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Abstract—Monocular depth estimation is a crucial task in
many embedded vision systems with numerous applications in
autonomous driving, robotics and augmented reality. Traditional
methods often rely only on frame-based approaches, which strug-
gle in dynamic scenes due to their limitations, while event-based
cameras offer complementary high temporal resolution, though
they lack spatial resolution and context. We propose a novel
embedded multimodal monocular depth estimation framework
using a hybrid spiking neural network (SNN) and artificial neural
network (ANN) architecture. This framework leverages a custom
accelerator, TransPIM for efficient transformer deployment,
enabling real-time depth estimation on embedded systems. Our
approach leverages the advantages of both frame-based and
event-based cameras, where SNN extracts low-level features and
generates sparse representations from events, which are then
fed into an ANN with frame-based input for estimating depth.
The SNN-ANN hybrid architecture allows for efficient processing
of both RGB and event data showing competitive performance
across different accuracy metrics in depth estimation with
standard benchmark MVSEC and DENSE dataset. To make
it accessible to embedded system we deploy it on TransPIM
enabling 9× speedup and 183× lower energy consumption
compared to standard GPUs opening up new possibilities for
various embedded system applications.

Index Terms—Monocular Depth Estimation, Hybrid Network,
Neuromorphic Computing, TransPIM, Neuromorphic Sensor.

I. INTRODUCTION

Depth estimation (DE) is a prevalent task in computer vision
that predicts depth from one or more two-dimensional (2D)
images with a plethora of applications, including robotics,
autonomous driving, 3D image reconstructions, augmented re-
ality, computer graphics, and computational photography. With
the progress of recent deep learning (DL) models, DE based on
DL models has demonstrated its exceptional efficiency in these
wide ranges of applications. Functionally DE can be divided
into three divisions [1], including monocular depth estimation
(MDE), binocular depth estimation, and multi-view depth
estimation amongst which MDE is significantly challenging in
computer vision where no reliable cues exist to perceive depth
from a sequence of images extracted from a single camera.
Nevertheless, this simplicity and ease of access are some of the
main advantages of MDE compared to other categories, which
require additional complicated pieces of equipment. Because
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of that, there has been a substantial increase in demand and
popularity for MDE in recent years.

Event cameras like Dynamic Vision Sensors (DVS) [2] and
Asynchronous Time Based Image Sensor (ATIS) [3] are bio-
inspired revolutionary vision sensors only track changes of
intensity at the pixel level (referred to as events) at the time
they occur, asynchronously instead of repeating redundant
frame information (i.e., when the camera or the scene is not
moving). This creates a stream of events recording the time,
location and changes in brightness for that particular location.
Event cameras offer key advantages such as low latency, low
power, high temporal resolution, high dynamic range, and no
motion blur which allow them to operate in extreme conditions
(e.g., night, bright sun, rapid motion). In contrast, conventional
frame-based cameras capture intensity images at a fixed frame
rate providing rich texture and context information. These
complementary key aspects of both modalities inspire fusing
image frames and event data to improve the overall depth
estimation accuracy.

Spiking Neural Networks (SNNs) with their asynchronous
event-driven nature of computation show immense potential
for extracting the spatio-temporal features from event streams.
The core of SNN is the Leaky Integrate and Fire (LIF) neuron
which enables SNNs to learn timing information without
explicit temporal encoding. However, training deep SNNs
is difficult because of vanishing gradients at deeper layers.
In this context, we propose a deep hybrid neural network
architecture, integrating SNNs and ANNs in different layers,
for energy-efficient depth estimation using image frames and
event camera data that not only combines the strengths of both
data modalities but also exploits the best aspects of SNN and
ANN. We are summarizing our contributions below:

• We propose a hybrid SNN-ANN architecture for dense
monocular depth estimation fusing image frames and
events

• We report competitive performances of our model com-
pared to monocular depth estimation counterparts on the
MVSEC and DENSE dataset across different metrics

• We map our compute heavy encoder to a custom accel-
erator making our model more amenable for embedded
system enabling 9× speedup and 183× lower energy
consumption compared to NVIDIA TITAN RTX GPU.

1



II. RELATED WORKS

With the advent of deep learning, especially convolutional
neural networks (CNNs), depth estimation has seen significant
improvements in accuracy and efficiency. Investigating depth
information from RGB images with ground truth labels to
train a model using DL in supervised fashion was pioneered
in [4] which is a multi-scale CNN-based network consisting
of two deep network stacks. Following their work, plethora
of other works [5], [6] have been proposed to increase the
precision of estimated depth map. Another work presented in
[7] proposed to predict both depth and pose simultaneously
in a self supervised manner from image frames. However,
RGB-based depth estimation struggles with lighting variations,
absence of direct depth information and low-texture surfaces.

In [8] learning-based approach was introduced for stereo
depth estimation with event cameras yielding dense depth
predictions. An unsupervised to estimate depth and optical
flow was proposed in [9] that leverages event streams. To
estimate monocular dense depth map from events a U-Net
architecture is proposed in [10]. While events utilize temporal
information to predict depth, they often lack the necessary
spatial information, which can limit the accuracy of depth map
predictions. Incorporating multiple data modalities to improve
the accuracy of depth estimation inspired [11] to propose a re-
current asynchronous network that introduced fusion of event-
based data and RGB frames for monocular depth estimation,
However, these approaches typically rely on ANNs and do
not fully exploit the spatio-temporal information inherent in
event data. SNNs have emerged as a promising framework for
processing event-based data due to their inherent event-driven
nature. An spiking U-Net based SNN has been proposed in
[12] to estimate monocular dense depth. While SNNs offer
advantages in processing event-based data, it’s challenging
to train deep SNNs for vanishing gradient in the deeper
layers. Given these considerations, a hybrid strategy emerges
as an appealing choice for designing deep network structures,
harnessing the key advantages of both SNN and ANN. [13]
has inspired to explore the hybrid SNN-ANN architecture
which proposed a U-Net based optical flow estimation model
combining SNNs with traditional ANNs. In this work, we
propose a novel hybrid SNN-ANN architecture for monocular
depth estimation that leverages the complementary strengths of
event-based data and frame-based images aiming at accurate
and efficient depth estimation by combining the best aspects
of SNNs and ANNs in a unified framework.

III. HYBRID SNN-ANN TRAINING ON MULTIMODAL
DATA

In this section we describe the methodology of our monoc-
ular depth estimation workload in details. We have performed
the experiments using a widely popular deep learning frame-
work, Pytorch [14] and executed on servers with NVIDIA’s
A100 80GB PCIe GPUs.

Fig. 1: LIF model of spiking neuron

A. Dataset

We use Multi Vehicle Stereo Event Camera (MVSEC)
dataset [15] for training and testing our network. Due to its
extensive size and variability, it has emerged as one of the most
popular benchmarks for depth construction. MVSEC provides
grayscale images and corresponding event streams from two
(left and right) synchronized and calibrated Dynamic Vision
and Active Pixel Sensors (DAVIS-m346b) from mounted on
several vehicles such as a car, motorcycle and hexacopter,
with long indoor and outdoor sequences in a variety of
illuminations and speeds with a resolution of 346×260 pixels.
The ground truth depth map is provided every 50ms by a
Velodyne Puck Lite LIDAR mounted on the top of the two
event cameras having a sampling frequency of 20 Hz. For
estimating monocular depth in our work, we used the grayscale
images, events and ground truth provided by the left camera.
We explored outdoor scenarios by following the same training,
validation and test split as [10] and taking a subset of the data.
Specifically, the training and validation utilized the largest
Outdoor Day2 sequence, while we tested on Outdoor Night1,
Outdoor Night2, Outdoor Night3 & Outdoor Day1 sequences
with 1066, 115 and on an average 5000 samples for training,
validation and testing respectively.

We also experimented with Depth Estimation oN Synthetic
Events (DENSE) dataset [10] which is a synthetic dataset gen-
erated from CARLA [16] having five sequences for training
(Towns 01-05; 5000 samples), two sequences for validation
(Towns 06 & 07; 2000 samples), and one sequence for testing
(Town 10; 1000 samples), a total of eight sequences. For our
experimentation, the RGB images, the events and the depth
maps provided by DENSE dataset are used by the network
for training.

B. Data Representation

Event cameras outputs independent pixels responding to the
changes in the logarithm of brightness, denoted as L(u, t)
that produces a stream of asynchronous events. When the
magnitude of the logarithm of brightness changes by more
than a threshold C since the last event, a new event ek =
(xk, yk, tk, pk) is triggered at the pixel location u = (xk, yk)

T

where the event polarity pk ∈ {+1,−1} denotes the sign of
this brightness change. At timestamp tk an event with polarity
pk is triggered at pixel uk when:

∆L(uk, tk) = pk(L(uk, tk)− L(uk, tk −∆tk)) ≥ C (1)
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Fig. 2: SNN-ANN Hybrid network architecture

where ∆tk denotes the time since the last event at the same
pixel. Each event alone carries very little information of the
scene. It is standard practice to aggregate the little information
conveyed by individual events into some dense representation
before feeding it to the network. Spiking neural networks are
well known for their ability to learn temporal information
from inputs by utilizing the membrane potentials in neurons
We adopted the spatio-temporal voxel-grid representation as
presented in [17]. For a set of N input events {ek}N−1

k=0

between two consecutive grayscale images in the time window
∆T = tN−1 − t0, a set of B event bins are created. The
discretized voxel-grids are generated using bilinear sampling
with spatial dimentions H×W and B temporal bins. In order
to facilitate the learning of temporal information by SNNs
and hybrid networks from the inputs, we pass these B bins
in order. In our experiments, we used ∆T = 50ms of events
and B = 5 temporal bins as in [10].

MVSEC dataset provides 1 channel grayscale images and
DENSE dataset provides 3 channel RGB images as image
frames. We used data augmentations like random horizontal
flipping and random cropping on input frames, event voxels
and ground truth depth maps for generalizing our model.
Additionally, data cropping to 256 × 256 resolution before
feeding to model ensures compatibility with transformer-based
encoder, which expects a square input size. The ground truth
depth maps are transformed into normalized log depth maps
to better represent depth variations in smaller range.

C. Spiking Neuron Model

The basic unit of biologically inspired SNNs is spiking neu-
ron. In this work we consider the popular leaky-integrate-and-
fire (LIF) neuron model [18] for its simplicity and scalability.
Once the accumulated input information over time (referred
to as internal state) of a spiking neuron reaches a pre-defined
threshold, it fires an output spike and resets its state to a resting
potential. For digital simulations, a discrete-time formulation

of the LIF neuron is as follows:

U l
t = λU l

t−1 +W lol−1
t − θolt−1, o

l
t−1 =

{
1, if U l

t−1 > θ

0, otherwise
(2)

where U l
t is the neuron’s membrane potential (internal neuron

state) at time t, l is the layer index, λ (≤ 1) is the membrane
potential leak, Wl is the weight matrix connecting layers l−1
and l, ot is the spike vector at time t, and θ is the firing
threshold potential. The first term on the right hand side of
Eq. 2 carries forward the neuron state from the previous time-
step to the current time-step (modulated by leak λ); the second
term is a weighted sum of the spikes coming from the previous
layer and the third term arises from the thresholding non-
linearity that decreases the membrane potential by θ if an
output spike olt−1 is generated by a neuron (second part of
Eq. 2). The spike generation mechanism presented in Eq. 2 is
shown in Fig. 1

D. Hybrid Network Architecture

The proposed hybrid SNN-ANN architecture represents a
class of neural network design that integrates both Spiking
Neural Networks and Artificial Neural Networks across dif-
ferent layers. ANNs excel at processing dense data represen-
tations, but they struggle with the sparse and asynchronous
nature of data from event cameras. On the other hand, while
SNNs are well-suited for handling event-based data due to
their temporal processing capabilities, they face challenges
with training, including issues with vanishing gradients. The
motivation behind this integration is to harness the unique
strength of each network types for monocular depth estimation.

The architecture of hybrid SNN-ANN is shown in Fig 2. For
efficient spatio-temporal processing of event data, we place
SNN layers immediately after the input layer as SNNs have
inherent capacity to extract event data more effectively. We
used 3 convolutional-SNN followed by LIF activations. The
output at the 3rd layer of SNN block is passed through a
convolutional block and accumulated over all temporal bins
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TABLE I: Absolute mean depth errors (in meters) at different cut-off depth distances for MVSEC data. E refers to event-based
input, I refers to image frame-based input and E+I represents multimodal fusion of events and image frame based input

Data Cut-off
Distance

MonoDepth
[5]

MegaDepth
[6]

Zhu. et al
[9]

E2Depth
[10]

StereoSpike
[12]

RAM Net
[11]

Hybrid
(ours)

I I E E E E+I E E+I

Outdoor
Night 1

10m 3.49 2.54 3.13 3.38 1.68 2.50 1.76 1.18
20m 6.33 4.15 4.02 3.82 2.61 3.19 2.66 2.02
30m 9.31 5.60 4.89 4.46 3.18 3.82 3.04 3.31

Outdoor
Night 2

10m 5.15 3.92 2.19 1.67 Not
Reported

1.21 2.11 1.24
20m 7.80 5.78 3.15 2.63 2.31 3.30 2.18
30m 10.03 7.05 3.92 3.58 3.28 3.72 3.44

Outdoor
Night 3

10m 4.67 4.15 2.86 1.42 Not
Reported

1.01 1.86 1.15
20m 8.96 6.00 4.46 2.33 2.34 3.12 2.03
30m 13.36 7.24 5.05 3.18 3.43 3.53 3.32

Outdoor
Day 1

10m 3.44 2.37 2.72 1.85 1.35 1.39 1.26 1.49
20m 7.02 4.06 3.84 2.64 2.30 2.17 2.05 2.41
30m 10.03 5.38 4.40 3.13 2.75 2.76 2.41 2.80

Fig. 3: Qualitative comparison on test sequence outdoor night 1, night 3 and day 1 (row-wise) of MVSEC dataset. Image
frame, events, ground truth and predicted depth maps at valid pixels are shown respectively from left to right.

and then processed through patch embedding. Image frames
also go through patch embedding. As shown in Fig 2, con-
catenated patches from images and SNN block accumulator
are then processed through positional encoding which is the
starting point of the ANN block of our hybrid model. Then
the tokens are fed to vision transformer (ViT) [19] encoder
followed by token folding operation.

Using token folding, the transformer encoder generates a
series of tokens that are subsequently reshaped to their original
dimension which then undergoes processing in a multimodal
fusion block [20] utilizing convolution and skip connections.
This late fusion block restores information which ensures
the recovery of any potentially lost information. Another set
of convolution operation is performed to combine the fused
output from both the image and event modalities. This fused

output is then passed to the residual in residual dense block
(RRDB) [21] that combines multi-level residual network and
dense connections fully utilizing hierarchical features which
are fed to final convolutional layers to generate depth map
with better restoration quality.

E. Training Details

We train our hybrid model from scratch in a supervised
manner using the ground truth depth maps. To compute the
loss between the valid ground truth labels and the prediction
outputs, we employ a combination of L1 loss, normal loss
[20], and multi-scale gradient matching loss [6] like this:

Ltotal = αLl1loss + βLnormal + γLgrad (3)
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Fig. 4: Qualitative comparison on test sequence town 10 of DENSE dataset. Image frame, events, ground truth and predicted
depth maps are shown respectively from left to right.

TABLE II: Quantitative results on the DENSE dataset. Town06 & Town07 for validation and Town10 sequence for testing.

Model Dataset Abs
Rel↓

Sq
Rel↓ RMSE↓ RMSE

log↓ SI log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Avg.

Error↓
10m

Avg.
Error↓

20m

Avg.
Error↓

30m

E2Depth
[10]

Town06 0.120 0.083 6.640 0.188 0.035 0.855 0.956 0.987 0.31 0.74 1.32
Town07 0.267 0.535 10.182 0.328 0.098 0.774 0.878 0.927 1.03 2.35 3.06
Town10 0.220 0.279 11.812 0.323 0.093 0.724 0.865 0.932 0.61 1.45 2.42

Hybrid
(E+I)

Town06 0.080 0.071 6.987 0.164 0.023 0.934 0.967 0.981 0.16 0.75 1.44
Town07 0.099 0.055 8.852 0.225 0.040 0.865 0.923 0.963 0.29 0.75 1.20
Town10 0.176 0.239 13.624 0.308 0.079 0.821 0.886 0.929 0.26 1.13 2.93

TABLE III: Performance Analysis of the Transformer Module.

Components Time Taken Energy Consumption
(ms) (mJ)

Trans-PIM [22] 171.08 114.49
NVIDIA TITAN RTX 1412.1 20886.3

While experimenting with MVSEC, the weight coefficient for
L1 loss (α) and weight coefficient for multi-scale gradient
matching loss (γ) are 0.5 and 0.25, respectively. We employed
a transformer encoder with depth 12, the ADAM optimizer
with a batch size of 8, learning rate of 3 × 10−4 and trained
the model for 70 epochs. Also, we experimented with different
spiking thresholds of LIF neurons and observed that the model
is learning well with threshold 1.0. For DENSE dataset, we
used the weight coefficient for normal loss (β) and weight
coefficient for multi-scale gradient matching loss (γ) are 0.5
and 0.25, respectively and reduced transformer depth of 6 is
used with batch size 16.

IV. EVALUATION

In this section we will show both qualitative and quantitative
results on MVSEC and DENSE dataset.

A. Evaluation Metrics

We evaluated the results using different metrics [4]. Abso-
lute mean depth error [6] at 10m, 20m & 30m cutoff distances
measures the absolute difference between the predicted depth

and the ground truth depth at different cutoff distances. Ab-
solute relative difference provides a percentage error relative
to the ground truth depth. Square relative difference uses
squared differences, which penalize larger errors more. RMSE
calculates the square root of the average of squared differences
between predicted and ground truth depths. RMSE Log and
SI Log are suitable for evaluating errors across a wide range
of depths. Depth threshold evaluates the percentage of pixels
where the predicted depth is within a certain threshold of
ground truth depth.
B. Results on MVSEC dataset

The experimental results on real MVSEC are tabulated in
Table I. Here the absolute mean depth errors (in meters) at
10m, 20m & 30m cutoff distances are compared with the
state-of-the-art monocular depth estimation models for four
test datasets of night and day conditions. It is observed that our
hybrid model shows competitive performance across all the
test datasets. For outdoor day 1, our event-based hybrid model
outperforms the SOTA models potentially because event-based
model is more robust to dynamic movements and external
noise present in day environment. For Night condition there is
comparatively less movement in the scene, so, our multimodal
hybrid model gives competitive results. Figure 3 illustrates a
visual comparison of our hybrid model’s depth prediction at
valid pixels with the MVSEC grayscale image, events input
and ground truth depth map.
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C. Results on DENSE dataset
The quantitative results on synthetic DENSE dataset are

tabulated in Table II comparing our model with [10] for two
validation datasets: Town06 & 07 and for test dataset Town10.
It is observed that our hybrid model mostly outperforms across
all the datasets. Figure 3 illustrates a visual comparison of our
hybrid model’s depth prediction at each pixel with the DENSE
RGB image, events input and ground truth depth map.

D. Using Custom Hardware to Support Embedded System
To evaluate the feasibility of low-latency Vision Transform-

ers (ViTs) in multi-modal fusion for embedded systems, we
focus on the computationally expensive encoder block. While
ViTs offer strong performance, their deployment is often
limited by resource constraints. We address this by employ-
ing the current state-of-the-art processing in memory trans-
former accelerator, TransPIM [22] which is a custom hardware
accelerator designed for efficient execution of Transformer
models. TransPIM leverages a software-hardware co-design
and a hybrid in-memory/near-memory computing paradigm
for exceptional performance on emerging High Bandwidth
Memory (HBM) architectures. Notably, TransPIM utilizes an
8-bit quantized input format, whereas the standard approach
on GPUs is floating-point precision. However, as demonstrated
in [23], this difference in data format does not significantly
impact the model’s accuracy. Our evaluation compares the
performance of the ViT encoder block on TransPIM against
a standard NVIDIA TITAN RTX. This comparison demon-
strates that TransPIM achieves a significant 9× speedup
and a substantial 183× reduction in energy consumption
compared to the GPU as shown in Table III. This evaluation
highlights the potential of TransPIM for enabling low-latency
ViT deployments in resource-constrained multi-modal fusion
applications.

V. CONCLUSION AND FUTURE WORK

We explored a hybrid SNN-ANN model to leverage the
advantages of both paradigm to estimate monocular depth
with multimodal fusion of event and frame based data. The
findings from the experiments show that our proposed hybrid
architecture can effectively estimate monocular depth with
competitive performance enabled from better temporal infor-
mation extraction by SNN followed by deep ANN backbone.
Moreover, it offers significant improvements with respect to
execution speed and energy consumption as observed when
the transformer encoder is simulated with a custom hardware
accelerator, TransPIM for embedded systems. With the flour-
ishment of neuromorphic chips, as our future work we hope
to deploy the SNN part of the network on Loihi which would
optimize the model further.
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