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Abstract. We study the line ensembles of non-crossing Brownian bridges above a hard wall, each tilted by the area of the region below

it with geometrically growing pre-factors. This model, which mimics the level lines of the (2 + 1)D SOS model above a hard wall, was

studied in two works from 2019 by Caputo, Ioffe and Wachtel. In those works, the tightness of the law of the top k paths, for any

fixed k, was established under either zero or free boundary conditions, which in the former setting implied the existence of a limit via

a monotonicity argument. Here we address the open problem of existence of a limit under free boundary conditions: we prove that as

the interval length, followed by the number of paths, go to ∞, the top k paths converge to the same limit as in the zero boundary case,

as conjectured by Caputo, Ioffe and Wachtel.

Résumé. Nous étudions l’ensemble de lignes déterminé par des mouvements Browniens non-intersectant au-dessus d’un mur solide.

Ce modèle, qui imite les lignes de niveaux du modèle (2 + 1)D SOS au-dessus d’un mur, a été étudié en 2019 par Caputo, Ioffe et

Wachtel. Dans ces travaux, la tension de la loi des k lignes hautes, pour chaque k fixe, a été obtenue sous des conditions nulles au bord

ou des conditions libres au bord. Dans le premier cas, ca implique l’existence d’une limite par un argument de monotonicité. Nous

abordons ici le problème ouvert d’existence d’une limite sous des conditions libres au bord : nous démontrons que quand la longueur

de l’intervalle, suivi par le nombre de lignes, tend vers l’infinie, les k lignes hautes convergent vers la même limite que dans le cas de

conditions nulles au bord, comme conjecturé par Caputo, Ioffe et Wachtel.
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1. Introduction

Entropic repulsion in low temperature (2 + 1)D crystals above a hard wall has been the subject of extensive study in

statistical physics. Whereas in the absence of a wall, the surface of the crystal would typically be rigid at height 0, in

the presence of a wall, the surface is propelled in order to increase its entropy (i.e., to allow thermal fluctuations going

downward), and becomes rigid at some height level which diverges with the side length L of the box.

A rigorous study of this phenomenon in the (2 + 1)D Solid-On-Solid (SOS) model – a low temperature approximation

of the 3D Ising model – dates back to Bricmont, El Mellouki and Fröhlich [1] in 1986, where it was shown that, in

the presence of a hard wall at height 0, the typical height of a site in the bulk is propelled to order logL. Thereafter, a

detailed description of the shape of this random surface was obtained by Caputo et al. [4–6], showing that it typically

becomes rigid at a height which is one of two consecutive (explicit) integers, through a sequence of nested level lines each

encompassing a (1 − ε)-fraction of the sites (analogous behavior was later established [16] for the more general family

of |∇φ|p-random surface model, where the SOS model is the case p = 1). The level lines near the center sides of the

box behave as random walks – a ubiquitous feature of interfaces in low temperature spin systems – albeit with cube-root

fluctuations, as their laws are tilted by the entropic repulsion effect. The lower the level line, the higher the reward is for
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generating spikes going downward, and as such, the tilting effect of the level lines increases exponentially as the height

decreases.

Whereas the 2D Ising model with a pinning potential is known [11] to have an interface converging to a Ferrari–Spohn

diffusion, the behavior in the SOS model – where there are H � logL interacting level lines, each constrained not to

cross its neighbors and inducing a tilt which is a function of the area it encompasses and its height – is far from being

understood (see the review [13] for more information).

In this work, we investigate the limiting law of a line ensemble that was studied by Caputo, Ioffe and Wachtel [2,3] to

model the level lines of the SOS model in the presence of a hard wall: each level line, X1,X2, . . . , where X1 is the top

one, is tilted by the area below it, with the coefficients of these area tilts increasing geometrically.

For more perspective on this model in the context of other models of Brownian polymers constrained above a barrier,

starting from the influential work of Ferrari and Spohn [8] (the model there being equivalent by Girsanov’s transformation

– cf. [17] – to a Brownian excursion with an area tilt), see, e.g., [2,12,14] and the references therein.

Define

A
+
n =

{
x ∈R

n : x1 > x2 > · · · > xn > 0
}
,

its closure Ā
+
n and, for a designated interval

I = [�, r] (� < r ∈R),

let

�I
n =

{
X ∈ C

(
I ;Rn

)
: X(t) ∈A

+
n for all t ∈ I

}
.

(Here, for T ⊂ R and X a topological space, we denote by C(T ;X ) the space of continuous functions from T to X ,

equipped with the topology of uniform convergence on compact subsets of R.) Further define the area tilt of Y ∈ C(I ;R)

to be

AI (Y ) =
∫

I

Y(t)dt,

and, for given tilt parameters a > 0 and b > 1 and endpoints x = (x1, . . . , xn) ∈ A
+
n and y = (y1, . . . , yn) ∈ A

+
n , the

partition function

(1.1) Z
x,y,I

n = E
x,y,I

n

[
1�I

n
e−a

∑n
i=1 b

i−1AI (Xi (·))],

in which E
x,y,I

n =
⊗n

i=1 E
xi ,yi ,I

1 and the expectation E
x,y,I

1 for I = [�, r] is w.r.t. the (unnormalized) path measures of

the Brownian bridge which starts at x at time � and ends at y at time r ; that is, the total mass of E
xi ,yi ,I

1 is φr−�(yi − xi),

where hereafter ‖ · ‖ stands for the relevant Euclidean norm, with

(1.2) φv(x) := (2πv)−k/2e−‖x‖2/(2v)

denoting the density of a centered Gaussian vector of independent coordinates of variance v, whose dimension k is

implicitly given by the argument we use. (At no point in our analysis will we need to adjust the tilt parameters (a,b), and

as such we do not include them in the notation for brevity.)

Let Bn = Bn,I be the Borel σ -field on C(I,Rn). (We omit I from the notation when no confusion occurs.) For � ∈ Bn,I

define

(1.3) P
x,y,I

n (�) := 1

Z
x,y,I

n

E
x,y,I

n

[
1�1�I

n
e−a

∑n
i=1 b

i−1AI (Xi(·))].

Consider IT = [−T ,T ]. Two classes of boundary conditions that are of interest are:

(a) Zero boundary conditions: fixing both x and y to be zero:

μ0
n,T = P

0,0,IT
n .

(More precisely, this is the limit of P
εx,εy,IT

n as ε ↓ 0, which by stochastic domination exists and is independent of

the fixed x, y in A
+
n which one uses.)
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(b) Free boundary conditions with respect to a σ -finite measure: averaging E
x,y,IT

n [·] over x, y according to a specified

σ -finite measure 	n on R
n:

μ
f
n,T (�) = 1

Z
f
n,T

∫

A
+
n

∫

A
+
n

E
x,y,IT

n

[
1�1

�
IT
n

e−a
∑n

i=1 b
i−1AIT

(Xi(·))]	n(dx)	n(dy),

where

Z
f
n,T :=

∫

A
+
n

∫

A
+
n

E
x,y,IT

n

[
1

�
IT
n

e−a
∑n

i=1 b
i−1AIT

(Xi(·))]	n(dx)	n(dy).

We refer to such μ
f
n,T as 	n-free boundary conditions, reserving Leb-free for the special case of Lebesgue 	n, considered

in [2,3]. Caputo, Ioffe and Wachtel show in [2,3] that μ0
n,T converges to a limit μ0

∞ as n,T → ∞ (moreover, they proved

that for any fixed n, the measures μ0
n,T converge as T → ∞ to a limit μ0

n , which then converges to μ0
∞ as n → ∞),

and that for any c > 0, the family of Leb-free distributions {μf
n,T }n≥1,T >c is tight. In this and subsequent statements, the

measure μ0
∞ is defined on C(R,RN), and the convergence is in the sense that for any compact set K ⊂ R, integer k ∈ N

and fixed bounded, continuous function f : C(K;Rk) �→ R, we have that

(1.4) lim
n,T →∞

∫
f (X1, . . . ,Xk)μ

0
n,T (dX) =

∫
f (X1, . . . ,Xk)μ

0
∞(dX).

For Leb-free boundary conditions, Caputo, Ioffe and Wachtel conjectured that μ
f
n,T converges as well, and to the same

limit μ0
∞ as when n,T → ∞. Our main result confirms that when T → ∞ followed by n → ∞, this holds more generally,

whenever for n ≥ 1,

cn := lim sup
r→∞

r−1 log	n

(
A

+
n ∩ {x1 ≤ r}

)
< ∞(1.5)

(in particular, note that cn = 0 when 	n is Lebesgue measure).

Theorem 1.1. Assuming (1.5), for any fixed tilt parameters a > 0 and b > 1 and any fixed integer n, the measures μ
f
n,T

and μ0
n,T have the same weak limit as T → ∞. In particular, if we denote by μ0

∞ the limit of μ0
n,T as n,T → ∞, then

∃ lim
n→∞

lim
T →∞

μ
f
n,T = μ0

∞.

Remark 1.2. Our proof easily extends to allow in μ
f
n,T different measures for x and for y (as long as both satisfy (1.5)).

Note that Theorem 1.1 is optimal in terms of 	n, as merely having Z
f
n,T finite, requires that aT ≥ cn (see (2.2) and (2.7)

at s = T ). Further, supn{cn} must be finite if aiming to exchange the order of limits in n and T .

Our proof of Theorem 1.1 employs the Markovian structure of the problem. In a first step we introduce a (sub-) Marko-

vian Kernel Kt , see (2.1). The key part of the proof is Lemma 2.1, where we prove that K1 is compact in the appropriate

L2 space; the proof of the lemma involves probabilistic arguments. With the lemma, standard contraction arguments, de-

tailed in Section 2.1, yield the exponential decay (in T ) of the dependence in the boundary conditions. We note that some

care is needed here due to the non-compactness of the set of possible boundary conditions, but that non-compactness was

already handled in [2].

Many interesting open questions remain, chief among which, perhaps, is describing the limiting process X∞(·) (on,

say, the interval [0,1]). We refer to [2,3] for a list of such problems and note in passing that from (2.13) and PDE

theory, one can verify that the limit of μ
f
n,T when T → ∞, is the stationary solution of the Langevin SDE for invariant

probability density ϕ2
1 on A

+
n (where the Perron-Frobenius eigenvector ϕ1 of K1 is the positive C2-solution of the elliptic

PDE
1
2
�u = (c + a〈b, x〉)u with Dirichlet boundary conditions at ∂A+

n and the largest possible c < 0).

2. Proof of main result

Fix the tilt parameters a > 0 and b > 1, and let n ≥ 1 be an integer. Throughout this proof, for X ∈ �I
n, we use the

abbreviated notation

AI

(
X(·)

)
:= a

n∑

i=1

b
i−1

AI

(
Xi(·)

)
.
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Let � ∈ Bn,[0,1], and define

K�
1 (x, y) = E

x,y,[0,1]
n

[
1�1

�
[0,1]
n

e−A[0,1](X(·))],

which we view as a linear operator on L2(A+
n ) = L2(A+

n ,Leb):

(
K�

1 f
)
(x) =

∫

A
+
n

K�
1 (x, y)f (y)dy.

With a slight abuse of notation, we continue to write K�
1 also when � ∈ Bn,R, in which case we understand that � was

replaced by its restriction to the interval [0,1]. With this convention in mind, we will further be interested in the semigroup

(2.1) K�
t (x, y) = E

x,y,[0,t]
n

[
1�1

�
[0,t]
n

e−A[0,t](X(·))].

When referring to the case � = �R
n (i.e., the indicator 1� within the expectation in the definition of K�

1 is omitted), we

simply write Kt (with no superscript) in lieu of K
�R

n
t , noting that Kt (x, y) is precisely the partition function Z

x,y,[0,t]
n

from (1.1).

Observe that Kt is symmetric, in that Kt (x, y) = Kt (y, x), as well as positivity preserving:

(Ktf )(x) =
∫

Kt (x, y)f (y)dy ≥ 0 whenever f ≥ 0.

As Kt is symmetric, and given by a continuous time Markov process with killing, it is positive definite (this follows, e.g.,

by [9, Theorems 1.3.1, Lemma 1.3.2 and Theorem 6.1.1], all applied to Example 1.2.3 there). A key ingredient in the

proof will be that K1 is furthermore relatively compact:

Lemma 2.1. For every fixed n, the range of the symmetric positive definite operator

(K1f )(x) =
∫

A
+
n

E
x,y,[0,1]
n

[
1

�
[0,1]
n

e−A[0,1](X(·))]f (y)dy

consists of continuous functions on A
+
n , and the operator K1 is compact w.r.t. L2(A+

n ).

2.1. Proof of Theorem 1.1 modulo Lemma 2.1

We consider throughout the convergence over the interval [0,1], the changes needed for considering other compact sets

(as the set K in (1.4)) are minimal. Aiming to express the measures μ0
n,T and μ

f
n,T in terms of the operator Kt , we define

for s > 0

ψs(u) =
∫

Ks(u, x)	n(dx).

Setting s > 0 large enough so that ψs ∈ L2(A+
n ), in view of the symmetry of Ks and the semigroup property, our goal is

then to show that for every � ∈ Bn,[0,1], the limit of

(2.2) μ
f
n,T (�) =

∫∫
ψs(x)KT −s(x,u)K�

1 (u, v)KT −1−s(v, y)ψs(y)dudv dx dy∫∫
ψs(x)K2T −2s(x, y)ψs(y)dx dy

as T → ∞ exists and coincides with that of

(2.3) μ0
n,T (�) = lim

ε↓0

∫∫
KT (εx,u)K�

1 (u, v)KT −1(εy, v)dudv

K2T (εx, εy)
,

where by [3, Lemma 2.2], the limit (2.3) exists and is independent of x, y in A
+
n .

By the spectral decomposition theorem, the compact positive definite operator K1 has a discrete spectrum (except for a

possible accumulation point at 0), with positive eigenvalues {λi} and eigenvectors {ϕi} that form a complete orthonormal

basis of L2(A+
n ) (see, e.g., [18, Thms. VI.15 and VI.16]). In particular,

K1(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y) for a complete basis {ϕi}i≥1 with 〈ϕi, ϕj 〉L2(A+
n ) = δij .
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With K1(x, y) > 0 throughout A+
n × A

+
n (e.g., due to parabolic regularity), by the generalized Perron-Frobenius The-

orem (see, e.g., the version of the Krein-Rutman Theorem given in [9, Thm. XIII.43]), the top eigenvalue λ1 has a

one-dimensional eigen-space and we may choose the continuous function ϕ1 to be strictly positive on A
+
n . That is,

ϕ1 > 0 and λ1 > λ2 ≥ λ3 ≥ · · · ≥ 0.

Further, for any r ≥ 1 and x, y ∈ A
+
n ,

(2.4)

Kr(x, y) = E
x,y,[0,r]
n

[
1

�
[0,r]
n

e−A[0,r](X(·))] ≤ E
x,y,[0,r]
n

[
1

�
[0,r]
n

e−aA[0,r](X1(·))]

≤ E
x1,y1,[0,r]
1

[
e−aA[0,r](X1(·))]

= φr (y1 − x1)e
−ar

x1+y1
2 E

[
e−a

∫ r
0 Bs ds

]

≤ eCr e−ar
x1+y1

2 ,

where {Bs, s ∈ [0, r]} is the standard Brownian bridge over [0, r] starting and ending at 0 and Cr = a2

2
E(

∫ r

0 Bs ds)2 (using

in the second line that the total mass of E
xi ,yi ,[0,r]
1 , i ≥ 2, is at most one, while for the third line recall that a Brownian

bridge between fixed points has the law of the standard bridge plus a straight line connecting these points). Since Kr(x, y)

vanishes if either x /∈A
+
n or y /∈A

+
n , it follows that

∫∫
Kr (x, y)dx dy ≤ eCr

[∫ ∞

0

xn−1
1 e−arx1/2 dx1

]2

< ∞,(2.5)

and

∫
Kr(x, x)dx ≤ eCr

∫ ∞

0

xn−1
1 e−arx1 dx1 < ∞.(2.6)

Similarly, by the symmetry of Ks , the semigroup property and (2.4),

(2.7)

∫
ψs(u)2 du =

∫∫
K2s(x, y)	n(dx)	n(dy) ≤ eC2s

[∫

A
+
n

e−asx1	n(dx)

]2

< ∞,

provided that as > cn of (1.5), in which case we can decompose

(2.8) ψs =
∞∑

i=1

αi,sϕi where αi,s := 〈ψs, ϕi〉L2(A+
n ),

∞∑

i=1

α2
i,s = ‖ψs‖2

2.

(Hereafter ‖ · ‖2 denotes the L2(Rn,Leb)-norm, using ‖ · ‖L2(A+
n ) when restricting the domain to A

+
n .) Fixing an integer

� > cn/a, we have from (2.7) that {ψs}s∈[�,�+1] is bounded in L2(A+
n ), and we split any T ≥ � + 1 as T = t + s for

s ∈ [�, � + 1) and integer t ≥ 1, to get from the decomposition (2.8) that

∫
Kt−1(u, y)ψs(y)dy =

∞∑

i=1

λt−1
i αi,sϕi(u).

Similarly, for t ≥ 1,

∫∫
Kt (x, y)ψs(x)ψs(y)dx dy =

∞∑

i=1

λt
iα

2
i,s := ct,s .

Hence, (2.2) translates for s = � + {T } and t = T − s, into

μ
f
n,T (�) = 1

c2t,s

∫∫ ∞∑

i=1

∞∑

j=1

αi,sαj,sλ
t
iλ

t−1
j ϕi(u)K�

1 (u, v)ϕj (v)dudv.(2.9)
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Looking at K�
1 and arguing as we did for K1, we see that for any u ∈R

n,

∫
K�

1 (u, v)2 dv ≤
∫

K1(u, v)2 dv = K2(u,u) < ∞,

where the equality holds by the symmetry of K1 and the definition of Kt and the last inequality by (2.4). In other words,

K�
1 (u, ·) ∈ L2(A+

n ) for every u ∈ R
n. Moreover, by (2.6) we have that

∫∫
K�

1 (u, v)2 dudv ≤
∫∫

K1(u, v)2 dudv =
∫

K2(u,u)du < ∞

and it follows that

K�
1 ∈ L2

(
A

+
n ×A

+
n

)
.

A complete orthonormal system {ϕi} w.r.t. L2(A+
n ) induces a complete orthonormal system {ϕi ⊗ ϕj }i,j≥1 w.r.t.

L2(A+
n ×A

+
n ); hence, we may decompose K�

1 into

K�
1 (u, v) =

∑

i,j

γi,jϕi(u)ϕj (v)

where

γi,j :=
∫∫

K�
1 (u, v)ϕi(u)ϕj (v)dudv,

∑

i,j≥1

γ 2
i,j =

∥∥K�
1

∥∥2

L2(A+
n ×A

+
n )

< ∞.

This reduces (2.9) into μ
f
n,T (�) = �

(1)
n,T /�

(2)
n,T where

(2.10) �
(1)
n,T :=

∑

i,j≥1

γi,jαi,sαj,s λ̂
t
i λ̂

t−1
j , �

(2)
n,T := λ1

∞∑

i=1

λ̂2t
i α2

i,s,

and the rescaled eigenvalues λ̂i := λi/λ1 ∈ [0,1] (i = 1,2, . . .) satisfy

λ̂i = 1 and sup
i>1

λ̂i ≤ 1 − δ for δ = (λ1 − λ2)/λ1 > 0.

We immediately see that �
(2)
n,T of (2.10) satisfies

(2.11) λ1α
2
1,s ≤ �

(2)
n,T ≤ λ1α

2
1,s + λ1(1 − δ)2t‖ψs‖2

2.

Further, with Ksϕ1 = λs
1ϕ1 continuous and positive on A

+
n , for any non-zero 	n,

α1,s =
∫

A
+
n

(Ksϕ1)(x)	n(dx) = λs
1

∫

A
+
n

ϕ1(x)	n(dx)

is bounded away from zero, uniformly over s ≤ � + 1. Consequently,

lim
T →∞

�
(2)
n,T

α2
1,s

= λ1.

To treat �
(1)
n,T of (2.10), note that by Cauchy–Schwarz and having supi≥2 |̂λi | ≤ 1 − δ,

(2.12)

∣∣∣∣
∑

i,j≥1
i+j>2

γi,jαi,sαj,s λ̂
t
i λ̂

t−1
j

∣∣∣∣ ≤ (1 − δ)t−1
∑

i,j

|γi,jαi,sαj,s |

≤ (1 − δ)t−1

√∑

i,j

γ 2
i,j

√∑

i,j

α2
i,sα

2
j,s

= (1 − δ)t−1
∥∥K�

1

∥∥
L2(A+

n ×A
+
n )

‖ψs‖2
2.
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Taking T → ∞, we see that

lim
T →∞

�
(1)
n,T

α2
1,s

= γ1,1.

Altogether, we have thus established that

(2.13) lim
T →∞

μ
f
n,T (�) = γ1,1

λ1
.

We now repeat the same analysis for μ0
n,T , where since the limit as T → ∞ exists, we assume hereafter that T is

integer (and set s = � = 1). Further, for simplicity we opt to take y = x and let ψ (ε)(u) := K1(εx,u). Inferring that

ψ (ε) ∈ L2(A+
n ) (because K2(εx, εx) < ∞), we can write

ψ (ε) =
∞∑

i=1

α
(ε)
i ϕi,

where

α
(ε)
i :=

〈
ψ (ε), ϕi

〉
L2(A+

n )
,

∥∥ψ (ε)
∥∥2

L2(A+
n )

= K2(εx, εx) =
∞∑

i=1

(
α

(ε)
i

)2
< ∞.

The exact same argument then shows that μ0
n,T (�) is the limit at ε → 0 of �

(1,ε)
n,T /�

(2,ε)
n,T where

(2.14) �
(1,ε)
n,T :=

∑

i,j≥1

γi,jα
(ε)
i α

(ε)
j λ̂T −1

i λ̂T −2
j , �

(2,ε)
n,T := λ1

∞∑

i=1

λ̂2T −2
i

(
α

(ε)
i

)2
.

With ψ (ε) > 0 and ϕ1 > 0, we have as before that α
(ε)
1 > 0. Moreover, setting

κε :=
‖ψ (ε)‖2

L2(A+
n )

(α
(ε)
1 )2

,

we have analogously to (2.11) and (2.12) that

0 ≤
�

(2,ε)
n,T

(α
(ε)
1 )2

− λ1 ≤ λ1(1 − δ)2T −2κε,

∣∣∣∣
�

(1,ε)
n,T

(α
(ε)
1 )2

− γ1,1

∣∣∣∣ ≤ (1 − δ)T −2
∥∥K�

1

∥∥
L2(A+

n ×A
+
n )

κε.

We shall employ the following asymptotic as ε → 0, the proof of which we defer to Section 2.3.

Lemma 2.2. Setting n := (2n − 1,2n − 3, . . . ,1), we have that

(2.15) lim sup
ε→0

K2(εn, εn)

(
∫
u1≤1 K1(εn,u)ϕ1(u) du)2

< ∞.

Since K1 and ϕ1 are both positive, (2.15) applies also without the restriction to u1 ≤ 1, with Lemma 2.2 yielding that

κε is uniformly bounded (as ε → 0), when x = n. Hence, thanks to our freedom to choose the boundary, we have that

(2.16) lim
T →∞

μ0
n,T (�) = γ1,1

λ1
,

which in light of (2.13) concludes our proof of Theorem 1.1, modulo the proofs of Lemmas 2.1 and 2.2.
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2.2. Proof of Lemma 2.1

Letting

B0 =
{
f : ‖f ‖L2(A+

n ) ≤ 1
}

and

B1 =
{
(K1f ) : f ∈B0

}
,

we will establish compactness by verifying the Fréchet–Kolmogorov criteria (see [20, p. 275], as well as [19]).

First, with P denoting the law of Brownian motion {W(t)}t∈[0,1] in R
n started at the origin and E its corresponding

expectation, note that

(2.17) (K1f )(x) = E
[
1

�
[0,1]
n

(
x + W(·)

)
e−A[0,1](x+W(·))f

(
x + W(1)

)]
.

Now, setting for f supported on A
+
n ,

M(f ) := sup
x∈A+

n

E
[∣∣f

(
x + W(1)

)∣∣],(2.18)

note that by Cauchy–Schwarz,

(2.19) M(f )2 ≤ sup
x∈A+

n

E
[
f

(
x + W(1)

)2] ≤ ‖f ‖2

L2(A+
n )

sup
x,y∈A+

n

{
φ1(y − x)

}
≤ 1,

where φv(·) denotes the density in (1.2) and the last inequality holds for all f ∈ B0.

This readily implies the following uniform bound on g = K1f ∈ B1, where by a computation similar to the third line

of (2.4), for any x ∈ A
+
n ,

∣∣g(x)
∣∣ ≤

∫

A
+
n

E
x,y,[0,1]
n

[
e−a

∫ 1
0 X1(s) ds

]∣∣f (y)
∣∣dy ≤ ce− a

2 x1M(f ) ≤ ce− a
2 x1 ,(2.20)

for some finite c = c(a), independent of x and f ∈ B0. We deduce in particular that

(2.21) lim sup
R→∞

sup
g∈B1

∫

x∈A+
n

x1>R

∣∣g(x)
∣∣2

dx = 0,

establishing equitightness (and, due to (2.20), also uniform boundedness, although it is not needed in view of [19]).

It remains to establish equicontinuity for B1, where in view of (2.21) and the compactness of Ā+
n ∩{x1 ≤ R} it suffices

to bound, in terms of ‖h‖, the value of

sup
g∈B1,x∈A+

n ,x+h∈A+
n

{∣∣g(x + h) − g(x)
∣∣}.

Using the representation (2.17) for g = K1f , we start by reducing to g̃(·) in which we extracted out the explicit depen-

dence of the area tilt on x. Specifically, let

g̃(x) := E
[
1

�
[0,1]
n

(
x + W(·)

)
e−A[0,1](W(·))f

(
x + W(1)

)]
.

By a slight abuse of notation, letting A[0,1](x) denote A[0,1](X(·)) for X ≡ x, which is nothing but a〈b, x〉 for b :=
(1,b, . . . ,bn−1), we see that

g(x) = e−A[0,1](x)g̃(x),

and therefore,

∣∣g(x) − g(x + h)
∣∣ =

∣∣e−A[0,1](x)
(
g̃(x) − e−A[0,1](h)g̃(x + h)

)∣∣

≤
∣∣eA[0,1](h) − 1

∣∣∣∣g(x + h)
∣∣ + e−A[0,1](x)

∣∣g̃(x) − g̃(x + h)
∣∣.
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For the first term note that |A[0,1](h)| = |a〈b, h〉| ≤ a‖b‖‖h‖ and though h may be outside A
+
n , by Taylor expansion and

(2.20) we have that for any ‖h‖ ≤ 1,

sup
g∈B1,x+h∈A+

n

∣∣eA[0,1](h) − 1
∣∣∣∣g(x + h)

∣∣ ≤ C(a,b, n)‖h‖.

Further, with A[0,1](x) ≥ 0 for all x ∈ A
+
n , it remains only to bound |g̃(x) − g̃(y)| uniformly over g ∈ B1, x ∈ A

+
n and

y ∈ A
+
n such that ‖y − x‖ ≤ δ. To this end, let

τx := inf
{
t ≥ 0 : x + W(t) /∈ A

+
n

}
, so that 1

�
[0,1]
n

(
x + W(·)

)
= 1{τx>1}.

We then have in terms of

�(x,y) := 1{τy>1}f
(
W(1) + y

)
− 1{τx>1}f

(
W(1) + x

)

and η ∈ (0,1), that

∣∣g̃(y) − g̃(x)
∣∣ =

∣∣E
[
e−A[0,1](W(·))�(x,y)

]∣∣ ≤ E
[
|�1|

]
+

∣∣E[�2]
∣∣,

where

�1 := e
−A∗

[0,1−η](W(·))(
e−A[1−η,1](W(·)−W(1−η)) − 1

)
�(x,y),

�2 := e
−A∗

[0,1−η](W(·))
�(x,y),

and

A
∗
[0,1−η]

(
W(·)

)
=A[0,1−η]

(
W(·)

)
+A[1−η,1]

(
W(1 − η)

)
.

To bound E|�1|, use the fact that |�(x,y)| ≤ |f (W(1) + y)| + |f (W(1) + x)| together with Hölder’s inequality to infer

that E|�1| is at most

E
[
e
−4A∗

[0,1−η](W(·))] 1
4 E

[∣∣e−A[1−η,1](W(·)−W(1−η)) − 1
∣∣4] 1

4

(
2 sup

x∈A+
n

E
[
f

(
W(1) + x

)2]) 1
2
.

Noting that the variance of the centered Gaussian A∗
[0,1−η](W(·)) is at most some v = v(a,b, n) finite, the first expectation

above is uniformly bounded (namely, by e8v). Similarly, by (2.19), the third term is at most
√

2, uniformly over f ∈ B0.

Finally, with A[1−η,1](W(·) − W(1 − η)) a centered Gaussian of variance c(a,b, n)η2 for some finite c(a,b, n), the

expectation in the second term is at most ε0(η) → 0 as η → 0. Overall, we conclude that

(2.22) E|�1| ≤ ε1(η) ↓ 0 as η ↓ 0, uniformly over g ∈B1, x ∈A
+
n .

Turning to �2 = e
−A∗

[0,1−η](W(·))
�(x,y), utilizing the identity

1{τy>1} = 1 − 1{τy≤1−η,τx≤1−η} − 1{1−η<τy≤1} − 1{τy≤1−η,1−η<τx≤1} − 1{τy≤1−η,τx>1},

and its dual where the roles of τy and τx have been exchanged, yields the decomposition

�(x,y) = ϒ1 − ϒ2(y) − ϒ3(y, x) − ϒ4(y, x) + ϒ2(x) + ϒ3(x, y) + ϒ4(x, y),

where

ϒ1 :=
[
f

(
W(1) + y

)
− f

(
W(1) + x

)]
(1 − 1{τx≤1−η,τy≤1−η}),

ϒ2(y) := f
(
W(1) + y

)
1{1−η<τy≤1},

ϒ3(y, x) := f
(
W(1) + y

)
1{τy≤1−η,1−η<τx≤1},

ϒ4(y, x) := f
(
W(1) + y

)
1{τy≤1−η,τx>1}.
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For the contribution to |E[�2]| due to ϒ1, condition on F1−η = σ({W(s)}s≤1−η), on which the indicator in ϒ1 is mea-

surable, to get

∣∣E
[
ϒ1e

−A∗
[0,1−η](W(·))]∣∣ ≤ E

[
e
−A∗

[0,1−η]W(·))]

· sup
z

∣∣E
[
f

(
W(1) + y

)
− f

(
W(1) + x

)
|W(1 − η) = z

]∣∣.

While treating E|�1|, we saw that the first term on the right-hand is some finite C(a,b, n), independently of x, h. For

the second term, extending f ∈ B0 from A
+
n to R

n via f (x) = 0 for x /∈ A
+
n , yields that ‖f ‖2 = ‖f ‖L2(A+

n ) ≤ 1. Thus,

performing a change of variable v := W(1)+y in E[f (W(1)+y) | W(1−η) = z] and v := W(1)+x in E[f (W(1)+x) |
W(1 − η) = z], we get that the absolute difference between these expectations is

∣∣∣∣
∫ [

φη(v − y − z) − φη(v − x − z)
]
f (v)dv

∣∣∣∣

≤ ‖f ‖L2(A+
n )η

−n/4
∥∥φ1

(
w − η−1/2(y − x)

)
− φ1(w)

∥∥
2
≤ C(n)η−n/4−1/2δ,

where the first inequality is obtained by Cauchy–Schwarz and an additional change of variable w = η−1/2(v − z − x),

and the second inequality by an easy computation (utilizing that 1 − e−r ≤ r). Thus, choosing

(2.23) δ ≤ ηn/4+1,

makes the contribution of ϒ1 negligible.

To deal with the contribution of ϒ2(y) to |E[�2]|, observe that by Hölder’s inequality,

(2.24)

E
[
e
−A∗

[0,1−η](W(·))
1{1−η<τy≤1}

∣∣f
(
W(1) + y

)∣∣]

≤ E
[
e
−4A∗

[0,1−η](W(·))] 1
4 P(1 − η < τy ≤ 1)

1
4

(
sup

y∈A+
n

E
[
f

(
W(1) + y

)2]) 1
2
.

While bounding E|�1| we have seen that the first and third terms are at most some c(a,b, n) finite, uniformly over B0,

so it suffices to show that

(2.25) ε2(η) := sup
y∈A+

n

{
P(1 − η < τy ≤ 1)

}
→ 0 as η → 0.

Indeed, taking a union bound over the n different boundaries of A+
n that are considered in τy , reduces, up to the factor n,

to the bound in case n = 1, namely for the first hitting time Tb of level −b < 0 by a standard Brownian motion Bt . The

corresponding probability density fTb
(t) = be−b2/(2t)/

√
2πt3 is bounded, uniformly over b and t ≥ 1/2, thereby yielding

(2.25).

The same analysis applies to the contributions from the ϒ3 terms.

Analogously to (2.24) the contribution of ϒ4(y, x) to |E[�2]| is bounded above by

E
[
e
−A∗

[0,1−η](W(·))
1{τy≤1−η,τx>1}

∣∣f
(
W(1) + y

)∣∣]

≤ C‖f ‖L2(A+
n )P(τy ≤ 1 − η, τx > 1)1/4 ≤ Cε3(δ, η)1/4,

for some C = C(a,b, n), any f ∈ B0 and

ε3(δ, η) := sup
x,y∈A+

n ,‖x−y‖≤δ

P(τy ≤ 1 − η, τx > 1).

With the same bound applying for ϒ4(x, y), it remains only to show that ε3(δ, η) → 0 as δ → 0 (for any fixed η > 0). To

this end, by a union bound over the n different boundaries of A+
n , as done for proving (2.25), the probability in question is

at most n times the probability that standard Brownian motion B(t) := (Wi(t) − Wi+1(t))/
√

2 reaches level −b by time
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1 − η (here b = (yi − yi+1)/
√

2), while remaining above −(b + δ) up till time 1. With Brownian motion a strong Markov

process of independent increments, we thus deduce by the reflection principle that

n−1ε3(δ, η) ≤ P

(
inf
s≤η

{
B(s)

}
> −δ

)
= 1 − 2P

(
B(η) ≥ δ

)
= P

(∣∣B(η)
∣∣ < δ

)
,

which goes to zero as δ → 0 (for any fixed η > 0). This completes the proof of Lemma 2.1.

2.3. Proof of Lemma 2.2

Setting K̂t for the operator Kt in the case a= 0 (no area tilt), we first establish (2.15) for K̂t . Namely, we show that,

(2.26) lim sup
ε→0

K̂2(εn, εn)

(
∫
u1≤1 K̂1(εn,u)ϕ1(u) du)2

< ∞.

Our starting point for (2.26) is the following explicit formula, valid for any y ∈A
+
n and any t, ε > 0,

(2.27) K̂t (εn, y) = 2n2

φt (y)e−ε2‖n‖2/(2t)
∏

i

sinh

(
εyi

t

) ∏

j<k

[
sinh2

(
εyj

t

)
− sinh2

(
εyk

t

)]
.

Indeed, for ε = 1 this is the explicit evaluation in [10, Display below (24)] of the Karlin–McGregor determinantal formula

[15] for the transition kernel,

qt (x, y) = φt (y − x) − φt (y + x) = 2φt (y)e−x2/(2t) sinh(xy/t),

of a scalar Brownian motion absorbed at level zero, when starting at the distinguished point n. We thus get (2.27) by

noting that the non-trivial factors sinh(xiyj/t) are invariant to changing from (εn, y) to (n, εy).

In particular, with g(x) := sinh(x/2) being zero at x = 0 and globally Lipschitz(L) on [0,2n], we get from (2.27) that

for some cn, Cn finite and any ε ∈ [0,1],

(2.28)

K̂2(εn, εn) ≤ cn

∏

i

g
(
ε2ni

) ∏

j<k

[
g2

(
ε2nj

)
− g2

(
ε2nk

)]

≤ cnL
n2 ∏

i

(
ε2ni

) ∏

j<k

[(
ε2nj

)2 −
(
ε2nk

)2] = Cnε
2n2

.

Next, noting that on R+ both sinh(x) ≥ x and sinh2(x) − x2 are non-decreasing, we deduce from (2.27) that for any

u ∈A
+
n and ε ∈ [0,1],

K̂1(εn,u) ≥ 2n2

e−‖n‖2/2εn2

φ̂(u), where φ̂(u) := φ1(u)
∏

i

ui

∏

j<k

(
u2

j − u2
k

)
.

With φ̂(·) and ϕ1(·) positive on A
+
n , we get from the latter bound that

inf
ε∈[0,1]

ε−n2
∫

u1≤1

K̂1(εn,u)ϕ1(u) du > 0,

which in combination with (2.28) establishes (2.26).

Next, recall that Kt (x, y) is point-wise decreasing in a and in particular bounded from above by K̂t (x, y); thus, the

sought bound (2.15) for Kt follows from (2.26) once we show that for some finite C = C(a,b, n) and any u ∈ A
+
n with

u1 ≤ 1,

(2.29) sup
ε∈(0,1]

{
K̂1(εn,u)

K1(εn,u)

}
≤ C.

Turning to the latter bound, we define for finite M the event

�M :=
{

max
t∈[0,1]

{
X1(t)

}
≤ M

}
,
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noting that for c := a〈b,1〉, any u1 ≤ 1 and ε ≤ 1,

K1(εn,u) ≥ e−cME
εn,u,[0,1]
n [1�M

1
�

[0,1]
n

] = e−cMK̂1(εn,u)̂P
εn,u,[0,1]
n (�M )

≥ e−cMK̂1(εn,u)̂P
n,n,[0,1]
n (�M),

where P̂
x,y,[0,1]
n is the measure P

x,y,[0,1]
n from (1.3) corresponding to a = 0, and with the second inequality due to [7,

Lemma 2.7] (taking there A = [0,1], f ≡ 0, noting that n > u and n > εn whenever u1 ≤ 1 and ε ≤ 1 and that the event

�M is decreasing).

Finally, moving to the unconditional space of n independent bridges rooted at n, n via a multiplicative cost of at most

1/K̂1(n,n), we see that P̂
n,n,[0,1]
n (�c

M ) is at most P(sups∈[0,1]{B(s)} > M −2n)/K̂1(n,n) for a one dimensional Brownian

bridge from (0,1) to (1,1). By the tightness of the maximum of the latter bridge (and recalling that K̂1(n,n) > 0), one

thus has for M large, depending only on n, that

P̂
n,n,[0,1]
n (�M ) ≥ 1

2
.

Combining the last two displays yields (2.29), thereby completing the proof of Lemma 2.2.
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