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We establish both the lim sup and the liminf law of the iterated logarithm
(L1L) for the capacity of the range of a simple random walk in any dimension
d > 3. While for d > 4, the order of growth in n of such LIL at dimension d
matches that for the volume of the random walk range in dimension d — 2,
somewhat surprisingly this correspondence breaks down for the capacity of
the range at d = 3. We further establish such LIL for the Brownian capacity
of a three-dimensional Brownian sample path and novel, sharp moderate de-
viations bounds for the capacity of the range of a four-dimensional simple
random walk.

1. Introduction and main results. Let 74 denote the first positive hitting time of a finite
set A by a simple random walk (SRW) on Z4, denoted hereafter (Sm)m=0- Recall that the
corresponding (Newtonian) capacity is given, for d > 3, by

3" PHeymo0) = lim LA
Cop) =2 Pima=o = lim 50,0

X€EA

(where G (x, y) denotes the Green’s function of the walk). The asymptotics of the capacity
R, := Cap(R,,) of the random walk range R, := {S1, ..., S,} is relatively trivial for d =2
(for then R, = %log (diamR,), see [24], Lemma 2.3.5). In contrast, for d > 3, such
asymptotics is of an on going interest. Indeed, the strong law

. Ry
lim — =«ay as.,foralld >3,
n—-oo p
is an immediate consequence of the subadditive ergodic theorem, with oy > 0 iff d > 5 (as
shown in [19]). Recall Green’s function for the d-dimensional Brownian motion

a d/2 22 L'x_y|_1 d=37
1.1)  Ggx,y) ;:fo (Qrr)~4/2e b0 gy = ) 27 |
—lx =yl d=4,

and the corresponding Brownian capacity of D C R¢,

Capy (D)™ 1= inf{ [ [ G5t yn@onn : wwo) = 1}.

More recently, Chang [12] showed that, for d = 3,

B 2y 1 capy(B10. 1)
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whereas Asselah et al [5] showed that in this case further, for some C finite,
C~'\/n <E[R,] <Cy/n.

We denote throughout by X the centering X = X — E[X] of a generic random variable X.
In higher dimensions d > 4, the centered capacity R,, converges after proper scaling to a
nondegenerate limit law, which is Gaussian iff d > 5 (see [6] for d =4 and [5, 31] for d > 5).
For d > 5, estimates of the corresponding large and moderate deviations are provided in [2]
(but they are not sharp enough to imply a LIL), while the central limit theorem (CLT) is further
established in [16] for R, and a class of symmetric «-stable walks, provided d > 5«/2. We
note in passing that similar questions for critical branching random walk on Z¢, conditioned
to have total population 7, have also been studied in [7-9].

In view of these works, a natural question, which we fully resolve here, is to determine
the almost sure fluctuations of n — R, for the SRW, in the form of some LIL (possibly after
centering R, when d > 4). Specifically, using hereafter log, a =log(log,_; a) for k > 2, with
log, a for the usual logarithm, here is our first main result about the SRW in 73.

THEOREM 1.1. For d =3, almost surely,

(1.2) lim sup =1, liminf —— =1,
n—oo h3(n) =0 hi(n)

where

(1.3) h3z(n) =

6 . 672
\/9_7[ (logyn) ' /nlog,n, hi(n) := \/_9” Jn(log,n)~ 1.

Utilizing (3.21), we also get from Theorem 1.1 the following consequence about the Brow-
nian capacity of the 3-dimensional (Brownian) sample path.

COROLLARY 1.2. Ford =3, almost surely,
i Capg(BIO.n)) - Capj(BIO. n])
imsup ——— =1, iminf ———— =
n— 00 3\/§h3(l’l) n—0o0 3\/_h3(n)

REMARK. From the variational characterization of Capg(B[0,n]) and with wu(-) the
push-forward of the uniform law on [0, n] by the Brownian path ¢ — B;, we get that

7TI’l2

n t . )
mffo dt/O |B; — Bs| "' ds =: ([0, n]%).

It thus follows from the lim sup-LIL of [13], Theorem. 1.2, for 5 ([0, n]2<), that almost surely,
B
limint SP8BO) _ 3V3
n=0o0  3./3h3(n) 8/ 21p
where p is given by [13], formula (1.15) ford =3,0 =1, ¥ (1) = A2/2.

We next provide the LIL for the centered capacity R, of the range, first in case of the SRW
on Z* and then for SRW on Z4, d > 5.

THEOREM 1.3. For d =4, almost surely,

(1.4) lim sup =1, liminf < =—1,

n—oo hq(n) n—00 hd(n)
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where for some nonrandom 0 < ¢, < 00,

b4 n10g3n ha(n) = c nlog,n

(15) h4(n) = 8 (1 )2, . *(l()g—n)z‘

THEOREM 1.4. For any d > 5, the LIL-s (1.4) hold almost surely, now with

(1.6) hg(n) = fzd(n) = ad\/2n(1 + l{g=sylogn)logrn, d =35,

where the nonrandom, finite 03 > 0 are given by the leading asymptotic of var(R,) (c.f. [31],
Theorem A, for o5 and 5], Theorem 1.1, for o4, d > 6).

REMARK 1.5. Our proof of Theorem 1.4 via Skorokhod embedding also yields
Strassen’s LIL for the a.s. set of limit points in C ([0, 1]) of the functions {¢t — hy4 (n)"'Rin},
for any d > 5.

REMARK 1.6. The moment generating function of the limit in law of —((logn)*/n)R,,,
for the SRW on Z?, blows-up at a finite, positive A. The value of A is identified in [13], Theo-
rem 1.3. In Lemma 4.6 we establish the uniform in #» boundedness of the moment generating
function of —((log n)? /n)R,, for a small enough argument.

We note that R, ~ nE[P S (Tr, = 00)] at any fixed n > 1 and d > 3, where P and 74
denote the law and the first hitting time by an i.i.d. copy of the SRW. Similarly, the volume
of R, in any dimension (d > 1) is approximately n P (79 > n). It has been observed before
(see, e.g., [5], Section 6) that the typical order of growth of E [PS"/2 (T, =00)] atany d >3
matches that of P(tg > n) at d’ =d — 2, yielding the same order of growth in n for R, at
d > 3 and for the volume of R,, at d’ =d — 2. In Theorems 1.3 and 1.4, our LIL for d > 4
adheres to such a match with the scale for the LIL of the volume of R, at d’ =d — 2 (see
[10, 11, 21] for the latter LIL at any d’ > 2 as well as the limit distribution results for the
volume of the Wiener sausage at d’ > 2, and the corresponding LIL at d’ > 3, in [25] and [15,
34], respectively). In contrast, this relation breaks down at the lim sup LIL for d = 3, with the
appearance of the novel factor (log; n)~! in Theorem 1.1. Nevertheless, even at d = 3, the
relevant deviations of R, are due to those in the diameter of R,,, except that the upper tails
for these two variables differ in their growth rates. Specifically, our proofs in Sections 3.1 and
3.3 yield the following (sharper) result.

PROPOSITION 1.7.  Let M, := maxi<j<p |S;|. For SRW 0fZ3 and any € > 0,
P({Ry = (1 —e)hs(m)}N{M, > (1 —e)y(n)} io.)=1,
P({R, < (1 +e)hsm))N{M, <+ ) io)=1,

where ¥ (n) :=,/(2/3)nlog, n and I,Z(n) = n\/(1/6)n(10g2 n)~1L.

We note in passing that Proposition 1.7 is a rotation-invariant result, and in particular, it
applies also under any (fixed) rotation of the SRW lattice Z3. Further, Proposition 1.7 implies
that almost surely, the limsup (resp., liminf) of R, are essentially attained simultaneously
with those for M,,, since for d = 3, almost surely,

=1

M,
(1.7) lim sup =1, lim inf —
n—oo Y (n) =00 W(n)

Indeed, by the invariance principle it suffices for proving (1.7) to show the equivalent a.s.
statement for three-dimensional Bessel process, and the latter follows by mimicking the proof
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of Chung’s one-dimensional LIL (see [14]), starting with the estimate (3.24). We note in
passing that while the scaling ¥ (n) of the upper fluctuation of M, is the same as that for a
single coordinate of our SRW, this is not true about the scaling ¥ (n), which is about the tail
probability of confining the walk to stay within an Euclidean ball in R3.

In a follow-up work, [1], Corollary 1.2, determines the value of ¢, of Theorem 1.3 in
terms of the best constant in a generalized Gagliardo—Nirenberg inequality. In contrast, the
following analog of Proposition 1.7 in case d > 4 is still open.

OPEN PROBLEM 1.8.  Consider the SRW S; = (S}, ..., 8" € Z4,d > 4. Ford' =d - 2,
let S = (S},...,8¢,0,0) and Vy(n) = (¢, ..., 8}|. Pick nonrandom 4 (n) such that
a.s.

I Vi (n)
im sup =
n—oc Ya(n)
We then conjecture that for hg(n) of Theorems 1.3—1.4 and any € > 0,

P({R, > —ham)}N{Vy(n)>1—e)yyn)}io)=1.

While we consider throughout only the discrete time SRW whose increments are the 2d
neighbors of the origin in Z?, due to sharp concentration of Poisson variables, all our results
apply also for the continuous time SRW with i.i.d. Exponential(1) clocks and up to the scaling
n+— (1 — p)n, also to the p-lazy discrete time SRW. By definition of R,, our results apply
to any random walk on a group with a finite symmetric set of generators, whose words are
isomorphic to those of the SRW (e.g., an invariance of our results under any nonrandom, in-
vertible affine transformation of the walk). We note in passing the recent work [27] on the
strong law for any symmetric random walk on a group of growth index d and the correspond-
ing CLT in case d > 6, suggesting the possibility of a future extension of our LIL-s in this
context.

Beyond the intrinsic interest in R,, its asymptotic is also relevant for the study of inter-
sections between two independent random walks (e.g., see [24], Chapter 3). Similarly, [3,
4] utilize bounds on R, to gain insights about the so-called Swiss cheese picture for d = 3.
Further, to understand Sznitman’s [32] random interlacement model, one may use moment
estimates for the capacity of the union of ranges (c.f. [12] and the references therein). Fi-
nally, the capacity equals the summation of all entries of the inverse of the (positive definite)
Green’s function matrix (see (2.2)), a point of view which [28] uses, for d = 2, to estimate
the geometry of late points of the walk.

As for the organization of this paper, we prove Theorem 1.1 in Section 3, relying on certain
relations between the capacity and Green’s function which we explore in Section 2. Our
proof of Theorem 1.1 further indicates that the lim sup-LIL is due to exceptional time where
R, has a cylinder-like shape, with one dimension being about i (r) while the other two are
O (¥ (n)/(logyn)) (see Lemma 2.1 and Section 3.2). In contrast, the liminf-LIL seems to be
due to times where the shape of R, is close enough to a ball of radius ¥ (n) to approximately
match the capacity of such a ball (see (3.31) and (3.32)).

Sections 4 and 5 are devoted to the proofs of Theorems 1.3 and 1.4, respectively. Our
proofs rely on the decomposition (4.2) of Ry, as the sum of k independent variables {U;}
which are the capacities of the walk restricted to the k parts of a partition of [1, ng], minus
some random A, x > 0 (which ties all these parts together). For any d > 5, the effect of A,
on the LIL is negligible, so upon coupling R,, with a one-dimensional Brownian motion, we
immediately get the LIL for the former out of the standard LIL for the latter. As seen in
Section 4, the situation is way more delicate for d = 4, where EA,, x = h4(n) dominates for
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a suitable slowly growing k = k, the fluctuations of the i.i.d. {U;}. The limsup-LIL is then
due to the exceptional (random) sequence {nx} where A, r = o(ha(ny)), while the liminf-
LIL is due to the exceptional {n} for which A, ; ~ fz4(nk) > E Ay, k. Indeed, whereas
Theorem 1.3 is proved via the framework developed in [11], Section 4, for the LIL for the
volume of R,, in the planar case (d’ = 2), special care is needed here in order to establish
tight control on the moderate deviations of A, ; and U; in case d =4 (c.f. Lemmas 4.1, 4.3,
4.6 and 4.7, which may be of independent interest).

2. Capacity geometry and Green’s function. The following asymptotic for the three-
dimensional capacity of cylinder-like domains (which we prove at the end of this section) is
behind the factor (log; n)~1 in the lim sup-LIL of (1.2).

LEMMA 2.1. Form=>1landr >k eN, let
Cn (€, 7) :=(Z)> N {(x1, %2, x3) s X7 4+ x5 <r%, 1 < x3 <m).

Fixb<2/3,ryp=0m), ryp Yoo IfCpy(1, 1) 2Cp 2 Ci (£, 1) for some £ < r,ﬁ, then

2.1) im —C®Cw) T
m—00 m(log(m/rm))_l 3

REMARK 2.2. In the sequel we prove a stronger result, namely, that the upper bound in
(2.1) holds as soon as C,, is contained in a union C;;, (r,,) of at most m/r,, balls B(z;, r,) of
radius r,, in Z>, of centers such that |ziv1 — zil <rpy for 1 <i <m/r, (where Cp,(1,r) is
merely one possible choice for C;;, (r)).

Indeed, in Section 3 we will see that limsup of R, is roughly attained on the event {S! >
Y (n)} for ¥ (n) of Proposition 1.7, with R,, then having approximately the shape of such C,,
for m = ¥ (n), and r,, = cm/log, n; hence, from Lemma 2.1 we find that

Ry~ Cap(Cy) ~ Tm(log(m/r)) ™" ~ Sy ) (logam) ™",

which is precisely h3(n) of Theorem 1.1.
We proceed with two lemmas relating the capacity of SRW with its Green’s function,

G(x,y)=)_ P (Si=y).
i=0

To this end, partition 2 by the last time the walk visits X = {x| # x2--- # x;}, to get that

J
(2.2) 1= Gxj,x)P*(tx =00) VI<i<j.
=1
LEMMA 2.3.  For any set X ={x1, ..., x;} and with {x;} not necessarily distinct,
(2.3) ! < Cap(X) < /

max<¢<;{>7_; G(xi, x¢)} min<¢<;{>/_, G(xi, x¢)}
PROOF. The set X of size |X| = k < j consists WLOG of distinct points X = {X1 #
X -+ # Xk}, where X, appears m, > 1 times in X (and }_,; m, = j). Though (2.3) follows

from the characterization of Cap(f( ), as in [20], Lemma 2.2(i), we proceed instead with a
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direct, short and elementary proof of these bounds. Specifically, setting v(¢) for the index of
x¢ in X and g, := (m,) "' P% (T4 = 00), we see that

k J
(2.4) Cap(X) =Cap(X) =)  P™ (13 =00) = Y _ qu(o).
v=1 =1
and moreover, summing (2.2) over i < j, we get that
ik ) j j
(2.5) J=Y.) G, 2)P (13 =00) = quey y_ G (xi, xp).

i=1v=1 =1 i=1
The bounds of (2.3) are an immediate consequence of (2.4) and (2.5). U
LEMMA 2.4. For Zy ={x1,..., X}, Zo ={Xj 41, ..., Xj;+j,} with {x;} not necessarily
distinct,
i+

minyez,\ 7z, {7507 G(xi, x))

Cap(Z1 U Z,) = Cap(Z>) +

PROOF. Since 17,uz, < 77,, it follows that

(2.6) Cap(Z1 UZy) <Cap(Za)+ Y. P (tz,uz, =0).
X€Z(\Z»

For X enumerating the distinct points in Z; U Z3, v(£), g, as in Lemma 2.3, we have that

Jit+j2
X
Z P (tz,uz, = 00) = Z vy (2,0 €21\ 22}
x€Zi\Z, =1
Jitj2 Jitj2

h+i=Y auo Y. G xe).

=1 i=1
Combining these identities with (2.6) yields the stated upper bound. [

REMARK 2.5. In particular, applying Lemma 2.4 for
Zy= U Zi, Zy = U Zi,
ie(j,J=Jl i€[l, jlu(J—j,J]
we have that, for any Zi c 74, 2j < J,
YL 1Zi|

Cap(Z1 U Z») < Cap(Z2) + — .
MiNyeZz, 2{21 Zyeii G(x,y)

PROOF OF LEMMA 2.1. By the monotonicity of A — Cap(A), it suffices to pro-
vide a uniform in £ < rf; lower bound on Cap(C,, (£, r,)) and a matching upper bound
on Cap(C;, (ri)), valid for any union C, (r,,) of at most m/r,, balls B(z;,r,) of radius
rm in Z> and centers such that |Ziv1 — zi| <1y for 1 <i <m/ry. With |C, (€, rm)| =
1+ 0(1))71mr,%,£—3, we get such a lower bound from Lemma 2.3, upon showing that for
SRW on Z3,

2.7 Y G, y) <3(L+o(D)rie > log(m/ry), Y€ <l ¥x € Cu (€, 1),
YECm (L, rm)
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Fixing b < 2/3, since the right side of (2.7) diverges in m, uniformly in ¢ < rf,’l, we can

ignore any bounded contribution to its left side. In particular, with m/r,, 1 oo and G(x, y)
2

bounded, it suffices to sum in (2.7) only over y € C;, (£, rpy) with |[x — y| > rm/ 3 > ¢ and use
the asymptotics
34 0(1) v |_1

2 Y
(e. g see [24], Theorem 1.5.4). Setting u,, = m, we have, for any v, 1 co and r €
2p-3 points y € Cy,, (€, 1) with |x — y| € [r, r + 1]; while for each
2 ¢=3 guch points in Cy, (£, ry,). Thus, taking

(2.8) Gx,y)=

23 vmrm], at most Cr
r e [UmPm, um], there are at most 27 + o(1))r;;
v K log(m/ry) yields

3 1 Umtm Um
Z G(x,y) < ;Ogg)[C/z/3 rdr—|—27rr31/ r_ldri|
(29) veCm (L,ry) T I'm UmnTm

= (3 + 0(1))1’31@_3 log(”m/(rm Um))

from which (2.7) immediately follows. Turning to upper bound on Cap(C;, (7)), take now
U = (m/ry) = and vy, 1= (m/ry,)" 1 oo for some €, — 0, splitting Cp(rm)to Q1U Q2,
where

Q) := U B(zi,rm),  Q2:= U B(zi. rm)-

P€(m,(m/rm)—um) i Wm,(m/rm)—um)

Note that C, (r,,) has at most (47/3 + 0(1))r,%1m, possibly overlapping, points. Thus, com-
bining Lemma 2.4 with the upper bound of Lemma 2.3, we get the upper bound of (2.1), once
we show that, for some §,,, — O,

(2.10) Y G, y) = @+ 8w)rylog(m/rm) Vx € O,
yeCy, (rm)
(2.11) Y G,y = @mg(m/rm) Vx € 0.
Y€Q2

Fixing x € B(z;, rm) C Q1, consider only the contribution to the LHS of (2.10) from all points

y € B(zj,rp) with |j —i| € [vy, up]. For such a pair |y — x| < (|j — i| + 3)ry, hence by

(2.8),

34 0(1)}’_1
2 "

G(x,y) > lj—il™!

’

resulting with

340(1) |B(O, rp)| o
> Gx,y)=2 > 22N T = A+ o)) Togum /vm),
T m ;
yec;l(rm) J=Um

which for our choices of u,, and v, is as stated in (2.10) (for some &,, — 0, uniformly over
x € Q). Further, Q; consists of two sets with an equal number of elements, each of diameter
at most (1 + o(1))u,, 7. Thus, we get by (2.8) that, for some ¢ > 0,

> Gx,y) =l Qalmrm) ™" Vx € 0o,

YEQ2

and (2.11) follows upon choosing ¢, — 0 slow enough so that (m/r,,)" > log(m/ry). O
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3. LIL for SRW on Z3: Proof of Theorem 1.1. To ease the presentation, we omit here-
after the integer-part symbol [-] and divide the section to four parts, establishing the lower
and then upper bounds, first for the lim sup-LIL of (1.2) and then for the liminf-LIL of (1.2).
Our proofs for the limsup-LIL are discrete in nature, relying on Remark 2.2, Lemma 2.3
and the direct evaluation of certain sharp tail probabilities for SRW. In contrast, we prove the
liminf-LIL by first replacing R, by the corresponding quantity about the Brownian capacity
of the range of the 3D Brownian motion.

3.1. The lower bound in the limsup-LIL. Recall

V() =/2/3tlogyt,  h3(t) = %W(f)(logat)_l,

of Proposition 1.7 and Theorem 1.1, respectively, and for the SRW (S,,,) on Z3, set

A; ::{St1 >y (1)}, Vi ::1AtZG(O, Se), I C[0,t]NZ.
el
The lower bound in our limsup-LIL is attained via partial sums on disjoint intervals I,, of
suitably growing length #,, and controllable Green function values (utilizing the LHS of (2.3)).
The key for this is our next lemma (whose proof is deferred to the end of this subsection),
showing that A, yields the appropriate bound on the sum Vjo ;] of Green function values.

LEMMA 3.1. Fixing § € (0, 1), for y; :=t(log, t)_1(10g3 132 and some & — 0 when
t— 00,

5t
3.1 P(V[o,y,] > (t)) <L P(A),
(1+25)1
(3.2) P<V(y,,t] = m) <& P(Ap).

Indeed, from (3.1)—(3.2) we see that, for any § > 0, there exists ¢; — 0 as t — oo such
that

(3.3) P(AY) <24 P(A)), A= {V[O,t] - (1+48) t }

2 h3(@)

Proceeding to deduce the lower bound in the limsup-LIL out of (3.3), given € > 0, we choose
g > 1large and § > 0 small; so for #, := ¢" — ¢"~! and all large n,

3.4
34) 1445

h3(t,) = (1 — €)h3(q").

n—1

We then partition Z to disjoint intervals I, :== (¢"~ ', ¢" 1 N Z of length ¢, and set the events

A= {Sp = Shaz v}, A= {‘7"(") zd +48)h3[(ntn) }

where

Vo)=Y G(Si, Sp).

Lel,

Setting

H: (i) := Et G(S;, S 1+4$ B e [1
= : >
[(l)‘ = ( 1y Z)_( )h3(t) 9 le[ ’t]’
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note that by the stationarity of the SRW increments (An, I:In (c]”_1 +1)) 4 (As,, H;,(1)). Fur-
ther, the event A, is invariant to any permutation of the SRW increments {X ;, j < ¢}, whereas,
given At, the event H;(i) depends only on {S; — S;, £ € [1, t]}. Further, the permuted i incre-
ments X = X(i+j)mod(r) result with Sg = Seq; — S; for all £ € [1,¢ — i], whereas X =
X (i+1— j)mod(r) Tesult with Sg=S8; — S;_¢ forall € €[1,i]. Since G(x, y) = G(—x, —y) > 0,
it thus follows that, conditional on A; the random sum in each of the events H, (i) is stochasti-
cally dominated by twice the random sum in the event A} of (3.3). Consequently, (3.3) yields
that

(3.5) ngx{P(ﬁn (i)|An)} < 4¢, — 0.

i€l

Next, consider the independent events G, := {|A,| > (1 — §)t,,}, where A, is the subset of
all those i € I, for which I:In (i) does not hold. From Markov’s inequality and (3.5), it follows
that

- A 1 A
G6)  P(GylAn) = P(ln] ~ |Anl = 61 An) < 5= 37 P(Hy(D)|Ay) < = 0.

n

4%,
iel, 3

Setting x () := /2log, ¢, note that (S,;l) is the partial sum of {—1, 0, 1}-valued, zero-mean,
i.i.d. variables of variance 1/3. By the asymptotic normality of the moderate deviations for

such partial sums (see [29], Theorem VIII.2.1), we have that, for some o0;(1) — 0 as t — oo,
uniformly over x/t'/6 small,

00 e—u2/2

du.
V21

(3.7) P(t/3)7128! = x) = (1 + or(1)) D(x), 6(x):=/

In particular,

P(Ap) = P(Ay,) = P((ta/3)" "8} = x(t))

= (1+0(1)B(x (1) = crx(ty) e ¥ @2 > 2
(1+o0(D)P(x(t) = c1x(ta) e N TTT]
for some positive ¢; and ¢ = c2(q). Hence, by (3.6) and for all n large enough,
1
P(G,) > P(A,NG,)> = P A
(Gn) = P( n) = sP(Ay) = o «/@
Having {G,} independent with ), P(G,) = oo, we deduce by the second Borel-Cantelli
lemma that a.s. the events G, hold for infinitely many values of n. Since
Ryr = 1{Si}ica, S Ryn

we have by the monotonicity of A +— Cap(A), the nonnegativity of G (x, y), Lemma 2.3 and
the definition of A, C I, that

A A Anlhs(t,
an 2Cap(72qn) > I n|A > I n| 3(n)'
max,-eAn{Vn (l)} (1 +48)tn

Consequently, in view of (3.4), we have on the event G,, that

Ryn

h € q ),

which since G, holds infinity often, yields the lower bound in the limsup-LIL (along the

sub-sequence ¢" and with Ryn 2 7A€qn of roughly the shape of Cy(,,) of Lemma 2.1).
Turning to the task of proving Lemma 3.1, we give two sharp tail estimates for the path of

the one-dimensional walk (S,ln) that we will use later for proving (3.1) and (3.2), respectively.
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LEMMA 3.2. Fixing § € (0, 1), for some C < oo and all t large enough,

(3.8)  sup{P(S' ,=v () —))} <CP(A),

L=<n

. ()¢

Le(y.1]

REMARK 3.3. In (3.8) we claim that the decay t — P (A;) of our moderate deviations
upper-tail event A, is within a universal factor of that for such an event with a granted (free)
upper fluctuation of v/ in the first £ < y, steps of Sc}- The event L; requires S t} to stay above
a linear slope which is 1/(1 4+ §) < 1 of the slope ¥ (¢)/t of A;. Thus, if £ — S} was a SRW
on Z, we could have applied en-route to (3.9) a ballot theorem (after conditioning on S)l/t
and Stl). It is not so here, due to the additional randomness in number of steps of the SRW
S¢ € 77 along the other two coordinate axis. We thus resort to proving (3.9) via Gaussian
approximations.

PROOF OF LEMMA 3.2. Let 1, := y;/t = (logy 1)*/?/(log, t), setting x(t, ) := (x(t) —
\/3_;")/«/1 —rforr <n; and x(¢t) = x(¢,0) := ,/2log, t. Then in view of the uniform Gaus-
sian approximation of (3.7), we get (3.8), once we show that uniformly in r < n, the standard
Gaussian measure of [x (¢, r), 00) is at most C times the Gaussian measure of [x(¢), 00). Note
that n; — 0 and x(¢#) — oo as t — 00, hence x(¢,7)/x(t) — 1 uniformly in r < n;. It thus
remains only to show that, for some C < oo and all ¢ large enough,

(3.10) inf {x(z,7)? — x(1)?} = —2log C.
r=n:
Next, our expression for x (¢, r) is such

(1= r)[xt,rN? = x(0)?] = (x()/r —3)* +3r =3> -3,

yielding (3.10) and thereby also (3.8).
Next, setting s; := jt/(log,t), we partition (y;,t] into the disjoint intervals J; =
(sj,sj+1l, J € [(logs 1)3/2, log, t). We likewise partition the events A; N L accordlng to

whether the stopping time 7, := inf{¢ > y, : S} Vi (’/{J(:gft} equals y; or, alternatively, which

E/ﬁ?)’t, and conditioning on the SRW
filtration at 7, € J;, we get by the strong Markov property (and i.i.d. increments) of the SRW

that

interval J; contains 7;. Note that if 7, > s;, then S !

P(A[ ﬂ{‘[; € J]}) Sqt(SJ,O) sup pt(t —S,O),

seJj
where
y(t)s; ) ( Y06+ )
, V)i =P (S , =pP(s > 11—~
q:(sj, ) <( = T pi(r.y) rZ T agar T
and (Sslj)Jr = Sslj V 0. The only other way for the event L{ to occur is by having
_v@One
SVt < T =: A[logzt.

Partitioning to {S;t e I;}, for I; :==[(logy t —i)A; — Ay, (logyt —i)A;) when 0 <i <log,t
and ljog,; := (—00, 0) yields that

P(A/N {S)l,, €L})<q(y, i+ AD)pi(t — yi,iAr)
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and, consequently,

P(A,NL) ZPA, Sy, € L)+ P(AN{z €}
j

§(1+log2t)[ sup {C]t()/t»)"i‘At)Pt(f—Vt»)’)}
yel0,A; log, t]

+ s g5, 0pt—s,0)].

sedj, j=(logy 1)3/?

As P(A;) = p:(t,0), we thus get (3.9), if for some ¢ — 0

¢ .
(3.11) %wﬁmm—&msb;mmm Vj > (logs )%, s € Jj,

G12) g,y +A)pit — v, y) < ljgétpt(t» 0) Vyel0,Alog,1].

Proceeding to verify (3.11) and (3.12), we rely on (3.7) to replace both ¢;(-) and p;(-) by the
Gaussian measure of the corresponding intervals. We claim that when doing so, all partial
sums appearing in (3.11) and (3.12) be at time index t > 31/ (t)/2 — oco. Indeed, note that
p:(r,y) =0 for y > 0, unless the time index r is at least §(¢)/2; whereas in all the terms
q: (-, -) that appear there, such time indices are s; > y; > ¥ (t) /2. Further, the argument x of
@ (-) in such Gaussian approximations of the probabilities g;(-) and p;(-) that appear in (3.11)

is % sj/t and %% at & = 0, respectively (where x(t) = ﬁtﬁ(t)/ﬁ). Taking

instead &; := (log, 1)t~ 1/® guarantees that all such space arguments x be uniformly of o(t'/¢).
The Gaussian approximations then hold, as in (3.7), with the same o(1) relative error for all
the terms, which we thus ignore hereafter. Note also that s/7 € [, 1) with s/t > s/t — &
for & := (log, t)~!. In conclusion, by the preceding it suffices for (3.11) to show that

—/ x(1) —f x(O)A+8—u) o —
1 - |
G19 ues[lrlzfl){q)(l +3ﬂ>¢((1 +5)m)} = 1og2tq>(x(t))

The arguments of ®(-) in (3.13) grow to infinity with ¢, uniformly over u € [, 1). Thus,
recalling that |log ®(y) + log y + y?/2| is bounded at y — oo, upon taking the logarithm of
both sides of (3.13), noting that n; > 2¢; and ignoring all the uniformly bounded terms, such
as x(¢)%¢; and logx(t) — % logs ¢, it suffices to show that, for some E, — 0ast— o0,

1 x®%*u 1 x@®*0+8—uw)? 1 |
— - — — ~logu <log¢; — ~logst.
200482 2(14+8*(0—u+é&) 2 2

[
sup 1 =x()” —
ueln:, 1) 2

With n; > &, it is easy to verify that, for any u > n;
u (1468 —u)? 1> u 82
A+82 (A+820A—-u+é&) (I—u+&)2(1+8)%

=:0;(u).

Hence, substituting x(t)?> = 2log, ¢ in the preceding, we arrive (after some algebra) at
1 ~ 1

(3.14) sup {—(10g2 1)0;(u) — Elogu} <log¢r — > logs t.

u€ln:, 1)

Since u — 6;(u) is nondecreasing, the supremum on the left side of (3.14) is attained at

u = 1n;, where for large 7 it is at most —%(10g3 1)3/2. This is more than enough for (3.14) to
hold, thereby establishing (3.11). We next turn to (3.12), where the Gaussian approximation
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of (3.7) again applies for all three probabilities, with uniform, hence negligible, o(1) relative
errors. Thus, analogously to (3.13), the bound (3.12) is a consequence of having

—( x(1) —(x(@®)(1 46 —vn) [p—
15 Uiﬁfl]{cp(l +aﬁ(v_8’)>q}< d+0vT=n >} = Jogyr T

(temporarily setting ®(x) = 1 wherever x < 0). Considering first v < 1/2, we bound the_left—
most term of (3.15) by one, and as before, take the logarithm of both sides, replace log ®(y)
by —log y — y?/2 and eliminate all uniformly bounded terms to find that (3.15) holds because

_ 2
inf { (1438 —wn) }_1> 1:8

(1+8)2(1 —ny) T 1+94

vel0, 5]

and x(t)Zn, =2(log; 132> logs t. To complete the proof of (3.15), it thus suffices (similarly
to (3.14)) to have for some {; — 0 that

(3.16) sup {—(log, 1)6;(v)} <log, —logs 1,
vell/2,1]

where, recalling that 7, > &, it is easy to check that, for any v € [%, 1],

nw—e)?  (14+8—uvn)? 782
(14 6)2 + 14820 —n) Iz6z= (1+8)2

The preceding suffices for (3.16) and thereby for (3.12), thus completing the proof. [

0;(v) :=

PROOF OF LEMMA 3.1. Starting with (3.1), note that for some C; < oo and any £ > 0,

E[GO,S0]=> P(Si=0)<Ci(1+vVO .
i={

Further, recall from (2.8) that G(0,y) < C>/(1 + |y]|) for some Cy < o0 and all y € 7.
Hence,

(3.17) E[G(O»SZ)IA,]§C2(1+\/Z)_1P(At)+ Z GO, ) P({Se=yINA)).
lyl<ve

With (Se, S, — S¢) £ (S¢, S,—¢) for SRW (S,), which is independent of (S,,), if y € Z? is such
that [y'| < [y| < /¢, then

P({Se=y}NA) < P(Se=y)P(SL, > v()—Ve).

Therefore, thanks to (3.8), for any £ < y; the right-most term in (3.17) is at most
E[G(0, SO]P(S_¢ = v () =) < C1(1 + VD' CP(A)).

We thus deduce from (3.17) that, for some C3, C4 < 00,

Vi Vi

E[Vioyl=Y>_E[G(0,S)14,] < C3P(A) Y (1 + VO™ < C4P(A) V.
£=0 £=0

Consequently, by Markov’s inequality and our choice of y;,

t
m) <0 P(A),

where our choice of y; results with ¢ := C4h3(1)/y:/(8t) — O as t — oo.

P<V[0,y,] >
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Turning to (3.2), recall our choice of y; implying that

1
> = <log(t/y) <logst.
¢
Le(yr,t]

Further, with h3(t) = (7 /3)y (¢)(log; 1)~ 1, it follows that t/(2h3(t)) = 3 (/¥ (t))(ogst).

2
Consequently, for all # large enough, the event L, of (3.9) implies, thanks ?o (2.8), that
34+0(1) 34o() ( + )1 loos f o (I +2d)1

-1
Vi< Y. G, S < oIS = (logy1) < ———.
o] 2 o] 21 Y(t) 2h3(1)

Since the same conclusion applies when A{ holds (in which case V(,, ;; = 0), we see that
(3.2) is an immediate consequence of (3.9). [

3.2. The upper bound in the limsup-LIL. Recall that R, is nondecreasing. Further, for
any t, = q", g > 1, we have that, eventually, h3(¢,)/h3(t,—1) < g. It thus suffices to prove
the upper bound in our lim sup-LIL only along each such sequence ¢, (thereafter taking g | 1
to complete the proof). To this end, fix ¢ > 1 and §,n > 0, and set m := (1 + 8)3w(tn),
with 7, = m /by, 1 00 for by, :=2n(1 4 8)%(log, t,) (50 1y == Y (£,)/2n(1 + 8)3log, 1,)).
We aim to cover R;, by the union C,(r,,) of b, balls of radius r,, each, with the centers
of consecutive balls at most r,, apart. Indeed, as shown in Section 2 (see Remark 2.2), this
would yield R, < (146 + 0(1))3h3(tn), so we then conclude by taking § | O and ¢q | 1.

Specifically, starting at Tp = 0, set the increasing stopping times

T;:=inflk > Ty : |Sk — S, | >rm— 1} Vi>1,

noting that the event {7}, > t,} implies the aforementioned containment R, < C; (ry).
Further, with exp(—(1 + 8)log, t,) < Cn~(1%% summable, upon employing the first Borel—
Cantelli lemma, it remains only to establish the following key lemma.

LEMMA 3.4. Forany q > 1 and small § > 0, there exist n > 0 and C < oo such that

(3.18) P(Ty, <ty) < Cexp(—(1 +8)logyt,) Vn.

PROOF. By the strong Markov property and the independence of increments of the walk,
we see that Tj,, is the sum of b, ii.d. copies of the first exit time 7 of the (discrete)
ball B(0, r,, — 1), by the 3D-SRW. As r,, 1 00, Skorokhod’s embedding implies (see [23],
Lemma 3.2) for some m,, c < co and ¢ > 0 (depending only on § > 0), all m > m, and
u>0,

P(Ty <u) <ce'm + PBT <u)=ce "+ P(3(1+ 8)_1r31f"1 <u),
with 7} := inf{r > 0 : |B;| > 1} the Brownian hitting time of the unit sphere S* and
T :=inf{t > 0: |B{| > rm/~/1+ 3} (so the identity above is merely Brownian scaling).

Further, here bye™"n < exp(—2log,t,) and t, = 3r2nb, with b, /(2n) = 3m?/(2t,) =
1+ 5)6(10g2 t,). It thus suffices to show that, for some n = 1(§) > 0 and all m,

b
(3.19) P(% Z fl . 77) < e—(1—6)3bm/(277)’
mi=1

where T; are i.i.d. copies of 77. To this end, covering S? by c; balls of radius § each, centered
at some 6; € S?, we have by the triangle inequality that

max{(6;, Bﬁ)} >1-3.
l
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Hence, fixing A > 0, we get upon applying Doob’s optional stopping theorem for the martin-
gale M; =) ; exp(A(6;, B;) — 121 /2) at the stopping time T that

— 27
:M():E[Mfl]ze}\(l 6)E[€ A T]/Z]‘
Consequently, by Markov’s inequality we have for any n, A, § > 0 and integer b > 1 that
(3.20) (1 ZT _ 77) < e)\ bn/ZE[ _)\ZTI/Z] ( 86)»277/2—)»(1—8))17_
i=1

Taking the optimal A = (1 —§) /9, it is easy to check that, for n < n(§) =46(1 — 8)2/(2log cs),
the LHS of (3.20) is at most exp(—(1 — 8)3b/(2n)). We thus got (3.19) for any § > 0, provided
n < n($§), thereby completing the proof. [

REMARK 3.5. One has for any § > 0 small and all ¢ large enough, the classical bound
P(max |Si| = (14 8% (1)) < Ce™(IHOlot,
1<k<t
We need in (3.18) a stronger result, since for any b, and r,,, > 1,

{max 1Sk] = b rm}C{Tbm <1y,
1<k<t,

and while b,,r,, = (1 + 8)31//(tn), our crude use of §-cover of S? in proving Lemma 3.4
requires us to also have b, /(log, t,) = 0as é§ | 0.

3.3. The upper bound in the liminf-LIL. For any A C R? and r > 0, let
Nbd(A, r) := | B(x,r)
X€A

denote the r-blowup of A. Utilizing [12], we first relate R, with a suitable Brownian capacity,
as stated next.

LEMMA 3.6. We can couple the SRW with a 3D Brownian motion (By,t > 0) such that

. R, 1
(3.21) lim =- a.s.,
n—oo Capp(B[0,n/3]) 3

and for any § € (0,1/2),
R, 1

3.22 I -
(3-22) n=00 Capp (NbA(BI0, n/3], n1/2=5)) 3

a.s.

PROOF. The results were essentially shown in [12]. Indeed, [12], (4.15), shows that
(3.21) holds when each ratio is restricted to the events E,, while it is also shown that a.s.
E,, holds for all sufficiently large n (combine [12], (4.2), with Borel-Cantelli). Hence, (3.21)
also holds without such a restriction. Turning to show (3.22), let P denote the probability
of an independent Brownian motion (f?t). Fixing 6 € (0, 1/2) and some y, € 73 such that
lyn| = n'/?*% we similarly obtain (after dispensing of events E,) that by the same argument
as in [12], (4.4), a.s. one has, for all large n,

Capp(Nbd(B[0, n/3], n'/?7?))
= (27 + o(1))n'/?*3 P(Nbd(B[0, n/31, n'/>7%) N (y, + BIO, 00)) # 2| B[O, n/3]).
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By [12], (4.13) and (4.4), a.s., the latter expression is for all n large (1 4 o(1))Capg(BI0,
n/3]). Thus,

li Capy(B[0,n/3])
im _
n—00 Cap(Nbd(B[0, n/3], nl/2-5y)
which in view of (3.21) completes the proof of (3.22). [

a.s.,

Proceeding to show the upper bound in the liminf-LIL, let r(n) := w,/n/(2log, n), that
is, r(n) = \/glﬁ (n) for 1&(-) of Proposition 1.7. Recall that by [17], Lemma 1.1, or [22] and
Brownian scaling, for some ¢ > 0 and all ¢, r > 0,

7'[21

(3.23) P( sup {|Bsl} < r) >2ce 22,
s€[0,1)

We have used in (3.23) also that the largest eigenvalue of the Dirichlet Laplacian in the

unit ball in R? is —j2, where j = Jd—2)/2,1 denotes the first positive zero of the Bessel

function of the first kind with index (d — 2)/2 and, in particular, that j; 21 = 7 (see [35], p.

490). Considering (3.23) for r =r(sy,), s, = n" and the Brownian increments in the disjoint

intervals [s,—1, s,) of length s, — s,_1, result with

(3.24) P( sup {IB— By, |} <r(sn) = cexp(—logy s,) = .
tElSn—1,87) nlogn

Thus, thanks to the independence of Brownian increments on these disjoint intervals, we get
from the second Borel-Cantelli lemma that

(3.25) P(liminf(r(s,) ! sup {IB;— By, |I})<1)=1.
(iminf(ron ™ _sup (1B =By, 1)) <1)
Further, as \/s,—1(log, s,—1) = 0(r(s,)), by Kinchin’s LIL for the Brownian motion,
(3.26) P(limsup(r(s,,)_l sup |B,|) — 0) —1.
n—00 1<Sp—1

Combining (3.25) and (3.26), we deduce that

C -1 _

P(l}lrggéf(r(sn) sup |B,|) < 1) —1.

This, of course, implies that also

L. —1 .
(3.27) P(lmgéf(r(n) sup |B,|) < 1) —1.

t<n

Recall that for any r > 0 one has that r_ICapB (B0, r)) = Capp(B(0, 1)) =27 (=« on
[33], p- 356). By (3.27) and for any € > 0, a.s. B[0,n] C B(0, (1 4 €)r(n)) for infinitely
many values of n in which case also Capp (B[0, n]) <27 (1 4 €)r(n). That is,

(3.28) P(Capg(BI[0,n]) <2n (1 +€)r(n)io.)=1.
By Brownian scaling the sequence {+/3Cap g(B[0,n/3])} has the same law as the sequence

{Capp(BI0, n])}. Thus, in view of (3.21), we can also construct a coupling so that, for any
€ > 0, we have that a.s.

(1+e¢)
R, <
< 5

for all n large enough. With r(n) = %fzg(rz), it thus follows from (3.28) that

Capy (B[O, n])

PR, <(1+ €)*hs(n) io)=1,
and taking € |, O establishes the stated upper bound in our liminf-LIL.
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3.4. The lower bound of the liminf-LIL. Fixing a > 0, we have by [33], (1.4), that, for
any f(t) 1 oo such that f(r) = o(t*/3),

(3.29) lim &10 P<|Nbd( [0, 11, )|<(I) f(t)3/2w3) —1,

where w3 denotes the volume of the unit ball (using here that the largest eigenvalue of the
Dirichlet Laplacian in the unit volume ball in R® is —w3>72). Fixing 8 € (0,1/2) as in
(3.22), Brownian scaling by time factor 3n?~! yields equality in distribution between the
sequences

INBA(BIO. n/3]. n'/27)| £ 373/232~3 Nbd(B[0. 1], 37

Thus, considering (3.29) for a = 3712t =n? and fy=010- €)3n? (log, n)~!, we arrive
at

P(INbd(B[0, n/3],n'?70)| < (1 — €)* P (n) w3)

3
= P<|Nbd(B[0, nzﬁ]’ 3_1/2)’ < (1 _ 6)2(%) (n25(10g2n)—1)3/2w3>

< Cexp(—(1 — €)~2(logy n)).

Considering n; = ¢*, we get by the first Borel-Cantelli lemma that, for fixed ¢ > 1 and
€ >0,

1/2—8
Nbd(B[0, ny/3
(3.30) liminf NedBO Sl e DL g p
i w3 (k)3
With n — |[Nbd(B[0, n/3], n'/2=%)| monotone increasing and &(qk)/xﬂ(qkfl) — lask—
oo followed by ¢ | 1, we deduce from (3.30) that

|Nbd(B [0,n/3], n'/?~ 5)|

(3.31) limin > a.s.
n—>oo 603‘#(”)3
Next, recall the Poincaré—Carleman—Szego theorem [30] that, for any r > 0,
(3.32) inf 3{C3PB (A)} =Capg(B(0,r)) =rCapg(B(0, 1)) =27r.
|Al=w;3

Recall that /23(n) = Z-4/ (n). Hence, by (3.32) for A = Nbd(B[0, n/3],n'/27%), we have in
view of (3.30) that

. CapB(Nbd(B [0,n/3],n'/?~ 3))

liminf a.s.,

which together with (3.22) yields the stated lower bound for the liminf-LIL of R, in 7.

4. LIL for SRW on Z*: Proof of Theorem 1.3. Hereafter we consider, for integers 0 <
a < b < ¢, the random variables

4.1 Ra,b = CaP(R(Cl, b)), Va,b,c = Ra,b + Rb,c - Ra,c >0.
Note that by shift invariance R, j 4 Rop—a = Rp—q and R, p is independent of Ry, . (due to

the independence of increments). In particular, for any increasing {n} starting at nop = 0, one
has the decomposition

(4.2) Ry =Y Uj—Apk

j=1



1970 A. DEMBO AND I. OKADA

in terms of the independent variables U := an_l,n i and the sum of nonnegative variables

k—1 -
(4-3) Ank,k = Z an,l,nj,nk = Z VO,nj,njH .

j=1 =1
We use different nonrandom subsequences (ny) for d =4, for d =5 and for d > 6. Also,
the subsequences used for the lim sup-LIL and for the liminf LIL-s be different. As we shall
see, for such suitable ny, the fluctuation in > j U; is negligible for the LIL-s of Theorem 1.3,
where EA,, &~ h4(ng), the limsup-LIL being due to the exceptional times with A,, =
o(E Ay, k), while the liminf-LIL is due to the exceptional times where A, ; ~ fz4(nk) >
E Ay, k. In contrast, we show in Section 5 that A, ; has a negligible effect when d > 5,
where the LIL follows the usual pattern for sums of independent variables (namely, that of
the LIL for a Brownian motion). We take a relatively small k = O (log, nx) for the lim sup-LIL
and d = 4, with larger k = O((logny)®) for the liminf-LIL and for any d > 5.

4.1. The lower bound in the limsup-L1L. We start with the statement of a key lemma
about the SRW on Z* (which is related to [13], Theorem 2.2, in the 4D Brownian motion
case).

LEMMA 4.1. Suppose (S;,) and (S’m) are two independent SRW on Z*. Let
1 ~
Xpi== Y. G(S;,So.
. eelln
Then for some C < 0o and any p,n € N,
(4.4) E[X}]=CPp!.

One immediate consequence of (4.4) is that, for any ¢ < 1/C,

4.5) sup E[eXn] < cc.
n

The proof of Lemma 4.1 follows the same scheme as that of [26], Lemma 2. However, [26]
crucially relies on an explicit representation of the moments of the Brownian self-intersection
local time via variances of linear combinations of Brownian increments. Lacking any such
tool here, our more involved proof of Lemma 4.1 relies instead on the following elementary
bounds, where (4.6)—(4.8) implies also that (4.4)—(4.5) hold for fol fol |Bs — ,8~,|_2 ds dt and
the independent, standard four-dimensional Brownian motions (Bs, s > 0), (,8~,, t > 0) (which
is an improvement over the upper bound of [6], Prop. 4.1).

LEMMA 4.2. There exists C < 00 such that, for any t > 0 and x, y € R?,

(4.6) [|,8, —x|7?] < Cmin{r7!, x| 72} < Ct V2 x 7!

(4.7) E[1B —x|7" 1B — yI7' T < 7 (x| v y) T <207 Ry — 27,
(4.8) E[IB — x| =yl ] <207 2| Ty — x| 7

Similarly, for | - |+ =|-|V 1,anyi >0and x,y € Z*,

4.9) E[|S; —x132] < Cmin{li|}!, 1x|72) < Clil P 1xl3

_ _ o —1/2 —1 —1/2 _
@.10) E[IS —x3'18 = y17' T < Clilz 2 (x 1 v Iyls) T < 2¢hil Py — X137

172

@.11)  E[IS; —xI7218 — yI7' ) < 2¢lily P Ix iy — x5
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PROOF. Denoting by ¢ (x) := (27s) 2 exp(—%) the density at x of the Gaussian law
of By, we get from (1.1) after change of variables that

E[|B: — x|7?] =27E[Gp(B:, X)] = 2”2/,00 ds(x)ds =t o1 (1x12/1) = x| 2ot/ 1x %),

for the finite decreasing functions ¢ (r) := 1 e u2e " dy, or(r) == 2f°° 2 x
e~ 1/ gy Thus, (4.6) holds for any C > (pl(O) v ¢2(0). Next, by Cauchy—Schwarz and

(4.6),

E(1B: —xI7'1B: = yI7") < (E[1B — 172D 2(E[18 — y1 722 < €7 21y 7
Exchanging x with y yields the first inequality in (4.7), whereby the second inequality follows
(as |x — y| <|x|+ |y| <2|x| V |¥]). Now, by the triangle inequality, for 8; # x # y,

|y = xl1B: = 17218 =y < 1B =17 (1B = xI7 + 1B =y 71),

so taking the expectation and using (4.6) and (4.7) to bound the RHS, results with (4.8).
With Sg = 0, clearly (4.9) holds at i = 0, while for i > 1, recall [24], Theorem 1.2.1 and
Theorem 1.5.4, that for some C finite and any x € VAR

(4.12) P(Si =x) < Ci2[e 251 4 (1x2vi) 7],
(4.13) Clx132 <G, x) < Clx |3~
By (4.13)

E[ISi —xI3*] < CE[G(S;,x)]=CY_ P(S¢ = x).
=i

Further, for some C finite and all i > 1, x € Z?,

Zz (x>ve)™ <ci™'(x? vi)™ < Cmin{i7!, |x|72).
Thus, in view of (4.12), the same computation as for (4.6) yields the first inequality of (4.9).
The second inequality of (4.9) follows (as a A b < +/ab for any a, b > 0), and since the
strictly positive | - |1 satisfies the triangle inequality on Z*, we get first (4.10) and then (4.11)
by the same reasoning that led to (4.7) and (4.8), respectively. [J

PROOF OF LEMMA 4.1. From (4.11), for any p > 2, 1 <s1 <--- <sp and {y1,...,
4

p—1
E|:l_[ |Ssl~ _Yi|_7-2|Ss,,_1 - ypl-T—l:|
i=1
pP— 5 2
= E|:1_[ |SS,‘ - yl|; |Ssp,1 - SSP,Q - (yp—l - SSP72)|+
X \S

—1
Sp—1 Ssp_z - (yp - Ssl,_z)’+ i|

12 _ — _ _
= C|sp—1 - Sp—2|+ / |)’p - yp—1|+1E|:1_[ |Ss,~ - Yi|+2|Ssp,2 - )’p—l|+1:|,
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where we set throughout so = 0 and yg = 0. Thus, by induction on p > 1,

p—1
(4.14) {1‘[|Sv, il 2185, — yp|+}<cp ‘1‘[|sl—s, iy 1‘[|y,—y, i

i=1 i=1 i=1
Next, note that by (4.9), for any p > 1,

p p—1
E|:]_[ |SS,‘ - )7i|_T_2:| :E|:H |Ssi - yi|—7-2|S51> - Sspfl - ()’p - Sspl)|+2:|
i=1

i=1
12 r
<Clsp —sp-1ly E[l‘[ 1S — Yil 2185,y — ypuﬂ.
1

Hence, setting f9 = 0, in view of (4.14) and the independence of (S;) and (S’l-),

p p p
~ —1/2 ~ P —
(415) E|:l_[|S_S, _Sti|+2] Scpl_[|Sj—Sj_1|+ / E|:1_[|St, _Sl‘,'1|+1:|'
i=1 i=1 i=1
Suppose that 7, (1) < - - - < t5(p) for some permutation o of {1, ..., p}. Then conditioning on
(Si,i < ls(p—1)), We get by (4.10) and the independence of increments that, when o (p) = ¢,

p
E[]‘[ 1S, — St,.l|;l}

i=1

—1 p
-1/2 ¢ & -1 ¢ -l ¢ _ o -l
= Cltg(p) —lo(p-1l+ / E|:l_[ 1St = Sty |5 1St = Sty 15 l_[ 1S5 — S| :|
= =042

Any permutation o of {1,..., p} with o(p) = £ must be a bijection from {1,...,p — 1}
tof{l,....4 —1,£+1,..., p}. We can thus further bound the right side of the preceding
inequality, inductively according to the values of o (j), for j = p — 1,..., 1, and thereby
arrive at

14 p
(4.16) E[]‘[ 18, = 8., |;1} <C" [T ltojy — to(j—1)l5% o (0):=0.
'

j=1

Combining (4.15) and (4.16), we conclude that, for any nondecreasing (s;) and (Z5)),

14 p P
S = —1/2 —1/2
(4.17) E[H 1S, — Sti|+2} < [Tsi = sic1l3 " ] lto(jy — toG-1) |3
i=1

i=1 j=1

We next bound E[X/] by (4.13) and enumerate over all words (s;) and (#;) of length p with
symbols from [1, n], according to the numbers k and &’ of distinct symbols in each word.
Recalling that |0+ = 1 and having at most k” words of length p composed of given (fixed)
k distinguished symbols, we thus deduce from (4.17) that, for any n, p € N,

p 2
E[X]] = —C‘”E[ > H 1S5 — Su 13 ] < CZP[ZkPn—@—WJk,n} :

si,ti€[l,n]i=1 k=1
(4.18)

1

—1,2
Jonim - Z 1—[( i 1) '

I<si<--<sp<mni=lI
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Considering 6; = s;/n, we see that {J; ,} are, for each k € N, the Riemann sums of

k

4.19) Ji 3=f H(@i — 9i_1)_1/2d91 e dbr < Ck(k!)_l/2
0=0p <0 <--<O <1 i=1

(for the inequality, see, e.g., [26], proof of Lemma 2). Note that J; = (0*1)(0) for the

positive linear operator (Qf)(x) = fol_x y~ 12 f(x + y)dy on C([0, 1]). Setting (y), =

[yn]/n, we have that Ji, = (Qﬁl)(O) for the positive linear operators (Q, f)(x) =

fol_x(y);l/zf((x)n + (y)n)dy. It is easy to see that (Q, f) < (Qf) are both nonincreas-
ing whenever f(-) is nonincreasing. By induction on k > 0, we thus have that Q’,jl < Qk 1,
pointwise, so in particular, Ji , < Ji for any k,n € N. Further, k! > (k/e)k and Ji , =0,
unless k < n. Hence, in view of (4.18) and (4.19), we find that

p 2 p 2

E[XF] < C2P|:Z kpk—(P—k)/2_]k:| <C?p |:Z k(p+k)/2Ck(k/e)_k/2:| < p>C*eP p?,
k=1 k=1

and the uniform moment bounds (4.4) on X, follow. [

For any interval I, consider the range R; = {S;}ier ancAl 7@1 = {S,-},-E 1 of independent
SRW-s. Fixing a > 0, let ny :=n(logn)™* and denoting by P and T4 the probability and the
hitting time to a set A by another independent SRW (S;), set for i € [nay, n — n2yl,

(4.20) &nall) = 1{S,-¢R(i,i+n2a]}ﬁsi (TR(i=nag,i+n2e] = 00),

with g, o (i) = 1 fori € [0, n2y) U (n — nay, n] and g, o (i) defined analogously for the SRw
(S;). In particular, for any i € [n2y, n — 1241,

(4.21) gn,a = E[I{SnM ¢R(n2a,2n2a]}ﬁsn2°‘ (‘1?732,,2‘1 = OO)] = E[gn,ot(i)]-

The next lemma, whose proof is deferred to the end of this section, allows us to complete the
proof of the limsup-LIL lower bound for SRW on Z* by comparing

Yo=Y 8na@G(Si.S0)%m.a(®),
i€[l,n],
Le[l,m]

with the simpler to analyze
Zn,m = én,agm,a Z G(S;, S@),
i€ll,nl,

Le[l,m]

whose moments we bound in Lemma 4.1 (for m = n, see also (4.37) for the decay of g, o).

LEMMA 4.3. We have that EY, ,, < C\/nm for some C finite and all m,n € N, and if
n¢ <m <n, then for some C = C(¢e,a) < oo and any € > 0, a > 4,

(4.22) EYym < Cy/nm(logn)~2,
(4.23) E[(Yym — Y, ,»)*] < Cnm(logn)~*/2.

PROOF OF THE LIMSUP-LIL LOWER BOUND. Equipped with Lemma 4.1 and
Lemma 4.3, we derive the limsup-LIL lower bound for SRW on 7*, and with n > R, having
a similar structure as |R,| for the SRW on Z2, we adapt the proof in [11], Prop. 4.4, of the
limsup-LIL lower-bound for the latter sequence. Specifically, set p = [(—« +1logzn)/(log2)]
with ¥ < oo large and k = 27 (so k = y log, n for small y <e™*). Centering both sides of
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(4.2) for nj = jm, m = n/k (assumed for simplicity to be integer), we have that, for i.i.d.
Uj := R(j—1)m, jm and the nonrandom ¢, := ER,,

k k—1
(4.24) Ry=konk —on+ Y Uj—> Vo jm(j+im-

Further, denoting by 6 the time shift S; — S;41, we set

X(A,B):=Y Y P’(taup = 00)G(y,2) P*(tp = 00),
yeEA zeB

and for all i € (0, n],
(4.25) hn (i) = 1(s,¢R (. P (R, = 00) < gn.a (i)
(see (4.20)), recalling from (4.1) and [6], Prop. 1.6, that
<2 > > P (tr;, =00)G(y,2) P*(TR(jm.(j+1)m] = OO)
YER jm z€R(jm,(j+1)m]
Jjm m
=23 hjim(G(Si, Sjmt)hm(0) 0 Ojm
i=1¢=1
jm m
4.26) <2 gima()G(Si, Sjm+e)gma(l) 0 Ojm :=2W;.
i=1t=1

Setting in addition

m—1 m

(427) E] = gjm,otgm,a Z Z G(Sjm—i’ Sjm—i—é),
i=0 (=1
jm—1 m

(4.28) EJ' = §jm,a§m,a Z Z G(Sjm—ia Sjm+€)»
i=m {=1

we see that, for any fixed j,
& d

(4.29) Wj - E‘j - Ej = ij,m - ij,m'

Next, following [6], we let
(i, j) = x (RUD, REZD) 4 5 (RED, REY)
for R4 :=R[(j — 1D27'n, j27n]
and take the expected value in [6], Prop. 2.3, to arrive at

p 2i7| p 2[71

(4.30) knsk —on=_ > Elxali, D] =D_ > E[enli, )]

i=1j=I i=1j=lI

In [6], Prop. 2.3, it is shown that, for p fixed, the nonnegative right-most sum is at most
C(logn)?. The same applies for our choice of growing p = p(n). Indeed, as each €n(i, j) is
bounded by the intersection of the ranges of two independent SRW-s of length n/2', we have
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that max; ; E[e,(i, j)] < logn (see [24], Section 3.4), and with at most 2” < Clogn such
terms, we conclude that

21 1 p 21'71
(4.31) Z Y Elxn(i, )] — CQogn)® <kgnjk —on <Y D" E[xali, j)].
i=1j=I i=1j=1
Recall [6], Prop. 6.1, that
2(logn)?

lim

n—oo 7'[4n

E[Xn(l,l)]:/AlE[Gﬂ(ﬁs,ﬁ,)]dsdt for Al =[0,271) x (271, 1].

1

Now, using (1.1) (at d = 4), with fA% It —s|~'dsdt =log2 and E|B|~2 = 3, we see that

1 log?2
/AlE[Gﬂ(ﬂs’ﬂt)]del=FE[|/31|_2]/1 |;_s|—ld;ds:£}'

! ! 4

By definition it follows that E[x, (i, j)] = E[)(n (1, D] for n} := n2'~% and all i, j. So in
view of the preceding, we deduce that, for any p = o(logn), as n— oo,

{ 2(10gn-)2
maxy | —,——
i<p

log2
o ED (1 D] =
Recall also (see (1.5)) that

47?2

|-o

2
- nlog.n
ha(n) = = 2083

lo
p=(+o) 8 (logn)?

log2’

It thus follows that
p 2571

(4.32) Y > ElaG. p]=(1+0D)p

i=1j=1

log2 w*n

WZ(lo—gn)z = (1 + 0(1))}14(”),

and combining (4.31) and (4.32), we arrive at

(4.33) kgn/k — on = (1 +0(1))ha(n).

In view of (4.24), (4.26) and (4.33), we get our limsup-LIL lower bound, precisely as in
the proof of [11], Prop. 4.4, once we find for any ¢ > 0, constants ¢; < 00, ¢ > 0 and for any
k=2P,m=n/k, p as above, some events G such that P(Gy) > 1015 and

k
434 GeS()iU;= Bj,
(4.34) k_j(jl{ = (logm)z} ﬂ j

k—1

nlogsn
(4.35) Gk < W, <3¢ )
! ; (logm)? }
To this end, it suffices to construct events Fj such, that for some c3 < 00,
k
k C3m

Indeed, we shall see that P(C;) < for k <ylogyn, y >0 small and n — oo, where

l 1

Cm X W, ”;°g3';}, Gim| 3w, o e lomn)
j odd ( ogm) J even ( ogm)

. A m
G = W= gy |
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Taking Gy := Fy ﬂ?: 1 Ci', this would imply that P(Gy) > for large k, and it is easy to
check, as stated, that both (4 34) and (4.35) then hold for such Gk
Next, utilizing the union bound, (4.29), Markov’s inequality and (4.23), we get that

k—1 k—1

m m
P(C3) < (W W, - W, 7> P(Y- =Y i = 7>
JZ; (logm)? ; SIS = (log m)2
(logm)* ‘3 iy _
<— E[(Yjmm =Y jm)’] < Clogm)*~/2 3" j < Ck*(logm)*~*/2.

j=1 j=1
In particular, for o > 8 + 2y log(1/c2), k as above and n = mk > no, the preceding bound
implies that P(C3) < %c’zc. Turning to deal with W ; and W ;, upon expressing (4.21) via the
independent SRW-s 3',-, SiJr = Spy4i — Sy and S, 1= S,_; — Sy, at n’ = nyg, it follows from
[5], (1.4), that

~ 50 A
8na = E[1{0¢R;}P (TR:,UR*([O,HHJ) = 00)]

(4.37) A 72
=P0¢RY, RN(RLUR ([0,n' —1])) =2) = (1 + 0(1))§(logn)_l

(note that logn’ = (1 + o(1))logn). In view of (4.27), we note that {m_l(ﬁm,a)_zﬂj} are,
for odd j, independent copies of X,, of Lemma 4.1 (except for now including also £ =0 in
X ). It thus follows from (4.5) and (4.37) that for some ¢ > 0, and all k, m,

E|:exp<cm_1(logm)2 Z KJ>] <exp(k/c).
j odd
Hence, for n = mk, one has by Markov’s inequality that

P(Cy) <exp(—ecklogyn)exp(k/c)

decays as n — oo, faster than %c’ﬁ. By the same reasoning, this applies also for C,.
Finally, in view of (4.13), (4.28) and (4.37), for some C < oo and any m, j,

2 Jj-1

438 W, < Zdlst(R (s — Dm, sm]), R((jm, (j + Dm])) >

~ (logm

As in the proof of [11], Prop. 4.4, fixing a unit vector u, we let F; := ﬂ{zl(Ai N B;), while
taking here B; of (4.34), and

A= {S,-m C B(iv/mu, v/m/8), R((i — )m,im]) C ]B%((i - %)ﬂu %ﬂ)}

The event Fj guarantees that, for any s < j, the distance of R((s — 1)m, sm]) from
R((jm, (j + 1)m])) be at least (j — s — 1/2)/m, so (4.38) results with the RHS of (4.36)
(for c3=C) (r — 1/2)_2 finite). As for the LHS of (4.36), recall [6], Theorem 1.2, that

{(loi—mﬂﬁm} converges in law, hence is a uniformly tight sequence. In particular, for any
8 > 0, there exists ¢ = ¢1(8) finite such that P(B{) <6 for B; of (4.34), uniformly in m.
Further, {B;, j > 1} are i.i.d., and by the invariance principle, there exists ¢ > 0 such that

1 3
lim inf Po(AD) = inf {P(|1—2ul<—, sup |B —u|<=)!=>2c.
’”%OOSoeIB%(O,«/E/S){ } /SoeB(o,j)[ ( 4 o0 2>]
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As F; is measurable on o (S;, i < jm), by the Markov property of the SRW and its indepen-
dent, stationary increments, for any j > 1,

P(AjNBj|Fj—)= _inf _ {PO(AD} - P(Bf) = 2,
ST So€B(0,/1/8)

provided § > 0 is small enough and m > m finite, thereby establishing the LHS of (4.36).
O

We conclude this subsection by proving Lemma 4.3. To this end, note that

(4.39) E[(Ynm — Y7 Z > Elg-Gl
T (irip)elln]?,
(1,62)ell,m)?

where the sum is over the two permutations 7 of {1, 2} and
(4.40) 8= (8n.0((1)&m.aCr)) — n.a&m.a)(&n.a(i2)8m.a (Uny) — &n.afm.a),
441 G:=G(Si, Se, )G(Siy. Se,)).-
Setting for o > 0,
Io(n) := [na,n = na > 0{G, j) 2 j =i = nal,
the key to (4.23) is to bound |E[g - G]|/E[G] uniformly over (i1, i2) € I,(n) and (£1, £2) €

Iy (m). For (i1, i2) € Iy(n), n' = nay, we will show that the contribution from the complement
of

H" = {|Si, = Si,—w| < ~/n'logn'},

H(n) : Hi(]n) N {|Si2 = Sis—n + Sij 4 — Siy| < \/Wlogn'}

i1,io °

is negligible and the same applies for the analogous events H Z(:") , Iivléffzz defined in terms of
the SRW (S'/g), (£1,£2) € I,(m) and m’ = my,. Further, from (4.21) it follows that E[g] =
for such (i1, i2) and (€1, £>), allowing us to instead bound (in terms of E[G]), the value of

|E[8G1 ,m N, I-Elgl,m mH(’”) E[G]|.

i1,in i1,in

Decomposing the events H; ™) and Hl(l'? as

= J H w., H= U H"ww,

1,02
|u|§«/?10gn/ |u|,|v|§ﬁlogn
(n") .
H; " () :={Si; — Sij—w = u},

H") u,0) = H" () 0 (81, = Siyow + Sty — Sy =),

11 %)

and such decomposition for ﬁe(?fl)iz’ we show in the sequel that given Hl( l)z (u,v) N

H Z(1mﬁ)2 (u, v), makes G independent of g, whereby the following estimates shall be utilized.
LEMMA 4.4. Fixa > 2, € > 0 and a permutation 7w of {1, 2}. Then for n® <m <n,

Fi(u, i) = E[G(Si,. e[ H" ) 0 A" ()]
= (1+ O((logn)* *))E[G (S, Se))],
Fa(u,v,,0) = E[G(Si,. 8¢, )G(Si,. Se, )| H") (w,v) 0 ™), (i1, )]

= (14 O((logn)*™*))E[G(Si,. S¢, )G(S:,. S¢,,)].

(4.42)

(4.43)
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uniformly over (i1,i2) € Io(n), (€1,€2) € Iy(m), |ul,|v] < v/n'logn’ and [il,|3] <
~m'logm’.

PROOF.  For (i1, i2) € Io/(n), the law of (Sj,. Si,). given H.") (u, v).isas (u+S." .. u+
v+ Sl.(2113n,) for an independent SRW Sl-(l). Similarly, when (£, £3) € I,(m), the law of

(S’gl, S’gz), given ﬁé:’:’e)z(ﬁ, v),1is as (u + S’glm,, u+v+ S‘EI)

;-3 ). Consequently,

Fy(u, i) = E[G(u~+ Si,—w.ii + S¢,—m)].
E[Gu~+Si, it + ¢, —m)
xGW+ v+ Si,_3p, i+ 0+ Se,—3m)] ifm =1,

E[G(u~+ Siy—w. it + 0+ St,—3m)
XG(u+v+Si2_3n/,L~t—|-Sgl_m/)] if 7y =2.

F(u,v,u,v) =

Note that for some C = C (¢) finite, ¢ = c(¢) > 0, any m > n® and (£, £3),
(4.44) P((H)) < P((H"))°) <2P(ISo| > Vmlogm') < CecCloen’?

with the same bound applying also for P((Hi(]n)-z)c). Now, by (4.13) and (4.17) (at p =1, 2),

1
s

(4.45) E[G(S:, So)] < i~V

1/2

446)  E[G(Si. S0, )G (Siy. 8¢, )] < Ciy iy — i)™V P (0 — £1)712

with the LHS of (4.45) and (4.46) being the expected values of Fi(-) and F,(-) according
to the joint law of the corresponding SRW increments (for independent SRW S; and Sy). In
view of (4.44), it thus suffices to bound the maximum fluctuation of F;(-), s = 1,2 over
lu|, |v| < ~/n’logn’ and |ii|, || < v/m’logm’ by C(logn)>~* times the RHS of (4.45) and
(4.46), respectively. To this end, since Fi(-) depends only on u — & and F>(-) depends only
onu—uandv—vifry=1loronu+v—uandv+vif 71 =2, we may WLOG fixu =0 =0
and consider the maximum fluctuation of

Fi(u) = E[G(u+ Si,—n» Se,—m))]s

E[Gu~+Si, s St,-m)G W + Siy_aw, Sty3m)]  if 1 =1,

Fa(u,v) = : = .
: E[G(u + Sl'lfn/, ngf3m/)G(U + S,'2,3n/, Sglfm/)] if T = 2,

over |ul, |v| < 3+/n’logn’. Further, with both ny/n’ and my/m’ diverging (as (logn)®), it
follows that uniformly over (i1, i2) € I, (n), (£1, £2) € I,(m) and m > n€, the RHS of (4.45)
and (4.46) also bound F;(0) and F;(0, 0), respectively. Consequently, it suffices to show that,
for some C finite and all |u|, [v] < 3+/n’logn’,

(4.47) |Fi() = F1(0)] < C(logn)*“ F1(0),
(4.48) | Fa(u, v) — F2(0,0)| < C(logn)>~F»(0, 0).
Turning to this task, since tp : =¥y — €} —2m' >0,t3:=ip —i; —2n' >0, G(x,y) = G(y —
x,0) and S; @ —S;, we can further simplify the functions Fy(-) to be
Fi(u) = E[G(S;,u)],

E[G(Sy, )G (S 11415, v)] if w1 =1,

F(u,v)=
2(u v) E[G(SZ]—H‘Qa M)G(Stl+;3, U)] if T = 2,
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where t; =i; + €1 —n’ —m'. Denoting by p;(u) := P(S; = u), it is easy to check that
(4.49) Flw =Y pjw),  Fv) =Y pjwp,®),
Jo>11 J1.J2

where the sum is over j; > t; and jo > t; + 1, + 3 in case m = 1, and over j| > | + 12,
Jj2 > 11 +1t3 when m; = 2. By the local CLT for the SRW on Z*, we have for some C < oo that

‘p,-(u) + P 1‘ Clul?

i (0)+ pjr1(0) 9
throughout the range of parameters considered here (utilizing the fact that jo, ji, jo > #1 >

ny/2). The same bound applies with v instead of u, and plugging these bounds in (4.49)
results with (4.47)—(4.48), thereby completing the proof of the lemma. [

< Cn'(logn’)* 17! <2C(logn)> ™

PROOF OF LEMMA 4.3. First, observe that g of (4.40) can be written also as
8=80— 81— 82+ &h almar
80 := &n,a (1) &m,a (Cr;)8n,a((2)8m,a (Lr,),
81:= 8na(1)&m,a(rx,)8n,a8m.a
82 1= 8n.afm.a8na(i2)gm.alr,).

Proceeding to show (4.23), note that g, (i) and g 8m, «(£) are measurable on F; := (S;4; —

S;,j€(=n',n"]),n :=ny, and ]-"g _(Sgﬂ Sg Jj € (—m’',m']), m" = myy, respectively.
Further, when (i1, i») € I,(n) and ({1, £») € I,(m), under the event Hi(lrfi)z (u,v)N Hg(mz)2 (u,v)
the law of G of (4.41), given F;,, Fi,. Fy, and Fy,, is determined by H™)(u,v) N

i1,in
A{™) (@, ). Thus, for s =0, 1,2, and any such (i1, i2), (€1, &),

_ ) ) (n" (m") ~ ~
E[gsglHi(ﬁ;)z(u,v)ﬂﬁl(:”,;)z(ﬁ,ﬁ)]_E[gs1Hi<ﬁi)2(u,v)ﬂfl[(’l’fl)2(ﬁ,~ E[GIH, ]}, (u, ”mHﬁl,ez(”’”)”'

With g, > 0 and E[g,] = g3 ,82 . whenever (i1, i2) € Io(n) and (€1, £2) € I (m), we get,
from (4.43) (of Lemma 4.4), that, for some universal C < oo,

|ElgsG1 0 ﬁH(m)] Elgslym ﬂH(m) 1E[G]|

i1.ip 1 £1.6
S Z E[gs H(n) (u U)ﬂHl(m() (u v)]
lul,Jv]<v/n’logn’,
|ii],|5|<v/m’ logm’
x |E[GIH") (u,v) NH") @, )] - EIG]|
(4.50) < Clogn)*™*87 ,ér L EIG].

In addition, with g € [0, 1], G uniformly bounded and (logm)/(logn) > €, we have from
(4.44) that

EfgsG1 H{" AT )‘] +E[gs1(H<”> na", )L]E[g] <Ci(P ((H(n) )) + P((Héf"ﬁz) )

ll 12 Il 12 ll 12
4.51) < 2Celogn?’,
Combining (4.50) and (4.51) for s =0, 1, 2, we thus find for the zero-mean

8§=80—81 — 8 + 82,85
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that, uniformly over , (i1, i2) € I, (n) and (£1, £2) € I, (m),
2
|Elg- G| <) _|ElgsG] — Elg]E[G]|
s=0

(4.52) <3C(logn)> 32 482 L E[G] + 6Ce<oen”,
Further, as |g| < 1, we have from (4.13) and (4.17) at p = 2 that, for some C, < oo and
uniformly over all (i1, i2) € [1, n]%, (£1,£2) € [1, m]?,

(4.53) |Elg-Gl| < EIG] < Caliy A in)~"Plia — ir| 12 (01 A )2 1ea — 04152,

Next, note that from (4.37) we have, for some C3, C < 00,

A2 AD

nabma), D, EIG]
T (i1ip)ell,n)?,
(41,2)€[1,m]?

C3

—1/2,. . =172 ,-1/2 —1/2
< 2 i lip —i1] 14 €2 — £1]
5 ) Z 1 + 1 +
(logn) (logm) 1<i|<ip=n
1<l1<tr<m
Cnm

<— .
~ (logn)?(logm)?

With the right-most term of (4.52) being o(n™), it follows that the overall contribution to the
right side of (4.39) from iy, iy € [ng, n — ng] with |io —i1| > ny and €1, €3 € [my, m — my]
with |£y — £1] > mg is at most O (nm(log n)~2%), as specified in (4.23). Further, the sum
over the RHS of (4.53) under any of the following three restrictions:

lio —i1] < ng, i1 ANip < ng, i1Vip>n—ngy,

is at most O (nm+/ng/n) = O(nm(logn)~%/?). With (logm)/(logn) > €, this applies also
when summing the RHS of (4.53) under each of the analogous restrictions |£; — £1| < my,
LiNly <mgorlyVily>m—my. Asa/2 <2+ «, we have thus established (4.23).

Turning to (4.22), we similarly have from (4.42) of Lemma 4.4 that for some C < oo and
¢ > 0, uniformly over m € [n€,n],i € [ng,n —ny] and £ € [mgy, m —my],

o\~ 5 —o1A A ~ _ 2
E[gn.a()&ma(©)G(Si, S))] < [1 + CUogn)* *18n.adm.a E[G(Si, S¢)] 4+ 2Ce—clogm)
(454) 5 C(log n)—Zi—l/ZZ—l/Z _|_ 2Ce—C(10gm)2

(using in the latter inequality also (4.37), (4.13) and (4.17) at p = 1). As logm > € logn, the

sum of the RHS of (4.54) over i < n and £ < m is at most as specified (i.e., O (y/nm(logn) ™).

Further, even when i < ny or £ <mgy or i > n —ny or £ > m — my, we still get the bound

Ci~!/2¢=1/2 on the LHS of (4.54). The sum of i ~!/2¢~1/2 subject to any one of the latter four

restrictions is at most O ({/mqn) = O (y/nm(log m)~%/?), which is as required (for o > 4).
Finally, recall that, for some C, C3 finite and all m,n € N,

n m n m
EYpn <Y Y E[G(S.8)]<C3Yy Y i 272 < Cy/nm,

i=14=1 i=1¢=1

as claimed. O
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4.2. The upper bound in the limsup-LIL. As in case of the capacity limsup-LIL lower
bound, we adapt here the relevant element from the proof of the limsup-LIL of |R,| and SRW
72, namely [11], Prop. 4.1. To this end, we first establish a key approximate additivity for
on = ER,.

LEMMA 4.5. There exists ¢’ finite, such that, for any a, b € N,

a4 (a + b)

4.55 0< - <2 4Ty
(4.55) <¢a+¢p—QPayp =c (log(a + b))

where ¢, := ER, and « :=min(a, b)/(a + b).

PROOF. Starting at the expected value of (4.1), we get by the same reasoning we have
used in deriving (4.26) that

a b

0 <E[Voa.atb] = @a+ @b — Gatb <2E DY 8a.a()G(Si, S0)3p.a () =2EY 4 p.
i=1¢=1

Assuming WLOG that a < b, it thus suffices to verify that EY, , < Ca'/*b3/*/(log b)? (yield-
ing (4.55) for some ¢/(C) < 00). Indeed, for a > /b, this follows from (4.22), whereas if
a < /b, then even the bound E Y, » < C+/ab, which we have from Lemma 4.3, suffices. [J

Recall (4.1) that R;4p — Ry — Rp 06, = =V q.a+p» < 0 for any a, b > 0. This implies
a nonrandom bound on the difference of such centered variables, yielding in terms of the
nonrandom ¢’ of Lemma 4.5 the upper bound

_ _ min(a, b)\'/*  (a+b)
4.56 Ryip — Ry — Rpob, < /( ) .
(4.56) o boba=C\7, +b (log(a + b))?

Utilizing (4.56), we next establish sharp tail estimates for max <, (R j} (in particular, improv-
ing upon [18], Lemma 2.5).

LEMMA 4.6. For some c >0, C < oo and all n,

n logn)? —
(4.57) E[e?1<c,  pm.= L8 R/

n  0<j<n

PROOF.  Note that (4.57) matches the statement of [11], (4.4),for G ; := G’} := (log")z Rj,
Jj < n.Itis easy to check that the proof of [11], (4.3) and (4.4), applies Verbatlm for any
variables {G ;} that satisfy [11], (4.5) and (4.6), and, furthermore, that their argument applies,
even if the power o!/? on the right-most term in [11], (4.5), is replaced by «!/4. Indeed, this is
what we have here, with (4.56) yielding that, for some nonrandom ¢y < oo andalla < j <n,

.\ 1/4
Gl - Gl SG’}_a09u+cl(iA 1= a) .
J J
To finish the proof note that, for some ¢> < oo and all a, b > 0, we get from [6], Cor. 1.5, that

crb? j*(logn)*
< (1 gb)4 hence E[(G 09 ) ] Z(Tg])“'

which is precisely [11], (4.6). U

(4.58) E[(Rp00,) ]
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For the limsup-LIL upper bound, by Borel-Cantelli it suffices to show that, for any ¢ > 1,
y>0ande >0,

2 2
(4.59) 3 P(aogm) max (R} > (% + 2£>klogk> < o0,

m ri—1<€<r;

where r; = q', k = 2P for p = [(logy + log;r;)/log2] and m = [r;/k]. Now, considering
(4.2)forn; = jm, j <k' and ny = ¢, it follows from (4.55) that

2
(4.60) (logm)

(logm)?
T(kam — <Pk/m) +c,

k/
o (m)
max Ry} < DY+
m (k/—l)m<£§k/m{ E}_; J

where D;m) are i.i.d. copies of DU of Lemma 4.6. With k' — (k'¢,, — ¢/n) nondecreasing
and D™ > 0, the maximum over k' < k of the RHS of (4.60) is attained at k' = k. Further,
en route to (4.33), we showed that, as p = o(logm) — o0,

2
s

1 (logm)2
ko, — —.
Klogk  m (kom — km) — A

Thus, noting that (4.57) results with

(4.61)

k
P (Z D™ > eklog k) < Ckemeckllogh)
j=1

which is summable over i for our choice of k = ylogi, we have established (4.59) and
thereby completed the proof of the limsup-LIL.

4.3. Nonrandom and positive liminf-LIL. Setting hereafter E4(ﬂ) :=n(log, n)/(log n)?,
we first show that the [—o0, oo]-valued,

. { R, }
¢y .= — liminf{ = ,
700 Lhy(r)
is nonrandom. Indeed, recall (2.6) that Cap(R,) — Cap(R[k, r]) € [0, k]. Thus, for any £ fi-
nite, changing Ry without altering Sy yields at most a difference of k in the value of Cap(R,),
implying by the Hewitt—Savage zero-one law that ¢, is nonrandom.
Turning next to show that ¢, > 0, it suffices to establish this for the subsequence r; | =

2 . . J—
rj+2nj,where nj :=2/", ro:= 0 and we proceed to show that infinitely many —R,,,, are at

+1
least of O (54(11.,-)), due to heavy tails of the nonnegative variables Vy ,, 2,/ 54(11). Specifically,
setting Q, := |R(0, n] N'R(n, 2n]|, we have from [6], Prop. 1.6, that

(4-62) VO,n,Zn >2 {G(Sj, SZ)}Ran,Zn - Qn

inf
j.eell,2n]
Recall from [24], Section 3.4, that EQ, < Cologn for some Cy < oo and all n. Hence, by
Markov’s inequality

(4.63) P(AS):= P(Q, > (logn)*) < Co(logn)~2.

Further, recall [6], (1.4) and Cor. 1.5, that ER,, > n/(logn) and Var(R;) < Clnz/(log n)* for
some C; < oo and all n large, in which case, by Markov’s inequality,

n 2logn 4Cy
PR, < ) < .
~2logn/ ~\ n (logn)?

>2Var(Rn) =
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Consequently, by the union bound,

(4.64) P(AS) = P(min(Rn, Rpon) < ) < 8C(logn) 2.

2logn
Next, from (4.13) we have that

Fem ::{max |Sj|5ﬂ} — [G(S}. Sp)} = 4Cm)~".
Jj<2km

inf
j.Lell,2km]
Setting ¢ = 1/(A10C), it thus follows from (4.62) that for all n = km > n’(C), on the event
Gn=FimNA,NA,,

v - 2 ( n )2 a )3 - cnk
n2n Z T~ — yuogn)” = .
0n.2n = 2 m \2logn g (logn)?

Similarly to our derivation of the LHS of (4.36), it follows from the invariance principle
that P(F m) > c’j for some ¢ > 0 and any k, m > 1. By (4.63)—(4.64) this implies in turn
that P(G,) > %c’z‘ for k =27 = [y log, n], provided y’ := ylog(1/c2) <2 and n > n’. To
summarize, we have that, for ¢’ =cy > 0and all n > n’,

P(Vonan > c'ha(n)) > (logn) ™.

The same applies for the mutually independent {V; r;4x;,r;,, }; hence, upon fixing y' <1/2,
we get by the second Borel-Cantelli lemma that a.s.,

(4.65) limsup{a(n ;)" Vi, 1 4m;ri } = ¢ > 0.

j—o00

Now, as in (4.24), forany r > 0,n > 1,

(466) Fr,r-i—Zn = 2(pn — Qo + Er,r—}—n + Fr—i—n,r—l—Zn — Vrr+n,r+2n-
Considering (4.31) for p =1 (i.e., k = 2), we see that, as n — 00,

(logn)? (logn)? 72log?2
(4.67) 28 120, — gl = =L Elon(1,1)] > 22,

4
Further, recall (4.59) that, for any § > 0,

(4.68) > P(Ry; = (1+8)ha(n;)) < oc.
j

The same applies, of course, also for Enj 06" and Fnj 00"t so with ha(n)/ha(n) — 0,
we deduce from (4.65)—(4.68) (atn =n; and r =r;) that a.s.,

R, .. .
li 'f~]’7’“}<—1' ha ) WV pinr J <=
i S R B

Now, from (4.56) (ata =rj, b =2n;),
C17j+1

<R, +R T
=8 A (logrj+1)?

Tj+1 JoT

and since rj 1 < 3n;, dividing by ha(n ;j) and taking limits yields that

-3¢, < liminf{fu(nj)_lﬁrjﬂ} < —c + limsup{ﬁ4(nj)_1§rj ).
J—>00 j—o00

The last term is a.s. zero (as (4.68) applies also for {r;} instead of {n;} and h4(n)/ﬁ4(n) — 0),
so we conclude that ¢, > ¢’/3 > 0.
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4.4. Finiteness of the liminf-LIL. We show that ¢, < ¢, < oo by following the proof of
the upper bound of [10], Theorem 1.7, (on the liminf LIL of |R,| in ZQ), while replacing [10],
Theorem 1.5, and [10], Lemma 10.3, respectively, by

(4.69) sup{(logn)(logy n)> P(— Ry > coha(n))} < o0
) _ i
(4.70) sgp{(log n) P<n/$lél])((5n(Rn ~Ro) > eh4(n))} < o0,

holding for some ¢, < 00, any € > 0 and some go(€) > 1.

Similarly to |R;,|, the capacity is subadditive (see (4.1)) and upon centering satisfies (4.56),
which is the analog of [10], (10.2). Thus, the bound (4.70) follows, as in the proof of [10],
Lemma 10.3, now using (4.57) to arrive at [10], (10.14), and to bound the RHS of [10],
(10.15)).

Since |R, — R,/| < |n —n’|, it suffices to prove (4.69) only for some {n;} such that n; | —
n; = 0(54(11,-)). We take here all integers of the form n = mk, k =27, p =[(log,n)/log2]
(thus with gaps of size k = O(logn) = 0(ﬁ4(n))). Setting such values and n), :=27"n for
1 <u < p, we have as in (4.24), now using an alternative expression for A, ; of (4.2), that

k p Qu— 1
4.71) —RnZAn,k—ZUj, nk_ZZV(Zj —2nl,.2j—)nl, 2 jnl, s
j=1 u=1 j=1

with k i.i.d. copies {Uj} of R,, and the i.i.d. variables {(Vej—2yn;,@j—1n; 2jn,} per fixed
u > 1. Since Var(R,,) < Cym?/(logm)*, it follows by Markov’s inequality that

_2 Clkm2 < 2Cl
(logm)* ~ (eco)*k(logy n)?”

k
@72 P(- Z ecoha(n)) < (ecoha(n))

Setting ¢, > (1 — €)”! c1 , we arrive at (4.69) out of (4.71), (4.72) and the following lemma.

LEMMA 4.7. For some c; > 0 and any A > 0,

4.73) lim sup

log P(A nk>Ah4(n)) —ciA,
n—00 ngn

where A, i are as in (4.3) for k =27 and p = [(log, n)/log2].

We note in passing [18], Lemma 2.6, which is somewhat related to Lemma 4.7. The proof
of Lemma 4.7 relies in turn on our next result.

LEMMA 4.8. Set p = [(log2 n)/log?2] and for any r € N, the partition 1= (U

l
Dr, ir] of N. Consider for n!, :=27"n and each 0 < u < p, the i.i.d. variables

u
1 . —
612(’;”)1 le[z(']’“)
Then for some cy > 0,
- p 2u—1 ,
(4.74) sup E[e29] <00,  ©,:1= ). a;'%c),

neN
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PROOF. With the SRW having independent and symmetric increments, one easily verifies
that « (n”) @ 2- ”X for X, of Lemma 4.1. Consequently, from (4.4) and (4.5), we know that

(4.75) @(X) := sup E[exp(A2"a, a ”))] <l+cr? <00

u,neN

for some ¢ < oo and all A > 0 small enough. The uniform MGF bound of (4.74) then follows
as in the proof of [26], Theorem 1 (see Page 177 of [26]), upon setting oo = ai”o)’ =

bso > 0 of [26] and noting that (4.75) suffices in lieu of both [26], Lemma 2, and the scale
invariance of [26], property (ii). [

PROOF OF LEMMA 4.7. For u < p, consider the i.i.d. variables W, ; := W) o
9(2]'_2)”; , with

W= 3" )G (Si, Serm)gm.a(€) 0 O
i,le[l,m]

having the law of W) of (4.26) and their (i.i.d.) approximations W,j=n gn « ; 2 (for

8m.«(-) and g, o of Lemma 4.3). Setting

2u71

ZMZZZWM’]', :Z W,
j=1

it follows by Cauchy—Schwarz and (4.23) that, for some C < 0o, any u < p and all n,
(4.76) E[(Zy— 2,)*] <22 VE[(W,,1 — W, )*] < Cn*(logn) /2.

In particular, taking o > 8 4 2¢1A yields, by the union bound and Markov’s inequality that
for any € > 0,

14 P
P(Y(Zu—2,) = eham)) < 3" P(Zu = Z, = ep~ ha(m))
u=1

u=1
4.77) < Cp*(ehs(n)) *n(logn)~*/? < C'e 2 (logn)~1*.

We also find for our choice of k (see (4.61)) that

72 .
E A= ~gha(m)(1+o(D)).

Similarly to (4.26), we have that Va2 2j—1)n,.2jn, < 2Wy,j for any u, j. In view of
(4.71) and (4.77), it thus suffices to establish (4.73) with Z,,, % replaced by

2 Z Z,— —h4(n)

u=1

which in view of (4.37) and the definition of ®,, can be further replaced by

7’ n w? +od 1
8 (10gn)2(< ol )) 0g2n>.

14 p
E) 7 ZZ
u=1 u=1

Moreover, by (4.76)

((10;%) o(ha(n))
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and combining [6], Lemma 6.5, with the considerations as in (4.44) and after (4.54), we
deduce that, for large m,

2E[W™] = (14 0(1)) E[Vo,m,2m]-

It then follows that
p x2.
23 EZy=(1+0(1) 5 han),
u=1

and consequently,

”2
TE®" = (14 o(1))log, n.
Thus, it suffices to establish (4.73) with A, 4 replaced by

7'[4 n @
32 (logn)? "

which in turns follows from (4.74), upon setting ¢; = 327 ~4e>0. O

5. LIL for SRW on Z%, d > 5: Proof of Theorem 1.4. Since R, for the SRW on Z<,
d > 5, has similar structural properties to the size of the range of the SRW on Z?~2, we
establish Theorem 1.4 by adapting the proof in [11], Section 3, for the LIL of the latter
sequence. Specifically, setting p, := +/nlogn when d = 5 and otherwise p, := /n, we have
from [31], Theorem A, in case d = 5, and from [5], Lemma 3.3, when d > 6, that

.1 =
(5.1 lim —||Ry|2=o0q4.

n—00 :On
Next, recalling for integers 0 < a < b < c, the notations of (4.1),
(5.2) Ra,b = CaP(R(a, b)), Vu,b,c = Ra,b + Rb,c - Ru,c >0,

we proceed with the following variant of [5], Lemma 3.2.

LEMMA 5.1. Forany O <a < b, set
Vb =sup{Vaps),  Vapi=sup{Vsap).

t>b s=<a

Then for some Cq ¢ finite, any £ > 1 and all a < b,
(5.3) E[VI]<Cavfab—a)t,  E[V!]<Carfalb—a),
where

fs(m) = /n, fo(n) =logn, fam)=1 Vd=T.

PROOF. By the shift invariance of the SRW, we may WLOG set a = 0. Further, in view of
[6], (2.9) and (2.11), for a fixed set A, the function
B — Cap(A) 4+ Cap(B) — Cap(AU B)

is nondecreasing (and bounded above by Cap(A)). In particular, the value of Vo, » 18 attained
for t — oo. Thus, from [5], Prop. 1.2, we arrive at

(5.4) <2 Y GpZ2Y Y Gy,

XERn yER(l’l, OO) )CGRn )’67%00
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where R0, denotes the range of an independent SRW. Similarly, the value of ‘70, n 1s attained

at s — —oo, with the right side of (5.4) also bounding ‘70,n (we then have R(—o0, 0] in-
stead of R(n, 00) in (5.4)). Thereafter, adapting [5], Section 3.1, yields (5.3). Indeed, with
Pak(x,y) ;= P*(Sy = y) the square of a transition probability, we have as in the proof of
[5], Lemma 3.1, that, for even k > 0 and any a € 74,

sai= ), G0.0G,y)pi(x,y +a) < s0.
x,yeZd

In case of a lazy SRW, this applies for any k£ > 0, so summing over k < n yields that

max{ > G0,x)G(0, y)Gu(x,y+ a)}

aeZd

x,yeZd
(5.5) = Y G0,x)G(0,y)Gu(x,y)
x,yeZd
= Y Gu(0,x)G(0,y)G(x,y) < Cqfa(n),
x,yeZ4

where we have utilized [5], (3.4), for the latter inequality. Further, as in [5], up to an increase
of C4 value, (5.5) extends to the original SRW. Now, similarly to [5], (3.5), it follows from
(5.4) that

4 4 l
E[Vy,] <2 ZE[]‘[ Ln(xi)}E[]_[ Loo(y,-)} [16 i, v,
x,y Li=1 i=1 i=1

where L, (x) denotes the total SRW local time at x € Z¢, during time interval [1, n] (and the
same bound applies for E[V&n]). For ¢ =1, we thus get (5.3) out of (5.5) (as E[L,(x)] =
G,(0,x)and E[Lso(y)] = G(0, y)). The general case then follows by an inductive argument,
as in the proof of [5], Lemma 3.2, utilizing also that @ = 0 is optimal in (5.5). O

Utilizing Lemma 5.1, we next establish the analog of [11], Lemma 3.3, for R,,.

LEMMA 5.2. Forany d > 5, m > 3, there exists c,, finite such that, for all b > a > 0,
(5.6) ”Eb - ﬁa I < CcmpPb—a-
Further, for some c,, finite and any » >0, b > a > 0,

) =~ 4 —m
(5.7) P(max {1y~ Ral} > App-a) < emh ™"

PROOF. From (5.2) we see that
Vo.a.b = Ra + Rap — Ry €10, Va5
for Va,b of Lemma 5.1. In particular, for any m > 3, b > a,
0 < E[Voasl" < E[V§% ] < E[Vi"] < Cam falb — )" = 0(p}_,)-

We can thus replace R, — R, in (5.6) by R, and thereby, due to the shift invariance of
the increments, set WLOG a = 0 (whereupon R, = 0). Hence, analogously to [11], (3.34), it
suffices for (5.6) to show inductively over £ > 1 that sup,,{L, 2¢} is finite for

| R—
Lpe:=—IRnlle.

n
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The induction basis £ = 1 is merely (5.1). Further, with

lim_p, sup V0.0, 2nlloe =0
2, ,a,zn ’
n—oo " <" a<2n

by the preceding decomposition, we can and shall replace Ry, in the induction step by
Rn + Rn,2n i Rn + R\n»
where R, denotes the capacity of the range of an independent second SRW. For any £ > 2, by

the induction hypothesis sup, {L, «} are finite for all kK <2(£ — 1); hence,

202

sup Z (%)Lk kLz, 20—k = Ce < 0.
nn k =2

Recalling that p, <271/2p,,, we thus get similarly to [11], (3.37) and (3.38), that
Lane S0n(D)+ (27 VLR, +27 ) V0

from which it follows as in [11] that sup;{Ly; 5,} is finite. Finally, for any n € [2/1, 27y,
j > 2, we have as in the preceding that

d A
Ryi = Ry + Ryj_y = Vo p2i-

Upon centering, taking the 2¢th power and isolating the 2¢th power of R, the preceding
identity results with

(Lo o0 + 0j (D" +ce = (pn/p2i)> fLat, =475,

Thus, sup, {L, 2¢} is finite as well, completing the induction step and thereby establishing
(5.6). Finally, we get (5.7) out of (5.6) precisely as in deriving [11], (3.39), out of [11],
(3.40). O

Recall the decomposition (4.2)—(4.3), for the independent variables U; := R, in; and
any increasing {n} starting at no =0,

k—1

k
(58) Rnk = Z Uj - Ank,ka Ank,k = Z Vn_,'_l,nj,nk~
=1

j=1

Centering the random variables of the preceding identity, we arrive at
JE— k JRE— —_—
(59) Rnk = Z U] - Al’lk,k
j=1

with zero-mean, independent variables U j. Proceeding to show that A, x has a negligible
effect on R,,, first recall from (5.1) that

—2
E[U"]
(5.10) lim ——— =03,
I Prjnjy
whereas (5.6) at a =n;_1, b =n; amounts to
(5.11) E[U;I"] < (cmpn;—n; )"

In case d = 5, we take the same values of «, 8 < 1/2 and {ng} as in the proof of [11],
Theorem 2.1. Lemma 5.1 at £ = 4 is then the analog of [11], (3.2), and utilizing itata =n; 1,
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b=nj, j <k, we find by following verbatim, the derivation of [11], (3.9), that for some ¢
finite

(5.12) lim sup Al <c
k=00 A/ nk(lognk)ﬂ

Thereafter, substituting (5.12) for [11], (3.9), and (5.11) to get [11], (3.16), by the same
reasoning as in the proof of [11], Theorem 2.1, we find that a.s.,

a.s.

(5.13) lim hg(n) ' [Ry, — 04B,2 1=0
k— 00 g

for some one-dimensional standard Brownian motion (B;, t > 0). As shown after [11], (3.17),
(apart from replacing [11], Lemma 3.3(b), by (5.7)), the stated LIL is then a direct conse-
quence of Kinchin’s LIL for the latter Brownian motion.
In case d > 6, we take {n;} again, as in the proof of [11], Theorem 2.1, except that now
this is done for the choice of @ = 1. Then by Lemma 5.1, for C =Cy 2 and any 1 < j <k,
Var(Vi,_y.n;n) < C(log(nj —nj—p)* < Clogny)®.

J

Thus, for any g > 0 and all k, by Markov’s inequality and the definition of A,, x (see (5.8)),
— ) -2
P([Bn i = 1) < mi P Var(Ang 1) < Cn P (log ).

Since |{ng} N [2¢, 261 < ¢ for any £ > 1, eventually k < (lognk)z. Hence, by the first
Borel-Cantelli lemma, we have that, for any g > 0,

(5.14) limsupn, P [A, il <1 as.

k— 00
We then get (5.13) by following, as for d = 5, the proof of [11], Theorem 2.1, utilizing again
(5.10)—(5.11), while having now, via (5.14) at 8 < 1/2, a negligible contribution at scale
on = +/n (instead of (5.12) and the scale \/nlogn throughout [11], (3.13)—(3.17)). Finally,
recall that ngy1 — ng < ny/¢ whenever nj € [2¢, 2“1). Hence, in view of (5.7) at m = 6 and
A =¢ehg(ng)//nk+1 — ni, we have that, for some c, finite, any ¢ > 0 and ny € [2¢, 26+,

P( max  {|R, — R} > 8hd(nk)> <73,
ne(ng,ng+1)
With at most ¢ values of such ny, by the first Borel-Cantelli lemma, the events on the LHS

a.s. occur only for finitely many values of k and the stated LIL thus follows, as before, from
(5.13).
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