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We establish both the lim sup and the lim inf law of the iterated logarithm

(LIL) for the capacity of the range of a simple random walk in any dimension

d ≥ 3. While for d ≥ 4, the order of growth in n of such LIL at dimension d

matches that for the volume of the random walk range in dimension d − 2,

somewhat surprisingly this correspondence breaks down for the capacity of

the range at d = 3. We further establish such LIL for the Brownian capacity

of a three-dimensional Brownian sample path and novel, sharp moderate de-

viations bounds for the capacity of the range of a four-dimensional simple

random walk.

1. Introduction and main results. Let τA denote the first positive hitting time of a finite

set A by a simple random walk (SRW) on Z
d , denoted hereafter (Sm)m≥0. Recall that the

corresponding (Newtonian) capacity is given, for d ≥ 3, by

Cap(A) :=
∑

x∈A

P x(τA =∞)= lim
|z|→∞

P z(τA <∞)

G(0, z)

(where G(x,y) denotes the Green’s function of the walk). The asymptotics of the capacity

Rn := Cap(Rn) of the random walk range Rn := {S1, . . . , Sn} is relatively trivial for d = 2

(for then Rn = 2+o(1)
π

log (diamRn), see [24], Lemma 2.3.5). In contrast, for d ≥ 3, such

asymptotics is of an on going interest. Indeed, the strong law

lim
n→∞

Rn

n
= αd a.s., for all d ≥ 3,

is an immediate consequence of the subadditive ergodic theorem, with αd > 0 iff d ≥ 5 (as

shown in [19]). Recall Green’s function for the d-dimensional Brownian motion

(1.1) GB(x, y) :=
∫ ∞

0
(2πt)−d/2e−|x−y|2/(2t) dt =

⎧
⎪⎪«
⎪⎪¬

1

2π
|x − y|−1 d = 3,

1

2π2
|x − y|−2 d = 4,

and the corresponding Brownian capacity of D ⊂R
d ,

CapB(D)−1 := inf

{∫ ∫
GB(x, y)μ(dx)μ(dy) : μ(D) = 1

}
.

More recently, Chang [12] showed that, for d = 3,

Rn√
n

D=⇒ 1

3
√

3
CapB

(
B[0,1]

)
,
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whereas Asselah et al [5] showed that in this case further, for some C finite,

C−1
√

n ≤ E[Rn] ≤ C
√

n.

We denote throughout by X the centering X = X − E[X] of a generic random variable X.

In higher dimensions d ≥ 4, the centered capacity Rn converges after proper scaling to a

nondegenerate limit law, which is Gaussian iff d ≥ 5 (see [6] for d = 4 and [5, 31] for d ≥ 5).

For d ≥ 5, estimates of the corresponding large and moderate deviations are provided in [2]

(but they are not sharp enough to imply a LIL), while the central limit theorem (CLT) is further

established in [16] for Rn and a class of symmetric α-stable walks, provided d > 5α/2. We

note in passing that similar questions for critical branching random walk on Z
d , conditioned

to have total population n, have also been studied in [7–9].

In view of these works, a natural question, which we fully resolve here, is to determine

the almost sure fluctuations of n 
→ Rn for the SRW, in the form of some LIL (possibly after

centering Rn when d ≥ 4). Specifically, using hereafter logk a = log(logk−1 a) for k ≥ 2, with

log1 a for the usual logarithm, here is our first main result about the SRW in Z
3.

THEOREM 1.1. For d = 3, almost surely,

lim sup
n→∞

Rn

h3(n)
= 1, lim inf

n→∞
Rn

ĥ3(n)
= 1,(1.2)

where

h3(n) :=
√

6π

9
(log3 n)−1

√
n log2 n, ĥ3(n) :=

√
6π2

9

√
n(log2 n)−1.(1.3)

Utilizing (3.21), we also get from Theorem 1.1 the following consequence about the Brow-

nian capacity of the 3-dimensional (Brownian) sample path.

COROLLARY 1.2. For d = 3, almost surely,

lim sup
n→∞

CapB(B[0, n])
3
√

3h3(n)
= 1, lim inf

n→∞
CapB(B[0, n])

3
√

3ĥ3(n)
= 1.

REMARK. From the variational characterization of CapB(B[0, n]) and with μ(·) the

push-forward of the uniform law on [0, n] by the Brownian path t 
→ Bt , we get that

πn2

CapB(B[0, n]) ≤
∫ n

0
dt

∫ t

0
|Bt −Bs |−1 ds =: η

(
[0, n]2<

)
.

It thus follows from the lim sup-LIL of [13], Theorem. 1.2, for η([0, n]2<), that almost surely,

lim inf
n→∞

CapB(B[0, n])
3
√

3ĥ3(n)
≥ 3

√
3

8
√

2πρ
,

where ρ is given by [13], formula (1.15) for d = 3, σ = 1, ψ(λ)= λ2/2.

We next provide the LIL for the centered capacity Rn of the range, first in case of the SRW

on Z
4 and then for SRW on Z

d , d ≥ 5.

THEOREM 1.3. For d = 4, almost surely,

lim sup
n→∞

Rn

hd(n)
= 1, lim inf

n→∞
Rn

ĥd(n)
=−1,(1.4)
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where for some nonrandom 0 < c
 < ∞,

h4(n) := π2

8

n log3 n

(logn)2
, ĥ4(n) := c


n log2 n

(logn)2
.(1.5)

THEOREM 1.4. For any d ≥ 5, the LIL-s (1.4) hold almost surely, now with

hd(n) = ĥd(n) := σd

√
2n(1 + 1{d=5} logn) log2 n, d ≥ 5,(1.6)

where the nonrandom, finite σ 2
d > 0 are given by the leading asymptotic of var(Rn) (c.f. [31],

Theorem A, for σ5 and [5], Theorem 1.1, for σd , d ≥ 6).

REMARK 1.5. Our proof of Theorem 1.4 via Skorokhod embedding also yields

Strassen’s LIL for the a.s. set of limit points in C([0,1]) of the functions {t 
→ hd(n)−1Rtn},
for any d ≥ 5.

REMARK 1.6. The moment generating function of the limit in law of −((logn)2/n)Rn,

for the SRW on Z
4, blows-up at a finite, positive λ. The value of λ is identified in [13], Theo-

rem 1.3. In Lemma 4.6 we establish the uniform in n boundedness of the moment generating

function of −((logn)2/n)Rn for a small enough argument.

We note that Rn ≈ nE[P̂ Sn/2(τ̂Rn =∞)] at any fixed n � 1 and d ≥ 3, where P̂ and τ̂A

denote the law and the first hitting time by an i.i.d. copy of the SRW. Similarly, the volume

of Rn in any dimension (d ≥ 1) is approximately nP (τ0 > n). It has been observed before

(see, e.g., [5], Section 6) that the typical order of growth of E[P̂ Sn/2(τ̂Rn =∞)] at any d ≥ 3

matches that of P(τ0 > n) at d ′ = d − 2, yielding the same order of growth in n for Rn at

d ≥ 3 and for the volume of Rn at d ′ = d − 2. In Theorems 1.3 and 1.4, our LIL for d ≥ 4

adheres to such a match with the scale for the LIL of the volume of Rn at d ′ = d − 2 (see

[10, 11, 21] for the latter LIL at any d ′ ≥ 2 as well as the limit distribution results for the

volume of the Wiener sausage at d ′ ≥ 2, and the corresponding LIL at d ′ ≥ 3, in [25] and [15,

34], respectively). In contrast, this relation breaks down at the lim sup LIL for d = 3, with the

appearance of the novel factor (log3 n)−1 in Theorem 1.1. Nevertheless, even at d = 3, the

relevant deviations of Rn are due to those in the diameter of Rn, except that the upper tails

for these two variables differ in their growth rates. Specifically, our proofs in Sections 3.1 and

3.3 yield the following (sharper) result.

PROPOSITION 1.7. Let Mn := max1≤i≤n |Si |. For SRW of Z3 and any ε > 0,

P
({

Rn ≥ (1 − ε)h3(n)
}
∩
{
Mn ≥ (1 − ε)ψ(n)

}
i.o.

)
= 1,

P
({

Rn ≤ (1 + ε)ĥ3(n)
}
∩
{
Mn ≤ (1 + ε)ψ̂(n)

}
i.o.

)
= 1,

where ψ(n) :=
√

(2/3)n log2 n and ψ̂(n) := π
√

(1/6)n(log2 n)−1.

We note in passing that Proposition 1.7 is a rotation-invariant result, and in particular, it

applies also under any (fixed) rotation of the SRW lattice Z
3. Further, Proposition 1.7 implies

that almost surely, the lim sup (resp., lim inf) of Rn are essentially attained simultaneously

with those for Mn, since for d = 3, almost surely,

lim sup
n→∞

Mn

ψ(n)
= 1, lim inf

n→∞
Mn

ψ̂(n)
= 1.(1.7)

Indeed, by the invariance principle it suffices for proving (1.7) to show the equivalent a.s.

statement for three-dimensional Bessel process, and the latter follows by mimicking the proof
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of Chung’s one-dimensional LIL (see [14]), starting with the estimate (3.24). We note in

passing that while the scaling ψ(n) of the upper fluctuation of Mn is the same as that for a

single coordinate of our SRW, this is not true about the scaling ψ̂(n), which is about the tail

probability of confining the walk to stay within an Euclidean ball in R
3.

In a follow-up work, [1], Corollary 1.2, determines the value of c
 of Theorem 1.3 in

terms of the best constant in a generalized Gagliardo–Nirenberg inequality. In contrast, the

following analog of Proposition 1.7 in case d ≥ 4 is still open.

OPEN PROBLEM 1.8. Consider the SRW Si = (S1
i , . . . , Sd

i ) ∈ Z
d , d ≥ 4. For d ′ = d − 2,

let Ŝd ′
i = (S1

i , . . . , Sd ′
i ,0,0) and Vd ′(n) = |{Ŝd ′

1 , . . . , Ŝd ′
n }|. Pick nonrandom ψd ′(n) such that

a.s.

lim sup
n→∞

V d ′(n)

ψd ′(n)
= 1.

We then conjecture that for hd(n) of Theorems 1.3–1.4 and any ε > 0,

P
({

Rn ≥ (1 − ε)hd(n)
}
∩
{
V d ′(n) ≥ (1 − ε)ψd ′(n)

}
i.o.

)
= 1.

While we consider throughout only the discrete time SRW whose increments are the 2d

neighbors of the origin in Z
d , due to sharp concentration of Poisson variables, all our results

apply also for the continuous time SRW with i.i.d. Exponential(1) clocks and up to the scaling

n 
→ (1 − ρ)n, also to the ρ-lazy discrete time SRW. By definition of Rn, our results apply

to any random walk on a group with a finite symmetric set of generators, whose words are

isomorphic to those of the SRW (e.g., an invariance of our results under any nonrandom, in-

vertible affine transformation of the walk). We note in passing the recent work [27] on the

strong law for any symmetric random walk on a group of growth index d and the correspond-

ing CLT in case d ≥ 6, suggesting the possibility of a future extension of our LIL-s in this

context.

Beyond the intrinsic interest in Rn, its asymptotic is also relevant for the study of inter-

sections between two independent random walks (e.g., see [24], Chapter 3). Similarly, [3,

4] utilize bounds on Rn to gain insights about the so-called Swiss cheese picture for d = 3.

Further, to understand Sznitman’s [32] random interlacement model, one may use moment

estimates for the capacity of the union of ranges (c.f. [12] and the references therein). Fi-

nally, the capacity equals the summation of all entries of the inverse of the (positive definite)

Green’s function matrix (see (2.2)), a point of view which [28] uses, for d = 2, to estimate

the geometry of late points of the walk.

As for the organization of this paper, we prove Theorem 1.1 in Section 3, relying on certain

relations between the capacity and Green’s function which we explore in Section 2. Our

proof of Theorem 1.1 further indicates that the lim sup-LIL is due to exceptional time where

Rn has a cylinder-like shape, with one dimension being about ψ(n) while the other two are

O(ψ(n)/(log2 n)) (see Lemma 2.1 and Section 3.2). In contrast, the lim inf-LIL seems to be

due to times where the shape of Rn is close enough to a ball of radius ψ̂(n) to approximately

match the capacity of such a ball (see (3.31) and (3.32)).

Sections 4 and 5 are devoted to the proofs of Theorems 1.3 and 1.4, respectively. Our

proofs rely on the decomposition (4.2) of Rnk
as the sum of k independent variables {Uj }

which are the capacities of the walk restricted to the k parts of a partition of [1, nk], minus

some random �nk,k ≥ 0 (which ties all these parts together). For any d ≥ 5, the effect of �nk,k

on the LIL is negligible, so upon coupling Rnk
with a one-dimensional Brownian motion, we

immediately get the LIL for the former out of the standard LIL for the latter. As seen in

Section 4, the situation is way more delicate for d = 4, where E�n,k ≈ h4(n) dominates for
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a suitable slowly growing k = kn the fluctuations of the i.i.d. {Uj }. The lim sup-LIL is then

due to the exceptional (random) sequence {nk} where �nk,k = o(h4(nk)), while the lim inf-

LIL is due to the exceptional {nk} for which �nk,k ≈ ĥ4(nk) � E�nk,k . Indeed, whereas

Theorem 1.3 is proved via the framework developed in [11], Section 4, for the LIL for the

volume of Rn in the planar case (d ′ = 2), special care is needed here in order to establish

tight control on the moderate deviations of �n,k and Uj in case d = 4 (c.f. Lemmas 4.1, 4.3,

4.6 and 4.7, which may be of independent interest).

2. Capacity geometry and Green’s function. The following asymptotic for the three-

dimensional capacity of cylinder-like domains (which we prove at the end of this section) is

behind the factor (log3 n)−1 in the lim sup-LIL of (1.2).

LEMMA 2.1. For m ≥ 1 and r ≥ k ∈N, let

Cm(
, r) :=(
Z)3 ∩
{
(x1, x2, x3) : x2

1 + x2
2 ≤ r2,1 ≤ x3 ≤ m

}
.

Fix b < 2/3, rm = o(m), rm ↑∞. If Cm(1, rm) ⊇ Cm ⊇ Cm(
, rm) for some 
 ≤ rb
m, then

lim
m→∞

Cap(Cm)

m(log(m/rm))−1
= π

3
.(2.1)

REMARK 2.2. In the sequel we prove a stronger result, namely, that the upper bound in

(2.1) holds as soon as Cm is contained in a union C

m(rm) of at most m/rm balls B(zi, rm) of

radius rm in Z
3, of centers such that |zi+1 − zi | ≤ rm for 1 ≤ i < m/rm (where Cm(1, r) is

merely one possible choice for C

m(r)).

Indeed, in Section 3 we will see that lim sup of Rn is roughly attained on the event {Si
n ≥

ψ(n)} for ψ(n) of Proposition 1.7, with Rn then having approximately the shape of such Cm

for m = ψ(n), and rm = cm/ log2 n; hence, from Lemma 2.1 we find that

Rn ≈ Cap(Cm) ≈ π

3
m
(
log(m/rm)

)−1 ≈ π

3
ψ(n)(log3 n)−1,

which is precisely h3(n) of Theorem 1.1.

We proceed with two lemmas relating the capacity of SRW with its Green’s function,

G(x,y)=
∞∑

i=0

P x(Si = y).

To this end, partition � by the last time the walk visits X = {x1 �= x2 · · · �= xj }, to get that

1 =
j∑


=1

G(xi, x
)P
x
(τX =∞) ∀1 ≤ i ≤ j.(2.2)

LEMMA 2.3. For any set X = {x1, . . . , xj } and with {xj } not necessarily distinct,

j

max1≤
≤j {
∑j

i=1 G(xi, x
)}
≤ Cap(X) ≤ j

min1≤
≤j {
∑j

i=1 G(xi, x
)}
.(2.3)

PROOF. The set X of size |X| = k ≤ j consists WLOG of distinct points X̂ = {x̂1 �=
x̂2 · · · �= x̂k}, where x̂v appears mv ≥ 1 times in X (and

∑
v≤k mv = j ). Though (2.3) follows

from the characterization of Cap(X̂), as in [20], Lemma 2.2(i), we proceed instead with a
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direct, short and elementary proof of these bounds. Specifically, setting v(
) for the index of

x
 in X̂ and qv := (mv)
−1P x̂v (τ

X̂
=∞), we see that

(2.4) Cap(X) = Cap(X̂) =
k∑

v=1

P x̂v (τ
X̂
=∞)=

j∑


=1

qv(
),

and moreover, summing (2.2) over i ≤ j , we get that

j =
j∑

i=1

k∑

v=1

G(xi, x̂v)P
x̂v (τ

X̂
=∞) =

j∑


=1

qv(
)

j∑

i=1

G(xi, x
).(2.5)

The bounds of (2.3) are an immediate consequence of (2.4) and (2.5). �

LEMMA 2.4. For Z1 = {x1, . . . , xj1
}, Z2 = {xj1+1, . . . , xj1+j2

} with {xi} not necessarily

distinct,

Cap(Z1 ∪Z2) ≤ Cap(Z2)+
j1 + j2

minx∈Z1\Z2
{∑j1+j2

i=1 G(xi, x)}
.

PROOF. Since τZ1∪Z2
≤ τZ2

, it follows that

Cap(Z1 ∪Z2)≤ Cap(Z2)+
∑

x∈Z1\Z2

P x(τZ1∪Z2
=∞).(2.6)

For X̂ enumerating the distinct points in Z1 ∪Z2, v(
), qv as in Lemma 2.3, we have that

∑

x∈Z1\Z2

P x(τZ1∪Z2
=∞) =

j1+j2∑


=1

qv(
)1{x̂v(
)∈Z1\Z2},

j1 + j2 =
j1+j2∑


=1

qv(
)

j1+j2∑

i=1

G(xi, x
).

Combining these identities with (2.6) yields the stated upper bound. �

REMARK 2.5. In particular, applying Lemma 2.4 for

Z1 =
⋃

i∈(j,J−j ]
Ẑi, Z2 =

⋃

i∈[1,j ]∪(J−j,J ]
Ẑi,

we have that, for any Ẑi ⊂ Z
d , 2j < J ,

Cap(Z1 ∪Z2) ≤ Cap(Z2)+
∑J

i=1 |Ẑi |
minx∈Z1

∑J
i=1

∑
y∈Ẑi

G(x,y)
.

PROOF OF LEMMA 2.1. By the monotonicity of A 
→ Cap(A), it suffices to pro-

vide a uniform in 
 ≤ rb
m lower bound on Cap(Cm(
, rm)) and a matching upper bound

on Cap(C

m(rm)), valid for any union C


m(rm) of at most m/rm balls B(zi, rm) of radius

rm in Z
3 and centers such that |zi+1 − zi | ≤ rm for 1 ≤ i < m/rm. With |Cm(
, rm)| =

(1 + o(1))πmr2
m
−3, we get such a lower bound from Lemma 2.3, upon showing that for

SRW on Z
3,

(2.7)
∑

y∈Cm(
,rm)

G(x,y)≤ 3
(
1 + o(1)

)
r2
m
−3 log(m/rm),∀
≤ rb

m,∀x ∈ Cm(
, rm).
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Fixing b < 2/3, since the right side of (2.7) diverges in m, uniformly in 
 ≤ rb
m, we can

ignore any bounded contribution to its left side. In particular, with m/rm ↑∞ and G(x,y)

bounded, it suffices to sum in (2.7) only over y ∈ Cm(
, rm) with |x − y| ≥ r
2/3
m � 
 and use

the asymptotics

G(x,y)= 3 + o(1)

2π
|x − y|−1(2.8)

(e.g., see [24], Theorem 1.5.4). Setting um = m, we have, for any vm ↑ ∞ and r ∈
[r2/3

m , vmrm], at most Cr2
−3 points y ∈ Cm(
, rm) with |x − y| ∈ [r, r + 1]; while for each

r ∈ [vmrm, um], there are at most (2π + o(1))r2
m
−3 such points in Cm(
, rm). Thus, taking

v2
m � log(m/rm) yields

∑

y∈Cm(
,rm)

G(x,y)≤ 3 + o(1)

2π
3

[
C

∫ vmrm

r
2/3
m

r dr + 2πr2
m

∫ um

vmrm

r−1 dr

]

=
(
3 + o(1)

)
r2
m
−3 log

(
um/(rmvm)

)
(2.9)

from which (2.7) immediately follows. Turning to upper bound on Cap(C

m(rm)), take now

um := (m/rm)1−εm and vm := (m/rm)εm ↑∞ for some εm → 0, splitting C

m(rm) to Q1∪Q2,

where

Q1 :=
⋃

i∈(um,(m/rm)−um)

B(zi, rm), Q2 :=
⋃

i /∈(um,(m/rm)−um)

B(zi, rm).

Note that C

m(rm) has at most (4π/3 + o(1))r2

mm, possibly overlapping, points. Thus, com-

bining Lemma 2.4 with the upper bound of Lemma 2.3, we get the upper bound of (2.1), once

we show that, for some δm → 0,
∑

y∈C

m(rm)

G(x,y)≥ (4 + δm)r2
m log(m/rm) ∀x ∈ Q1,(2.10)

∑

y∈Q2

G(x,y)≥ |Q2|
mδm

log(m/rm) ∀x ∈ Q2.(2.11)

Fixing x ∈ B(zi, rm) ⊂Q1, consider only the contribution to the LHS of (2.10) from all points

y ∈ B(zj , rm) with |j − i| ∈ [vm, um]. For such a pair |y − x| ≤ (|j − i| + 3)rm, hence by

(2.8),

G(x,y)≥ 3 + o(1)

2π
r−1
m |j − i|−1,

resulting with

∑

y∈C

m(rm)

G(x,y)≥ 2
3 + o(1)

2π

|B(0, rm)|
rm

um∑

j=vm

j−1 =
(
4 + o(1)

)
r2
m log(um/vm),

which for our choices of um and vm is as stated in (2.10) (for some δm → 0, uniformly over

x ∈ Q1). Further, Q2 consists of two sets with an equal number of elements, each of diameter

at most (1 + o(1))umrm. Thus, we get by (2.8) that, for some c > 0,

∑

y∈Q2

G(x,y)≥c|Q2|(umrm)−1 ∀x ∈ Q2,

and (2.11) follows upon choosing εm → 0 slow enough so that (m/rm)εm � log(m/rm). �
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3. LIL for SRW on Z
3: Proof of Theorem 1.1. To ease the presentation, we omit here-

after the integer-part symbol �·� and divide the section to four parts, establishing the lower

and then upper bounds, first for the lim sup-LIL of (1.2) and then for the lim inf-LIL of (1.2).

Our proofs for the lim sup-LIL are discrete in nature, relying on Remark 2.2, Lemma 2.3

and the direct evaluation of certain sharp tail probabilities for SRW. In contrast, we prove the

lim inf-LIL by first replacing Rn by the corresponding quantity about the Brownian capacity

of the range of the 3D Brownian motion.

3.1. The lower bound in the limsup-LIL. Recall

ψ(t) :=
√

(2/3)t log2 t, h3(t) :=
π

3
ψ(t)(log3 t)−1,

of Proposition 1.7 and Theorem 1.1, respectively, and for the SRW (Sm) on Z
3, set

At :=
{
S1

t ≥ ψ(t)
}
, VI := 1At

∑


∈I

G(0, S
), I ⊆ [0, t] ∩Z.

The lower bound in our lim sup-LIL is attained via partial sums on disjoint intervals In of

suitably growing length tn and controllable Green function values (utilizing the LHS of (2.3)).

The key for this is our next lemma (whose proof is deferred to the end of this subsection),

showing that Atn yields the appropriate bound on the sum V[0,tn] of Green function values.

LEMMA 3.1. Fixing δ ∈ (0,1), for γt := t (log2 t)−1(log3 t)3/2 and some ζt → 0 when

t →∞,

P

(
V[0,γt ] ≥

δt

h3(t)

)
≤ ζtP(At ),(3.1)

P

(
V(γt ,t] ≥

(1 + 2δ)t

2h3(t)

)
≤ ζtP(At ).(3.2)

Indeed, from (3.1)–(3.2) we see that, for any δ > 0, there exists ζt → 0 as t → ∞ such

that

(3.3) P
(
A


t

)
≤ 2ζtP(At ), A


t :=
{
V[0,t] ≥

(1 + 4δ)

2

t

h3(t)

}
.

Proceeding to deduce the lower bound in the limsup-LIL out of (3.3), given ε > 0, we choose

q > 1 large and δ > 0 small; so for tn := qn − qn−1 and all large n,

(3.4)
1 − δ

1 + 4δ
h3(tn) ≥ (1 − ε)h3

(
qn).

We then partition Z+ to disjoint intervals In := (qn−1, qn] ∩Z of length tn and set the events

Ân :=
{
S1

qn − S1
qn−1 ≥ ψ(tn)

}
, Ĥn(i) :=

{
V̂n(i)≥ (1 + 4δ)

tn

h3(tn)

}
,

where

V̂n(i) :=
∑


∈In

G(Si, S
).

Setting

Ht (i) :=
{

t∑


=1

G(Si, S
) ≥ (1 + 4δ)
t

h3(t)

}
, i ∈ [1, t],
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note that by the stationarity of the SRW increments (Ân, Ĥn(q
n−1 + i))

d= (Atn,Htn(i)). Fur-

ther, the event At is invariant to any permutation of the SRW increments {Xj , j ≤ t}, whereas,

given At , the event Ht (i) depends only on {S
 − Si, 
 ∈ [1, t]}. Further, the permuted incre-

ments X̂j = X(i+j)mod(t) result with Ŝ
 = S
+i − Si for all 
 ∈ [1, t − i], whereas X̂j =
X(i+1−j)mod(t) result with Ŝ
 = Si − Si−
 for all 
 ∈ [1, i]. Since G(x,y)=G(−x,−y)≥ 0,

it thus follows that, conditional on At the random sum in each of the events Ht (i) is stochasti-

cally dominated by twice the random sum in the event A

t of (3.3). Consequently, (3.3) yields

that

(3.5) max
i∈In

{
P
(
Ĥn(i)

∣∣Ân

)}
≤ 4ζtn → 0.

Next, consider the independent events Gn := {|�n| ≥ (1 − δ)tn}, where �n is the subset of

all those i ∈ In for which Ĥn(i) does not hold. From Markov’s inequality and (3.5), it follows

that

(3.6) P
(
Gc

n

∣∣Ân

)
= P

(
|In| − |�n| ≥ δtn|Ân

)
≤ 1

δtn

∑

i∈In

P
(
Ĥn(i)

∣∣Ân

)
≤ 4ζtn

δ
→ 0.

Setting x(t) :=
√

2 log2 t , note that (S1
m) is the partial sum of {−1,0,1}-valued, zero-mean,

i.i.d. variables of variance 1/3. By the asymptotic normality of the moderate deviations for

such partial sums (see [29], Theorem VIII.2.1), we have that, for some ot(1) → 0 as t →∞,

uniformly over x/t
1/6 small,

(3.7) P
(
(t/3)−1/2S1

t
≥ x

)
=

(
1 + ot(1)

)
�(x), �(x) :=

∫ ∞

x

e−u2/2

√
2π

du.

In particular,

P(Ân) = P(Atn) = P
(
(tn/3)−1/2S1

tn
≥ x(tn)

)

=
(
1 + o(1)

)
�
(
x(tn)

)
≥ c1x(tn)

−1e−x(tn)2/2 ≥ c2

n
√

logn

for some positive c1 and c2 = c2(q). Hence, by (3.6) and for all n large enough,

P(Gn) ≥ P(Ân ∩Gn) ≥
1

2
P(Ân) ≥

c2

2n
√

logn
.

Having {Gn} independent with
∑

n P(Gn) = ∞, we deduce by the second Borel–Cantelli

lemma that a.s. the events Gn hold for infinitely many values of n. Since

R̂qn := {Si}i∈�n ⊆Rqn,

we have by the monotonicity of A 
→ Cap(A), the nonnegativity of G(x,y), Lemma 2.3 and

the definition of �n ⊆ In that

Rqn ≥ Cap(R̂qn) ≥ |�n|
maxi∈�n{V̂n(i)}

≥ |�n|h3(tn)

(1 + 4δ)tn
.

Consequently, in view of (3.4), we have on the event Gn that

Rqn ≥ 1 − δ

1 + 4δ
h3(tn) ≥ (1 − ε)h3

(
qn),

which since Gn holds infinity often, yields the lower bound in the lim sup-LIL (along the

sub-sequence qn and with Rqn ⊇ R̂qn of roughly the shape of Cψ(tn) of Lemma 2.1).

Turning to the task of proving Lemma 3.1, we give two sharp tail estimates for the path of

the one-dimensional walk (S1
m) that we will use later for proving (3.1) and (3.2), respectively.
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LEMMA 3.2. Fixing δ ∈ (0,1), for some C < ∞ and all t large enough,

sup

≤γt

{
P
(
S1

t−
 ≥ψ(t)−
√



)}

≤ CP(At ),(3.8)

P
(
Lc

t |At

)
≤ 4ζt → 0, Lt :=

⋂


∈(γt ,t]

{
S1


 ≥ ψ(t)


(1 + δ)t

}
.(3.9)

REMARK 3.3. In (3.8) we claim that the decay t 
→ P(At ) of our moderate deviations

upper-tail event At is within a universal factor of that for such an event with a granted (free)

upper fluctuation of
√


 in the first 
 ≤ γt steps of S1

 . The event Lt requires S1


 to stay above

a linear slope which is 1/(1 + δ) < 1 of the slope ψ(t)/t of At . Thus, if 
 
→ S1

 was a SRW

on Z, we could have applied en-route to (3.9) a ballot theorem (after conditioning on S1
γt

and S1
t ). It is not so here, due to the additional randomness in number of steps of the SRW

S
 ∈ Z
3 along the other two coordinate axis. We thus resort to proving (3.9) via Gaussian

approximations.

PROOF OF LEMMA 3.2. Let ηt := γt/t = (log3 t)3/2/(log2 t), setting x(t, r) := (x(t) −√
3r)/

√
1 − r for r ≤ ηt and x(t) = x(t,0) :=

√
2 log2 t . Then in view of the uniform Gaus-

sian approximation of (3.7), we get (3.8), once we show that uniformly in r ≤ ηt the standard

Gaussian measure of [x(t, r),∞) is at most C times the Gaussian measure of [x(t),∞). Note

that ηt → 0 and x(t) →∞ as t →∞, hence x(t, r)/x(t) → 1 uniformly in r ≤ ηt . It thus

remains only to show that, for some C <∞ and all t large enough,

(3.10) inf
r≤ηt

{
x(t, r)2 − x(t)2}≥−2 logC.

Next, our expression for x(t, r) is such

(1 − r)
[
x(t, r)2 − x(t)2]=

(
x(t)

√
r −

√
3
)2 + 3r − 3 ≥−3,

yielding (3.10) and thereby also (3.8).

Next, setting sj := j t/(log2 t), we partition (γt , t] into the disjoint intervals Jj =
(sj , sj+1], j ∈ [(log3 t)3/2, log2 t). We likewise partition the events At ∩ Lc

t according to

whether the stopping time τt := inf{
 ≥ γt : S1

 <

ψ(t)

(1+δ)t

} equals γt or, alternatively, which

interval Jj contains τt . Note that if τt > sj , then S1
sj
≥ ψ(t)sj

(1+δ)t
, and conditioning on the SRW

filtration at τt ∈ Jj , we get by the strong Markov property (and i.i.d. increments) of the SRW

that

P
(
At ∩ {τt ∈ Jj }

)
≤ qt (sj ,0) sup

s∈Jj

pt (t − s,0),

where

qt (sj , y) := P

((
S1

sj

)
+ ≥ ψ(t)sj

(1 + δ)t
− y

)
, pt (r, y) := P

(
S1

r ≥ ψ(t)(δt + r)

(1 + δ)t
+ y

)

and (S1
sj

)+ := S1
sj
∨ 0. The only other way for the event Lc

t to occur is by having

S1
γt

<
ψ(t)ηt

1 + δ
=: �t log2 t.

Partitioning to {S1
γt
∈ Ii}, for Ii := [(log2 t − i)�t −�t , (log2 t − i)�t ) when 0 ≤ i < log2 t

and Ilog2 t := (−∞,0) yields that

P
(
At ∩

{
S1

γt
∈ Ii

})
≤ qt (γt , i�t +�t )pt (t − γt , i�t )
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and, consequently,

P
(
At ∩Lc

t

)
≤
∑

i

P
(
At ∩

{
S1

γt
∈ Ii

})
+
∑

j

P
(
At ∩ {τt ∈ Jj }

)

≤ (1 + log2 t)
[

sup
y∈[0,�t log2 t]

{
qt (γt , y +�t )pt (t − γt , y)

}

+ sup
s∈Jj ,j≥(log3 t)3/2

qt (sj ,0)pt (t − s,0)
]
.

As P(At ) = pt (t,0), we thus get (3.9), if for some ζt → 0

qt (sj ,0)pt (t − s,0) ≤ ζt

log2 t
pt (t,0) ∀j ≥ (log3 t)3/2, s ∈ Jj ,(3.11)

qt (γt , y +�t )pt (t − γt , y)≤ 2ζt

log2 t
pt (t,0) ∀y ∈ [0,�t log2 t].(3.12)

Proceeding to verify (3.11) and (3.12), we rely on (3.7) to replace both qt (·) and pt (·) by the

Gaussian measure of the corresponding intervals. We claim that when doing so, all partial

sums appearing in (3.11) and (3.12) be at time index t ≥ δψ(t)/2 → ∞. Indeed, note that

pt (r, y) = 0 for y ≥ 0, unless the time index r is at least δψ(t)/2; whereas in all the terms

qt (·, ·) that appear there, such time indices are sj ≥ γt ≥ δψ(t)/2. Further, the argument x of

�(·) in such Gaussian approximations of the probabilities qt (·) and pt (·) that appear in (3.11)

is x(t)
1+δ

√
sj/t and x(t)

1+δ
1+δ−s/t√
1−s/t+ξt

at ξt = 0, respectively (where x(t) =
√

3ψ(t)/
√

t ). Taking

instead ξt := (log2 t)t−1/6 guarantees that all such space arguments x be uniformly of o(t1/6).

The Gaussian approximations then hold, as in (3.7), with the same o(1) relative error for all

the terms, which we thus ignore hereafter. Note also that s/t ∈ [ηt ,1) with sj/t ≥ s/t − εt

for εt := (log2 t)−1. In conclusion, by the preceding it suffices for (3.11) to show that

(3.13) sup
u∈[ηt ,1)

{
�

(
x(t)

1 + δ

√
u− εt

)
�

(
x(t)(1 + δ − u)

(1 + δ)
√

1 − u+ ξt

)}
≤ ζt

log2 t
�
(
x(t)

)
.

The arguments of �(·) in (3.13) grow to infinity with t , uniformly over u ∈ [ηt ,1). Thus,

recalling that | log�(y)+ logy + y2/2| is bounded at y →∞, upon taking the logarithm of

both sides of (3.13), noting that ηt ≥ 2εt and ignoring all the uniformly bounded terms, such

as x(t)2εt and logx(t)− 1
2

log3 t , it suffices to show that, for some ζ̃t → 0 as t →∞,

sup
u∈[ηt ,1)

{
1

2
x(t)2 − 1

2

x(t)2u

(1 + δ)2
− 1

2

x(t)2(1 + δ − u)2

(1 + δ)2(1 − u+ ξt )
− 1

2
logu

}
≤ log ζ̃t −

1

2
log3 t.

With ηt � ξt , it is easy to verify that, for any u≥ ηt

u

(1 + δ)2
+ (1 + δ − u)2

(1 + δ)2(1 − u+ ξt )
− 1 ≥ u

(1 − u+ ξt )

δ2

2(1 + δ)2
=: θt (u).

Hence, substituting x(t)2 = 2 log2 t in the preceding, we arrive (after some algebra) at

(3.14) sup
u∈[ηt ,1)

{
−(log2 t)θt (u)− 1

2
logu

}
≤ log ζ̃t −

1

2
log3 t.

Since u 
→ θt (u) is nondecreasing, the supremum on the left side of (3.14) is attained at

u = ηt , where for large t it is at most − δ2

10
(log3 t)3/2. This is more than enough for (3.14) to

hold, thereby establishing (3.11). We next turn to (3.12), where the Gaussian approximation
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of (3.7) again applies for all three probabilities, with uniform, hence negligible, o(1) relative

errors. Thus, analogously to (3.13), the bound (3.12) is a consequence of having

(3.15) sup
v∈[0,1]

{
�

(
x(t)

1 + δ

√
ηt (v − εt )

)
�

(
x(t)(1 + δ − vηt )

(1 + δ)
√

1 − ηt

)}
≤ ζt

log2 t
�
(
x(t)

)

(temporarily setting �(x) = 1 wherever x < 0). Considering first v ≤ 1/2, we bound the left-

most term of (3.15) by one, and as before, take the logarithm of both sides, replace log�(y)

by − logy−y2/2 and eliminate all uniformly bounded terms to find that (3.15) holds because

inf
ν∈[0, 1

2 ]

{
(1 + δ − vηt )

2

(1 + δ)2(1 − ηt )

}
− 1 ≥ ηtδ

1 + δ

and x(t)2ηt = 2(log3 t)3/2 � log3 t . To complete the proof of (3.15), it thus suffices (similarly

to (3.14)) to have for some ζ̃t → 0 that

(3.16) sup
v∈[1/2,1]

{
−(log2 t)θt (v)

}
≤ log ζ̃t − log3 t,

where, recalling that ηt � εt , it is easy to check that, for any ν ∈ [1
2
,1],

θt (v) := ηt (v − εt )
2

(1 + δ)2
+ (1 + δ − vηt )

2

(1 + δ)2(1 − ηt )
− 1 ≥ θt (1) ≥ ηtδ

2

(1 + δ)2
.

The preceding suffices for (3.16) and thereby for (3.12), thus completing the proof. �

PROOF OF LEMMA 3.1. Starting with (3.1), note that for some C1 <∞ and any 
 ≥ 0,

E
[
G(0, S
)

]
=

∞∑

i=


P 0(Si = 0) ≤ C1(1 +
√


)−1.

Further, recall from (2.8) that G(0, y) ≤ C2/(1 + |y|) for some C2 < ∞ and all y ∈ Z
3.

Hence,

(3.17) E
[
G(0, S
)1At

]
≤ C2(1 +

√

)−1P(At )+

∑

|y|≤
√




G(0, y)P
(
{S
 = y} ∩At

)
.

With (S
, St −S
)
d= (S
, Ŝt−
) for SRW (Ŝm), which is independent of (Sm), if y ∈ Z

3 is such

that |y1| ≤ |y| ≤
√


, then

P
(
{S
 = y} ∩At

)
≤ P(S
 = y)P

(
Ŝ1

t−
 ≥ ψ(t)−
√



)
.

Therefore, thanks to (3.8), for any 
 ≤ γt the right-most term in (3.17) is at most

E
[
G(0, S
)

]
P
(
Ŝ1

t−
 ≥ ψ(t)−
√



)
≤ C1(1 +

√

)−1CP(At ).

We thus deduce from (3.17) that, for some C3,C4 < ∞,

E[V[0,γt ]] =
γt∑


=0

E
[
G(0, S
)1At

]
≤ C3P(At )

γt∑


=0

(1 +
√


)−1 ≤ C4P(At )
√

γt .

Consequently, by Markov’s inequality and our choice of γt ,

P

(
V[0,γt ] ≥

δt

h3(t)

)
≤ ζtP(At ),

where our choice of γt results with ζt := C4h3(t)
√

γt/(δt) → 0 as t →∞.
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Turning to (3.2), recall our choice of γt implying that

∑


∈(γt ,t]

1



≤ log(t/γt ) ≤ log3 t.

Further, with h3(t) = (π/3)ψ(t)(log3 t)−1, it follows that t/(2h3(t)) = 3
2π

(t/ψ(t))(log3 t).

Consequently, for all t large enough, the event Lt of (3.9) implies, thanks to (2.8), that

V(γt ,t]≤
∑


∈(γt ,t]
G(0, S
)≤

3 + o(1)

2π

∑


∈(γt ,t]

∣∣S1



∣∣−1 ≤ 3 + o(1)

2π

(1 + δ)t

ψ(t)
(log3 t) ≤ (1 + 2δ)t

2h3(t)
.

Since the same conclusion applies when Ac
t holds (in which case V(γt ,t] = 0), we see that

(3.2) is an immediate consequence of (3.9). �

3.2. The upper bound in the limsup-LIL. Recall that Rn is nondecreasing. Further, for

any tn = qn, q > 1, we have that, eventually, h3(tn)/h3(tn−1) ≤ q . It thus suffices to prove

the upper bound in our lim sup-LIL only along each such sequence tn (thereafter taking q ↓ 1

to complete the proof). To this end, fix q > 1 and δ, η > 0, and set m := (1 + δ)3ψ(tn),

with rm = m/bm ↑ ∞ for bm := 2η(1 + δ)6(log2 tn) (so rm := ψ(tn)/(2η(1 + δ)3 log2 tn)).

We aim to cover Rtn by the union C

m(rm) of bm balls of radius rm each, with the centers

of consecutive balls at most rm apart. Indeed, as shown in Section 2 (see Remark 2.2), this

would yield Rtn ≤ (1 + δ + o(1))3h3(tn), so we then conclude by taking δ ↓ 0 and q ↓ 1.

Specifically, starting at T0 = 0, set the increasing stopping times

Ti := inf
{
k > Ti−1 : |Sk − STi−1

| > rm − 1
}

∀i ≥ 1,

noting that the event {Tbm ≥ tn} implies the aforementioned containment Rtn ⊆ C

m(rm).

Further, with exp(−(1 + δ) log2 tn) ≤ Cn−(1+δ) summable, upon employing the first Borel–

Cantelli lemma, it remains only to establish the following key lemma.

LEMMA 3.4. For any q > 1 and small δ > 0, there exist η > 0 and C < ∞ such that

P(Tbm < tn) ≤ C exp
(
−(1 + δ) log2 tn

)
∀n.(3.18)

PROOF. By the strong Markov property and the independence of increments of the walk,

we see that Tbm is the sum of bm i.i.d. copies of the first exit time T1 of the (discrete)

ball B(0, rm − 1), by the 3D-SRW. As rm ↑ ∞, Skorokhod’s embedding implies (see [23],

Lemma 3.2) for some mo, c < ∞ and ε > 0 (depending only on δ > 0), all m ≥ mo and

u ≥ 0,

P(T1 < u)≤ ce−rε
m + P(3T < u) = ce−rε

m + P
(
3(1 + δ)−1r2

mT̂1 < u
)
,

with T̂1 := inf{t ≥ 0 : |Bt | ≥ 1} the Brownian hitting time of the unit sphere S
2 and

T := inf{t ≥ 0 : |Bt | ≥ rm/
√

1 + δ} (so the identity above is merely Brownian scaling).

Further, here bme−rε
m � exp(−2 log2 tn) and tn = 3r2

mηbm with bm/(2η) = 3m2/(2tn) =
(1 + δ)6(log2 tn). It thus suffices to show that, for some η = η(δ) > 0 and all m,

(3.19) P

(
1

bm

bm∑

i=1

T̂i < η

)
≤ e−(1−δ)3bm/(2η),

where T̂i are i.i.d. copies of T̂1. To this end, covering S
2 by cδ balls of radius δ each, centered

at some θi ∈ S
2, we have by the triangle inequality that

max
i

{
〈θi,BT̂1

〉
}
≥ 1 − δ.
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Hence, fixing λ > 0, we get upon applying Doob’s optional stopping theorem for the martin-

gale Mt =
∑

i exp(λ〈θi,Bt 〉 − λ2t/2) at the stopping time T̂1 that

cδ = M0 = E[M
T̂1
] ≥ eλ(1−δ)E

[
e−λ2T̂1/2].

Consequently, by Markov’s inequality we have for any η,λ, δ > 0 and integer b ≥ 1 that

(3.20) P

(
1

b

b∑

i=1

T̂i < η

)
≤ eλ2bη/2E

[
e−λ2T̂1/2]b ≤

(
cδe

λ2η/2−λ(1−δ))b.

Taking the optimal λ = (1− δ)/η, it is easy to check that, for η ≤ η(δ)= δ(1− δ)2/(2 log cδ),

the LHS of (3.20) is at most exp(−(1−δ)3b/(2η)). We thus got (3.19) for any δ > 0, provided

η ≤ η(δ), thereby completing the proof. �

REMARK 3.5. One has for any δ > 0 small and all t large enough, the classical bound

P
(

max
1≤k≤t

|Sk| ≥ (1 + δ)3ψ(t)
)
≤ Ce−(1+δ) log2 t .

We need in (3.18) a stronger result, since for any bm and rm � 1,
{

max
1≤k≤tn

|Sk| ≥ bmrm

}
⊂ {Tbm < tn},

and while bmrm = (1 + δ)3ψ(tn), our crude use of δ-cover of S
2 in proving Lemma 3.4

requires us to also have bm/(log2 tn) → 0 as δ ↓ 0.

3.3. The upper bound in the liminf-LIL. For any A ⊂R
3 and r > 0, let

Nbd(A, r) :=
⋃

x∈A

B(x, r)

denote the r-blowup of A. Utilizing [12], we first relate Rn with a suitable Brownian capacity,

as stated next.

LEMMA 3.6. We can couple the SRW with a 3D Brownian motion (Bt , t ≥ 0) such that

lim
n→∞

Rn

CapB(B[0, n/3]) =
1

3
a.s.,(3.21)

and for any δ ∈ (0,1/2),

lim
n→∞

Rn

CapB(Nbd(B[0, n/3], n1/2−δ))
= 1

3
a.s.(3.22)

PROOF. The results were essentially shown in [12]. Indeed, [12], (4.15), shows that

(3.21) holds when each ratio is restricted to the events En, while it is also shown that a.s.

En holds for all sufficiently large n (combine [12], (4.2), with Borel–Cantelli). Hence, (3.21)

also holds without such a restriction. Turning to show (3.22), let P̃ denote the probability

of an independent Brownian motion (B̃t ). Fixing δ ∈ (0,1/2) and some yn ∈ Z
3 such that

|yn| = n1/2+δ , we similarly obtain (after dispensing of events En) that by the same argument

as in [12], (4.4), a.s. one has, for all large n,

CapB

(
Nbd

(
B[0, n/3], n1/2−δ))

=
(
2π + o(1)

)
n1/2+δP̃

(
Nbd

(
B[0, n/3], n1/2−δ)∩

(
yn + B̃[0,∞

))
�=∅|B[0, n/3]).
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By [12], (4.13) and (4.4), a.s., the latter expression is for all n large (1 + o(1))CapB(B[0,

n/3]). Thus,

lim
n→∞

CapB(B[0, n/3])
CapB(Nbd(B[0, n/3], n1/2−δ))

= 1 a.s.,

which in view of (3.21) completes the proof of (3.22). �

Proceeding to show the upper bound in the lim inf-LIL, let r(n) := π
√

n/(2 log2 n), that

is, r(n) =
√

3ψ̂(n) for ψ̂(·) of Proposition 1.7. Recall that by [17], Lemma 1.1, or [22] and

Brownian scaling, for some c > 0 and all t, r > 0,

P
(

sup
s∈[0,t)

{
|Bs |

}
≤ r

)
≥ 2ce

− π2t

2r2 .(3.23)

We have used in (3.23) also that the largest eigenvalue of the Dirichlet Laplacian in the

unit ball in R
d is −j2, where j = j(d−2)/2,1 denotes the first positive zero of the Bessel

function of the first kind with index (d − 2)/2 and, in particular, that j1/2,1 = π (see [35], p.

490). Considering (3.23) for r = r(sn), sn = nn and the Brownian increments in the disjoint

intervals [sn−1, sn) of length sn − sn−1, result with

P
(

sup
t∈[sn−1,sn)

{
|Bt −Bsn−1

|
}
≤ r(sn)

)
≥ c exp(− log2 sn) =

c

n logn
.(3.24)

Thus, thanks to the independence of Brownian increments on these disjoint intervals, we get

from the second Borel–Cantelli lemma that

P
(
lim inf
n→∞

(
r(sn)

−1 sup
t∈[sn−1,sn)

{
|Bt −Bsn−1

|
})

≤ 1
)
= 1.(3.25)

Further, as
√

sn−1(log2 sn−1) = o(r(sn)), by Kinchin’s LIL for the Brownian motion,

P
(
lim sup
n→∞

(
r(sn)

−1 sup
t≤sn−1

|Bt |
)
= 0

)
= 1.(3.26)

Combining (3.25) and (3.26), we deduce that

P
(
lim inf
n→∞

(
r(sn)

−1 sup
t<sn

|Bt |
)
≤ 1

)
= 1.

This, of course, implies that also

P
(
lim inf
n→∞

(
r(n)−1 sup

t<n
|Bt |

)
≤ 1

)
= 1.(3.27)

Recall that for any r > 0 one has that r−1CapB(B(0, r)) = CapB(B(0,1)) = 2π (= κ1 on

[33], p. 356). By (3.27) and for any ε > 0, a.s. B[0, n] ⊂ B(0, (1 + ε)r(n)) for infinitely

many values of n in which case also CapB(B[0, n])≤ 2π(1 + ε)r(n). That is,

P
(
CapB

(
B[0, n]

)
≤ 2π(1 + ε)r(n) i.o.

)
= 1.(3.28)

By Brownian scaling the sequence {
√

3CapB(B[0, n/3])} has the same law as the sequence

{CapB(B[0, n])}. Thus, in view of (3.21), we can also construct a coupling so that, for any

ε > 0, we have that a.s.

Rn ≤
(1 + ε)

3
√

3
CapB

(
B[0, n]

)

for all n large enough. With r(n) = 3
√

3
2π

ĥ3(n), it thus follows from (3.28) that

P
(
Rn ≤ (1 + ε)2ĥ3(n) i.o.

)
= 1,

and taking ε ↓ 0 establishes the stated upper bound in our lim inf-LIL.
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3.4. The lower bound of the liminf-LIL. Fixing a > 0, we have by [33], (1.4), that, for

any f (t) ↑∞ such that f (t) = o(t2/3),

lim
t→∞

f (t)

t
logP

(∣∣Nbd
(
B[0, t], a

)∣∣≤
(

π√
2

)3

f (t)3/2ω3

)
=−1,(3.29)

where ω3 denotes the volume of the unit ball (using here that the largest eigenvalue of the

Dirichlet Laplacian in the unit volume ball in R
3 is −ω

2/3
3 π2). Fixing δ ∈ (0,1/2) as in

(3.22), Brownian scaling by time factor 3n2δ−1 yields equality in distribution between the

sequences

∣∣Nbd
(
B[0, n/3], n1/2−δ)∣∣ d= 3−3/2n3/2−3δ

∣∣Nbd
(
B
[
0, n2δ],3−1/2)∣∣.

Thus, considering (3.29) for a = 3−1/2, t = n2δ and f (t) = (1 − ε)3n2δ(log2 n)−1, we arrive

at

P
(∣∣Nbd

(
B[0, n/3], n1/2−δ)∣∣≤ (1 − ε)2ψ̂(n)3ω3

)

= P

(∣∣Nbd
(
B
[
0, n2δ],3−1/2)∣∣≤ (1 − ε)2

(
π√

2

)3(
n2δ(log2 n)−1)3/2

ω3

)

≤ C exp
(
−(1 − ε)−2(log2 n)

)
.

Considering nk = qk , we get by the first Borel–Cantelli lemma that, for fixed q > 1 and

ε > 0,

lim inf
k→∞

|Nbd(B[0, nk/3], n1/2−δ
k )|

ω3ψ̂(nk)3
≥ (1 − ε)2 a.s.(3.30)

With n 
→ |Nbd(B[0, n/3], n1/2−δ)| monotone increasing and ψ̂(qk)/ψ̂(qk−1) → 1 as k →
∞ followed by q ↓ 1, we deduce from (3.30) that

lim inf
n→∞

|Nbd(B[0, n/3], n1/2−δ)|
ω3ψ̂(n)3

≥ 1 a.s.(3.31)

Next, recall the Poincaré–Carleman–Szegö theorem [30] that, for any r > 0,

inf
|A|=ω3r

3

{
CapB(A)

}
= CapB

(
B(0, r)

)
= rCapB

(
B(0,1)

)
= 2πr.(3.32)

Recall that ĥ3(n) = 2π
3

ψ̂(n). Hence, by (3.32) for A = Nbd(B[0, n/3], n1/2−δ), we have in

view of (3.30) that

lim inf
n→∞

CapB(Nbd(B[0, n/3], n1/2−δ))

3ĥ3(n)
≥ 1 a.s.,

which together with (3.22) yields the stated lower bound for the lim inf-LIL of Rn in Z
3.

4. LIL for SRW on Z
4: Proof of Theorem 1.3. Hereafter we consider, for integers 0 ≤

a ≤ b ≤ c, the random variables

(4.1) Ra,b := Cap(R(a, b]), Va,b,c := Ra,b +Rb,c −Ra,c ≥ 0.

Note that by shift invariance Ra,b
d= R0,b−a = Rb−a and Ra,b is independent of Rb,c (due to

the independence of increments). In particular, for any increasing {nk} starting at n0 = 0, one

has the decomposition

(4.2) Rnk
:=

k∑

j=1

Uj −�nk,k
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in terms of the independent variables Uj := Rnj−1,nj
and the sum of nonnegative variables

(4.3) �nk,k =
k−1∑

j=1

Vnj−1,nj ,nk
=

k−1∑

j=1

V0,nj ,nj+1
.

We use different nonrandom subsequences (nk) for d = 4, for d = 5 and for d ≥ 6. Also,

the subsequences used for the lim sup-LIL and for the lim inf LIL-s be different. As we shall

see, for such suitable nk , the fluctuation in
∑

j Uj is negligible for the LIL-s of Theorem 1.3,

where E�nk,k ≈ h4(nk), the lim sup-LIL being due to the exceptional times with �nk,k =
o(E�nk,k), while the lim inf-LIL is due to the exceptional times where �nk,k ≈ ĥ4(nk) �
E�nk,k . In contrast, we show in Section 5 that �nk,k has a negligible effect when d ≥ 5,

where the LIL follows the usual pattern for sums of independent variables (namely, that of

the LIL for a Brownian motion). We take a relatively small k = O(log2 nk) for the lim sup-LIL

and d = 4, with larger k = O((lognk)
α) for the lim inf-LIL and for any d ≥ 5.

4.1. The lower bound in the limsup-LIL. We start with the statement of a key lemma

about the SRW on Z
4 (which is related to [13], Theorem 2.2, in the 4D Brownian motion

case).

LEMMA 4.1. Suppose (Sm) and (S̃m) are two independent SRW on Z
4. Let

Xn :=
1

n

∑

i,
∈[1,n]
G(Si, S̃
).

Then for some C < ∞ and any p,n ∈N,

E
[
Xp

n

]
≤ Cpp!.(4.4)

One immediate consequence of (4.4) is that, for any c < 1/C,

sup
n

E
[
ecXn

]
< ∞.(4.5)

The proof of Lemma 4.1 follows the same scheme as that of [26], Lemma 2. However, [26]

crucially relies on an explicit representation of the moments of the Brownian self-intersection

local time via variances of linear combinations of Brownian increments. Lacking any such

tool here, our more involved proof of Lemma 4.1 relies instead on the following elementary

bounds, where (4.6)–(4.8) implies also that (4.4)–(4.5) hold for
∫ 1

0

∫ 1
0 |βs − β̃t |−2 ds dt and

the independent, standard four-dimensional Brownian motions (βs, s ≥ 0), (β̃t , t ≥ 0) (which

is an improvement over the upper bound of [6], Prop. 4.1).

LEMMA 4.2. There exists C < ∞ such that, for any t > 0 and x, y ∈R
4,

E
[
|βt − x|−2]≤ C min

{
t−1, |x|−2}≤ Ct−1/2|x|−1,(4.6)

E
[
|βt − x|−1|βt − y|−1]≤ Ct−1/2(|x| ∨ |y|

)−1 ≤ 2Ct−1/2|y − x|−1,(4.7)

E
[
|βt − x|−2|βt − y|−1]≤ 2Ct−1/2|x|−1|y − x|−1.(4.8)

Similarly, for | · |+ = | · | ∨ 1, any i ≥ 0 and x, y ∈ Z
4,

E
[
|Si − x|−2

+
]
≤ C min

{
|i|−1

+ , |x|−2
+

}
≤ C|i|−1/2

+ |x|−1
+ ,(4.9)

E
[
|Si − x|−1

+ |Si − y|−1
+

]
≤ C|i|−1/2

+
(
|x|+ ∨ |y|+

)−1 ≤ 2C|i|−1/2
+ |y − x|−1

+ ,(4.10)

E
[
|Si − x|−2

+ |Si − y|−1
+

]
≤ 2C|i|−1/2

+ |x|−1
+ |y − x|−1

+ .(4.11)
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PROOF. Denoting by φs(x) := (2πs)−2 exp(− |x|2
2s

) the density at x of the Gaussian law

of βs , we get from (1.1) after change of variables that

E
[
|βt − x|−2]= 2π2E

[
GB(βt , x)

]
= 2π2

∫ ∞

t
φs(x) ds = t−1ϕ1

(
|x|2/t

)
= |x|−2ϕ2

(
t/|x|2

)
,

for the finite decreasing functions ϕ1(r) := 1
2

∫∞
1 u−2e−r/(2u) du, ϕ2(r) := 1

2

∫∞
r u−2 ×

e−1/(2u) du. Thus, (4.6) holds for any C ≥ ϕ1(0) ∨ ϕ2(0). Next, by Cauchy–Schwarz and

(4.6),

E
(
|βt − x|−1|βt − y|−1)≤

(
E
[
|βt − x|−2])1/2(

E
[
|βt − y|−2])1/2 ≤ Ct−1/2|y|−1.

Exchanging x with y yields the first inequality in (4.7), whereby the second inequality follows

(as |x − y| ≤ |x| + |y| ≤ 2|x| ∨ |y|). Now, by the triangle inequality, for βt �= x �= y,

|y − x||βt − x|−2|βt − y|−1 ≤ |βt − x|−1(|βt − x|−1 + |βt − y|−1),

so taking the expectation and using (4.6) and (4.7) to bound the RHS, results with (4.8).

With S0 = 0, clearly (4.9) holds at i = 0, while for i ≥ 1, recall [24], Theorem 1.2.1 and

Theorem 1.5.4, that for some C finite and any x ∈ Z
4,

P(Si = x) ≤ Ci−2[e−2|x|2/i +
(
|x|2 ∨ i

)−1]
,(4.12)

C−1|x|−2
+ ≤ G(0, x)≤ C|x|−2

+ .(4.13)

By (4.13)

E
[
|Si − x|−2

+
]
≤ CE

[
G(Si, x)

]
= C

∞∑


=i

P(S
 = x).

Further, for some C finite and all i ≥ 1, x ∈ Z
4,

∞∑


=i


−2(|x|2 ∨ 

)−1 ≤ Ci−1(|x|2 ∨ i

)−1 ≤ C min
{
i−1, |x|−2

+
}
.

Thus, in view of (4.12), the same computation as for (4.6) yields the first inequality of (4.9).

The second inequality of (4.9) follows (as a ∧ b ≤
√

ab for any a, b > 0), and since the

strictly positive | · |+ satisfies the triangle inequality on Z
4, we get first (4.10) and then (4.11)

by the same reasoning that led to (4.7) and (4.8), respectively. �

PROOF OF LEMMA 4.1. From (4.11), for any p ≥ 2, 1 ≤ s1 ≤ · · · ≤ sp and {y1, . . . ,

yp} ⊂ Z
4,

E

[p−1∏

i=1

|Ssi − yi |−2
+ |Ssp−1

− yp|−1
+

]

= E

[p−2∏

i=1

|Ssi − yi |−2
+

∣∣Ssp−1
− Ssp−2

− (yp−1 − Ssp−2
)
∣∣−2
+

×
∣∣Ssp−1

− Ssp−2
− (yp − Ssp−2

)
∣∣−1
+

]

≤ C|sp−1 − sp−2|−1/2
+ |yp − yp−1|−1

+ E

[p−2∏

i=1

|Ssi − yi |−2
+ |Ssp−2

− yp−1|−1
+

]
,
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where we set throughout s0 = 0 and y0 = 0. Thus, by induction on p ≥ 1,

(4.14) E

[p−1∏

i=1

|Ssi − yi |−2
+ |Ssp−1

− yp|−1
+

]
≤Cp−1

p−1∏

i=1

|si − si−1|−1/2
+

p∏

i=1

|yi − yi−1|−1
+ .

Next, note that by (4.9), for any p ≥ 1,

E

[ p∏

i=1

|Ssi − yi |−2
+

]
=E

[p−1∏

i=1

|Ssi − yi |−2
+

∣∣Ssp − Ssp−1
− (yp − Ssp−1

)
∣∣−2
+

]

≤C|sp − sp−1|−1/2
+ E

[p−1∏

i=1

|Ssi − yi |−2
+ |Ssp−1

− yp|−1
+

]
.

Hence, setting t0 = 0, in view of (4.14) and the independence of (Si) and (S̃i),

(4.15) E

[ p∏

i=1

|Ssi − S̃ti |−2
+

]
≤ Cp

p∏

i=1

|si − si−1|−1/2
+ E

[ p∏

i=1

|S̃ti − S̃ti−1
|−1
+

]
.

Suppose that tσ(1) ≤ · · · ≤ tσ(p) for some permutation σ of {1, . . . , p}. Then conditioning on

(S̃i, i ≤ tσ(p−1)), we get by (4.10) and the independence of increments that, when σ(p) = 
,

E

[ p∏

i=1

|S̃ti − S̃ti−1
|−1
+

]

≤ C|tσ(p) − tσ(p−1)|−1/2
+ E

[

−1∏

i=1

|S̃ti − S̃ti−1
|−1
+ |S̃t
+1

− S̃t
−1
|−1
+

p∏

i=
+2

|S̃ti − S̃ti−1
|−1
+

]
.

Any permutation σ of {1, . . . , p} with σ(p) = 
 must be a bijection from {1, . . . , p − 1}
to {1, . . . , 
 − 1, 
 + 1, . . . , p}. We can thus further bound the right side of the preceding

inequality, inductively according to the values of σ(j), for j = p − 1, . . . ,1, and thereby

arrive at

(4.16) E

[ p∏

i=1

|S̃ti − S̃ti−1
|−1
+

]
≤ Cp

p∏

j=1

|tσ(j) − tσ(j−1)|−1/2
+ , σ (0) := 0.

Combining (4.15) and (4.16), we conclude that, for any nondecreasing (si) and (tσ(j)),

E

[ p∏

i=1

|Ssi − S̃ti |−2
+

]
≤ C2p

p∏

i=1

|si − si−1|−1/2
+

p∏

j=1

|tσ(j) − tσ(j−1)|−1/2
+ .(4.17)

We next bound E[Xp
n ] by (4.13) and enumerate over all words (si) and (ti) of length p with

symbols from [1, n], according to the numbers k and k′ of distinct symbols in each word.

Recalling that |0|+ = 1 and having at most kp words of length p composed of given (fixed)

k distinguished symbols, we thus deduce from (4.17) that, for any n,p ∈N,

E
[
Xp

n

]
≤ 1

np
CpE

[
∑

si ,ti∈[1,n]

p∏

i=1

|Ssi − S̃ti |−2
+

]
≤ C2p

[ p∑

k=1

kpn−(p−k)/2Jk,n

]2

,

Jk,n :=
1

nk

∑

1≤s1<···<sk≤n

k∏

i=1

(
si

n
− si−1

n

)−1/2

.

(4.18)
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Considering θi = si/n, we see that {Jk,n} are, for each k ∈N, the Riemann sums of

Jk :=
∫

0=θ0<θ1<···<θk≤1

k∏

i=1

(θi − θi−1)
−1/2 dθ1 · · · dθk ≤ Ck(k!)−1/2(4.19)

(for the inequality, see, e.g., [26], proof of Lemma 2). Note that Jk = (Qk1)(0) for the

positive linear operator (Qf )(x) =
∫ 1−x

0 y−1/2f (x + y)dy on C([0,1]). Setting (y)n =
�yn�/n, we have that Jk,n = (Qk

n1)(0) for the positive linear operators (Qnf )(x) =∫ 1−x
0 (y)

−1/2
n f ((x)n + (y)n) dy. It is easy to see that (Qnf ) ≤ (Qf ) are both nonincreas-

ing whenever f (·) is nonincreasing. By induction on k ≥ 0, we thus have that Qk
n1 ≤ Qk1,

pointwise, so in particular, Jk,n ≤ Jk for any k,n ∈ N. Further, k! ≥ (k/e)k and Jk,n = 0,

unless k ≤ n. Hence, in view of (4.18) and (4.19), we find that

E
[
Xp

n

]
≤ C2p

[ p∑

k=1

kpk−(p−k)/2Jk

]2

≤ C2p

[ p∑

k=1

k(p+k)/2Ck(k/e)−k/2

]2

≤ p2C4peppp,

and the uniform moment bounds (4.4) on Xn follow. �

For any interval I , consider the range RI = {Si}i∈I and R̃I = {S̃i}i∈I of independent

SRW-s. Fixing α > 0, let nα := n(logn)−α and denoting by P̂ and τ̂A the probability and the

hitting time to a set A by another independent SRW (Ŝi), set for i ∈ [n2α, n− n2α],
gn,α(i) := 1{Si /∈R(i,i+n2α]}P̂

Si (τ̂R(i−n2α,i+n2α] =∞),(4.20)

with gn,α(i) = 1 for i ∈ [0, n2α) ∪ (n− n2α, n] and g̃n,α(i) defined analogously for the SRW

(S̃i). In particular, for any i ∈ [n2α, n− n2α],
ĝn,α := E

[
1{Sn2α

/∈R(n2α,2n2α]}P̂
Sn2α (τ̂R2n2α

=∞)
]
= E

[
gn,α(i)

]
.(4.21)

The next lemma, whose proof is deferred to the end of this section, allows us to complete the

proof of the limsup-LIL lower bound for SRW on Z
4 by comparing

Yn,m :=
∑

i∈[1,n],

∈[1,m]

gn,α(i)G(Si, S̃
)g̃m,α(
),

with the simpler to analyze

Y n,m := ĝn,αĝm,α

∑

i∈[1,n],

∈[1,m]

G(Si, S̃
),

whose moments we bound in Lemma 4.1 (for m = n, see also (4.37) for the decay of ĝn,α).

LEMMA 4.3. We have that EYn,m ≤ C
√

nm for some C finite and all m,n ∈ N, and if

nε ≤ m ≤ n, then for some C = C(ε,α) < ∞ and any ε > 0, α > 4,

EYn,m ≤ C
√

nm(logn)−2,(4.22)

E
[
(Yn,m − Y n,m)2]≤ Cnm(logn)−α/2.(4.23)

PROOF OF THE LIMSUP-LIL LOWER BOUND. Equipped with Lemma 4.1 and

Lemma 4.3, we derive the limsup-LIL lower bound for SRW on Z
4, and with n 
→ Rn having

a similar structure as |Rn| for the SRW on Z
2, we adapt the proof in [11], Prop. 4.4, of the

limsup-LIL lower-bound for the latter sequence. Specifically, set p = [(−κ + log3 n)/(log 2)]
with κ < ∞ large and k = 2p (so k = γ log2 n for small γ ≤ e−κ ). Centering both sides of
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(4.2) for nj = jm, m = n/k (assumed for simplicity to be integer), we have that, for i.i.d.

Uj := R(j−1)m,jm and the nonrandom ϕn := ERn,

Rn = kϕn/k − ϕn +
k∑

j=1

U j −
k−1∑

j=1

V0,jm,(j+1)m.(4.24)

Further, denoting by θ the time shift Si 
→ Si+1, we set

χ(A,B) :=
∑

y∈A

∑

z∈B

P y(τA∪B =∞)G(y, z)P z(τB =∞),

and for all i ∈ (0, n],

hn(i) := 1{Si /∈R(i,n]}P̂
Si (τ̂Rn =∞)≤ gn,α(i)(4.25)

(see (4.20)), recalling from (4.1) and [6], Prop. 1.6, that

0 ≤ V0,jm,(j+1)m ≤ χ(Rjm,R
(
jm, (j + 1)m]

)
+ χ(R

(
jm, (j + 1)m],Rjm

)

≤ 2
∑

y∈Rjm

∑

z∈R(jm,(j+1)m]
P y(τRjm

=∞)G(y, z)P z(τR(jm,(j+1)m] =∞)

= 2

jm∑

i=1

m∑


=1

hjm(i)G(Si, Sjm+
)hm(
) ◦ θjm

≤ 2

jm∑

i=1

m∑


=1

gjm,α(i)G(Si, Sjm+
)gm,α(
) ◦ θjm := 2Wj .(4.26)

Setting in addition

W j := ĝjm,αĝm,α

m−1∑

i=0

m∑


=1

G(Sjm−i, Sjm+
),(4.27)

Ŵ j := ĝjm,αĝm,α

jm−1∑

i=m

m∑


=1

G(Sjm−i, Sjm+
),(4.28)

we see that, for any fixed j ,

Wj −W j − Ŵ j
d= Yjm,m − Y jm,m.(4.29)

Next, following [6], we let

χn(i, j) := χ
(
R

(i,2j−1)
n ,R(i,2j)

n

)
+ χ

(
R

(i,2j)
n ,R(i,2j−1)

n

)

for R(i,j)
n :=R

[
(j − 1)2−in, j2−in

]

and take the expected value in [6], Prop. 2.3, to arrive at

kϕn/k − ϕn =
p∑

i=1

2i−1∑

j=1

E
[
χn(i, j)

]
−

p∑

i=1

2i−1∑

j=1

E
[
εn(i, j)

]
.(4.30)

In [6], Prop. 2.3, it is shown that, for p fixed, the nonnegative right-most sum is at most

C(logn)2. The same applies for our choice of growing p = p(n). Indeed, as each εn(i, j) is

bounded by the intersection of the ranges of two independent SRW-s of length n/2i , we have
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that maxi,j E[εn(i, j)] ≤ logn (see [24], Section 3.4), and with at most 2p ≤ C logn such

terms, we conclude that

p∑

i=1

2i−1∑

j=1

E
[
χn(i, j)

]
−C(logn)2 ≤ kϕn/k − ϕn ≤

p∑

i=1

2i−1∑

j=1

E
[
χn(i, j)

]
.(4.31)

Recall [6], Prop. 6.1, that

lim
n→∞

2(logn)2

π4n
E
[
χn(1,1)

]
=

∫

A1
1

E
[
Gβ(βs, βt )

]
ds dt for A1

1 =
[
0,2−1)×

(
2−1,1

]
.

Now, using (1.1) (at d = 4), with
∫
A1

1
|t − s|−1 ds dt = log 2 and E|β1|−2 = 1

2
, we see that

∫

A1
1

E
[
Gβ(βs, βt )

]
ds dt = 1

2π2
E
[
|β1|−2]

∫

A1
1

|t − s|−1 dt ds = log 2

4π2
.

By definition it follows that E[χn(i, j)] = E[χn′i
(1,1)] for n′i := n21−i and all i, j . So in

view of the preceding, we deduce that, for any p = o(logn), as n →∞,

max
i≤p

{∣∣∣∣
2(logn′i)

2

π4n′i
E
[
χn′i

(1,1)
]
− log 2

4π2

∣∣∣∣
}
→ 0.

Recall also (see (1.5)) that

p =
(
1 + o(1)

) log3 n

log 2
, h4(n) = π2

8

n log3 n

(logn)2
.

It thus follows that

p∑

i=1

2i−1∑

j=1

E
[
χn(i, j)

]
=

(
1 + o(1)

)
p

log 2

4π2

π4n

2(logn)2
=

(
1 + o(1)

)
h4(n),(4.32)

and combining (4.31) and (4.32), we arrive at

kϕn/k − ϕn =
(
1 + o(1)

)
h4(n).(4.33)

In view of (4.24), (4.26) and (4.33), we get our limsup-LIL lower bound, precisely as in

the proof of [11], Prop. 4.4, once we find for any ε > 0, constants c1 < ∞, c2 > 0 and for any

k = 2p , m = n/k, p as above, some events Gk such that P(Gk) ≥ 1
4
ck

2 and

Gk ⊆
k⋂

j=1

{
U j ≥− c1m

(logm)2

}
=:

k⋂

j=1

Bj ,(4.34)

Gk⊆
{

k−1∑

j=1

Wj ≤ 3ε
n log3 n

(logm)2

}
.(4.35)

To this end, it suffices to construct events Fk such, that for some c3 < ∞,

(4.36) P(Fk) ≥ ck
2, Fk ⊆

{
max
j<k

{Ŵ j } ≤
c3m

(logm)2

} k⋂

j=1

Bj .

Indeed, we shall see that P(Ci) ≤ 1
4
ck

2 for k ≤ γ log2 n, γ > 0 small and n→∞, where

C1 :=
{∑

j odd

W j > ε
n log3 n

(logm)2

}
, C2 :=

{ ∑

j even

W j > ε
n log3 n

(logm)2

}
,

C3 :=
{

max
j<k

{Wj −W j − Ŵ j } >
m

(logm)2

}
.
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Taking Gk := Fk

⋂3
i=1 C

c
i , this would imply that P(Gk) ≥ 1

4
ck

2 for large k, and it is easy to

check, as stated, that both (4.34) and (4.35) then hold for such Gk .

Next, utilizing the union bound, (4.29), Markov’s inequality and (4.23), we get that

P(C3) ≤
k−1∑

j=1

P

(
Wj −W j − Ŵ j ≥

m

(logm)2

)
=

k−1∑

j=1

P

(
Yjm,m − Y jm,m ≥ m

(logm)2

)

≤ (logm)4

m2

k−1∑

j=1

E
[
(Yjm,m − Y jm,m)2]≤ C(logm)4−α/2

k−1∑

j=1

j ≤ Ck2(logm)4−α/2.

In particular, for α > 8 + 2γ log(1/c2), k as above and n = mk ≥ n0, the preceding bound

implies that P(C3) ≤ 1
4
ck

2 . Turning to deal with W j and Ŵ j , upon expressing (4.21) via the

independent SRW-s Ŝi , S+
i := Sn′+i − Sn′ and S−

i := Sn′−i − Sn′ , at n′ = n2α , it follows from

[5], (1.4), that

ĝn,α = E
[
1{0/∈R+

n′ }
P̂ 0(τ̂

R
+
n′∪R−([0,n′−1]) =∞)

]

= P
(
0 /∈R

+
n′, R̂∞ ∩

(
R

+
n′ ∪R

−([0, n′ − 1
]))

=∅
)
=

(
1 + o(1)

)π2

8
(logn)−1

(4.37)

(note that logn′ = (1 + o(1)) logn). In view of (4.27), we note that {m−1(ĝm,α)−2W j } are,

for odd j , independent copies of Xm of Lemma 4.1 (except for now including also 
 = 0 in

Xm). It thus follows from (4.5) and (4.37) that for some c > 0, and all k, m,

E

[
exp

(
cm−1(logm)2

∑

j odd

W j

)]
≤ exp(k/c).

Hence, for n =mk, one has by Markov’s inequality that

P(C1) ≤ exp(−εck log3 n) exp(k/c)

decays as n→∞, faster than 1
4
ck

2 . By the same reasoning, this applies also for C2.

Finally, in view of (4.13), (4.28) and (4.37), for some C < ∞ and any m, j ,

(4.38) Ŵ j ≤
Cm2

(logm)2

j−1∑

s=1

dist(R
(
(s − 1)m, sm]

)
,R

((
jm, (j + 1)m]

))−2
.

As in the proof of [11], Prop. 4.4, fixing a unit vector u, we let Fj :=
⋂j

i=1(Ai ∩ Bi), while

taking here Bi of (4.34), and

Ai :=
{
Sim ⊂ B(i

√
mu,

√
m/8),R

(
(i − 1)m, im]

)
⊂ B

((
i − 1

2

)√
mu,

3

4

√
m

)}
.

The event Fk guarantees that, for any s < j , the distance of R((s − 1)m, sm]) from

R((jm, (j + 1)m]) be at least (j − s − 1/2)
√

m, so (4.38) results with the RHS of (4.36)

(for c3 = C
∑

(r − 1/2)−2 finite). As for the LHS of (4.36), recall [6], Theorem 1.2, that

{ (logm)2

m
Rm} converges in law, hence is a uniformly tight sequence. In particular, for any

δ > 0, there exists c1 = c1(δ) finite such that P(Bc
1) ≤ δ for B1 of (4.34), uniformly in m.

Further, {Bj , j ≥ 1} are i.i.d., and by the invariance principle, there exists c2 > 0 such that

lim
m→∞ inf

S0∈B(0,
√

m/8)

{
P S0(A1)

}
= inf

β0∈B(0, 1
4 )

{
P
(
|β1 − 2u| < 1

4
, sup
t∈[0,1]

|βt − u| < 3

2

)}
≥ 2c2.
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As Fj is measurable on σ(Si, i ≤ jm), by the Markov property of the SRW and its indepen-

dent, stationary increments, for any j ≥ 1,

P(Aj ∩Bj |Fj−1) ≥ inf
S0∈B(0,

√
m/8)

{
P S0(A1)

}
− P

(
Bc

1

)
≥ c2,

provided δ > 0 is small enough and m ≥ m0 finite, thereby establishing the LHS of (4.36).

�

We conclude this subsection by proving Lemma 4.3. To this end, note that

E
[
(Yn,m − Y n,m)2]=1

2

∑

π

∑

(i1,i2)∈[1,n]2,
(
1,
2)∈[1,m]2

E[g · G],(4.39)

where the sum is over the two permutations π of {1,2} and

g :=
(
gn,α(i1)g̃m,α(
π1

)− ĝn,αĝm,α

)(
gn,α(i2)g̃m,α(
π2

)− ĝn,αĝm,α

)
,(4.40)

G := G(Si1, S̃
π1
)G(Si2, S̃
π2

).(4.41)

Setting for α > 0,

Iα(n) := [nα, n− nα]2 ∩
{
(i, j) : j − i ≥ nα

}
,

the key to (4.23) is to bound |E[g · G]|/E[G] uniformly over (i1, i2) ∈ Iα(n) and (
1, 
2) ∈
Iα(m). For (i1, i2) ∈ Iα(n), n′ = n2α , we will show that the contribution from the complement

of

H
(n)
i1

:=
{
|Si1 − Si1−n′ | ≤

√
n′ logn′

}
,

H
(n)
i1,i2

:= H
(n)
i1

∩
{
|Si2 − Si2−n′ + Si1+n′ − Si1 | ≤

√
n′ logn′

}

is negligible and the same applies for the analogous events H̃
(m)

1

, H̃
(m)

1,
2

defined in terms of

the SRW (S̃
), (
1, 
2) ∈ Iα(m) and m′ = m2α . Further, from (4.21) it follows that E[g] = 0

for such (i1, i2) and (
1, 
2), allowing us to instead bound (in terms of E[G]), the value of
∣∣E[gG1

H
(n)
i1,i2

∩H̃
(m)

1,
2

] −E[g1
H

(n)
i1,i2

∩H̃
(m)

1,
2

]E[G]
∣∣.

Decomposing the events H
(n)
i1

and H
(n)
i1,i2

as

H
(n)
i1

=
⋃

|u|≤
√

n′ logn′

H
(n′)
i1

(u), H
(n)
i1,i2

=
⋃

|u|,|v|≤
√

n′ logn′

H
(n′)
i1,i2

(u, v),

H
(n′)
i1

(u) := {Si1 − Si1−n′ = u},

H
(n′)
i1,i2

(u, v) := H
(n′)
i1

(u)∩ {Si2 − Si2−n′ + Si1+n′ − Si1 = v},

and such decomposition for H̃
(m)

1,
2

, we show in the sequel that given H
(n′)
i1,i2

(u, v) ∩
H̃

(m′)

1,
2

(ũ, ṽ), makes G independent of g, whereby the following estimates shall be utilized.

LEMMA 4.4. Fix α > 2, ε > 0 and a permutation π of {1,2}. Then for nε ≤ m ≤ n,

F1(u, ũ) := E
[
G(Si1, S̃
1

)
∣∣H (n′)

i1
(u)∩ H̃

(m′)

1

(ũ)
]

=
(
1 +O

(
(logn)2−α))E

[
G(Si1, S̃
1

)
]
,

(4.42)

F2(u, v, ũ, ṽ) := E
[
G(Si1, S̃
π1

)G(Si2, S̃
π2
)
∣∣H (n′)

i1,i2
(u, v)∩ H̃

(m′)

1,
2

(ũ, ṽ)
]

=
(
1 +O

(
(logn)2−α))E

[
G(Si1, S̃
π1

)G(Si2, S̃
π2
)
]
,

(4.43)
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uniformly over (i1, i2) ∈ Iα(n), (
1, 
2) ∈ Iα(m), |u|, |v| ≤
√

n′ logn′ and |ũ|, |ṽ| ≤√
m′ logm′.

PROOF. For (i1, i2) ∈ Iα(n), the law of (Si1, Si2), given H
(n′)
i1,i2

(u, v), is as (u+S
(1)
i1−n′, u+

v + S
(1)
i2−3n′) for an independent SRW S

(1)
i . Similarly, when (
1, 
2) ∈ Iα(m), the law of

(S̃
1
, S̃
2

), given H̃
(m′)

1,
2

(ũ, ṽ), is as (ũ+ S̃
(1)

1−m′, ũ+ ṽ + S̃

(1)

2−3m′). Consequently,

F1(u, ũ) = E
[
G(u+ Si1−n′, ũ+ S̃
1−m′)

]
,

F2(u, v, ũ, ṽ) =

⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

E
[
G(u+ Si1−n′, ũ+ S̃
1−m′)

×G(u+ v + Si2−3n′, ũ+ ṽ + S̃
2−3m′)
]

if π1 = 1,

E
[
G(u+ Si1−n′, ũ+ ṽ + S̃
2−3m′)

×G(u+ v + Si2−3n′, ũ+ S̃
1−m′)
]

if π1 = 2.

Note that for some C =C(ε) finite, c = c(ε) > 0, any m ≥ nε and (
1, 
2),

(4.44) P
((

H
(m)

1

)c)≤ P
((

H
(m)

1,
2

)c)≤ 2P
(
|S2m′ | >

√
m′ logm′)≤ Ce−c(logn)2

with the same bound applying also for P((H
(n)
i1,i2

)c). Now, by (4.13) and (4.17) (at p = 1,2),

E
[
G(Si, S̃
)

]
≤ Ci−1/2
−1/2,(4.45)

E
[
G(Si1, S̃
π1

)G(Si2, S̃
π2
)
]
≤ Ci

−1/2
1 (i2 − i1)

−1/2

−1/2
1 (
2 − 
1)

−1/2(4.46)

with the LHS of (4.45) and (4.46) being the expected values of F1(·) and F2(·) according

to the joint law of the corresponding SRW increments (for independent SRW Si and S̃
). In

view of (4.44), it thus suffices to bound the maximum fluctuation of Fs(·), s = 1,2 over

|u|, |v| ≤
√

n′ logn′ and |ũ|, |ṽ| ≤
√

m′ logm′ by C(logn)2−α times the RHS of (4.45) and

(4.46), respectively. To this end, since F1(·) depends only on u − ũ and F2(·) depends only

on u− ũ and v− ṽ if π1 = 1 or on u+v− ũ and v+ ṽ if π1 = 2, we may WLOG fix ũ= ṽ = 0

and consider the maximum fluctuation of

F1(u)= E
[
G(u+ Si1−n′, S̃
1−m′)

]
,

F2(u, v)=
{
E
[
G(u+ Si1−n′, S̃
1−m′)G(v + Si2−3n′, S̃
2−3m′)

]
if π1 = 1,

E
[
G(u+ Si1−n′, S̃
2−3m′)G(v + Si2−3n′, S̃
1−m′)

]
if π1 = 2,

over |u|, |v| ≤ 3
√

n′ logn′. Further, with both nα/n′ and mα/m′ diverging (as (logn)α), it

follows that uniformly over (i1, i2) ∈ Iα(n), (
1, 
2) ∈ Iα(m) and m ≥ nε , the RHS of (4.45)

and (4.46) also bound F1(0) and F2(0,0), respectively. Consequently, it suffices to show that,

for some C finite and all |u|, |v| ≤ 3
√

n′ logn′,
∣∣F1(u)− F1(0)

∣∣≤ C(logn)2−αF1(0),(4.47)
∣∣F2(u, v)− F2(0,0)

∣∣≤ C(logn)2−αF2(0,0).(4.48)

Turning to this task, since t2 := 
2 − 
1 − 2m′ ≥ 0, t3 := i2 − i1 − 2n′ ≥ 0, G(x,y)=G(y −
x,0) and Si

(d)= −Si , we can further simplify the functions Fs(·) to be

F1(u)= E
[
G(St1, u)

]
,

F2(u, v)=
{
E
[
G(St1, u)G(St1+t2+t3, v)

]
if π1 = 1,

E
[
G(St1+t2, u)G(St1+t3, v)

]
if π1 = 2,
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where t1 = i1 + 
1 − n′ −m′. Denoting by pj (u) := P(Sj = u), it is easy to check that

(4.49) F1(u) =
∑

j0>t1

pj0
(u), F2(u, v)=

∑

j1,j2

pj1
(u)pj2

(v),

where the sum is over j1 > t1 and j2 > t1 + t2 + t3 in case π = 1, and over j1 > t1 + t2,

j2 > t1 + t3 when π1 = 2. By the local CLT for the SRW on Z
4, we have for some C <∞ that

∣∣∣∣
pj (u)+ pj+1(u)

pj (0)+ pj+1(0)
− 1

∣∣∣∣≤
C|u|2

9j
≤ Cn′

(
logn′

)2
t−1
1 ≤ 2C(logn)2−α

throughout the range of parameters considered here (utilizing the fact that j0, j1, j2 ≥ t1 ≥
nα/2). The same bound applies with v instead of u, and plugging these bounds in (4.49)

results with (4.47)–(4.48), thereby completing the proof of the lemma. �

PROOF OF LEMMA 4.3. First, observe that g of (4.40) can be written also as

g = g0 − g1 − g2 + ĝ2
n,αĝ2

m,α,

g0 := gn,α(i1)g̃m,α(
π1
)gn,α(i2)g̃m,α(
π2

),

g1 := gn,α(i1)g̃m,α(
π1
)ĝn,αĝm,α,

g2 := ĝn,αĝm,αgn,α(i2)g̃m,α(
π2
).

Proceeding to show (4.23), note that gn,α(i) and g̃m,α(
) are measurable on Fi := (Si+j −
Si, j ∈ (−n′, n′]), n′ := n2α , and F̃
 := (S̃
+j − S̃
, j ∈ (−m′,m′]), m′ = m2α , respectively.

Further, when (i1, i2) ∈ Iα(n) and (
1, 
2) ∈ Iα(m), under the event H
(n′)
i1,i2

(u, v)∩H̃
(m′)

1,
2

(ũ, ṽ)

the law of G of (4.41), given Fi1 , Fi2 , F̃
1
and F̃
2

, is determined by H
(n′)
i1,i2

(u, v) ∩
H̃

(m′)

1,
2

(ũ, ṽ). Thus, for s = 0,1,2, and any such (i1, i2), (
1, 
2),

E[gsG1
H

(n′)
i1,i2

(u,v)∩H̃
(m′)

1,
2

(ũ,ṽ)
] = E

[
gs1

H
(n′)
i1,i2

(u,v)∩H̃
(m′)

1,
2

(ũ,ṽ)
E
[
G|H (n′)

i1,i2
(u, v)∩ H̃

(m′)

1,
2

(ũ, ṽ)
]]

.

With gs ≥ 0 and E[gs] = ĝ2
n,αĝ2

m,α , whenever (i1, i2) ∈ Iα(n) and (
1, 
2) ∈ Iα(m), we get,

from (4.43) (of Lemma 4.4), that, for some universal C < ∞,
∣∣E[gsG1

H
(n)
i1,i2

∩H̃
(m)

1,
2

] −E[gs1
H

(n)
i1,i2

∩H̃
(m)

1,
2

]E[G]
∣∣

≤
∑

|u|,|v|≤
√

n′ logn′,
|ũ|,|ṽ|≤

√
m′ logm′

E[gs1
H

(n′)
i1,i2

(u,v)∩H̃
(m′)

1,
2

(ũ,ṽ)
]

×
∣∣E

[
G|H (n′)

i1,i2
(u, v)∩ H̃

(m′)

1,
2

(ũ, ṽ)
]
−E[G]

∣∣

≤ C(logn)2−αĝ2
n,αĝ2

m,αE[G].(4.50)

In addition, with gs ∈ [0,1], G uniformly bounded and (logm)/(logn) ≥ ε, we have from

(4.44) that

E[gsG1
(H

(n)
i1,i2

∩H̃
(m)

1,
2

)c
] +E[gs1

(H
(n)
i1,i2

∩H̃
(m)

1,
2

)c
]E[G] ≤ C1

(
P
((

H
(n)
i1,i2

)c)+ P
((

H
(m)

1,
2

)c))

≤ 2Ce−c(logn)2

.(4.51)

Combining (4.50) and (4.51) for s = 0,1,2, we thus find for the zero-mean

g = g0 − g1 − g2 + ĝ2
n,αĝ2

m,α
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that, uniformly over π , (i1, i2) ∈ Iα(n) and (
1, 
2) ∈ Iα(m),

∣∣E[g · G]
∣∣≤

2∑

s=0

∣∣E[gsG] −E[gs]E[G]
∣∣

≤ 3C(logn)2−αĝ2
n,αĝ2

m,αE[G] + 6Ce−c(logn)2

.(4.52)

Further, as |g| ≤ 1, we have from (4.13) and (4.17) at p = 2 that, for some C2 < ∞ and

uniformly over all (i1, i2) ∈ [1, n]2, (
1, 
2) ∈ [1,m]2,

∣∣E[g · G]
∣∣≤ E[G] ≤ C2(i1 ∧ i2)

−1/2|i2 − i1|−1/2
+ (
1 ∧ 
2)

−1/2|
2 − 
1|−1/2
+ .(4.53)

Next, note that from (4.37) we have, for some C3,C < ∞,

ĝ2
n,αĝ2

m,α

∑

π

∑

(i1,i2)∈[1,n]2,
(
1,
2)∈[1,m]2

E[G]

≤ C3

(logn)2(logm)2

∑

1≤i1≤i2≤n

1≤
1≤
2≤m

i
−1/2
1 |i2 − i1|−1/2

+ 

−1/2
1 |
2 − 
1|−1/2

+

≤ Cnm

(logn)2(logm)2
.

With the right-most term of (4.52) being o(n−5), it follows that the overall contribution to the

right side of (4.39) from i1, i2 ∈ [nα, n− nα] with |i2 − i1| ≥ nα and 
1, 
2 ∈ [mα,m− mα]
with |
2 − 
1| ≥ mα is at most O(nm(logn)−2−α), as specified in (4.23). Further, the sum

over the RHS of (4.53) under any of the following three restrictions:

|i2 − i1| < nα, i1 ∧ i2 < nα, i1 ∨ i2 > n− nα,

is at most O(nm
√

nα/n) = O(nm(logn)−α/2). With (logm)/(logn) ≥ ε, this applies also

when summing the RHS of (4.53) under each of the analogous restrictions |
2 − 
1| < mα ,


1 ∧ 
2 < mα or 
1 ∨ 
2 > m−mα . As α/2 < 2 + α, we have thus established (4.23).

Turning to (4.22), we similarly have from (4.42) of Lemma 4.4 that for some C < ∞ and

c > 0, uniformly over m ∈ [nε, n], i ∈ [nα, n− nα] and 
 ∈ [mα,m−mα],

E
[
gn,α(i)g̃m,α(
)G(Si, S̃
)

]
≤
[
1 +C(logn)2−α]ĝn,αĝm,αE

[
G(Si, S̃
)

]
+ 2Ce−c(logm)2

≤ C(logn)−2i−1/2
−1/2 + 2Ce−c(logm)2

(4.54)

(using in the latter inequality also (4.37), (4.13) and (4.17) at p = 1). As logm ≥ ε logn, the

sum of the RHS of (4.54) over i ≤ n and 
 ≤ m is at most as specified (i.e., O(
√

nm(logn)−2).

Further, even when i < nα or 
 < mα or i > n − nα or 
 > m − mα , we still get the bound

Ci−1/2
−1/2 on the LHS of (4.54). The sum of i−1/2
−1/2 subject to any one of the latter four

restrictions is at most O(
√

mαn) = O(
√

nm(logm)−α/2), which is as required (for α > 4).

Finally, recall that, for some C, C3 finite and all m,n ∈N,

EYm,n ≤
n∑

i=1

m∑


=1

E
[
G(Si, S̃
)

]
≤ C3

n∑

i=1

m∑


=1

i−1/2
−1/2 ≤ C
√

nm,

as claimed. �
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4.2. The upper bound in the limsup-LIL. As in case of the capacity limsup-LIL lower

bound, we adapt here the relevant element from the proof of the limsup-LIL of |Rn| and SRW

Z
2, namely [11], Prop. 4.1. To this end, we first establish a key approximate additivity for

ϕn := ERn.

LEMMA 4.5. There exists c′ finite, such that, for any a, b ∈N,

0 ≤ ϕa + ϕb − ϕa+b ≤ c′
α1/4(a + b)

(log(a + b))2
,(4.55)

where ϕn := ERn and α := min(a, b)/(a + b).

PROOF. Starting at the expected value of (4.1), we get by the same reasoning we have

used in deriving (4.26) that

0 ≤ E[V0,a,a+b] = ϕa + ϕb − ϕa+b ≤ 2E

a∑

i=1

b∑


=1

ga,α(i)G(Si, S̃
)g̃b,α(
) = 2EYa,b.

Assuming WLOG that a ≤ b, it thus suffices to verify that EYa,b ≤ Ca1/4b3/4/(logb)2 (yield-

ing (4.55) for some c′(C) < ∞). Indeed, for a ≥
√

b, this follows from (4.22), whereas if

a <
√

b, then even the bound EYa,b ≤ C
√

ab, which we have from Lemma 4.3, suffices. �

Recall (4.1) that Ra+b − Ra − Rb ◦ θa = −V0,a,a+b ≤ 0 for any a, b ≥ 0. This implies

a nonrandom bound on the difference of such centered variables, yielding in terms of the

nonrandom c′ of Lemma 4.5 the upper bound

Ra+b −Ra −Rb ◦ θa ≤ c′
(

min(a, b)

a + b

)1/4 (a + b)

(log(a + b))2
.(4.56)

Utilizing (4.56), we next establish sharp tail estimates for maxj≤n{Rj } (in particular, improv-

ing upon [18], Lemma 2.5).

LEMMA 4.6. For some c > 0, C < ∞ and all n,

E
[
ecD(n)]≤ C, D(n) := (logn)2

n
max

0≤j≤n
{Rj }.(4.57)

PROOF. Note that (4.57) matches the statement of [11], (4.4), for Gj := Gn
j :=

(logn)2

n
Rj ,

j ≤ n. It is easy to check that the proof of [11], (4.3) and (4.4), applies verbatim for any

variables {Gj } that satisfy [11], (4.5) and (4.6), and, furthermore, that their argument applies,

even if the power α1/2 on the right-most term in [11], (4.5), is replaced by α1/4. Indeed, this is

what we have here, with (4.56) yielding that, for some nonrandom c1 < ∞ and all a ≤ j ≤ n,

Gn
j −Gn

a ≤ Gn
j−a ◦ θa + c1

(
a

j
∧ j − a

j

)1/4

.

To finish the proof note that, for some c2 <∞ and all a, b ≥ 0, we get from [6], Cor. 1.5, that

E
[
(Rb ◦ θa)

2]≤ c2b
2

(logb)4
hence E

[(
Gn

j ◦ θa

)2]≤ c2
j2(logn)4

n2(log j)4
,(4.58)

which is precisely [11], (4.6). �
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For the limsup-LIL upper bound, by Borel–Cantelli it suffices to show that, for any q > 1,

γ > 0 and ε > 0,

(4.59)
∑

i

P

(
(logm)2

m
max

ri−1<
≤ri
{R
} ≥

(
π2

8
+ 2ε

)
k log k

)
< ∞,

where ri = qi , k = 2p for p = [(logγ + log3 ri)/ log 2] and m = �ri/k�. Now, considering

(4.2) for nj = jm, j < k′ and nk′ = 
, it follows from (4.55) that

(4.60)
(logm)2

m
max

(k′−1)m<
≤k′m
{R
} ≤

k′∑

j=1

D
(m)
j + (logm)2

m

(
k′ϕm − ϕk′m

)
+ c′,

where D
(m)
j are i.i.d. copies of D(m) of Lemma 4.6. With k′ 
→ (k′ϕm − ϕk′m) nondecreasing

and D(m) ≥ 0, the maximum over k′ ≤ k of the RHS of (4.60) is attained at k′ = k. Further,

en route to (4.33), we showed that, as p = o(logm) →∞,

(4.61)
1

k log k

(logm)2

m
(kϕm − ϕkm) → π2

8
.

Thus, noting that (4.57) results with

P

(
k∑

j=1

D
(m)
j ≥ εk log k

)
≤ Cke−εck(logk),

which is summable over i for our choice of k = γ log i, we have established (4.59) and

thereby completed the proof of the limsup-LIL.

4.3. Nonrandom and positive liminf-LIL. Setting hereafter h̃4(n) := n(log2 n)/(logn)2,

we first show that the [−∞,∞]-valued,

c
 := − lim inf
r→∞

{
Rr

h̃4(r)

}
,

is nonrandom. Indeed, recall (2.6) that Cap(Rr) − Cap(R[k, r]) ∈ [0, k]. Thus, for any k fi-

nite, changing Rk without altering Sk yields at most a difference of k in the value of Cap(Rr),

implying by the Hewitt–Savage zero-one law that c
 is nonrandom.

Turning next to show that c
 > 0, it suffices to establish this for the subsequence rj+1 =
rj +2nj , where nj := 2j2

, r0 := 0 and we proceed to show that infinitely many −Rrj+1
are at

least of O(h̃4(nj )), due to heavy tails of the nonnegative variables V0,n,2n/h̃4(n). Specifically,

setting Qn := |R(0, n] ∩R(n,2n]|, we have from [6], Prop. 1.6, that

(4.62) V0,n,2n ≥ 2 inf
j,
∈[1,2n]

{
G(Sj , S
)

}
RnRn,2n −Qn.

Recall from [24], Section 3.4, that EQn ≤ C0 logn for some C0 < ∞ and all n. Hence, by

Markov’s inequality

P
(
Âc

n

)
:= P

(
Qn ≥ (logn)3)≤ C0(logn)−2.(4.63)

Further, recall [6], (1.4) and Cor. 1.5, that ERn ≥ n/(logn) and Var(Rn) ≤ C1n
2/(logn)4 for

some C1 < ∞ and all n large, in which case, by Markov’s inequality,

P

(
Rn ≤

n

2 logn

)
≤
(

2 logn

n

)2

Var(Rn) ≤
4C1

(logn)2
.
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Consequently, by the union bound,

P
(
Ac

n

)
:= P

(
min(Rn,Rn,2n)≤

n

2 logn

)
≤ 8C1(logn)−2.(4.64)

Next, from (4.13) we have that

Fk,m :=
{

max
j≤2km

|Sj | ≤
√

m
}

=⇒ inf
j,
∈[1,2km]

{
G(Sj , S
)

}
≥ (4Cm)−1.

Setting c = 1/(10C), it thus follows from (4.62) that for all n = km ≥ n′(C), on the event

Gn := Fk,m ∩ Ân ∩An,

V0,n,2n ≥
2

4Cm

(
n

2 logn

)2

− (logn)3 ≥ cnk

(logn)2
.

Similarly to our derivation of the LHS of (4.36), it follows from the invariance principle

that P(Fk,m) ≥ ck
2 for some c2 > 0 and any k,m ≥ 1. By (4.63)–(4.64) this implies in turn

that P(Gn) ≥ 1
3
ck

2 for k = 2p = [γ log2 n], provided γ ′ := γ log(1/c2) < 2 and n ≥ n′. To

summarize, we have that, for c′ = cγ > 0 and all n ≥ n′,

P
(
V0,n,2n ≥ c′h̃4(n)

)
≥ (logn)−γ ′

.

The same applies for the mutually independent {Vrj ,rj+nj ,rj+1
}; hence, upon fixing γ ′ < 1/2,

we get by the second Borel–Cantelli lemma that a.s.,

(4.65) lim sup
j→∞

{
h̃4(nj )

−1Vrj ,rj+nj ,rj+1

}
≥ c′ > 0.

Now, as in (4.24), for any r ≥ 0, n≥ 1,

Rr,r+2n = 2ϕn − ϕ2n +Rr,r+n +Rr+n,r+2n − Vr,r+n,r+2n.(4.66)

Considering (4.31) for p = 1 (i.e., k = 2), we see that, as n →∞,

(logn)2

n
[2ϕn − ϕ2n] ≤

(logn)2

n
E
[
χ2n(1,1)

]
→ π2 log 2

4
.(4.67)

Further, recall (4.59) that, for any δ > 0,
∑

j

P
(
Rnj

≥ (1 + δ)h4(nj )
)
< ∞.(4.68)

The same applies, of course, also for Rnj
◦ θ rj and Rnj

◦ θ rj+nj , so with h4(n)/h̃4(n) → 0,

we deduce from (4.65)–(4.68) (at n= nj and r = rj ) that a.s.,

lim inf
j→∞

{
Rrj ,rj+1

h̃4(nj )

}
≤− lim sup

j→∞

{
h̃4(nj )

−1Vrj ,rj+nj ,rj+1

}
≤−c′.

Now, from (4.56) (at a = rj , b = 2nj ),

Rrj+1
≤ Rrj +Rrj ,rj+1

+ c1rj+1

(log rj+1)2
,

and since rj+1 ≤ 3nj , dividing by h̃4(nj ) and taking limits yields that

−3c
 ≤ lim inf
j→∞

{
h̃4(nj )

−1Rrj+1

}
≤−c′ + lim sup

j→∞

{
h̃4(nj )

−1Rrj

}
.

The last term is a.s. zero (as (4.68) applies also for {rj } instead of {nj } and h4(n)/h̃4(n) → 0),

so we conclude that c
 ≥ c′/3 > 0.
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4.4. Finiteness of the liminf-LIL. We show that c
 ≤ co < ∞ by following the proof of

the upper bound of [10], Theorem 1.7, (on the liminf LIL of |Rn| in Z
2), while replacing [10],

Theorem 1.5, and [10], Lemma 10.3, respectively, by

sup
n

{
(logn)(log2 n)2P

(
−Rn > coh̃4(n)

)}
< ∞,(4.69)

sup
n

{
(logn)2P

(
max

n/q0≤k≤n
(Rn −Rk) > εh̃4(n)

)}
< ∞,(4.70)

holding for some co <∞, any ε > 0 and some q0(ε) > 1.

Similarly to |Rn|, the capacity is subadditive (see (4.1)) and upon centering satisfies (4.56),

which is the analog of [10], (10.2). Thus, the bound (4.70) follows, as in the proof of [10],

Lemma 10.3, now using (4.57) to arrive at [10], (10.14), and to bound the RHS of [10],

(10.15)).

Since |Rn −Rn′ | ≤ |n− n′|, it suffices to prove (4.69) only for some {ni} such that ni+1 −
ni = o(h̃4(ni)). We take here all integers of the form n = mk, k = 2p , p = [(log2 n)/ log 2]
(thus with gaps of size k = O(logn) = o(h̃4(n))). Setting such values and n′u := 2−un for

1 ≤ u ≤ p, we have as in (4.24), now using an alternative expression for �n,k of (4.2), that

−Rn = �n,k −
k∑

j=1

U j , �n,k =
p∑

u=1

2u−1∑

j=1

V(2j−2)n′u,(2j−1)n′u,2jn′u,(4.71)

with k i.i.d. copies {U j } of Rm and the i.i.d. variables {V(2j−2)n′u,(2j−1)n′u,2jn′u} per fixed

u ≥ 1. Since Var(Rm) ≤ C1m
2/(logm)4, it follows by Markov’s inequality that

P
(
−

k∑

j=1

U j ≥ εcoh̃4(n)
)
≤
(
εcoh̃4(n)

)−2 C1km2

(logm)4
≤ 2C1

(εco)2k(log2 n)2
.(4.72)

Setting co > (1− ε)−1c−1
1 , we arrive at (4.69) out of (4.71), (4.72) and the following lemma.

LEMMA 4.7. For some c1 > 0 and any λ > 0,

lim sup
n→∞

1

log2 n
logP

(
�n,k ≥ λh̃4(n)

)
≤−c1λ,(4.73)

where �n,k are as in (4.3) for k = 2p and p = [(log2 n)/ log 2].

We note in passing [18], Lemma 2.6, which is somewhat related to Lemma 4.7. The proof

of Lemma 4.7 relies in turn on our next result.

LEMMA 4.8. Set p = [(log2 n)/ log 2] and for any r ∈ N, the partition I
(r)
i := ((i −

1)r, ir] of N. Consider for n′u := 2−un and each 0 ≤ u≤ p, the i.i.d. variables

α
(n′u)

j := 1

n

∑

i∈I
(n′u)

2j−1

∑


∈I
(n′u)

2j

G(Si, S
), 1 ≤ j ≤ 2u−1.

Then for some c2 > 0,

sup
n∈N

E
[
ec2�n

]
< ∞, �n :=

p∑

u=1

2u−1∑

j=1

α
(n′u)

j .(4.74)
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PROOF. With the SRW having independent and symmetric increments, one easily verifies

that α
(n′u)

1

(d)= 2−uXn′u for Xn of Lemma 4.1. Consequently, from (4.4) and (4.5), we know that

ϕ(λ) := sup
u,n∈N

E
[
exp

(
λ2uα

(n′u)

1

)]
≤ 1 + cλ2 <∞(4.75)

for some c < ∞ and all λ > 0 small enough. The uniform MGF bound of (4.74) then follows

as in the proof of [26], Theorem 1 (see Page 177 of [26]), upon setting α0 = α
(n′0)
1 , c2 =

b∞ > 0 of [26] and noting that (4.75) suffices in lieu of both [26], Lemma 2, and the scale

invariance of [26], property (ii). �

PROOF OF LEMMA 4.7. For u ≤ p, consider the i.i.d. variables Wu,j := W (n′u) ◦
θ(2j−2)n′u , with

W (m) :=
∑

i,
∈[1,m]
gm,α(i)G(Si, S
+m)gm,α(
) ◦ θm

having the law of W1 of (4.26) and their (i.i.d.) approximations W u,j := nĝ2
n′u,αα

(n′u)

j (for

gm,α(·) and ĝm,α of Lemma 4.3). Setting

Zu :=
2u−1∑

j=1

Wu,j , Zu :=
2u−1∑

j=1

W u,j ,

it follows by Cauchy–Schwarz and (4.23) that, for some C < ∞, any u ≤ p and all n,

(4.76) E
[
(Zu −Zu)

2]≤ 22(u−1)E
[
(Wu,1 −Wu,1)

2]≤ Cn2(logn)−α/2.

In particular, taking α > 8 + 2c1λ yields, by the union bound and Markov’s inequality that

for any ε > 0,

P
( p∑

u=1

(Zu −Zu) ≥ εh̃4(n)
)
≤

p∑

u=1

P
(
Zu −Zu ≥ εp−1h̃4(n)

)

≤ Cp3(εh̃4(n)
)−2

n2(logn)−α/2 ≤ C′ε−2(logn)−c1λ.(4.77)

We also find for our choice of k (see (4.61)) that

E�n,k =
π2

8
h̃4(n)

(
1 + o(1)

)
.

Similarly to (4.26), we have that V(2j−2)n′u,(2j−1)n′u,2jn′u ≤ 2Wu,j for any u, j . In view of

(4.71) and (4.77), it thus suffices to establish (4.73) with �n,k replaced by

2

p∑

u=1

Zu −
π2

8
h̃4(n),

which in view of (4.37) and the definition of �n can be further replaced by

π2

8

n

(logn)2

((
π2

4
+ o(1)

)
�n − log2 n

)
.

Moreover, by (4.76)
∣∣∣∣∣E

p∑

u=1

Zu −E

p∑

u=1

Zu

∣∣∣∣∣≤ O

(
pn

(logn)α/4

)
= o

(
h̃4(n)

)
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and combining [6], Lemma 6.5, with the considerations as in (4.44) and after (4.54), we

deduce that, for large m,

2E
[
W (m)]=

(
1 + o(1)

)
E[V0,m,2m].

It then follows that

2

p∑

u=1

EZu =
(
1 + o(1)

)π2

8
h̃4(n),

and consequently,

π2

4
E�n =

(
1 + o(1)

)
log2 n.

Thus, it suffices to establish (4.73) with �n,k replaced by

π4

32

n

(logn)2
�n,

which in turns follows from (4.74), upon setting c1 = 32π−4c2 > 0. �

5. LIL for SRW on Z
d , d ≥ 5: Proof of Theorem 1.4. Since Rn for the SRW on Z

d ,

d ≥ 5, has similar structural properties to the size of the range of the SRW on Z
d−2, we

establish Theorem 1.4 by adapting the proof in [11], Section 3, for the LIL of the latter

sequence. Specifically, setting ρn :=
√

n logn when d = 5 and otherwise ρn :=
√

n, we have

from [31], Theorem A, in case d = 5, and from [5], Lemma 3.3, when d ≥ 6, that

(5.1) lim
n→∞

1

ρn

‖Rn‖2 = σd .

Next, recalling for integers 0 ≤ a ≤ b ≤ c, the notations of (4.1),

(5.2) Ra,b := Cap(R(a, b]), Va,b,c := Ra,b +Rb,c −Ra,c ≥ 0,

we proceed with the following variant of [5], Lemma 3.2.

LEMMA 5.1. For any 0 ≤ a < b, set

Ṽa,b := sup
t≥b

{Va,b,t }, V̂a,b := sup
s≤a

{Vs,a,b}.

Then for some Cd,
 finite, any 
 ≥ 1 and all a < b,

E
[
Ṽ 


a,b

]
≤ Cd,
fd(b − a)
, E

[
V̂ 


a,b

]
≤ Cd,
fd(b − a)
,(5.3)

where

f5(n)=
√

n, f6(n) = logn, fd(n) = 1 ∀d ≥ 7.

PROOF. By the shift invariance of the SRW, we may WLOG set a = 0. Further, in view of

[6], (2.9) and (2.11), for a fixed set A, the function

B 
→ Cap(A)+ Cap(B)− Cap(A∪B)

is nondecreasing (and bounded above by Cap(A)). In particular, the value of Ṽ0,n is attained

for t →∞. Thus, from [5], Prop. 1.2, we arrive at

(5.4) Ṽ0,n ≤ 2
∑

x∈Rn

∑

y∈R(n,∞)

G(x,y)
d= 2

∑

x∈Rn

∑

y∈R̂∞

G(x,y),
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where R̂∞, denotes the range of an independent SRW. Similarly, the value of V̂0,n is attained

at s → −∞, with the right side of (5.4) also bounding V̂0,n (we then have R(−∞,0] in-

stead of R(n,∞) in (5.4)). Thereafter, adapting [5], Section 3.1, yields (5.3). Indeed, with

p2k(x, y) := P x(S2k = y) the square of a transition probability, we have as in the proof of

[5], Lemma 3.1, that, for even k ≥ 0 and any a ∈ Z
d ,

sa :=
∑

x,y∈Zd

G(0, x)G(0, y)pk(x, y + a) ≤ s0.

In case of a lazy SRW, this applies for any k ≥ 0, so summing over k ≤ n yields that

max
a∈Zd

{ ∑

x,y∈Zd

G(0, x)G(0, y)Gn(x, y + a)

}

=
∑

x,y∈Zd

G(0, x)G(0, y)Gn(x, y)

=
∑

x,y∈Zd

Gn(0, x)G(0, y)G(x, y)≤ Cdfd(n),

(5.5)

where we have utilized [5], (3.4), for the latter inequality. Further, as in [5], up to an increase

of Cd value, (5.5) extends to the original SRW. Now, similarly to [5], (3.5), it follows from

(5.4) that

E
[
Ṽ 


0,n

]
≤ 2


∑

x,y

E

[

∏

i=1

Ln(xi)

]
E

[

∏

i=1

L∞(yi)

]

∏

i=1

G(xi, yi),

where Ln(x) denotes the total SRW local time at x ∈ Z
d , during time interval [1, n] (and the

same bound applies for E[V̂ 

0,n]). For 
 = 1, we thus get (5.3) out of (5.5) (as E[Ln(x)] =

Gn(0, x) and E[L∞(y)] = G(0, y)). The general case then follows by an inductive argument,

as in the proof of [5], Lemma 3.2, utilizing also that a = 0 is optimal in (5.5). �

Utilizing Lemma 5.1, we next establish the analog of [11], Lemma 3.3, for Rn.

LEMMA 5.2. For any d ≥ 5, m ≥ 3, there exists cm finite such that, for all b > a ≥ 0,

(5.6) ‖Rb −Ra‖m ≤ cmρb−a.

Further, for some c̄m finite and any λ > 0, b > a ≥ 0,

(5.7) P
(

max
n∈[a,b]

{
|Rn −Ra|

}
> λρb−a

)
≤ c̄mλ−m.

PROOF. From (5.2) we see that

V0,a,b = Ra +Ra,b −Rb ∈ [0, V̂a,b]

for V̂a,b of Lemma 5.1. In particular, for any m ≥ 3, b > a,

0 ≤ E[V0,a,b]m ≤ E
[
V m

0,a,b

]
≤E

[
V̂ m

a,b

]
≤ Cd,mfd(b − a)m = o

(
ρm

b−a

)
.

We can thus replace Rb − Ra in (5.6) by Ra,b and thereby, due to the shift invariance of

the increments, set WLOG a = 0 (whereupon Ra = 0). Hence, analogously to [11], (3.34), it

suffices for (5.6) to show inductively over 
 ≥ 1 that supn{Ln,2
} is finite for

Ln,
 :=
1

ρn

‖Rn‖
.
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The induction basis 
= 1 is merely (5.1). Further, with

lim
n→∞ρ−1

2n sup
a<2n

‖V 0,a,2n‖2
 = 0,

by the preceding decomposition, we can and shall replace R2n in the induction step by

Rn +Rn,2n
d= Rn + R̂n,

where R̂n denotes the capacity of the range of an independent second SRW. For any 
 ≥ 2, by

the induction hypothesis supn{Ln,k} are finite for all k ≤ 2(
− 1); hence,

sup
n,n′

2
−2∑

k=2

(
2


k

)
Lk

n,kL
2
−k
n′,2
−k := c
 < ∞.

Recalling that ρn ≤ 2−1/2ρ2n, we thus get similarly to [11], (3.37) and (3.38), that

L2n,2
 ≤ on(1)+
(
2−(
−1)L2


n,2
 + 2−
c


)1/(2
)

from which it follows as in [11] that supj {L2j ,2
} is finite. Finally, for any n ∈ [2j−1,2j ),

j ≥ 2, we have as in the preceding that

R2j
d= Rn + R̂2j−n − V0,n,2j .

Upon centering, taking the 2
th power and isolating the 2
th power of Rn, the preceding

identity results with

[
L2j ,2
 + oj (1)

]2
 + c
 ≥ (ρn/ρ2j )
2
L2


n,2
 ≥ 4−
L2

n,2
.

Thus, supn{Ln,2
} is finite as well, completing the induction step and thereby establishing

(5.6). Finally, we get (5.7) out of (5.6) precisely as in deriving [11], (3.39), out of [11],

(3.40). �

Recall the decomposition (4.2)–(4.3), for the independent variables Uj := Rnj−1,nj
and

any increasing {nk} starting at n0 = 0,

(5.8) Rnk
=

k∑

j=1

Uj −�nk,k, �nk,k :=
k−1∑

j=1

Vnj−1,nj ,nk
.

Centering the random variables of the preceding identity, we arrive at

(5.9) Rnk
=

k∑

j=1

U j −�nk,k

with zero-mean, independent variables U j . Proceeding to show that �nk,k has a negligible

effect on Rnk
, first recall from (5.1) that

lim
j→∞

E[U2
j ]

ρ2
nj−nj−1

= σ 2
d ,(5.10)

whereas (5.6) at a = nj−1, b = nj amounts to

E
[
|U j |m

]
≤ (cmρnj−nj−1

)m.(5.11)

In case d = 5, we take the same values of α, β < 1/2 and {nk} as in the proof of [11],

Theorem 2.1. Lemma 5.1 at 
 = 4 is then the analog of [11], (3.2), and utilizing it at a = nj−1,



LIL OF CAPACITY OF THE RANDOM WALK RANGE 1989

b = nj , j < k, we find by following verbatim, the derivation of [11], (3.9), that for some c

finite

lim sup
k→∞

|�nk,k|√
nk(lognk)β

≤ c a.s.(5.12)

Thereafter, substituting (5.12) for [11], (3.9), and (5.11) to get [11], (3.16), by the same

reasoning as in the proof of [11], Theorem 2.1, we find that a.s.,

(5.13) lim
k→∞

hd(nk)
−1[Rnk

− σdBρ2
nk
] = 0

for some one-dimensional standard Brownian motion (Bt , t ≥ 0). As shown after [11], (3.17),

(apart from replacing [11], Lemma 3.3(b), by (5.7)), the stated LIL is then a direct conse-

quence of Kinchin’s LIL for the latter Brownian motion.

In case d ≥ 6, we take {nk} again, as in the proof of [11], Theorem 2.1, except that now

this is done for the choice of α = 1. Then by Lemma 5.1, for C = Cd,2 and any 1 ≤ j < k,

Var(Vnj−1,nj ,nk
) ≤ C

(
log(nj − nj−1)

)2 ≤ C(lognk)
2.

Thus, for any β > 0 and all k, by Markov’s inequality and the definition of �nk,k (see (5.8)),

P
(
|�nk,k| ≥ n

β
k

)
≤ n

−2β
k Var(�nk,k) ≤ Cn

−2β
k k2(lognk)

2.

Since |{nk} ∩ [2
,2
+1)| ≤ 
 for any 
 ≥ 1, eventually k ≤ (lognk)
2. Hence, by the first

Borel–Cantelli lemma, we have that, for any β > 0,

lim sup
k→∞

n
−β
k |�nk,k| ≤ 1 a.s.(5.14)

We then get (5.13) by following, as for d = 5, the proof of [11], Theorem 2.1, utilizing again

(5.10)–(5.11), while having now, via (5.14) at β < 1/2, a negligible contribution at scale

ρn = √
n (instead of (5.12) and the scale

√
n logn throughout [11], (3.13)–(3.17)). Finally,

recall that nk+1 − nk ≤ nk/
 whenever nk ∈ [2
,2
+1). Hence, in view of (5.7) at m = 6 and

λ = εhd(nk)/
√

nk+1 − nk , we have that, for some cε finite, any ε > 0 and nk ∈ [2
,2
+1),

P
(

max
n∈(nk,nk+1)

{
|Rn −Rnk

|
}
> εhd(nk)

)
≤ cε


−3.

With at most 
 values of such nk , by the first Borel–Cantelli lemma, the events on the LHS

a.s. occur only for finitely many values of k and the stated LIL thus follows, as before, from

(5.13).
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