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Abstract: Bayesian optimization (BO) has proven to be an effective paradigm for the global
optimization of expensive-to-sample systems. One of the main advantages of BO is its use
of Gaussian processes (GPs) to generate characterization of model uncertainty, which can be
leveraged in guiding the learning and search process. However, BO typically treats systems
as a black-box and this limits the ability to exploit structural knowledge (e.g., physics and
sparse interconnections). Composite functions of the form f(x,y(x)), wherein GP modeling is
shifted from the composite function f to an intermediate target y, offer an avenue for exploiting
structural knowledge. However, the use of composite functions in a BO framework is complicated
by the need to generate a probability density for the composite function f from the Gaussian
density of the target y obtained with GP (e.g., when f is nonlinear it is not possible to obtain
a closed expression). Previous work has handled this issue using sampling techniques; these
are easy to implement and flexible but also are computationally intensive. In this work, we
introduce a new paradigm which allows for the efficient use of composite functions in BO; this
uses adaptive linearizations of f to obtain closed-form expressions for the statistical moments
of the composite function. We show that this simple approach (which we call BOIS) enables the
exploitation of structural knowledge, such as that arising in interconnected systems as well as
systems that embed multiple GP models and combinations of physics and GP models. Using
a chemical process optimization case study, we benchmark the effectiveness of BOIS against
standard BO and sampling approaches. Our results indicate that BOIS achieves performance

gains and accurately captures the statistics of composite functions.
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1. INTRODUCTION

Optimization of natural and engineered systems (e.g.,
chemical processes, biological systems, materials) is often
challenging due to incomplete physical knowledge of such
systems or due to the high complexity of experiments and
available physical models. As a result, it is necessary to
device optimization procedures to systematically combine
experimental and model data while mitigating complexity,
see Conn et al. (2009). These procedures, often referred
to as black-box optimization algorithms, treat the system
as a black-box f(x) and uses input/output observation
data to direct their search for a solution. One of the
most popular paradigms to have emerged in this setting is
Bayesian optimization (BO), see Mockus (2012). BO uses
input/output data to generate a Gaussian process (GP)
model that estimates system performance as well as model
uncertainty. These estimates are used to construct an
acquisition function (AF) that allows for the search to be
tuned to emphasize sampling from either high performance
(exploitation) or high uncertainty (exploration) regions,
a feature that makes BO an especially powerful global
optimizer, see Shahriari et al. (2016).
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While the black-box assumption substantially facilitates
the implementation of BO (no previous knowledge about
the system is needed), it ignores the fact that there is
often some form of structural knowledge available (e.g.,
physics or sparse interconnectivity). For example, when
dealing with physical systems, most components might be
well-modeled and understood, while others might not. For
those that are not, the fundamental principles governing
their behavior (e.g., conservation laws, equilibrium, value
constraints) are, at least qualitatively, understood. Addi-
tionally, sparse connectivity, which provides information
on how different components affect each other, is also often
known. As a result, the system of interest is usually not
an unobservable black-box but rather a “grey-box” that
is partially observable and has a known structure, see
Astudillo and Frazier (2021). Several methods exist for
performing grey-box BO, and studies have shown that they
are able to improve algorithm performance by effectively
constraining the search space, resulting in lower sampling
requirements and better solutions, see Lu et al. (2021);
Raissi et al. (2019); Kandasamy et al. (2017). Of these
approaches, the use of composite functions has proven to
be one of the most widely used methods for incorporating
preexisting knowledge into BO, see Astudillo and Frazier
(2019).



A composite function expresses the system performance
as f(z,y(x)) where z are the system inputs, f is a known
function, and y is an unknown vector-valued function that
describes the behavior of internal system components. This
decomposition shifts the modeling task from estimating
the performance function directly to estimating the val-
ues of the target y which serve as inputs to f(x,y(x)).
Additionally, because f is now a known function, deriva-
tive information might be available to understand the
impact of = and y, see Uhrenholt and Jensen (2019).
This approach also readily lends itself to the inclusion
of constraints as these are often dependent on internal
variables which can be captured by the target y Paulson
and Lu (2022). Framing an optimization problem in this
manner is therefore a fairly intuitive approach, especially
in chemical engineering where the performance metric is
usually an economic cost. For example, the cost equations
for equipment, material streams, and utilities are often
readily available and it is the parameters these equations
rely on (compositions, flowrates, duties) that are unknown.
Furthermore, traditional unit operations (heat exchang-
ers, distillation columns, compressors) have significantly
better mechanistic models available than those that tend
to be more niche (bioreactors, non-equilibrium separators,
solids-handling). It then makes sense to construct compos-
ite function where the outer function, f, returns the price
of the system based on the known cost equations while
its inputs, y, are the mass and energy flows through the
system and are estimated via either mechanistic or data-
driven models. Constraints can then be incorporated using
values estimated for y to ensure that data-driven models
obey fundamental physical laws as well as to enforce more
traditional requirements such as product specifications,
waste generation, utility consumption, and equipment siz-
ing which are often important in process design.

While setting up a composite function optimization prob-
lem seems fairly straightforward, implementing it in a BO
setting is not a trivial task. As previously stated, one of
the main advantages of BO is the inclusion of uncertainty
estimates in the surrogate model which allows for greater
exploration of the design space when compared to a de-
terministic model, see Boukouvala and Floudas (2017).
However, when using a composite function, the GP models
generated are of y not f. Given the f is the performance
measure being optimized, it is necessary propagate the
predicted uncertainty from y(z) to f(x,y(z)) (i.e, the
density of f or desired summarizing statistics must be
determined). A Gaussian density for y(z) is directly ob-
tained from the GP model; as a result, when f is a linear
model, we can make use of the closure of Gaussian random
variables under linear operations to generate the density of
f(x,y(z)) (which is also a Gaussian). When f is nonlinear,
however, a closed-form solution is not readily available,
and this operation is usually carried out numerically using
sampling methods like Monte Carlo (MC), see Balandat
et al. (2020).

Given the increased functionality composite functions can
provide to BO and the computational intensity of sam-
pling methods, we propose the Bayesian Optimization for
Interconnected Systems (BOIS) framework. BOIS provides
a novel method for estimating the distribution of f in a
significantly more efficient manner than sampling by lin-
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Fig. 1. Block-flow diagram of the BO framework

earizing the performance function in the neighborhood of a
y(x) of interest. This allows us to construct a local Laplace
approximation which we can use to generate closed-form
expressions for the mean and uncertainty of f(z,y(z)).
We test the performance of this approach by conducting
extensive numerical experiments on a chemical process
optimization case study and compare its performance to
standard BO as well as MC-driven composite function
BO. Our results illustrate that BOIS is able to outperform
standard BO while also providing accurate estimates for
the distribution of f at a significantly lower computational
cost than MC.

2. BACKGROUND
2.1 Bayesian optimization

The problems we are interested in solving are of the form
min f(x) (1a)

x
st. veX (1b)

where f : X — R is a scalar performance function,
X C R% is the design or search space, and z is a
set of design inputs within X. Generally, solving this
problem is made difficult by the fact that derivatives
cannot readily be calculated as sampling f is expensive and
the generated data can be noisy. Bayesian optimization
manages these challenges by using input/output data to
generate a surrogate model of the performance function
that it uses to systematically explore the design space.
The general framework for the algorithm is as follows:
using an initial dataset of size £, D’ = {xx, fx}, where
K = {1,...,4}, train a Gaussian process surrogate model.
The GP assumes that the output data have a prior of the
form f(zx) ~ N (m(x),K(z,z')) where m(x) € R% is the
mean function and K(z,2') € R% X4 is the covariance
matrix. While m(x) is usually set equal to 0, K(z,z')
is calculated using a kernel function, k(x,2’), such that
K;; = k(z;,z;). In our work, we have opted to use the
Matern class of kernels to construct the covariance matrix.
Once the GP has been conditioned on DY, it calculates the

posterior distribution of f, fe, at a set of n new points X
as

FUX) ~ N (mf(X), S5(X)) (2)
where
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Equation (3) is used to construct an acquisition function
(AF) of the form

AF(x) = mfc () — k- 0‘;(1‘) (4)

that is then optimized to select a new sample point z¢+1.
Note that the parameter £ € R, known as the exploration
weight, determines the importance placed on the model
uncertainty and can be modified to make the algorithm
either more exploitative (focus on regions with optimal
mean value) or explorative (focus on regions with high
uncertainty). After taking a sample at 2‘*!, the dataset is
updated and the model can be retrained and the process
repeated until a satisfactory solution is found or the
data collection budget is exhausted. For a more complete
treatment of BO we refer reader to Garnett (2023).

2.2 Monte Carlo approach for composite functions

Optimization of a composite objective using BO is intro-
duced in Astudillo and Frazier (2019). In this context,
the performance function is now a known composition
of the form f(z,y(x)) with f : X x Y — R and where
the inner or intermediate function y X — R, g
vector-valued function with range Y C R9%, is now the
unknown, expensive-to-evaluate function. Note that, in
this approach, the GP model no longer estimates the
system’s performance as in standard BO but is instead
generating estimates for y(z) which serve as inputs to
the performance function. The system is then no longer
a black-box but rather a composition of interconnected
black-boxes whose relation to each other and contributions
to the system’s performance are known via f(z,y(z)).
Additionally, because f is a known function that can be
easily evaluated, its derivatives are also available enabling
the use of derivative-based techniques (gradient descent,
Newton’s method, etc.) to optimize the function. Thus,
in this context, it would be be more precise to consider
the system a partially observable ”grey-box” rather than
a black-box as shown in Figure 2.

In order to apply this paradigm in a BO setting, we
must be able to provide the acquisition function with the
mean and uncertainty estimates of f. However, because
the performance function is no longer being approximated
by the GP model, these are no longer as readily available as
they were in the standard setting. Therefore, it is necessary
to translate the mean and uncertainty estimates provided
for y, mf; (z) and Zg(x) respectively, into the appropriate
values for mfc (z) and Ufc(x). In the case where f is a linear

transformation of y of the form f = a”y + b, then, given
that the GP model assumes a normal distribution for y, f
is normally distributed with

mﬁc(sc) = aTmi(os) +b

(5a)

a?(x) = (a:’jEi(x)a)E (5Db)
However, in the more general case where f is a nonlinear

transformation, this property can no longer be used, and
closed-form expressions for mfc (x) and O'fc (x) are not
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Fig. 2. Grey-box representation of a composite function
system with black-box intermediate functions

readily available. Various methods have proposed using
Monte Carlo to address this problem, see Astudillo and
Frazier (2019); Balandat et al. (2020); Paulson and Lu
(2022). Using this approach, the mean and uncertainty of
f are estimated by passing samples from the GP models for
y(z) into f(z,y(x)) and then numerically estimating the
mean and variance of the performance function as follows

s
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where Ag(x) € R% >4y is the Cholesky factor of the GP
covariance (Af}(Ai)T = Ei) and z € R% is a random
vector drawn from N(0,I). These estimates are then
passed into the the AF presented in (4).

While MC provides a convenient manner for determining
the distribution of f, it is a computationally intensive
method for doing so. The number of samples required to
accurately estimate mﬁc(x) and afc(a:) can be quite large

(on the order of 10 or more) in regions of the design
space with high model uncertainty. As a result, drawing
the number of samples, S, needed from a GP, which
scales as O(S?), see Shahriari et al. (2016), can require
a significant amount of computational time. Additionally,
while f is a known function and is significantly cheaper
to evaluate than the system, at large values of S the cost
of repeatedly calculating the value of f(z,y(z)) can also
become nontrivial. This issue is compounded by the fact
that (6) must be recalculated at every point of interest.

3. BOIS APPROACH

The fundamental problem of composite function BO al-
gorithm is the need to obtain closed-form expressions for
mfc (z) and ofc () (needed to build the AF). Unfortunately,
as previously mentioned, this is generally not possible
when f is not a linear mapping of y. However, when f
is a one-differentiable mapping, it is possible to conduct a
linearization at the current iterate (as is done in standard
optimization algorithms such as Newton’s method). If we
choose to represent f as

f(z,y) = g(x) + h(y) (7)
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such that g(z) includes the terms that do not depend on
y and h(z,y) includes everything else, we can use a first-
order Taylor series expansion to linearize f with respect
to y around some reference point yg:

f(a,y) = g(@) + bz, y0) + I (y = yo) (8)

where
J =V,h(z,yo) (9a)
= Vyf(x, yO) (gb)

Using this approach, if we then select some point of interest
"1 where the mean and covariance of y(x) are given

by the GP model as §¢ = m!(2/*!) and B¢ = %f(z**!)
respectively, and some reference point in the neighborhood
of 4, which we denote as 7§, we can obtain the following

estimate for f at z¢+!
P (@) = gl + bt )

+J7 (y(@*) = 99) (10a)
Note that we make the assumption that g(z) is also a
known, easy-to-evaluate function and, therefore, g(z‘*1)
is a deterministic variable. Thus, we are now able to
derive at a set of closed-form expressions for the mean
and uncertainty of the performance function by making
use of the closure of normal distributions under linear
transformations.

mb (@) = TG + g2 + (@ 96) =TT (11a)

o2 (at ) = (JTEZJ) .

The proposed framework (which we call BOIS and is shown
in Figure 3) is built on the expressions derived in (11). The
reason we are able to generate these explicit formulations
is due to manner in which linearization builds the density
of f. The MC approach is agnostic to the nature of the
density of f, while BOIS approximates the density of f
using a Gaussian around the neighborhood of the iterate
3}6. In other words, BOIS generates a local Laplace ap-
proximation of the performance function by passing the
mean and uncertainty estimates of y(z) given by the GP
model values into (10). This allows us to obtain analytical
expressions for statistical moments f, such as mfc and

(11b)

Ufc, which can be used for constructing AFs. Given that
the approximation of the density of f is Gaussian, it is
also possible to obtain expressions for probabilities and

quantiles (to construct different types of AFs). However,
this assumption about the shape of f means that as the
distance between ¢ and @S grows, the Laplace approx-
imation will result in a worse fit, similarly to how the
linearization itself becomes less accurate. However, it is
important to note that the linearization is updated in
an adaptive manner (by linearizing around the current
iterate). If we compare BOIS to MC-driven approaches,
we can see that at any point 2°*! of interest, BOIS only
samples from the GP once to determine §¢ and %¢ and
evaluates f once to calculate f(z**!,o); recall that this
is done tens to thousands of times in MC. While BOIS
also has to compute (9), this is also done only once and has
been shown to have a computational cost similar to that of
evaluating f when methods like automatic differentiation
are used, see Griewank and Walther (2008); Baur and
Strassen (1983). As a result, we are able calculate values
for mfc and O'fc at a significantly lower computational cost
than when using MC.

4. NUMERICAL EXPERIMENTS
4.1 Optimization of a chemical process

Consider the following chemical process: two reagents, A
and B, are compressed and heated and then fed into
a reactor where they react to form product C. The
reactor effluent is sent to a separator where the product is
recovered as a liquid. A fraction of the vapor stream exiting
the separator, which contains mostly unreacted A and B,
is recycled and fed back to the reactor after being heated
and compressed, and the remainder is purged. Our aim is
to determine the operating temperatures and pressures of
the reactor and separator as well as the recycle fraction
that will minimize the operating cost of the process. With
this goal in mind, we formulate our cost function as
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where F; are the flowrates of reagents into the process.
The product and purge streams exit the process at rates
F, with composition 1; and F, with composition ¢; re-
spectively. The heat and power requirements of the process
units are denoted as @y, and Wy. The costs of reagents and
heat and power utilities are w;, wy, and w, respectively
while w;; and w;s refer to the values of species ¢ in the
product and purge streams. We are also targeting a certain
production rate for C, F, which we choose to enforce
by incurring an additional cost ws when the process op-
erates at a different value of Fj,. We define our design
space as the box domain X = [673,250,288,140,0.5] x
[973,450,338,170,0.9]; the optimal solution is at = =
(844,346,288,170,0.9). For the composite function BO
algorithms, the intermediate black-box functions, y(x), are
set to model the flowrates and compositions of the product
and purge streams as well as the heat and power loads of
the process. All algorithms tested, standard BO (S-BO),
MC-driven composite function BO (MC-BO), and BOIS,
were initialized at the same point; we conducted 243 trials,
each at a different starting point on a 3° grid of X. The
left side of Figure 4 illustrates the average performance of
the algorithms across all of the runs. We observe that, on
average, BOIS is able to return a better solution than both
S-BO and MC-BO. Additionally, we also see that BOIS
during the first 10 trials BOIS samples from regions with
significantly higher costs than the other two algorithms.
We attribute this to the fact that, due to how Ufc(x) is
calculated in (11), large values in J and ¥ () can result
in the uncertainty estimate for f(y(z)) being high. This
pushes the algorithm to be more explorative, especially at
the beginning of the run when the model uncertainty of
y(x) is at its highest. From the sharpness of this peak we
can also determine that BOIS quickly moves away from
these highly non-optimal areas, and after 15 iterations it
is exploring regions with similar values as BO and MC-BO.

The performance distributions shown on the right side
of 4, clearly illustrate the benefit of using a composite
representation of the performance function. We observe
that while the sampling behavior of BOIS and MC-BO is
relatively stable after approximately 60 iterations across
all runs, several runs of S-BO is still sampling from high-
cost regions even at the end of several of its run. The
cause of this is the flow penalty term included in (12). By
providing the composite function algorithms with the form
of f, we enable them to easily determine values of F}, that
result in a small penalty. S-BO does not have access to
this information and, as a result, has no way of knowing
that the penalty is there and has to rely on sampling to
learn it. From the results illustrated in the figure, we can
surmise that this is a difficult task for the algorithm.

4.2 Statistical consistency of BOIS

We decided to use the accuracy of the statistical moments
of f calculated by BOIS as a metric for comparing its
efficacy with that of MC-BO. We know that as we increase
the number of samples (6) will return values closer to
the true moments of f. Using a trained GP model of
y(x) we generated estimates for m? and afi at various
points in the design space using MC-BO with 10, 100,
and 10,000 samples. We then used this same GP model
and set § — go = ¥ x 1073 in the linearization step to
obtain the corresponding estimates from BOIS. If the
values given by BOIS are accurate, then we should expect
that the difference between its estimates and those of MC-
BO should decrease as S increases. The results presented
in Figure 5 demonstrate that this precisely the case. The
shift in the difference of between the estimates is especially
clear when looking at the values of 0‘? calculated by the
two algorithms. The large discrepancies seen when using
10 samples shrink significantly when S is increased to 100
and are virtually gone when S = 10,000. If we consider the
time it took to generate these estimates, approximately
10 seconds for BOIS and 1 hour for MC-BO when using
10,000 samples, we can conclude that, not only is BOIS
faster than MC-BO, it can also be just as accurate. This
further reinforces our claim that BOIS is an efficient
method for using composite functions in a BO setting.

5. CONCLUSIONS

We presented a framework (called BOIS) to enable the
use of composite functions f(z,y(x)) in BO, which allows
the exploitation of structural knowledge (in the form of
physics or sparse interconnections). The key contribution
of this work is the derivation of analytical expressions for
the moments of the composite mff(x) and afc (z) based on
adaptive linearizations; this overcomes tractability chal-
lenges of sampling based approaches. These expressions
are obtained by linearizing f(z,y(z)) in order to gener-
ate a Laplace approximation around the current iterate.
We demonstrate that BOIS outperforms standard BO by
making use of the structure conveyed by f(z,y(z)). We
also show that statistical moments obtained by BOIS
accurately represent the statistical moments of f and
that these estimates can be obtained in significantly less
time than sampling-based approaches. As part of future
work, we plan to scale up BOIS and deploy it on high-
dimensional systems where BO has traditionally not been
applied and to obtain alternative types of AFs. Finally,
while the GP is the most popular surrogate model choice
in BO, the algorithm is not limited to using only GPs, any
probabilistic model can be used. Therefore, we would like
to explore the use of alternative models such as warped
GPs, see Snelson et al. (2004), RNNs, see Thompson et al.
(2023), and reference models, see Lu et al. (2021).

REFERENCES

Astudillo, R. and Frazier, P. (2019). Bayesian optimiza-
tion of composite functions. In K. Chaudhuri and
R. Salakhutdinov (eds.), Proceedings of the 36th Inter-
national Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, 354—363.
PMLR.



12000{ f| 80
I 4000 BOIS
| —— MC-BO

|
10000{ | ¢ 30001} 1

8000 | | ¢

Cost (USD/hr)

Cost (USD/hr)

6000

Cost (USD/hr)

4000

Iteration
2000

20 40 60 80 100 20 40 60 80 100

Cost (USD/hr)

Iteration

Iteration

Cost (USD/hr)

—2000

20 40 60 80
Iteration

00 20 40 60 80 100
Iteration

Fig. 4. Tteration number vs average operating cost for the tested algorithms (left) and their distribution profiles across

all runs with average performance shown in color (right

24000

)

o s=10
. S=100
177501 . s=10000

, 11500

Muc - o

5250

—1000

—1000 5250 11500 17750 24000
Mgois

1600

s=10 o o° g";"%.%@ oy
. s=100 L o @ "
0 0%80
12000 ., s=10000 D%DE%?QE %08 m&f: o,
&% o0
8 0
! g°
g 800 5% 5 0
5 00D o)
29
By 5 078"
400
00 400 800 1200 1600

Osois

Fig. 5. Parity plots of the values of mﬁc and O'fc at various points in X calculated by BOIS with § — 9o = 4§ x 1072 and
MC-BO using samples sizes S = 10, 102, and 10*; the same trained GP model of y(x) was used by both approaches

Astudillo, R. and Frazier, P. (2021). Thinking inside the
box: A tutorial on grey-box Bayesian optimization. In
Proceedings of the 2021 Winter Simulation Conference.

Balandat, M., Karrer, B., Jiang, D., Daulton, S., Letham,
B., Wislon, A., and Bashky, E. (2020). BOTORCH:
A framework for efficient Monte-Carlo Bayesian opti-
mization. In Proceedings of the 34th Conference Inter-
national Conference on Neural Information Processing
Systems, NIPS ’20, 21524-21538. Curran Associates Inc.

Baur, W. and Strassen, V. (1983). The complexity of par-
tial derivatives. Theoretical Computer Science, 22(3),
317-330.

Boukouvala, F. and Floudas, C. (2017). ARGONAUT: Al-
goRithms for Global Optimization of coNstrAined grey-
box compUTational problems. Optimization Letters,
11(5), 895-913.

Conn, A., Scheinberg, K., and Vicente, L. (2009). Intro-
duction to Derivative-free Optimization. SIAM.

Garnett, R. (2023). Baysian Optimization. Cambridge
University Press.

Griewank, A. and Walther, A. (2008). Ewvaluating Deriva-
tives: Principles and Techniques of Algorithmic Differ-
entiation. STAM, Philadelphia.

Kandasamy, K., Dasarathy, G., Schnieder, J., and Pézcos,
B. (2017). Multi-fidelity Bayesian optimisation with
continuous approximations. In D. Precup and Y. Teh
(eds.), Uncertainty in Artificial Intelligence, volume 70
of Proceedings of Machine Learning Research, 1799—
1808. PMLR.

Lu, Q., Gonzdlez, L., Kumar, R., and Zavala, V. (2021).
Bayesian optimization with reference models: A case
study in MPC for HVAC central plants. Computers &
Chemical Engineering, 154, 107491.

Mockus, J. (2012). Bayesian Approach to Global Opti-
mization: Theory and Applications. Springer Science &
Business Media.

Paulson, J. and Lu, C. (2022). COBALT: COnstrained
Bayesian optimizAtion of computaionally expensive
grey-box models exploiting derivaTive information.
Computers & Chemical Engineering, 160, 107700.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019).
A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378, 686—
707.

Shahriari, B., Swersky, K., Wang, Z., Adams, R., and
de Freitas, N. (2016). Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of
the IEEE, 104, 148-175.

Snelson, E., Ghahramani, Z., and Rasmussen, C. (2004).
Warped Gaussian processes. In S. Thrun, L. Saul, and
B. Scholkopf (eds.), Advances in Neural Information
Processing Systems, volume 16, 337-334. MIT Press.

Thompson, J., Zavala, V., and Venturelli, O. (2023).
Integrating a tailored recurrent neural network with
Bayesian experimental design to optimize microbial
community functions. PLOS Computational Biology,
19(9), 1-25.

Uhrenholt, A. and Jensen, B. (2019). Efficient Bayesian
optimization for target vector estimation. In K. Chaud-
huri and M. Sugiyama (eds.), Proceedings of the Twenty-
Second International Conference on Artificial Intelli-
gence and Statistics, volume 89 of Proceedings of Ma-
chine Learning Research, 2661-2670. PMLR.



