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To See IMFs on a Surface of Glass: Causal Mechanistic
Reasoning and Intermolecular Forces in the Undergraduate
Chemistry Lab
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ABSTRACT
Intermolecular forces (IMF) are a fundamental concept of chemistry and one that is integral to students’

understanding of the properties and interactions of matter. Despite this, students struggle to apply IMFs to real
phenomena in their world. Here we describe a first-semester general chemistry laboratory in which students
functionalize the surface of glass slides and observe the interaction of water and heptane drops with the surface,
allowing them to integrate IMF, molecular modeling, and causal mechanistic reasoning to explain observable and
measurable phenomena. In the activity, students perform and describe a series of simple reactions that covalently
bond the silane molecules acetoxypropyltrimethoxysilane and octyltrimethoxysilane to the glass surface. They
then characterize the slides by adding drops of water to the modified slide, taking profile pictures with their cell
phones, and determining the drop half angles from the pictures using ImageJ software. Students also add drops of
heptane to the slides and observe their interactions with the slides, contrasting those with the interactions of the
water drops. This lab activity invites students to consider the material of the lab on the macroscopic and
submicroscopic levels as they describe the functionalization of glass slides, observe the interaction of the modified
and unmodified slides with drops of water and heptane, and then construct explanations that use and reinforce
their learning of IMFs and molecular structures. The experimental procedure and data collection proved to be
robust, with most students producing data that was consistent with expectations and that supported their claims

about the IMFs between water molecules and between the water molecules and the surface.

GRAPHICAL ABSTRACT
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INTRODUCTION
There has been a strong emphasis to move chemistry education from its historically observational

and descriptive nature to an explanatory process in which building mechanistic explanations are seen
as the path to greater understanding of the natural world and well-organized chemical knowledge.!
One area of interest has been how students explain various chemical phenomena through causal
mechanistic reasoning (CMR). In CMR, students consider a phenomenon such as boiling point,
solubility, or a chemical reaction and explain it using concepts of chemistry where the explanation

involves (a) structural components at scalar levels below the phenomenon (e.g., particles, molecules,
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atoms, ions, or electrons), (b) properties and/or behaviors of these components (e.g., charge or
vibration), and (c) connecting these properties and behavior back to the phenomenon.2:3 In this form of
reasoning, students engage in the crosscutting concept of cause and effect and use science and
engineering practices such as modeling.45 With the recent focus on CMR as a framework of chemistry
education,!2:6-9 researchers and practitioners have proposed a number of areas in chemistry where
this is appropriate. One of these is intermolecular forces.

Intermolecular forces (IMFs) are the interactions that occur between molecules or between
molecules and ions. These forces, which include hydrogen bonding, dipole-dipole interactions, ion-
dipole interactions, and London dispersion forces, arise from the attraction between partial charges or
temporary dipoles on adjacent molecules and play a crucial role in determining the behavior of
substances in various states of matter.1© While IMF's are critical to chemistry education, they have
proven to be a difficult concept for many students.!-14 A significant amount of research has been done
into students understanding of IMFs as a discrete concept unrelated to a phenomenon.!%14-17 Work
has also been done in how instructors teach IMFs!8 and activities to improve students understanding
of IMFs.19-24 Other research has looked at how students use IMFs to explain and predict phenomena,
These include analysis of how students explained: melting point and boiling point data,25-28
solubility,?® heats of vaporization,3? thin layer chromatography,31-34 gas chromatography,33.35-37 and
chemical and physical properties of organic acids.3® The importance of IMFs in chemistry education is
nowhere more prominently displayed than in the development of an inquiry-based lab course
structured around IMFs by Harmon et al.!3 Through backward design, they considered the knowledge
and skills necessary for lab work and then looked at how the understanding of IMFs intersected with
those concept and skills culminating in a caffeine extraction practical from which they developed the
course curriculum. Clearly IMFs are well suited to CMR because of their inherent molecular and
electronic scale and the modeling involved in understanding them.

This paper describes a novel general chemistry laboratory activity in which students produce
functionalized glass slides, observe the interaction of liquids with their surfaces, and then explain the
interaction using molecular structure and IMFs. We also provide information on how the experience

impacts learning.
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EXPERIMENTAL OVERVIEW
In the summer of 2022, we recognized the need to include an experiment explicitly covering IMFs

in a new general chemistry sequence. The learning outcomes were that students would observe and/or
measure a chemical phenomenon and explain their data and the phenomenon using causal
mechanistic reasoning with molecular structures and IMFs. Initially we used a vapor pressure lab
developed by Fitzgerald et al. in which students determine vapor pressures of organic compounds and
heats of vaporization, which they relate to the IMFs in the compounds.3° While this is a creative and
well-structured lab, when we analyzed students’ data and interpretations as well as TAs’ feedback, it
was apparent that the dexterity and precision necessary to set up the experiment and the long chain
of calculations and inferences, was negatively impacting students’ learning. In the following summer,
we explored other materials and phenomena that have been reported as possible applications of the
concepts of IMFs to observable chemical phenomena. These included melting point measurements,3°
solubility of alcohols,?? and TLC of both organic molecules3!:34 and disperse dyes. These had varying
degrees of promise in engaging students in the three domains of learning—cognitive, psychomotor, and
affective— and as vehicles to explore the crosscutting concepts of cause and effect and structure and
function. As this would be the final laboratory of the course, we also wanted to incorporate chemical
change in the activity. We found a possible candidate in a previously developed biosensor activity
involving glass slides, functionalized silanes, and a drop of water.

The original experiment for our work was developed within a biosensor CURE module for the
Center for Authentic Science Practice in Education (CASPiE)4%.4! by Albena Ivanisevic (unpublished
material). In it, the surface of a common glass microscope slide is modified using trialkoxysilanes,
characterized using contact angle goniometry, and labeled with fluorescent tags. This module was
subsequently used in a pre-college summer program in 2013-2014 by students in our university’s
Latino Health Science Enrichment Program (LAHSEP) to provide participants with opportunities to
accomplish undergraduate research. The students experimented with various changes to the
procedure, carrying out authentic experimentation by developing protocols for modifying and
characterizing the surfaces of glass slide. We expanded on that work by having students use different

alkoxysilanes with a focus on functional groups that would provide for variations in the interaction of
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the glass surface with water droplets (Figure 1). As our objectives were for students to both engage in
chemical change and to analyze data in the context of IMFs, we dropped the fluorescent tagging and

instead focused on modification and characterization of the glass surface itself.

R
/
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CHz e — "
wd Untreated . Amino
\
Si_
O\\\\‘ \O O\
/ CHs
"~ Propyl Isobuty]
-trimethoxysilane —_— ——-PY i e SO uty
base
100 Figure 1. (left) Schematic diagram of -trimethoxysilane base used in developing the experiment. (right) Examples of water drop profiles from

the early stages of testing alkoxysilanes. Names represent the R group which extended above the surface after the covalent bonding of the
trimethoxysilanes onto the slide surface. Untreated is type Il soda-lime glass slide out of the box and the Propyl is the alkoxysilane without a
functional group.

Silanes are an important class of compounds because of their ability to self-assemble and form
105  monolayers on glass surfaces. We are using the term silane as a general category name for those
compounds containing a central silicon surrounded by organic groups, at least one of which is an
alkoxy (Figure 2).#2 The use of alkoxysilanes on silica surfaces to form monolayers has been
extensively studied,*3-5! and is important in a wide range of applications including electronics,
biomedical, and material sciences, making it relevant as an object of study in chemistry education.5253
110 For the development of this laboratory we used trimethoxysilanes because of their availability, their
widespread use in surface science chemistry, and the simplicity and robustness of their reactivity (i.e.,

hydrolysis in water, hydrogen bonding to hydroxyls on glass, and condensation with moderate heat).>*
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Figure 2. Scheme showing: (left) the general structure of silanes where R is an alkyl and R’ is an organic group and (middle and right) the
silanes used in this laboratory. Silanes by definition will have one, two or three alkoxy’s attached to the silicon.

LEARNING OBJECTIVES
As a culminating experiment to the first-semester course, the objectives for this lab extended

beyond understanding IMFs to also include chemical reactions. Students were:

e to explain the chemical reactions that were occurring during the steps of the surface

modification;

e to model, on the submicroscopic level, the processes occurring during surface modification,;

and

e to use CMR to explain the observable and measurable phenomena of liquid-surface interaction
to molecular structures and IMFs.

As the laboratory course is structured within the framework of three-dimensional learning, the
outcomes were developed in conjunction with the discipline core ideas (DCIs) from the anchoring
concepts content maps for general chemistry (ACCM),55 the science and engineering practices (SEPs)
and the crosscutting concepts (CCC) which are both from Next Generation Science Standards

(NGSS).5¢ The specific list of these can be found in the Supporting Information.
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THE EXPERIMENT
This activity was designed for a general chemistry laboratory class at a large midwestern urban

university serving a population with no majority ethnic or racial demographic. The university is a
Minority-Serving Institute (MSI), an Asian American and Native American Pacific Islander-Serving
Institution (AANAPISI), and Hispanic-Serving Institute (HIS). The laboratory is a two-credit, one-
semester course taught independently of the introductory lecture course, though most students are
enrolled in both lecture and lab. It includes 12 labs over a 15-week semester and serves students in
traditional chemistry and biochemistry tracks, as well as other STEM majors, and preprofessional
tracks—including nursing, pre-pharmacy, and pre-medicine. Lab periods are three hours long, contain
up to 24 students, and are led by one graduate teaching assistant (TA). This experiment is intended as
the final lab of the first-semester and can be easily completed in under three hours, including multiple

“Pause and Reflect” events that are a general pedagogical tool in the course.

Experiment Structure
The activity has three parts (Table 1). The first part involves chemical reactions to produce the

modified glass slides (Figure 3); the second part is the characterization of the surface of the slide
(Figure 4); and the third part is the construction of causal mechanistic explanations of the observation
of the liquid on the slide. Interspersed through these sections were reflective exercises as summarized
in Table 1. Students also received an asynchronous lecture about the concepts for the lab. The slides

from the lecture are provided in the Supporting Information.

Journal of Chemical Education 8/13/25 Page 7 of 28



Table 1. Steps in the laboratory procedure documenting the relationship between the “pause
and reflect” events and the procedures in the experiment.

Experiment Steps Procedure Steps Pause and Reflect Steps

Part 1: Producing the Modified Slides

150

Collaborate and choose silane

Draw the chosen silane

Hydrolysis

Mix the silane and water

Draw product of hydrolysis

Hydrogen bonding

Add slides to the solution

Draw and label the hydrogen bonds
between the silanol and the glass
surface

Condensation

Heat the slides in the oven

Draw the surface of the functionalized
slide

Part 2: Data Collection

Water drop on the Photograph a drop of water

pipet on the pipet

Water drop on a Photograph the profile of * Describe the (ilifference betwegn
slide water drop on the slide drop on the pipet and on the slide

e Explain the difference between the
drop on the pipet and on the slide

Water drops on
functionalized slides

Photograph the profiles of
water drops on the
functionalized slides

Heptane drops on
slides

Photograph a drop of
heptane on the slides

Part 3: Data Analysis

Determine the half angle of
water drops on each slide
using ImageJ software

Post Lab questions in the lab report

e Draw a molecular diagram of the
surface of the slide and a water
drop

e Draw the IMFs present

e Explain the differences in drop half
angles between the three glass
slides

e Explain why the heptane interacts
differently than the water to the
glass slides.
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Figure 3. (a) Hydrolysis of organotrimethoxysilane. (b) Condensation of organotrihydroxysilane with the surface.
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Figure 4. Schematic diagram of (top) the functionalizing of the glass slides and (bottom) the characterization of the surface of the glass slide.

The procedure to modify the slides is straightforward and, while not exceedingly exciting (e.g.,
there were no color or state changes and no significant energy transfers), it lent itself well to students’
thinking on a submicroscopic level. The lab was scaffolded to direct students to think about aspects of
the laboratory they might not typically consider in their haste to finish as quickly as possible.57 As
students functionalized their slides with silanes, they were required to stop, reflect, and write on a
submicroscopic level about what they had done or seen by drawing or describing molecules at that

stage in the reaction (e.g., drawing the silanol after the trimethoxysilane reacted with water)(figure 5).
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Figure 5. Examples of student drawing in response to lab prompts: (left) In your lab notebook, draw a picture of the silane molecule your group
is using, (middle) Draw your silane molecule after it reacts with water, (right) Draw a section of the glass slide and your silane molecule after
the condensation reaction in the oven. These examples may be noncanonical.

The students worked collaboratively, using pre-built physical models of the precursors which were

used as manipulatives and to help visualize the reactions that were occurring.(Figure 6)
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Figure 6. (left) Molecular model kit that was available to students in lab. (right) an example of a student’s drawing of the molecular structure of
their modified glass slide.

Pedagogically, the intention was for students to equate the macroscopic processes (i.e., doing and

observing) with submicroscopic models, focusing students on the molecular level and giving TAs an

opportunity to adjust and/or reinforce students’ understanding of the reactions as they were occurring

and reducing the gap between the macroscopic and submicroscopic levels. Additionally, these pause

and reflects occurred in sync with the actual processes in the experiment so students were modeling

what they were doing while they were doing it (Figure 7). While the functionalization of the slides was

expository in nature (i.e.,

instructor defines the topic and the procedures, and the outcome is

predetermined)>8 we anticipated that closing the gap between the macroscopic and submicroscopic

levels in students’ thinking would allow them to “see” the functional groups on the surface of the

slides, and in their analysis and lab reports, to construct explanations that related the structure of the

functional group to their observations.
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Figure 7. Schematic diagram of the procedure used to functionalize the slides and the “pause and reflects” embedded in the experiment.

190 The second part involved students collecting data on the interactions of water and of heptane with
the modified surfaces of the slides. This phenomenon, known as wettability, refers to the ability of a
liquid to maintain contact with a solid surface, caused by intermolecular interactions when the two
are brought together. Since most students are already familiar with water beading on or “wetting”
surfaces (e.g., rain on a waxed car or water pooling on a sidewalk), wettability is readily understood

195  and embraced by students.59:60 It is also significant in material sciences making its use relevant as a
laboratory process. Additionally, with ready access to and increasing resolution of smartphones
cameras, clear and compelling observations of liquids interacting with surfaces can be recorded and
further quantified using contact angle measurement, a well-established analytical technique.61-64

Armed with their own models of the molecular structures involved in the lab and the visual and

200 numeric data of the interactions, students then engage in causal mechanistic reasoning in

constructing explanations for their observations.

Experimental Procedure
Part 1: Producing the functionalized slides. Students were directed to work in pairs and with

another group to conserve materials and time and to increase collaboration among students. The lab

205 originally used three different alkoxysilanes: 3-(trimethoxysilyl)propyl acetate, 3-
aminopropyltrimethoxysilane (APTMS), and octyltrimethoxysilane (Figure 2). But, after the first
iteration in the Fall of 2023, the APTMS was dropped (the reason for this change is discussed in the
Supporting Information). Students were instructed to mix pre-measured S00uL aliquots of their
chosen alkoxysilane in the fume hood with 40mL of deionized (DI) water in polypropylene Coplin jars

210  and to place two standard Corning type II soda-lime glass microscope slides in the capped jar and
leave it for 10 minutes. The slides had a frosted end, were taken directly from the box, and labeled
with pencil. The treated slides were then rinsed with DI water and placed in an oven that was pre-
heated at 120°C. After 15 minutes, students removed, cooled, and shared slides so that all groups had
one of each type of modified slide. Students also collected a clean untreated slide.

215 Part 2: Characterizing the functionalized slides. As a reference point, students took a picture of

a water drop hanging on the tip of the micropipette. This provided practice using their smartphones
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cameras and focused their attention to the appearance of the water drop when it was not interacting
with a surface. To characterize the slides, students used micropipettes set at 30uL and placed two
drop of DI water, lcm apart, on each slide and then took profile pictures of the drops on the surfaces
220  with smartphone cameras. In the profile, the surface of the slide is horizontal and the left and right
edges of the drop are visible and in focus (Figure 1). For better stability, students used small
smartphone tripods with the slides set on raised surfaces( Figure 8). Crow et al. have reported 3-D
printed set-ups for contact angle measurements,% and both Zou et al. and Wanamaker et al. have
recently described easy-to-assemble contact angle measurement setup,%:67 but we found the tripods
225  were cost effective and functioned well for a large scale lab. Students then measured the half angle of
the drops from their drop profile pictures using the web-based version of ImageJ (Figure 7). While not
as commonly used as other methods for measuring contact angle, half angle, the angle between the
glass surface and the line drawn between the edge of the drop and the top of the drop, has been shown
to give acceptable values if the contact angle is less than 900.68 Additionally, since students were not
230 asked to develop a mathematical relationship between surface structure and contact angle and the
differences in contact angle between the various surfaces were significant (see results), using the

simpler method to characterize the surface was sufficient for the needs of the experiment.
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Figure 8. (left) Cell phone camera set on a tripod to take profile pictures of water drops on the functionalized slides. (right) Screenshot of
235 imagedJ software being used to measure the half angle of a water drop on an untreated slide .

As a final piece of data to consider in reasoning about liquid-surface interactions, students
removed the water drops, placed a drop of heptane on each slide, took a picture from above (as the

contact angle was too small to record), and described its appearance.
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Part 3: Analyzing and Interpreting Data. As a prelude to analyzing the differences between the
240  slides, students were asked to describe the difference in appearance between the drop on the
untreated slide and the drop on the micropipette tip (Figure 9), and then to explain the differences
using molecular structure and IMFs. This is consistent with the use of contrasting cases to scaffold

student thinking about mechanisms.®°

245 Figure 9. (top) picture of drop of water on the tip of the micropipette and (bottom) drop of water on the untreated glass slide from a consenting
student (Sum24_012).

Students then moved on to think about the functionalized slides. They were asked to consider and

compare the polarity of the molecules on the treated slides as well as on the untreated slide, and the

IMFs they believed were present between the water drops and the surfaces. They were then asked to
250  complete drawings that modeled the IMFs that they proposed were present between the slides and the
water (Figure 10), and to explain the cause of the differences between the half angles of the water drop

on each slide. Finally, students were asked to explain why the heptane drops interreacted differently

with the surfaces compared with the water drop.
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Figure 10. Example of student (Sum24_010) response to the prompt to complete drawings that modeled the IMFs between water and the
surface structure of the slides. Drawings may not be canonical.

HAZARDS
Reagents used in this experiment include 3-(trimethoxysilyl)propyl acetate , octyltrimethoxysilane

and n-heptane. Trimethoxysilanes are toxic if inhaled or swallowed and also skin irritants.?%:71 Proper
protective equipment such as gloves, goggles and proper lab attire should be worn when handling the
trimethoxysilanes. We recommend premeasuring the trimethoxysilanes into closed Eppendorf tubes
that are stored and used by students in a dedicated fume hood with a waste container for emptied
Eppendorf tubes. The hydroxylated form of both alkoxysilanes are irritants but are not toxic. Solutions
containing the silanols should be collected and disposed of properly. When the alkoxysilanes are
covalently bonded onto the slides by heating, they have no safety hazards so long as the slides do not
break.

Heptane is flammable and should be kept away from any ignition source. It is a skin and eye
irritant and may be fatal if swallowed. Proper protective equipment such as gloves, goggles, and proper
lab attire should be worn when handling heptane. We recommend providing students with small
quantities in closed reusable containers to reduce the risk of spillage and waste.

DATA COLLECTION
1350 students completed the lab during the Fall 2023, Spring 2024, and Summer 2024 semesters.

445 students completed the lab and consented to have their lab reports accessed through the learning
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management system (LMS) in compliance with the university’s IRB (ID# 2018-1323). Of these, 225
were randomly chosen for analysis. All quotes, photographs, and drawings in this report are from

consenting students.

RESULTS AND DISCUSSION

Experimental Results
The laboratory procedure to functionalize glass slides produced surfaces with distinct responses to

water droplets as observed in the profiles of droplets on the slides (Figure 11). The glass slides are
Corning®© type II — Soda-Lime glass, which contains hydroxyl groups in the range of 150-400 ppm.72

This provided reactive sites for the functionalization of the slides with trimethoxysilanes. 465173

Untreated | |

- o
e Tl el

e

Figure 11. (top) Profiles of 30uL water droplet on untreated and treated slides produced by the authors using the laboratory procedure
described in the paper. (below) Profile photograph from a student lab report. Control refers to the untreated glass slide.

Over 95% of students were successful in photographing and measuring half angles of water drops
on their slides and over 85% measured and reported half angles that were consistent with expected
trends (untreated<propyl acetate<octyl) These results were consistent over the three semesters (Figure
S-19). A paired-samples t-test was conducted on student-measured half angles. A significant
difference was found between the water drop half angle on the three surfaces (Supporting
Information): the untreated slide (M=15.1°, SD=17.2) and the propyl acetate slide (M=30.9°, SD=11.6),
t(225)=13.8 p<0.001; the propyl acetate slide and the octyl slide (M=41.8°, SD=13.3), [t(225)=15.4

p<0.001; and the untreated slide and the octyl slide; t(225)= 22.8 p<0.001 (Figure 12)].This suggests

Journal of Chemical Education 8/13/25 Page 16 of 28



295

300

305

that the experiment is reliable in producing half angle measurements that are different for the three

slides which students can then use in constructing explanations.

B0
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Figure 12. Mean contact half angles with 95% confidence interval of 30uL water droplets on treated and untreated slides from consenting
students’ reports (N=225). Paired samples t-test values are given at the top of the graph for the three pairings suggesting the experiment
produces measured half angles that are significantly different from each other.

When students added a drop of heptane to each of the slides it was not possible to photograph the
drop profile and therefore not possible to measure contact half angle. This was because the IMFs
within the heptane drop were too small. Students were therefore instructed to take pictures from
above (Figure 13) and to describe the appearance. Student pictures showed spread-out drops of
heptane and most students described the appearance as spread out without distinct difference

between the three different slides.
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Figure 13. Photograph of a 30uL drp of n-heptane on surfaces of (left) octyl treated, (middle) propyl acetate treated, and (right) the untreated
slides demonstrating the similarity of spreading for all three slides. Photo taken with cell phone from above.

Student results are consistent with the concepts of molecular structure, polarity, and
intermolecular forces. If we consider the molecular model of the surfaces of the three slides (Figure
14), the untreated slides (Corning®© type II — Soda-Lime glass) contain hydroxyl groups on their surface
that provide sites for hydrogen bonding with the water molecules in the drop. This adhesive force
competed with the cohesive force of the hydrogen bonding between water molecules within the water
drop, causing the low contact half angle of the untreated slide (M=15.19). The slide treated with the
octyltrimethoxysilane formed functional groups of eight-carbon chains on its surface with low polarity
and weak attraction to the highly polar water molecules in the drop. Thus, the hydrogen bonding
within the water droplet is significantly stronger than the dispersion forces between the alkyl
functional group and water molecules , so the drop retains its spherical shape and a higher contact
half angle (M=41.8¢). The contact half angle for the slides functionalized with propyl acetate (M-30.99)
can be explained by the presence of a polar ester group at the end of the propyl group with a dipole
moment between 1- 2 Debye, depending on the environment,’* and providing sites for hydrogen
bonding to water molecules.”> While the surfaces of the slides are likely more complex and
heterogeneous than implied here, as an introductory lab to IMFs and CMR, the idealizing of the
functionalized slides and their interaction with water droplets is highly effective in fostering student
learning. Additionally, the lab provides students with findings to stimulate additional questions about

the molecular surface and its interaction with various substances (see Laboratory Extensions).
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Figure 14. Schematic diagram of the possible interaction of the water with the three surfaces of the slide. IMFS are drawn as dotted lines. (left)
the untreated slide with hydroxyl groups hydrogen bonding with water molecules, (middle) the propyl acetate slide with the ester group
hydrogen bonding with the water molecules, and (right) the octyl treated slide with the alkyl groups forming dispersion forces with the water
molecules. The diagrams are idealized realizing that the surfaces are likely more complicated than drawn.

Student CMR Responses
In their analysis and discussion, students consistently combined macroscopic and submicroscopic

writing in describing and explaining their results, providing evidence of learning related to IMFs. When
asked to explain the difference between the water drop on the pipet with the drop on the slide, one
student writes:

"The water drop on the micropipette was a lot rounder and sphere like while the water drops on
the untreated glass was spread out, not very round and more flat like [sic]. This was due to
intermolecular forces and molecular structure because the drop from the pipette had high
cohesive forces with the water. It was more spread out on the glass because there were stronger
adhesive forces with the glass surface.... The water molecules were attracted to the surface
causing it to pull outwards.” (Sum24_006)

Or as another student writes:

“When the water was dropped on a glass slide, it didn't form a round bead. This happened
because the glass has silanol groups on its surface, which have a strong attraction to the water

molecules through hydrogen bonds...making it spread out and flat.” (Sum24_008)

In both these responses, explanations move from macroscopic evidence (i.e., the shapes of the water
droplets) to a scalar level below (e.g., silanol groups, molecules, and molecular structures) which
references their properties (e.g., attractions and forces), and how these properties are relevant to the

phenomenon (i.e., the strong attraction makes the drop spread out); the characteristics of CMR.2
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When asked to explain the differences between the droplet half angles on the three slides, responses
typically continue to follow CMR as seen in the following portion of a student’s response:

Octyl silane has the biggest average drop half-angle out of all samples.... This is due to polarity
and intermolecular forces present in each tested silane. Octyl silane only has dispersion
intermolecular force acting upon it due to its hydrocarbon chain, and thus has the biggest half-
angle out of all...(Sum24_012).

Whose drawings were consistent with their argument (figure 15).
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Figure 15. Student Sum24_012 drawings in response to the prompt to draw the structure of the starting material (left) and the interaction
between the functional group on the slide surface and the water drop (right).

Or this student whose writing holds both the evidence and argument through multiple steps of their

explanation:

“The first glass slide, the Octyl chain had a weak reaction with the water due to its nonpolar
surface. This led to a more spherical droplet and a larger half-angle. The bonds formed were the
weakest being dispersion only. The second slide, the Propyl Acetate reacted moderately with the
water due to its polar nature and this led to a little more spreading and slightly decreased half-
angle. The bond formed here was dispersion and dipole-dipole due to the polar surface. This
bond is stronger than dispersion only and the Octyl chain. Finally, the untreated surface had the
best reaction to the water droplet as it formed the strongest hydrogen bonds. This led to the
water spreading a lot and the smallest half-angle due to the polar surface and the strong
hydrogen bonds.” (Sum24_009)

While not all students expressed canonical causal mechanistic explanations or described IMFs
normatively, most students were successful at providing explanations of the phenomenon of drop half
angle on the glass surface using intermolecular forces. A more in-depth analysis of students’
conceptions of IMFs is the topic of a future report.

Finally, students were asked to explain the difference between the water drops on the slides and

the heptane drops on the slides. While some students were successful at describing and explaining the
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greater spread of the heptane on the slides as due to the weak dispersion forces in the heptane drop
and the low cohesion, this was not a common response and warrants continued analysis.
LABORATORY EXTENSIONS

We used this experiment to strengthen students’ understanding of IMFs using causal mechanistic
reasoning of a very concrete phenomenon. The procedure was highly structured in modifying and
characterizing the glass, but we can see it functioning in a more inquiry or CURES structured
environment as well. Silanes have a rich history in chemistry education dating back to 1946 for their
importance in polymer chemistry,”® and more recently, surface chemistry.”” While we used only two
trimethoxysilanes and type II soda-lime glass slides for this experiment, there are a large number of
commercially available silanes and silica surfaces with which to explore physical and chemical
properties at various levels of the undergraduate chemistry curriculum. Additionally, we used one of
the simpler methods of characterizing the slide surfaces—drop half angles from a cellphone picture
measured with ImageJ—but there are many more sophisticated methods of collecting and analyzing
drop contact angles.59.62,65-67,78-80 Eyen in this experiment there are a number of avenues to explore
concerning the modification of the surface (e.g., physical structure of the glass, heterogeneity of the
surface, characterizing the surface with more advanced analytical techniques, stoichiometry of the
reactions, thermodynamics of the surface interactions,”® and robustness of the functionalized surface).

We are aware that the environment of the slides and the water drop is likely more complex and
heterogeneous than suggested here8! and we are cognizant of the concern put forth by Talanquer of
distortion and derandomization in developing mechanistic explanations.” But we believe that as an
introductory lab to IMFs and causal mechanistic reasoning, it is highly effective in fostering student
learning. Additionally, the lab provides students with findings to stimulate additional questions about
the molecular surface and its interaction with various substances.
CONCLUSION

We have developed a well-structured, robust experiment in which students use alkoxysilanes to
produce functionalized glass slides and then characterize those slides by measuring half angles of
water drops on the slides. Students use the core chemistry ideas of IMFs and molecular structure to

construct causal mechanistic explanations of the differences in the water drop shape on the slides.
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Students extend their understanding of IMFs by comparing how both water and heptane interact with
the slide surfaces. Over three semesters and more than 1300 students, data was reliable and provided
observable and empirically valid evidence that students used in their explanations. By scaffolding the
lab with pause and reflect stops, the activity allows students to develop richer understanding of the
submicroscopic structure implicit in the reactions and how their properties impact the macroscopic
interaction between different surfaces and liquids. This laboratory activity opens a number of
additional avenues for undergraduate lab study of IMFs, surface properties, and functionalization

experiments, providing authentic experimentation and three-dimensional learning.
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