (f(2¢) + g(@¢)ur)dt + Ki(dy: — c2y),

where K; = PtcTRfl and R; = v} . The matrix P; is the
positive-definite solution to

dP
o = bt PE' + Qi — Pic"R; ' eP,
where Q; = oy0l and F; = g—Z(aﬁt,ut). To utilize EKF, we

make the following assumptions.
Assumption 1: The SDEs (1) and (2) satisfy the conditions:

1) There exist constants 3; and (35 such that E(o;0}) >
B1I and E(vivl) > BoI for all t.

2) The pair [g%(% u), c] is uniformly detectable.
3) Let ¢ be defined by
_ _ of

flz,u) — f(2,u) = %(x — )+ ¢(z, T, u).

Then there exist real numbers k£, and €4 such that
l(x, &, u)l| < kgllz — 2[5

for all « and Z satisfying ||z — Z[]2 < €.

One can obtain kg by considering a compact subset k C
R. For instance, given a function f that is twice differ-
entiable with respect to x in subset x, we have k; =
maxi<;<n SUp,e, || V2fi(z,u)||, where V2f is the Hessian
matrix. The bounds on estimation error €4 can be calculated
via an integral formula [59, Chapter 20]. More details can be
found in [60]. The following result describes the accuracy of
the EKF.

Theorem 1 ( [60]): Suppose that the conditions of As-
sumption 1 hold. Then there exists § > 0 such that oyo} < 61
and VtZ/tT < 4I. For any 0 < € < 1, there exists v > 0 such
that

Pr (Sup||xt — |2 < A/) >1—c
>0
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We next provide background and preliminary results on
stochastic CBFs. The following theorem provides sufficient
conditions for safety of a stochastic system.

Proposition 1 ( [61, Proposition II1.5]): Given a finite
time 7', suppose the mapping h is a continuous function with
linear function kx as the class-x function, where k& > 0. Let
the control input u; be chosen to satisfy

2
G (@) + gl + 5o (T 55 o

“4)
Let ( = sup,cc h(z) and zy € int(C). Then we have
h
Pr(z; €int(C),0<t<T) > ((Lo))e—CT.
Theorem 2: For a system (1)—(2) with sa%ety region defined
by (3), define

hy = sup {h(@) : [l — 2°||2 < and h(z°) = 0},

II

where h(z) := h(z)— h.. Let ah denote the derivative 3h|:1: 2
for simplicity. Let z; € R” represent the estimation error,
where z; = (x; — Z4). Suppose that u; is chosen to satisfy

FaF )+ aCanu) — | 51 K

1 0%h
+ atr < TKT

t a 2
Then Pr(z; € C,0 <t < T ||ze—d¢t]]2 < ) >
Proof: We have the estimate & yields

o
2

(@ t)KtVt> > —il(fﬁt)- &)

f (&, u ) dt + K (cxidt + v dVy — cZpdt)
( +KtC (l’f 71:1»)) dt+Ktth‘/f

(

Given ||x; — itHg < v, we have

oh

oh
—K,
ox e

%Ktc (xt — QIATt) 2

oh

or KtC

||ZtH2 > = Y

2

We then choose u; to satisfy (5). Then, we have

% (f (&¢) + g (T¢) ug + Kie (g — 4))+

or
1 d%h .
A <VtTKtT (8952) Ktl/t> + h(@¢) >
oh

Hence, by Proposition I, we have Pr(z; € C,0 < t <
T| ||we — gl |2 < ) > (ME2)e<T, m

Intuitively, Eq. (5) implies that as the state approaches
the boundary, the control input is chosen such that the rate
of increase of the barrier function decreases to zero. Hence
Theorem 2 implies that if there exists an SCBF for a system,
then the safety condition is satisfied with probability greater

or equal to (1 — €)( when an EKF is used as
an estimator and the control input is chosen at each time ¢
to satisfy (5). We next present a probabilistic guarantee for
HOCBFs within a finite time horizon.

Definition 3 (SCBF): The function h is a Stochastic Con-
trol Barrier Function (SCBF) of the system, if for all
satisfying h(Z;) > 0 there exists u; s.t. Vz; with ||z|| < ~
(5) is satisfied.

There may not exist a value of wu; to satisfy (5) when
% g(z) = 0. To address this problem, CBF with high relative
degree has been proposed in deterministic [41] and stochastic
[7] settings.

h(zco)) —(T

Letd = 0,1, ... and define d*” order differentiable function
hi(x) as
ho(z) = h(z),

ht(z) =

Oh°— 1 + [ 0%h° 0
%f(:c?u)—i—itr <O’ (8%2 ) 0) + ho(x),

ond_ 1 02hd
A1,y — 1 T d
hT () = o (a:,u)—|—2tr <0’ (8952 )o) + h(x).
Define C* = {z: h(z) > 0}. The following theorem pro-

vides sufficient conditions for safety of a high-degree system.
Theorem 3 Let C = ﬂ 7_o C?. Suppose that there exists d’

such that ah

g(x)u # 0. If u, is chosen to satisfy

92 hd’

d/
Oh T o a> > —n¥(z).  (6)

— 1
W(f(x,u)) + itr (0

T

Let ¢¢ = sup,cca h¥(z). Then Pr(z; € C,0 <t < T) >
’ d —
[T (5)e <" if 2 € C.

Proof: Suppose that u; satisfying the conditions of the
theorem is chosen at each time {. Theorem 2 implies that
h% (z4) > 0 when 0 < t < T with probability greater or
[(ffo) )e’cd T, By definition of h%(z) we have that

= 0. We also have Pr(z; € C*~1,0 <t <
hd/’1 T _
Cd’—(lo))e ¢

hd

equal to ( :

onY 1
ox

g(x)u
Tlzy € C¥) > ( “'T Proceeding inductively,
we have Pr(z; € C,0 <t <T) > P where

d/
P=]]Pr(@,eC™0<t<T |z, €C)
=1
Pr(zeC? 0<t<T).

Flnally, we have Pr(xt e C0 < t < T) >

Hd o(h (Fo) )~ u
Deﬁnmon 4: The function h? is a high-order CBF
(HOCBF) of relative degree d’ for system (1)-(2) if for all
x € C there exists u satisfying (6).
The following theorem provides equivalent conditions for the
existence of solutions to systems of polynomial equations and
inequalities. This allows us to verify sufficient and necessary
conditions for safety.
Theorem 4 (Positivstellensatz [62]): Let (('bj)j:l.,..,s’
(XK)geq 4 (We)p—y , be finite families of polynomials
in R[z1,...,2,]. Denote by C the cone generated by
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(gbj)j:l o M the multiplicative monoid generated by
(Xk)p—1 ¢ and D the ideal generated by (v¢),_; -
Then, the following properties are equivalent:

1) The set
¢J(w)207 ]:17 S
Ye(x) =0, 1=1,...,u
is empty.
2) There exist ¢ € C,x € M, € D such that p+x>+1) =
0

Lemma 1 (Farkas’ Lemma [63]): Let A be a real matrix
with m rows and n columns, and let b € R]} be a vector. One
of the following conditions holds. i) The system of inequalities
Az < b has a solution. ii) There exists y such that y > 0,
yT A= 0" and y”b < 0, where O denote a zero vector.

IV. SAFE CONTROL UNDER SENSOR FAULTS AND
ATTACKS

In this section, we consider the system under sensor faults
and derive safety guarantees.

We consider a nonlinear control system whose output may
be affected by one of m sensor faults. The set of possible
faults is indexed as {r1,..., 7, }. Each fault r; maps to a set
of affected observations F(r;) C {1,...,¢}. We assume that
F(r;) N F(rj) =0 for i # j. Let r € {ry,...,ry,} denote
the index of the fault experienced by the system. The system
dynamics are described as

dxy (f(ze) + g(xe)ue) dt + op AWy @)
dy: = (cxy+ aq) dt + vy dVi, 8)

where the vector a; € R? represents the impact of the fault and
is constrained by supp(a;) C F(r). Hence, if fault r; occurs,
then the outputs of any of the sensors indexed in F(r;) can be
arbitrarily modified by the fault. The sets F(ry),...,F(rm)
are known, but the value of r; is unknown. In other words,
the set of possible faults is known, but the exact fault that has
occurred is unknown to the controller.

To illustrate, we take an autonomous vehicle system as
an example. Consider an autonomous system equipped with
two INS sensors, a GNSS and one LiDAR system indexed
as {1,2,3,4} for localization measurements denoted as y =
{y1, Y2, Y3, ysa}. We consider three possible attacks: an attack
on one of the INS sensors, an attack on another INS sensor, or
a simultaneous GPS/LiDAR spoofing attack. The correspond-
ing fault patterns are given as F(r;) = {1}, F(r2) = {2},
F(rs) = {3,4}.

Define ¢; to be the ¢ matrix with the corresponding rows
indexed in F(r;) removed, 7, ; to be equal to the vector y;
with the entries indexed in F(r;) removed, and 7, ; to be the
matrix v; with rows and columns indexed in F(r;) removed.
Define ¢; ; to be the ¢ matrix with the corresponding rows
indexed in F(r;) and F(r;) removed, where ¢ # j.

We make the following assumption for the sensor fault
scenario.

Assumption 2: The system (7)-(8) and the sensor fault
patterns F(ry), ..., F(ry,) satisfy the conditions:

1) The system is controllable.
2) For each i,j € {1,...,m}, the pair
[%(z, u), ¢ ;] is uniformly detectable.
Problem Statement: Given a finite time 7', a safe set C defined
in (3) and a parameter € € (0, 1), compute a control policy that,
at each time ¢, maps the sequence {y; : t' € [0,¢)} to an input
ug such that, for any fault r € {ry,...,rn}, Pr(z; €C, 0<

t<T)>(1—¢€)T(T), for some function 7 : R" — (0,1).

A. Sensor FTC Strategy Definition

We propose a CBF-based strategy with safety guarantees
for a system satisfying Assumption 2. The strategy that ac-
commodates sensor faults and attacks is an FTC in a passive
manner. The goal of FTC is to ensure the robustness of the
control system to accommodate multiple component faults
without striving for optimal performance for any specific fault
condition.

The intuition behind our approach is as follows. Since we do
not know the fault pattern r, we construct estimators excluding
faulty sensors by maintaining m EKFs. Each EKF corresponds
to a different possible fault pattern in {r1,...r,,}. We ensure
safety with desired probability by defining m corresponding
SCBFs, each of which results in a different linear constraint
on the control input.

The potential drawback is that the safety guarantees of
Theorem 2 rely on the existence of a control input satisfying
the safety constraint at each time-step. This assumption may
not hold for two reasons. Firstly, feasible control input « may
not exist when %g(m) = 0, since u does not affect states x.
Secondly, a feasible solution may not exist when faulty sensor
measurements cause the state estimates to diverge. To address
the first reason, we define higher-order SCBFs such that for
d-th degree %—}fg(a:) # 0. Then, we choose control input «
to satisfy constraints constructed by higher-order SCBFs. To
address the second reason, we define a set of (’g) EKFs to
resolve conflicts between the constraints. Each EKF estimator
omits all sensors affected by either fault r; or fault r; for
some 4,5 € {1,...,m}, i # j. These estimators will be used
to resolve any deviations between the state estimates from
sensors {1,...,m}\F(r;) and {1,..., m}\F(r;).

Let C, := {x : h%(z) > 0} where h(z) = h(z) — hd and

hd = sup {h'(2): ||z — 2|5 < v and R (z*?) = 0}
z,29:0

¥
_ , )
LetC, = ﬂZ:O CY. To ensure safety as defined in (3), we need
to show that Pr(z; €C, 0<t <T) > HZ/:O(hdéifo))e_CdT
if zg € C, given z9 € C, and ||z — &4||2 <7, V.
Proposition 2: For a system (7)-(8) with safety region de-
. a’
fined by (3), suppose there exists d’, such that %g(z) # 0.
Suppose that u; is chosen to satisfy
oh?

W(jt)KtC

ond

(xtﬂit) - Y

2

1 T TBth/ N 7d /A
—|—§tr v; K; . (Z) Ky | > —h® (8). (10)
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Then Pr(zy € C, 0 < t < T |lag — Zlla < v Vi) >
’ rd d . —
Hd:o(h C(f"))e_C Tif 29 € C,.
Proof: Given ||z; — Z¢||a < 7 Vt, we suppose that u;
is chosen to satisfy (10). By Theorem 2 and (10), we have
h (z¢) > 0 when 0 < t < T with probability greater or

equal to (%)e—@’? By definition of relative degree, we
have %}fg(a;)u = 0 for d < d'. By definition of h? (z;), we
have 222 F(x,0) + & tr (O'T (3525) 0) + hi(x) > 0, where
d = d'—1. This implies h% ~1(z,) > 0. Similar to the proof of
Theorem 3, by proceeding inductively, we then have Pr(x; €
C, 0 <t < T [l —dnllo < v ) > [To (oG )e <7 if
xTo € 0_7. | |

The function A% ensures safety of the system with relative
degree d’ by Proposition 2. Hence we define the function as
follows.

Definition 5: The function h® is a higher order SCBF
(HOSCBF) of relative degree d’ for system (1)-(2) if for all
#; € C there exists u; satisfying (10).

We next present a scheme to resolve conflicts between
constraints in the case of faults and attacks. Let Ft,i = Pm?tT,i
and K;;, = PtﬂiéiT(Rm)’l. Here P;; is the solution to the
Riccati differential equation

dP;; — —= = _ps-1_—=
— = FuiPui + PuiFl + Q= Pyt Ry ey
with F} g—z(i"t,i,ut). Define a set of m EKFs with

estimates denoted & ; via
diy; = (f(24,0) +9(2es)ue) dt+ Ky i(dy, ;, —Cie s dt). (11)

Each of these EKFs represents the estimate obtained by
removing the sensors affected by fault ;. Furthermore, define
Ut.ij» Vtiyg» Cij» Reayj» and Ky, in an analogous fashion
with entries indexed in F(r;) U F(r;) removed. We assume
throughout that the R matrices are invertible. We then define

a set of (")) estimators &y, ; as

Az 5= (f(Ze,) + 9(Ee5)ue) dt
+ Kt,i,j (dyt,i,j — E,‘Ji‘t,i’j dt) (12)

When .F(TZ)U./T'.(T‘]) = {1,
used for &, ;.

We then select parameters 71, ..., %, € Ry, and {0;; : 7 <
j} C Ry. The set of feasible control inputs is defined at each
time ¢ using the following steps:

1) Define Z; = {1,...,m}. Define a collection of sets €2;,

,q}, the open-loop estimator is

1 S Zt’ by
ond ond
Q= {U5 6792 (f(@ei,ue)) — a; (1) Kie 2%'
1 9?hd »
+§tr (V,:TKtT 8; (xt,i)Kt’/t> > —hi (i)
(13)

Select u; satisfying u; € mz’eZ, €);. If no such wu; exists,
there exists conflicts between constraints, i.e., 3i, j, i #
J s.t. Q;NQ; = 0. Then go to Step 2.

2) For each i, j with ||Z¢; — & ;|2 > 04, set Z, = Z,\{i}
(tesp. Zp = Zy \ {j}) if ||Z0: — @eijlla > 60ij/2
(resp. ||fi't,j — ;f:t_,i’j||2 > 0”/2) If miGZt Q; # @, then
select u; € ﬂieZt Q. Else, go to Step 3. This step
resolves conflicts between estimations by comparing the
difference between estimations against thresholds 6;;.

3) Remove the indices ¢ from Z; corresponding to the
estimators with the largest residue values Yei — Cily
until there exists u; € [, -

We next provide sufficient conditions for this control policy
to guarantee safety.
Theorem 5: Given xg € C,, define

—d
o, = SUD {hd(x) : |l — 2|l < 4 and A (240) = 0}
and hd(z) = hi(z) —Eiﬁ. Suppose Y1, - - - ; Ym» and 0;; for i <

7 are chosen such that the following conditions are satisfied:
d
1) Define Ag(:fct,i) = %(ﬁtwi)g(itﬂ-). For all 4,5 € Z;

with ||Z4; — & j]]2 < 055, there exists u such that

A (2)u >0 (14)
for all ¢ € Zj.
2) For each 7, when r = r;,
. . 0ij .
Pr(l[2e; — Eriglla < < V5,
e — zells <7 VE) > 1—e (15)

Then Pr(z, € C, 0 <t < T) > (1—e) []4 (2L@0)ye—¢T
t 9 =t = - d=0 ¢d
for any fault pattern r € {ry,...,my}.

Proof: Suppose that the fault f = f;. We will show that,
if ||£1A3't’i —l’t||2 < Yi and ||‘%t,i _L%t,i,jHQ < 9”/2 for all t, then
u € §; holds. Hence x; € dC for 0 <t < T with probability
h C(dilCo)

At time t, suppose that h? (#,;) > 0, and that ||, —
Z14.5l]2 < 6i;/2. We consider three cases, namely (i) ||Z; ; —
i’t,k||2 S ij for all j, ke Zt, (11) ‘|jt7i - i’t,j”2 S gij for all
j € Z, but there exist j, k € Z;\{¢} such that ||Z; ;— & x||2 >
0k, and (iii) ||Z¢; — & j||2 > 0;; for some j € Z;.

Case (i): We will show that there exists u € Njcz,€);, and
hence in particular v, satisfies €2;. Each ; can be written in
the form

greater or equal to Hg:()( )e‘CdT by Proposition 2.

Q= {u: AL (&)u, > @7 } (16)

where w;?' is a real number that does not depend on u;. Under
the assumption 1) of the theorem, there exists u satisfying (14)
for all ¢ € Z;. Choose

i = (e (5 ) .

This choice of u; satisfies uy €
Q;.

Case (ii): In this case, Step 2 of the procedure is reached
and constraints €2; are removed until all indices in Z; satisfy
[|1Ze; — e kll2 < k. Since || ; — 24 ;||2 < ;5 already holds
for all j € Z;, ¢ will not be removed from Z; during this step.
After Step 2 is complete, the analysis of Case (i) holds and

ez, Q;, in particular u; €
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there exists a u which satisfies all the remaining constraints,
including €2;.
Case (iii): Suppose j satisfies ||, — Z¢ ;||2 > 0;;. We have

Oij < &t — Tt + T — Tejll2
< M@ — Traglle + 180 — 2eglle - (A7)
< 04 /2 + |2t — Tt 2 (18)

where Eq. (17) follows from the triangle inequality and (18)
follows from the assumption that ||Z;; — ¢, |2 < 6,;/2.
Hence ||Z¢ j — &¢,,5||2 > 0i;/2 and j is removed from Z;. By
applying this argument to all such indices j, we have that ¢
is not removed during Step 2 of the procedure, and thus the
analyses of Cases (i) and (ii) imply that u; € €;.

From these cases, we have that €); holds whenever

h&(#, ;) > 0. Therefore, by Proposition 2, we have

P?“(J?t S C7 0<t< T‘ H-’ﬁt,i —itHQ < Yis
d 3

~ ~ hd x _pd
s — desslls < 0572 v > T[ éd°)>e ¢
d=0

and Pr(z, €C, 0<t<T)>(1—¢ Hd;o(hdéjﬁ))e—CdT
by (15). ]

The bank of functions in Proposition 5 ensures the safety
of the system with faulty components. Hence we define the
functions as follows.

Definition 6: The bank of functions h¢', ... h% are Fault-
Tolerant High Order Stochastic Control Barrier Functions
(FT-HOSCBFs) of relative degree d’ for system (1)-(2) if
conditions in Theorem 5 are satisfied.

B. Feasibility Verification

In order for Theorem 5 to guarantee system safety, the
linear constraint (14) must hold for all time ¢. In what follows,
we develop an SOS-based scheme to verify the feasibility of
SCBF, FT-SCBF and FT-HOCBF constraints for both fault-
free case and the case with sensor faults and attacks.

We focus on verification for a constant-gain Kalman filter.
In the case where the system is LTI with constant noise,
the steady-state Kalman filter gain is optimal and hence
satisfies the stochastic stability criteria by Theorem 1. In this
subsection, we omit the time subscript of z;, Z; and z, i.e.,
(x, & and z) to simplify the expression. We consider an LTI
system described by (1) and (2), where f(x) = F, g(x) = G,
the matrices Ry = R and @; = (). For an LTI system, P, is the
covariance matrix for the estimation error and will converge
to a steady-state value P. The Kalman filter has a constant
gain given by K = PcT’R™!. We introduce an SOS-based
approach to verify the feasibility for this case.

1) Verification for SCBF: We first present the verification for
an SCBF in an attack-free scenario, in which one SCBF-based
safety constraint must be satisfied. We have the following
initial result.

Proposition 3: Suppose Assumption 1 holds. The function
h(z) is a SCBF if and only if there is no & € C,, z € R"

satisfying 92 g(#) =0, 272 — 4% < 0 and £(2) < 0 where

W Oh, . 1 7 70%h
&) = e () + Etr (1/ K @(x)Ku -
oh o

Hax(w)Kc v+ h(z). (19)

Proof: By Theorem 2, the set C, is 2positive invariant

given ||a — Z|| <« if for all time ¢ w; is chosen to satisfy (5)

V2 with ||z¢]| < . By Definition 3, we have that (%) is a

SCBEF if and only if (5) holds for all & € C, := {z : h(x) >
0}. If 22g(s) # 0, we can choose u s.t.

on oh
e [
5?7 2 |:1|l£v{ o’

1 2h h .
Str (VTKTgIQ(i)KV> + ‘ %(i)Kc 27 - h(:%)} .
Since ||z|| <+ is a compact set, such a u always exists. Hence,
(4) fails if and only if 3 and z with ||z|| < v s.t. (i) Z2g(&) =
0, and (ii) £(Z) < 0 hold simultaneously. ]
Based on the proposition, we can formulate the following
conditions via the Positivstellensatz.
Lemma 2: A polynomial h(Z) is an SCBF for system (1)-
(2) if and only if there exist polynomials p(&,z), sum-of-
squares polynomials ¢s(Z, z), integers r1 such that

o(2,2) + x(&,2) + ¥(&) =0, (20)
and
Od,2) = Y qs(dz) [ i@ 2)
Sc{1,...,3} i€s
X(&,2) = (£(&)*"

0= 3o ) oot

where ¢1 () = —£(#), ¢2() = =272+ 2 and ¢3(-) = h(&).
Proof: By Proposition 3, we have h(z) is an SCBF iff
there exist no %, z such that%g(i‘) =0 2zT2z—742 <0
and —£(Z) > 0. The latter two conditions are equivalent to
—2T24+~2 >0, and —£(£) > 0, £(2) # 0. These conditions
are equivalent to (20) by the Positivstellensatz. [ ]
2) Verification for FI-SCBF: We now extend the result into
the case where sensors may experience faults and attacks.
Specifically, we consider a nonlinear control system whose
output may be affected by one of m sensor faults described
by (7) and (8).

In this case, we need to verify the feasibility of u to
satisfy m SCBF constraints under m possible sensor faults. To
achieve this, we extend Proposition 3 to verify the feasibility
of a set of SCBF constraints via Farkas’ Lemma.

Corollary 1: Define A(x) and Z(x) as follows.

Az) = (A1(@)... Ap(2))"
E(z) = [&1(2) .. &n(@)]"

Control input u that is chosen to satisfy a set of linear
constraints can be written as

2

Alx)u < E(z, 2). (22)
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By Farkas’s Lemma, the system A(z)u < Z(z) has a solution
u € RP, if and only if there does not exist y € R™ such that

A(2)y =0, y >0, EN(2)y < 0. (23)
We define A(z) and Z(x) as follows

oh on . \"
(- Gestan-..~ Gratem)

[€(21) ... &(@m)]".

Proposition 4: Suppose Assumption 1 and conditions in
Theorem 5 hold. There exists a feasible solution w satisfying
a set of m SCBF constraints if and only if there is no
5517.. im € Cy, 21,...,2m € R" and y € R™ satisfying
22— <0, (&5 — @) " (& — k) —7* < 0, AT(2;)y =0,
yZO and Z7(3)y < 0, Vj, k € {1,...,m}.

A(#) =

=(2) =

Proof: By Definition 3, we have fz(x]) =h(&j)—hy, >0
for all £; € C,. By Theorem 1, we have z T zj —* <0 for
all j. By Theorem 5, we have (%; — &) (3} — 1) < 42,
Vj, k € {1,...,m}. For the case where h(&) = 0, u can be

chosen to satisfy (5) for all j. By Corollary 1, we have the
existence of w if and only if there does not exist y € R™
such that (23) hold. Conversely, if for some &g, &1, 2o and
yo satisfying 9g(io) = 0, (20 — &1)7 (20 — #1) — 72 <0,
220 — 42 <0, AT(20)yo = 0, yo > 0 and =T (20)yo < 0,
the set C is not positive invariant. ]

Then, we can formulate the following conditions via the
Positivstellensatz.

Lemma 3: There exists a feasible solution u satisfying a set
of m SCBF constraints if and only if there exist polynomials
p(Z;,y, z;), sum-of-squares polynomials ¢(Z;,y, z;), integers
s=4m+m?2, ri,...,rm such that

¢(i‘]7 jjknya Z])J'_X(‘%ijf‘/m Y, Z])+¢(£]7jf'k7 yaz_]) = Oa (24)

and

(b() = Z QS(fj,ka,%Zj) Hfﬁz(@’fﬂmya%)
SC{1,...,s} =

0= I (=@w™
vjie{l,....,m}

WF{XZ%%%%@M%MQ7
j=1 \i=1

(xj)ij ¢{m+1 2m}() = h(£])?
PLam+1,.. 3m}() *ZJTZj +92, ¢{3m+1 4m}() =y, and
¢{4m+1..‘4m+m2}( ) (xj - .’L’k) (xj - wk) + ’7

Proof: By Proposition 4, we have h(Z) is an SCBF if and
only if there exist no Z1,...,Zm, 21, ..., 2m and y satisfying
(=) (Zj—2r)—* < 0,Y5,k € {1,...,m}, z] zj—* <
0 V4, AT(2)y; = 0, y; > 0 and ZT(#)y; < 0. The conditions
are equivalent to Vj, k € {1,...,m},

where ¢¢1 () =

— 2 zj+7 >0,
— (& — 1) " (&5 — k) +9% >0,
Al(&)y =0, y >0, —E7(&;)y > 0,27 (2;)y # 0

These conditions are equivalent to (24) by the Positivstellen-
satz. |

3) Verification for FT-SCBF with high relative degree: We
further extend the proposition 4 and Lemma 3 to verify the
feasibility of a set of HOSCBF constraints.

We define A(x) and E(x) as follows

T
) (im)> )

where

X X ond
A(m) = <_ax9($1)7---7—a$

c Em(@n)]T

2

Proposition 5: Suppose Assumption 1 and conditions in
Theorem 5 hold. There exists a feasible solution w satisfying
a set of m HOSCBF constraints with relative degree d if and
only if there is no Z1,...,Zy € Cy, 21,.-.,2m € R™ and
y € R™ satisfying h'(;) > 0, Vj,¥d < d', (& — #4)7 (& —
&) — 2 <0, Vi,k € {1,...,m}, ZJsz—WQSOVj,
AT(2)y =0,y >0and Z7 (2 )y<0

Proof: By Theorem 1, we have ijzj — 72 < 0 for
all j with m EKFs. By the Definition 5, we have h?(#;) =
h(3;) — h, > 0 for all #; € C, if and only if the following
three conditions are satisfied. For all &; € C, hd(z) > 0 for
all d < d'. Next, by Theorem 5, (&; i &e)T (25 — 2k) <2
Vi, k € {1,...,m}. Moreover, Wg(xj) # 0 and u are
chosen to satisfy (10) for all j. By Corollary 1, we have a
solution v € RP exists, if and only if there does not exist
y € R™ such that (23) holds. Conversely, if for some 2, Z1,
2o and yq satisfying h%(&0) > 0, (Zg—21)T (a:«O i1)—2 <0,
220 -2 <0, AT(2)yo = 0, yo > 0 and ZT(3)yo < 0, the
set C is not positive invariant. [ ]

Lemma 4: There exists a feasible solution u satisfying
a set of m HOSCBF constraints if and only if there ex-
ist polynomials p(&;,Zx,y, 2;), sum-of-squares polynomials
qs(%;, %k, y, 2;), integers di,...,d,,, s = 3m + m? +

y Yimys

ZJ 1dj, T1,...,7m such that
H(Zj, Ths Yy 25) X (T4, Thy Y 25) +(25, Ty Y, 25) = 0, (25)
and
¢(): Z qs(i'jv-i‘kay7zj)H¢i(§jja£kay7zj)
SC{1,...,s} i€S
—_ “ 2r;
xO= ] (E"@)w)
vjie{l,....,.m}
m P
w() (sz xj?whya’z]) [AT(‘Z‘])y] >
=1 \i=1

where ¢(1 () = —ET(E&)y. dpmrr,2mp() = U5
¢>{2m+1,...,3m}(') = —ZjTZj + 72’¢{3m+1...3m+m2}(') =
—(&; — 2)T(&; — &) + 7% and for d; € {0,...,d}},
¢{3m+m2+1 3m+m2+zj 1 7}() = hdj (‘%J)

Proof: By proposition 5, we have h?(&) are HOSCBFs
if and only if there exist no Z1,...,Zm € Cy, 21,...,2m €

R™ and y € R™ satistying h?(#;) > 0, Vj,Vd < d', (& —
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j;k) (j:]_jjk) PY <O Vj,ke{l,...,m},Zij—’}/QS
0 V4, AT(2)y =0, y > 0 and Z7(2)y < 0. The conditions

are equivalent to Vj,k € {1,...,m},

h' (&;) > 0,Vd; < d]

— (&5 — 21)" (&5 — &) +9° 2 0,—2] zj +7° >0,
AT(‘%j)y =0,y>0, - (xj)y > 0:'— (jj)y #0
These conditions are equivalent to (25) by the Positivstellen-
satz. u

V. JOINT SAFETY AND STABILITY UNDER SENSOR
FAULTS AND ATTACKS

We next present a framework to ensure joint safety and
stability for systems with sensor faults and attacks via CLFs
and HOSCBFs. Such an approach has been widely used in
fault-free scenarios.

Define the goal set G C C by G = {z : w(x) > 0} for some
function w for some equilibrium point z. € G, f(x.) = 0 and
g(xz.) = 0. Define 7(G) as the first time when x; reaches G.

Problem Statement: Given a goal set G, a safe set C
and a parameter ¢ € (0,1), compute a control policy that,
at each time ¢, maps the sequence {y» : t' € [0,¢)} to an
input u,; such that, given a finite stopping time 7", for any fault
re{ry,...,tm}, Pr(z, €C, 0<t<T) > (1—¢)T(T), for
some function 7 : R™ — (0,1) and Pr(7(G) < 00) > 1 —e.

A. HOSCBF-CLF

Our approach towards through asymptotically convergence
to goal set G is through the use of stochastic Control Lyapunov
Functions. A function V : R™ — R is a stochastic CLF for
the SDE (1) if, for each z;, we have

2
iﬂf {af(xt,ut) + ;tr (a %U)} < —pV(x)" (26)

for some p >0 and 0 <n < 1.

The following result describes the stochastic stability of sys-
tems using CLFs with [64, Theorem 3.1] providing sufficient
conditions for the following result. As a preliminary, define
7(z) =1inf {t : V(xs) < z}.

Proposition 6 ( [64, Theorem 3.1]): Suppose there exists a
V such that, whenever V' (z;) >V, we choose u; to satisfy

0
i) ;

2
+ %g(xt)ut + 1‘Glf‘ (OT?MVU> < —pV(x4)"
for some p > 0 and 0 < 1 < 1. For z € R™"\{z|V(x) = 0},
Pr(r(V) < ocolzg = z) = 1.

In the case with sensor faults and attacks, we consider a
system with dynamics (1) and an Extended Kalman Filter es-
timator &;. The following result is an extension of Proposition
6 to this case.

Lemma 5: Suppose that there exist constants M > 0 and
k € N such that, for any = and 2/, |V (z) — V(2')| < M||z —
o'||5. Suppose Pr(||#; — x¢|]2 < Vt) > 1 — € and, at each

time ¢ when V(i) >V, we have

oV R . ov .
B EOF (@) + g(@e)ur) + ]l 5 (Fe) Kicll2
1 1%
+ itr < KtTaa 3 ( t)Kﬂ/t) < —p(V("%t) + M’Yk)n.
(27)
Then

Pr(r(V + M~*) <

for all Tt € R"\{xtﬂf(zt) = O}
Proof: The dynamics of &; are given by

o0)>1—c¢

dis = f(2¢,ur) + Kic(xy — &) + KvedVi.
If ||&¢ — x¢]|2 < 7, the differential generator LV (Z;) satisfies
LV (&) = Z—Z(ﬁct)?(i:t,ut) + %(mt)l(tc(xt — Iy)
+%t VtTKtng‘Q/(xt)KtVt)
< @@ u) + 2l G G0 Kaelly
%t ( KT g?; (a%t)Ktyt>
since
%( JKe(ze — &) < ||8l($t)KtC|\ [z — Zell2
< vua—‘/(xt)mcna
Since |V (z¢) — V(&) < M||zs — 2¢||5, we have V(a:t) <

V(&) + M||zs — 2¢||5 and p(V (z
for some p >0 and 0 <7 < 1.
Hence, if (27) holds, then

)" < p(V (&) + MA*)7,

Pr(inf {t: V(&) SV} <oo | |lzy — &l <y Vt) =1

by Proposition 6. Since |V (z;) — V (2,)| < M||z; — d4||5, we
have V (z;) < V(&) + M||xs — #4]|5, and so

Pr(V(zy) >V 4+ MAyF| oy — 242 < v Vi)
< Pr(V(2:) + MAy* >V 4+ MAyF| ||z — 24|z < v VE)
= Pr(V(2) > V| [lzs — dells < v V1)

Hence Pr(7(V + M~*) < oo| ||xy — d4|[2 < v Vt) = 1 and
thus Pr(r(V + M~*) < 00) > 1 —e. [
Motivated by this result, we next state a control policy that
combines CLFs and HOSCBFs to ensure safety and stability.
At each time ¢, the set of feasible control actions is defined
as follows:

1) Define Y;(V) = {j : V(& ;) > V), and initialize U; =

Y;(V). Define a collection of sets Y;, i € Uy, by

Vi, . ovi .
0,2 fus S i)+l G sl

Ox
1 v
+§tr (Vt ZKtT’L a 2 (.’Et Z)Kt zyt Z)

< —pi(V (&) + MAF)™ ) (28)
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for some p;, n;, 1 =1,...,

U € (ﬂ QZ> n
€2

where (); is defined as in (13). If no such wu; exists, go
to Step 2.

2) For each i, j with ||&;; — 24 ;|2 > 0, set Zy = Z;\ {i}
and Uy = U \{i} (resp. Z; = Z:\{j} and Uy = U:\{j})
if |2 — Beaglla > 0i/2 (resp. || T — 2o jll2 >

0,;/2). It
(0s)
€2t

then select u; from this set. Else go to Step 3.

3) Remove the sets €2; and Y; corresponding to the esti-
mators with the largest residue values until there exists
a feasible u;.

m. Select any

N7

JjEU:

M

JEU:

This policy is similar to the HOSCBF-based approach of
Section IV, with additional constraints to satisfy the stability
condition. This leads to another m linear inequalities. The
following result gives sufficient conditions for safety and
stability.

Theorem 6: Suppose that A% ... h%, ~i,. .., ym. V, V,
and 0;; satisfy the constraints of Theorem 5, as well as the
following: (i) The function V satisfies {z : V(z) < V +
M~E} C G for all i. (i) Define T';(2¢;) = 2%g(dy,). Let
X, C X¥(8) and Y/ C Y;(V) be sets satisfying ||#; —
&y j|l2 < 055 for all i € X[ and j € Y/. Then there exists u
with

A (2)u >0, Tj(d)u<0 (29)
for all 1 € X/ and j € Y. If conditions (i) and (ii) hold, then
Priz; € C, 0<t<T)>(1—¢) Hg;o(%)e%% and
Pr(7(G) < o0) > 1—e for any fault pattern € {ry,...,7n},
where 7(G) is the first time when x; reaches G.
Proof: Suppose there exists relative degree d’. By the
argument of Theorem 5, i € X () implies that ; is a
constraint on u; at time ¢. An analogous argument yields that
T, is a constraint as well. By selecting u; satisfying (29) at
each tlme t We have that Pr(z; € C, 0 <t <T) > (1—
)Hd 0( 20))¢=¢"T by Theorem 5 and Pr(7(V +M~¥) <
o) >1—c¢ by Lemma 5. Hence Pr(7(G) < o0) > 1—¢€ by
assumption (i) of the theorem. ]
A controller that reaches a goal set defined by a function V'
while satisfying a safety constraint C = {z : h(z) > 0} can
be obtained by solving the optimization problem

minimize u} Ruy
s.t. A (&;)ue > w9 Vj € X{'(5) (HOSCBF)
(30)
at each time step, where R is a positive definite matrix
representing the cost of exerting control.

B. HOSCBF-CLF Construction

As in the case of a single HOSCBF constraint, satisfaction
of (29) will depend on the geometry of the safe region and
goal set as well as the values of v; and 6;;. We consider a
linear system with dynamics

dzy = (Fay + Guy) dt + odWy. (31

The goal set is ellipsoidal, so that w(z) = V(z) = (v —
2")TW(x—2"), and the safe region C is given by a hyperplane
constraint aZz — b > 0. We next construct SCBF-CLF as a
special case of HOSCBF-CLF to ensure safety and stability
of the cases where rank(G) = n and rank(G) < n.

Proposition 7: Suppose that rank(G) = n and the follow-
ing conditions hold:

alz” —b>0 (32)
727

{(m — 2"z —2") < 92)\} N{a’z—b <0} =0 (33)

Then there exists § > 0 such }21151t, at each time t, there exists
u satisfying (29) when V = %@)

Proof: Select § such that § < a”z”. We consider three
cases. In the first case, X;(d) # () and Yt( ) = 0. In the
second case, X;(6) = 0 and Y;(V) # 0. In the third case,

X,(8) # 0 and Y,(V) #0.

If X;(6) # 0 and Y;(V) = 0, then u satisfying a” Gu > 0
suffices to ensure safety by Lemma 1 in [56]. If Y;(V) 7& U
and X,;(6) = 0, then choose u such that Gu = — (&, — 2”)
for some i € Y;(V'). By Proposition 1 in [56], for any positive
definite matrix ® and 2’ € R™ if

A@)"12V2
2NT®(z —2') >

|21 — 21 lla <O <

and &;; and &, ; both satisfy (x
for e sufficiently small, then

(1—¢

(24, — 2")T @ (34, — 2) > 0.

Choosing ® = 1, ¥ and 2z’ = 2" yields \(®) = %, and

hence § < \(®)~1/2/2 holds by construction. Hence we have
1
(24 — ") ( 2\1/) (21, —2") >0
207\
when #; ; and Iy ; satisfy
1
(x — 2T ( 2‘~Il> (x —2") > 1,
20"\

or equivalently, when they satisfy

|
>

(x — z")T\I'(x -z >

|

Finally, suppose that Y;(V ) # () and X,(d) # 0. Choosing
u such that Gu = —(&;; — 2”") for some i € Y;(V). By the
preceding discussion, (29) holds for all j € Y;(V). By choice
of §, i € X¢(5) implies that a”#;; < aTz”. Hence, we have

a’Gu = a” (2" — &) > 0,

and therefore A(#,;)u; < 0 is satisfied for all i € X]. |
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We next turn to the case where rank(G) < n. As in the
case of the SCBF construction in [56], we add a hyperplane
constraint (z — z”)T Wy < 0 to ensure that the SCBF-CLF
constraints are satisfied.

Proposition 8: Suppose that v € span(G) and satisfies the
following conditions: (i) a”v > 0, and (ii) the initial state 2’
satisfies (2' —z” )T Wv < 0. Then there exists u satisfying (29)
at each time t.

Proof: At each time t, choose Gu = v. We need to
verify both SCBF constraints and the CLF constraint for each
i. First, for the constraint h(z) = aTxz —b > 0, we must have
—a”Gu < 0, which is equivalent to assumption (i) of the
proposition. For the constraint (x —z" )T WGu < 0, the choice
of v = Gu and the hyperplane constraint (z — 2)T Wy <
0 implies that the CLF constraint is satisfied. Finally, the
hyperplane constraint (z — )T Wy < 0 can be satisfied if
—vTWGu < 0, or equivalently, if —v” Uy < 0, which holds
since W is positive definite. ]

VI. SAFE CONTROL UNDER ACTUATOR FAILURES
Motivated by FT-CBFs for sensor faults, in this section,
we propose a passive fault-tolerant control based on CBFs
to mitigate actuator failures. We consider a nonlinear control
system affected by actuator failures in a noise-free scenario.
The system dynamics can be described as

dy (f(ze) + glae)uf) dt
dys = cxy dt,

(34)
(35)

where u!" represents the actuator’s output with failures.

We consider loss of control effectiveness failure [65] in
which a subset of actuators produce a zero output. Let Z denote
the set of failed actuators. The actuator failure model is given
by uf = Luy, where L is a p x p diagonal matrix with L;; = 0
if i € 7 and L;; = 1 otherwise.

The concept of actuator redundancy for LTI systems is pro-
posed in [25]. We extend the definition to nonlinear systems.

Definition 7 (Actuator Redundancy): A nonlinear system
(34)-(35) is said to have r actuator redundancy if the system
remains controllable for all failure patterns L; € £, = {Lz |
Z C{L,...p},|Z| < r}, where |Z| denotes the cardinality of
z

In this section, we assume that the system described in (34)

and (35) has r actuator redundancy.
Problem Statement: Given a set C defined in (3), construct
a control policy that, at each time ¢, maps the sequence {y; :
t' €10,t)} to an input u; and, for any failure £; € L, ensure
xy € C, Vt.

The goal is to ensure the safety defined in (3) of the
system when actuator failures occur. The intuition behind our
approach is to choose a control input u that is safe for all
possible actuator failure patterns. To achieve this, we examine
the system dynamics with m possible failure patterns £; € £
at each time and choose u; to satisfy all safety constraints.

Lemma 6: For a system (34)—(35) with safety region de-
fined by (3), u; is chosen to satisfy constraints () Cyec Q;
defined as follows.

0= u: O (F(r0) + gle) L) > —alhiz)}  G6)

Then when the set | Lyec ; is non-empty, the safety can be
guaranteed when any failure pattern L; € £ happens.

Proof: By Corollary 2 in [35], safe set C is forward
invariant if u satisfies the CBF constraint. Safety of the
system under actuator failure 7 can be ensured by choosing
ueﬂﬁjeﬁﬁjgﬁi. |

However, a feasible control input u» may not exist when
Shg(z)L; = 0, since u does not affect states = due to
dynamics or actuator failures. To address this problem, we
define higher order HOCBFs for actuator failure such that for
d-th degree %—}f g(x)L; # 0. Then, we choose control input u
to satisfy constraints constructed by higher order CBFs.

Lemma 7: For a system (34)—(35) with safety region de-
fined by (3), suppose there exist m relative degrees d’;, for

each L;, j € {1,...,m} such that agij g(xy)L; # 0. For all

- d; . . .
xg € C := ﬁ;”zl Nazo CJC»I, u; 1s chosen to satisfy constraints
Nr.cr §2; defined as follows.

J

ond
ox

Then when the set [ Lyec ; is non-empty, the safety can be

guaranteed when any failure pattern L; € £ happens.

Qj = {u: (f(xe) + g(we) Lyu) = —a(h®(2,)} (37)

Proof: For a given j € {1,...,m}, the safe set ﬂZ;OC;i
remains forward invariant by Theorem 3, if u; is chosen
to satisfy the corresponding HOCBF constraint (37). For an
unknown actuator failure ¢, the forward invariance of the set
C = nm, mj-fzo C;i is ensured if u; € ﬂﬁjec Q; C Q; for
xTo € C. ]

Although the approach in Lemma 6 and Lemma 7 can
ensure the safety of the system, excessive constraints make
the existence of a feasible solution problematic. In what
follows, we present feasibility verification for safe control
under actuator failures.

A. Feasibility Verification

We provide feasibility verification for both CBF and
HOCBEF of the system with actuator failures.

1) Verification for CBF Under Actuator Failures: We first
show the verification for CBF of the system with actuator
failures. We denote A(zx) and =(x) as follows

oh oh ’
(- Gpo@a o Shao)L, )

where 9
(x) = 5 S @) + hiar)

Proposition 9: There exists a feasible solution u satisfying
a set of m CBF constraints if and only if there is no = and y
satisfying AT (z)y =0, y > 0 and =7 (z)y < 0.

Proof: By Corollary 1, we have a solution v € RP, if
and only if there does not exist y € R™ such that (23) hold.
Conversely, if for some z( and yq satisfying % g(xzo)L; =0
for some j, AT (z)yo = 0, yo > 0 and E7(z)yo < 0, the set
C is not positive invariant. ]

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on August 13,2025 at 14:45:56 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Al rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2025.3571338

GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Based on this proposition, we can formulate the following
conditions via the Positivstellensatz.

Lemma 8: There exists a feasible solution w satisfying a set
of m CBF constraints if and only if there exist polynomials
p(z,y), pi(z,y), sum-of-squares polynomials gs(z,v), and
integers r such that

¢(xay) +X(xay) +w($7y) =0, (38)
and
dx,y)= > as(zy) [ i)
5C{1,..,3} €S
X(@y) = (ETy)"
P(z,y) =Z ( pi (2, y) [ATyL> ,

where ¢1(-) =y, ¢2(-) = —E"(2)y and ¢3(-) = h(x).

Proof: By Proposition 9, we have h(z) is an CBF if and
only if there exist no x and y satisfying y; > 0, %g(x)Lj =
0Vje{l,...,m}, ATy =0 and ZTy < 0. The conditions
are equivalent to Vj € {1,...,m},

h(z) >0, ATy =0, y; >0, ~E7(2)y > 0,ET (2)y # 0

These conditions are equivalent to (38) by the Positivstellen-
satz. |

2) Verification for HOCBF of Actuator Failures: We next
verify the feasibility of a set of HOCBF constraints. We denote
A and = as follows

ohds O ’
A(:C): - Oz g(x)Lh"w_ Oz g(x)L;D )
E(:C) = [51(.%), ce ,fp(f)},
where .
6(a) = T fa0) + bl

Proposition 10: There exists a feasible solution u satisfying
a set of m CBF constraints if and only if there is no x
and y satisfying ATy = 0, y; > 0 and ET(2)y < 0,
Vie{l,...,m}

Proof: By Definition 4, we have h?(x;) > 0 for all z €
C, if and only if the following two conditions are sa,tisﬁed. For
all z € C, hd(z) > 0 for all d < d’. Moreover, Bg—;g(x)Lj #
0 and w are chosen to satisfy (6) for all j at the boundary.
By Corollary 1, we have a solution v € RP, if and only if
there does not exist y € R™ such that (23) holds. Conversely,
if for some xo and 3 satisfying ATyy = 0, yo > 0 and
ET(x)yo < 0, the set C is not positive invariant. ]

Based on this proposition, we can formulate the following
conditions via the Positivstellensatz.

Lemma 9: There exists a feasible solution u satisfying
a set of m HOCBF constraints if and only if there exist
polynomials p?(z,y), p}(z,y), sum-of-squares polynomials
qs(z,y), integers s = 2 + Z;”Zl dj, and 71, ..., 7y, such that

é(z,y) + x(z,y) +¥(x,y) =0, (39)

and
SCHL,....s} ies
Xy = [ (~ET@)™"
vie{l,...,m}
bla,y) = (Z P} (x,y) [ATy]l> :
j=1 \i=1

where ¢1(-) =y, ¢2(-) = —E" (z)y and for d; € {0,...,d}}
b3y, ) () = h% (25).

Proof: By Proposition 4, we have h(z) is an HOCBF if
and only if there exist no = and y such that h%i(x) > 0, for
alz€C,y; >0, ATy =0, and =T (x)y < 0. The conditions
are equivalent to Vj € {1,...,m},

h%(z) > 0,vd; € {1,...,d;}
Al(2)y =0, y 20, —E(x)y 2 0,E (2)y # 0

These conditions equal to (39) by the Positivstellensatz. H

VIlI. CASE STUDY

In this section, we present a case study of a wheeled mobile
robot under sensor faults and a case study of a Boeing 747
under actuator Failure. We first describe the system models
then then present the results.

A. Sensor Fault and Attack
We consider a wheeled mobile robot (WMR) with dynamics

[Z¢]1 cosf; O lwi]
[#2 | = [ sing; 0 )+ wy (40)
6, 0 1) \lwl

where ([x4]1, [24]2,60:)T is the vector of the horizontal, ver-
tical, and orientation coordinates for the wheeled mobile
robot, ([w¢]1,[wi]2)? (the linear velocity of the robot and
the angular velocity around the vertical axis) is taken as the
control input, and w; is the process noise. The feedback
linearization [66] is utilized to transform the original state
vector and the WMR model into the new state variable
v = ([z4]1, [Te]2, [#6]1, [£¢]2)T with control input u; =
([ue]1, [ue]2)T and the controllable linearized model defined
as follow.

where the process noise w; € R?* has distribution A (0, 0, 1),
where o, = 0.05. The matrices F' and G are defined as

0 010 0 0
0 0 01 0 0
F= 0 0 0O » G = 10
0 0 0 O 0 1

The following compensator is used to calculate the input [wy];
and [wy]o into (40)
tt+

/ [ug]1 cos By + [ug]2sin @, dt
t

[we]a (42)

[wile = ([ue]a cos By — [ug]q sin 6y)/[wi]:. (43)
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Comparison of estimations under attack
-------- HOCBF-CLF

----Baseline

Ixl,

0.1 L
015 Unsafe Region
-0.2
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X
I],

(a)

Comparison of Lyapunov function under attack
— V(&)
- = V(dn)

V (Zbaseline)

700

Baseline Enter
Unsafe Region

Time steps

(b)

Fig. 2: Comparison of actual trajectory and Lyapunov function between HOSCBF-CLF and baseline on WMR system under
sensor false data injection attacks. In (a), the baseline entered unsafe region while proposed method remains safe and converge
to goal region. In (b), the Lyapunov function of real states decreases and converges to zero.

Here we assume that the observation for the orientation coor-
dinate 6, is attack-free and noise-free, which enables feedback
linearization based on the variable 6.

In the linearized model, we use the observation equation

[ye]1 1 0 0 O

[yt]z 1 0 0 O [.’Et} 1

[yt]g . 0 1 0 0 [.’L’t}Q

wla | =10 1 0 of [[@, | TRTYe @D
[yt]f) 0 0 1 0 [.i‘t}g

[Wtle 0 0 01

where the measurement noise v; € R® has distribution
N(0,0,1), where o, = 0.05. The impact of the attack is
denoted as a;. The attack signal satisfies that

Lo t<1
*71100,0,0,2,0,007, t>1

Note that there is one redundant sensor for the horizontal
coordinate and one for the vertical coordinate.

Here we let the safe region C = {x; : h(zy) = [w]2 +
0.1 > 0,t > 0} and the goal region G = {z; : w(x:) =
d —||zy — x4||l2 > 0}, where x, is (0,0) and d = 0.05 is the
radius of the goal region. The baseline utilizes a fault detection
scheme [13, Chapter 7.3] to detect and identify sensor faults
by comparing EKF residuals against the threshold 0.1 and
recomputes control input with an LQR controller. We then
compare with our proposed HOCBF-based and CLF-based
method. To keep the system remaining within safe region, we
systematically construct the FT-SCBF with relative degree 1
by using the following class of sets

CO = {z|h(x;) = aTz, +b>0,Vt >0}

CW ={z | h'(x)) = a"Fry +a¥z, +b >0,V > 0},
where a7 = [0,1,0,0] and b7 = [0,0.1,0,0]. This differs
from our previous work [56] which solves the problem by

manually tuning the parameters and constructing the CBFs for
high relative degree. In order to reach the goal region without

violating the safety constraint, we choose the CLF

V(@) = (ze = 2g)" Pa(wr — x4)

i1 0 ir o
where P; = (dO I) Pr (dO I)
Lyapunov equation F7 Py 4+ P F = —1I, and I is the identity
matrix [42], [67]. We set p = 0.2, n = 0.8 and M = 2 in
the CLF constraint. The control input u; is computed at each
time step by solving (30) with R = I.

Simulation Result: The results are shown in Fig. 2. In
Fig. 2(a), we plot the first two dimensions of the state, which
describe the horizontal and vertical coordinates. Note that
the robot stays in the safe region and eventually reaches the
goal region, and hence satisfies safety and stability. As a
comparison, the baseline can identify sensor faults but still
resulted in a safety violation due to the slow response time of
residual-based diagnosis.

(45)

, P, is the solution of the

B. Actuator Failure

In lateral control of an aircraft, lower yaw rate can renders
smoother flight performance to avoid package damage or harsh
passenger experience. We consider the lateral dynamics of
Boeing 747 with state z(t) = [[z]1, [%]2, [2]s, [2]4]”, where
[x]1 is the side-slip angle, [z] is the yaw rate, [x]3 is the roll
rate, [z]4 is the roll angle. In this case study we study yaw
rate control with preset upper and lower boundary on yaw
rate C = {x; : —0.025 < [z4]2 < 0.025,¢ > 0} and reference
point 2] = [0,0, 0, 0]. The dynamic system can be linearized
and described as follows.

a'ct:Fa:t—&—Guf—l—wt

(46)

yt:[O 1 0 0](1?}+Vt,
where the process noise w; € R* has distribution A (0, o, ),
where o, = 0.001 and the measurement noise v; € R has
distribution N (0, 0,1), where o, = 0.001. The matrices F,
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Comparison of yaw rates under actuator failures

Unsafe Region
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- Proposed Scheme
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Time steps

Fig. 3: Yaw rate comparison between FT-HOCBF and baseline
on Boeing 747 lateral control system with rudder servo fail-
ures. The baseline enters unsafe region when actuator failure
1 happens, while proposed method remains safe under either
actuator failure 1 and 2.

G are defined as

[ —0.0558 —0.9968 0.0802 0.0415
p_ | 089 0115 —0.0318 0
~3.05 0388 0465 0 |’
0 0.0805 1 0
[ 0.00729  0.01 0.005
G_ | 0475 05 03
0.153 02 0.1
0 0 0

We assume that the system has two redundant actuators.
The control input uf" contains three control signals repre-
senting three rudder servos, which may fail and output zero
when failure happens. We simulate the actuator failure by
denoting u!" = Lu,; with two potential failure patterns L; =
diag([1,0,1]) and Ly = diag([0,1,1]). Failure L; starts from
2.5s to 5s and failure Lo occurs since 5s. We set p = 0.2,
1n = 0.8 and M = 2 in the CLF constraint.

The baseline utilizes a fault detection scheme [13, Chapter
7.3] to detect and identify actuator failures by comparing the
EKF residuals against the threshold 0.02. Once identifying
actuator failure L;, the baseline recomputes control input based
on reconfigured G = GL; by solving a CBF-CLF-based
quadratic program. In order to keep the system remaining
within safe region, we further define the following class of
set for the upper and lower bound of yaw rate as

Co = {Z‘ ‘ ho(ﬂ?t) = aoTa:t + bo > O,Vt > 0}
Cy = {x | hi(xs) = al x¢ + by > 0,Vt >0},

where al = [0,1,0,0], ' = [0,-1,0,0] and b} = b7 =
[0,0.025,0,0]. We impose CBF with relative degree 0 as
constraints to ensure safety.

Simulation Result: As is shown in Fig. 3, we compare the
yaw rate trajectory between the baseline and the proposed safe
control scheme. The baseline identifies actuator failures but
still results in safety violations. The trajectory of the proposed
scheme stays in the safe region and converges to 0, and hence
satisfies safety and stability.

VIII. CONCLUSION

This paper proposed a new class of SCBFs with high relative
degree for safety and stability of control systems under sensor
faults and attacks. Our approach maintains a set of state
estimators, excludes outlier estimates and ensures safety with
a CBF-based approach. We then constructed an SCBF with
high order degree for each state estimator, which guaranteed
safety provided that a linear constraint on the control input
was satisfied at each time step. We proposed a scheme for
using additional state estimators to resolve conflicts between
these constraints, and derived a scheme to verify the feasibility
of SCBFs. We then showed how to compose our proposed
HOSCBFs with CLFs to provide joint guarantees on safety
and stability of a desired goal set under sensor faults and
attacks. We proposed HOCBF-based approach to ensure safety
of systems under all possible actuator failures and proposed
an SOS-based scheme to verify the existence of control inputs
satisfying HOCBF constraints. The proposed approach against
sensor faults was validated on a wheeled mobile robot and
our approach against actuator failures was validated on a
Boeing 747 lateral control system. Future work in this area
will include attacks that jointly affect sensors and actuators.
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