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Abstract—Semantic communication is of crucial importance for
the next-generation wireless communication networks. Recent ad-
vancements have primarily benefited from the design of semantic
communication systems based on deep learning. Nevertheless,
these deep learning-based systems are vulnerable to certain
security attacks, particularly backdoor attacks. A novel attack
paradigm, backdoor attacks on semantic symbols (BASS), targets
reconstruction tasks by manipulating the reconstructed source
data or features. However, the perceivable risks associated with
BASS have not been thoroughly explored. This paper investigates
the perceivable risks of BASS in the context of computer vision
tasks. A transform-based methodology is designed to improve the
stealthiness of the poisoned reconstructed target samples in the
training dataset. In addition, while various hidden triggers have
been studied for traditional backdoor attacks, they cannot be
applied to BASS directly due to the unaligned model problem.
To address this, an iterative hidden trigger generation (IHTG)
algorithm is proposed. The simulation results demonstrate the ef-
fectiveness of the proposed methods in addressing the perceivable
risks in BASS.

Index Terms—Deep learning, semantic communication, back-
door attacks, Trojan attacks, adversarial machine learning.

I. INTRODUCTION

Building on Shannon’s information theory, conventional
communication has made significant advancements, enabling
data rate to approach the Shannon limit. However, the dramatic
increase in mobile device usage, the growing demand for
higher data rate, and the introduction of ultra-wideband services
highlight the necessity for breakthroughs to surpass this limit.
Semantic communication, proposed by Weaver and Shannon,
emerges as a compelling approach by shifting focus from
the traditional goal of accurate symbol and bit transmission
to the effective transmission and interpretation of semantic
information. Deep learning-enabled semantic communication
systems have become popular due to their capability of ex-
tracting and interpreting essential semantic information from
raw data. Despite its advantages, deep learning also introduces
vulnerabilities, notably the threat of backdoor attacks.

Backdoor attacks aim to manipulate the output of a deep
learning model to a specified target. This can be achieved
through data poisoning, which involves altering the training
dataset to poison the model during the training process. During
the inference phase, the adversary can control the output by
injecting a trigger into the input. Backdoor attacks were first
proposed in [1], known as BadNets, which injects the backdoor
into a DNN model by poisoning a small portion of the training

dataset. In BadNets, the adversary selects a set of pixels and
the color of the trigger pattern to generate the trigger. Although
simple patterns can be used as triggers to activate the backdoor,
the trigger is visible and therefore can be easily recognized
by a human visual inspection. In [2], the perceivable risk is
described in terms of whether the poisoned input samples can
be detected. To mitigate this risk, various invisible backdoor
attack triggers have been proposed to reduce suspicion of the
inputs [3], [4]. A commonly applied method is to generate
adversarial perturbations as the triggers, meanwhile minimizing
or constraining the amplitude of the triggers [5], [6]. An-
other approach is to generate the trigger by leveraging GANS.
Analysis in the frequency domain, as discussed in [7], reveals
that many existing backdoor attacks produce significant high-
frequency artifacts, leading to a proposed trigger generation
method that avoids detection in the frequency domain.

Backdoor attacks in semantic communication were first in-
vestigated in [8]. The authors demonstrated that an adversary
can alter the semantics of transmitted information in poisoned
input samples, causing misclassification to a specific target
label. However, these attacks focused on low-dimensional clas-
sification tasks that have been thoroughly explored. In addition,
they are not applicable to semantic communication scenarios
requiring the reconstruction for human inspection, such as
Machine-to-Human (M2H) and Human-to-Human (H2H) com-
munications. To further investigate the security vulnerabilities
in semantic communications, backdoor attacks on semantic
symbols (BASS) was proposed in [9]. In this context, an
adversary can manipulate the received reconstructed features or
source data in semantic communications. However, the evalua-
tion of BASS in [9] did not consider the aspect of perceivability.
Although various invisible triggers for traditional backdoor
attacks have been studied, current methods cannot be directly
applied to BASS for the following reasons: Traditional back-
door attacks make minimal changes to the internal operations of
the model to push low-dimensional outputs across the decision
boundary, allowing the use of clean models to optimize the
triggers. In contrast, altering the high-dimensional continuous
outputs for reconstructions introduces significant changes to the
model. As a result, if a clean model is used to optimize the
trigger, the generated trigger may not align with the poisoned
model. Moreover, semantic communications often occur in
resource-constrained environments, where lightweight neural
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networks with a small number of parameters are commonly
used. State-of-the-art dynamic triggers can be difficult for the
model to learn. Adversarial samples may not significantly alter
outputs toward the target, making it more difficult for the
lightweight model to learn the trigger. Subsequently, it can
potentially cause substantial degradation in model performance
and attack failure.

Additionally, high-dimensional continuous target samples in-
troduce heightened perceivable risks if the defender has access
to the complete poisoned training dataset. Unlike traditional
backdoor attacks, where perceivable risk primarily concerns the
triggers, the stealthiness of reconstructed symbols must also be
considered in the context of semantic communication.

In this paper, the perceivable risk of BASS is defined. First,
the concept of a stealth target is introduced and addressed.
Then, a novel hidden trigger generation algorithm for BASS
is proposed.

The remainder of the paper is organized as follows: Section
II introduces the system model. Section III presents the threat
model and the attack model. The perceivable risk of BASS is
defined and addressed in Section IV. Section V provides the
simulation results, and Section VI concludes the paper.

II. SYSTEM MODEL

In this paper, we consider a typical deep learning-enabled
end-to-end semantic communication system comprising a se-
mantic encoder Sg(-), semantic decoder C'3'(-), channel en-
coder S, (-), channel decoder C; '(+), and a physical channel.
Since this paper focuses only on reconstruction tasks, other
commonly existing semantic tasks are not shown.

During the transmission time, the transmitter extracts the
normalized semantic features, given in (1), of the inputs sample
x; for transmission through the physical channel,

L Su(Ssx)
e RS

Then, the signal is sent through a wireless channel, the
received signal can be expressed as

(M

Y; = HX; + Ny, )

where Y; is the received signal. At the receiver, the channel
decoder and semantic decoder work together to reconstruct
the features or source data, which can be written as X; =

Cy' (G5 (Ya).

III. BACKDOOR ATTACKS AGAINST SEMANTIC
COMMUNICATION

In the training phase, data is sampled from the training
dataset D, which includes transmitted samples Dr = {x;|i =
1,..., M}, and reconstruction samples D = {r;|i = 1,..., M }.
The attacker can poison both Dr and Dpg. Specifically, the
attacker is able to insert a small trigger to the input samples
x € Dr and modify the reconstructed semantic symbols r €
Dr. In addition, the backdoor attacker has knowledge of the
deep learning framework used in the semantic communication
system. Before transmission, the attacker can add a trigger to

the transmit data, an example is shown in Fig. 1. This can be
realized by injecting Trojan in the software or hardware for
data pre-processing. The attacker does not possess the ability
to alter the parameters of the deep learning model directly.

Initially, the attacker poisons a small portion of the training
samples. The trigger is embedded into x; € D to produce poi-
soned input sample x;, while the corresponding reconstructed
sample r; € Dy is replaced with the target r specified by the
attacker. Following the training phase with the trained dataset,
a backdoor is embedded into the model. During the inference
phase, the poisoned model allows the adversary to manipulate
the reconstructed semantic symbols received.

IV. STEALTH DATA POISONING
A. Perceivable risk of BASS

The perceivable risk R, refers to the detectability of poisoned
samples by either humans or machines, which is defined as
follows:

Ry(Dp) = Egynp, [D1(21)] + Er, v;npp, [Da(r], T))], (3)

where Dj(-) and Ds(-) are indicator functions, where
D;,(-) = 1 when the poisoned input z}, is detectable, and
D5(-) = 1 only if the targets are detectable. The notations
P, and Pp, denote the distributions of clean inputs z and
clean dataset Dpg, respectively. The first term of Equation
(2) quantifies the perceivable risk associated with the input
samples, which have been compromised by the introduction
of a trigger. In this paper, these inputs are the source data
semantic symbols, i.e., z = x. However, the multi-domain
inputs also encompasses wireless signals and sensing results
of the transmitter. The transmission process, particularly the
exposure of wireless signals, provides an adversary with the
opportunity to poison the transmitting signals. Moreover, within
certain semantic-aware communication paradigms, the trans-
mitter initially senses the environment, and then encodes both
the sensing results and the source data. This sensing process
aims to capture an observation signal of the environment and
scenarios. Such signals might include location data, spectrum
occupancy, timestamps, or other relevant communication task
information [10]. An adversary can introduce triggers to these
different domains to activate the backdoor.

The second term represents the perceivable risk associated
with targets in the poisoned dataset Dg. In the context of data
poisoning in BASS, a target must appear multiple times in the
training dataset to facilitate the learning of the backdoor. While
it is natural for the same or similar samples to occur repeatedly
in some datasets, the defender can mitigate the attack by simply
discarding duplicate samples. If the dataset is clean, the training
performance will remain unaffected; if the dataset is poisoned,
most of the poisoned samples will be removed. In this case,
the attacker needs to avoid making the target samples identical.
Given that the defender has access to the entire training dataset
and that the same target appears multiple times, the indicator
function Do(-) is defined as the distance between poisoned
reconstructed samples. The poisoned samples are considered to

4976

Authorized licensed use limited to: University of Nebraska Omaha Campus. Downloaded on August 13,2025 at 16:39:56 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE Global Communications Conference: Communication & Information Systems Security

Trigger

———— e e
Ll
I . =
=210 =2 3k~
| LRI
Physical | Sensor Data Poisoned
World | Processing Input Data
Transmitter

———— | 1

| Physical | | I

Encoder —|-> Channel —I> |

| _ I

[ : Reconstructed |

ol L______ paa |
Receiver

Fig. 1: An example of manipulating the reconstructed data at the receiver.

be detectable when poisoned target samples have the smallest
distance.

B. Hidden target generation

One simple approach to reduce the similarity of poisoned
reconstructed samples in a training dataset is to generate
transformed targets from the original target.

The proposed hidden targets are generated from a single
target with a transformation denoted as ¢o(-) € 7 to prevent
poisoned samples from being detected through matching train-
ing sample pairs, where e ~ £ is a random variable with
a distribution £. Let 7 represents the set of transformations
for applicable to a target. The transformed target r} in the ith
sample can be written as r] = to(r;). From the perspective
of the adversary, the objective is to minimize the second term
of the perceivable risk while preserving the performance that
the model achieves in an un-transformed, poisoned semantic
communication system. This is accomplished with a fundamen-
tal transformation, which involves adding noise to increase the
distance between the target samples.

Gaussian noise with a mean of zero is employed to generate
the noise. For semantic symbols, such as images, which are con-
strained within the range of 0 to 1, the transformed values must
be clipped accordingly. The transformation can be expressed
as te(r’) = clip(r’ + n), where clip(x) = max(0, min(1,x)).
This process projects the sample with noise into a valid range. n
follows a Gaussian distribution, i.e., n ~ A(0, %), 0 is a vector
consisting of zeros and ¥ € SV*V is the covariance matrix.
The variances of the noise generated before clipping for each
component are the same, given by ¥ = diag(a2,52,...,52).
The covariance matrix of the clipped noise is denoted as
Y = diag(c},03,...,0%), where o2 is the variance of the
clipped noise added on the nth component of e (r’).

However, this method can degrade the attack performance,
especially when the target is sparse. The transformed targets
can be identified by human inspection when o,, is great. To
address this, a truncated noise distribution is utilized to generate
the noise. The transformed r’ is produced with te(r’) = ' +n,
where n; ~ TN (p;,0;5;a;,b;), n; is the jth component in
n, the noise lies within the interval [a;, b;]. In order to ensure
valid values, reduce the impact of noise on attack performance,
and enhance the stealth of transformed targets, we set u = 0,
—a = b = e. For the jth element in r’, the maximum e can be
written as €(r;) = min(r; — 0,1 —r;).

Due to the highly non-convex nature of deep learning models
and the fact that poisoned training datasets are non-independent
and non-identically distributed (Non-IID), it is impossible to
prove that a model trained with a transformed poisoned dataset
converges to the same parameters as one trained with the
original poisoned dataset. However, it can be demonstrated that
a single-step update from the same parameters, utilizing the
transformation of truncated Gaussian noise, results in an update
with a mean error of zero.

Let 6y represent the initial parameters of the deep learning
model, and v denotes the learning rate at this step. The update
rule, when trained with the original poisoned samples using a
batch size of Ms, can be expressed as follows:

M
1
0 =00 — ’Y(M ; Vi, L(Sp, (%), 17)

Mo

Z Vgoﬁ(Seg (Xi)v ri))a

J=M,

“
1

+M2—Ml

where the second term on the right-hand side represents the
average of the gradients of the parameters when the inputs are
poisoned samples, while the third term represents the average of
the gradients with respect to the parameters when the inputs are
clean samples. V is the gradient with respect to the parameters
of the model 6. Similarly, ¢’ is the expected parameters of the
deep learning model updated by the poisoned data samples with
transformed targets.

Starting from the same initial point g, the error in the update
of the model’s parameters is given as A = gy — gy, Where

My
1
gor :M;V90£(590 (i), te(r))

1 Mo (5)
t g 2 Ve,
1 M,
9 =3 ; Voo £(Sp, (x:), 1)
1 Ma (6)
tan g 2 VoSl n).
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Here, gy represents the gradient calculated with the original
poisoned samples, while go- denotes the average gradient with
the transformed poisoned samples.

Assuming that the mean squared error (MSE) loss is em-
ployed as the training loss function, the expected value with
respect to the random variable n can be expressed as:

M,
—2) " V4,50, (%;)En (7)
i=1
where [E,, is the expectation of a truncated Gaussian distributed

random variable. The expected value of the jth component of

En[A] [n],

Algorithm 1 Iterative Hidden Trigger Generation (IHTG)
Algorithm

Input settings:

1: Pre-trained clean model,
: The clean training dataset D,
: Maximum perturbation 9,
: Target 1/,
: Initialized trigger 7o,
: Low-pass filter g,
: The number of training epochs N.
Algorithm:

8 fori=1,2,...,
90 L [|Sa(Sp(xk +Tio1)) —

~N O\ B LN

num_iter do

Sa(Sp(r))II?,

10: ti =1;-1 — lr(VTi_lﬁ * h),

11: if ||t741]|| >0

12: t;; + min{max{t, ;, —d},4}

13: else

14: ti,j — ti,j

15: end if

16: Tz = ti * h,

17: for:=1,2,...,N do

18: D, = M(subset(D) + T;),

19:  Train the model with D, and D \ subset(D), then
evaluate the performance of attacks P;.

20: end for

21: end for

Output:

22: T* = Targ‘ max; P;

n, by [11], is given as

Eln:l = iis — &, - 8
=0 =0 G0 0, ey O
where a; = “% g, = YZF G, and fi; are the standard

variation and the mean of the jth component of the normal
distribution centered on, respectively. ¢(x) and ®(x) are the
PDF and CDF of Gaussian distribution, respectively. Let a =
(@—m)?

—6b=¢61=0,¢(u,o0%x) = - 207
E,[n] = 0, which implies E,[A]

C. Hidden trigger generation

F . Then, we have

Let fy(-) denote the deep learning model with parameter
0 for the reconstruction task. The cost function for the recon-
struction task is defined as C. To ensure that the trigger remains

Communication & Information Systems Security

invisible while maintaining the effectiveness of the attack, the
attacker’s objective can be formulated as

P, mtin C(for(x+1),7") + Q)
s.t. t;+x; € [0, 1],V’L
[t:]] < 0,Vi,.
C(f@/(X>7’l") - C(fH(X)aT) < g,

where ¢ is a small positive number. The function {}(¢) measures
the roughness of ¢ given a low-pass filter & [12]. Here, 6
represents the parameters of the pre-trained clean model, while
6" denotes the parameters of the poisoned model. ¢ represents
the trigger, and ¢; is the 7th element of the trigger. The first term
of the objective function corresponds to the loss associated with
the attack, while the second term addresses the invisibility in the
frequency domain. A trade-off exists between the roughness and
the attack performance, which is controlled by the parameter \.
The first constraint ensures that the poisoned samples remain
within a valid range. The second constraint addresses the
trigger’s visual invisibility. The third constraint ensures that
the performance of the clean samples does not significantly
degrade.

The adversary is assumed to possess knowledge of the deep
learning framework and access to the training dataset, enabling
it to train a clean model. However, the trigger generated by the
clean model cannot be directly applied to poisoned models due
to the complexity of fitting a backdoor pattern in reconstruction
tasks. To address this issue, we propose an iterative algorithm,
as shown in Algorithm 1.

Given the pre-trained model, the hidden trigger is created
by minimizing the distance between the semantic features of
the poisoned sample and those of the target, using the clean
model to generate an initial trigger. The model is then trained
on the dataset poisoned by the generated trigger for N steps.
Subsequently, the trigger is optimized using the trained model.
By repeating this process, the trigger that achieves the best
performance on the poisoned samples is selected as the final
trigger.

Given the pre-trained model, the hidden trigger is created
by minimizing the distance between the semantic features of
the poisoned sample and those of the target, using the clean
model to generate an initial trigger. The model is then trained
on the dataset poisoned by the generated trigger for N steps.
Afterward, the trigger is optimized with the trained model.
By repeating this process, the trigger that achieves the best
performance on the poisoned samples is selected as the final
trigger.

The squared Lo norm is employed as the metric to measure
the distance between the semantic features. The objective of
the optimization problem is to estimate the trigger 7', which
is achieved by identifying the adversarial perturbation in the
latent space. The reason for optimizing the trigger in latent
space is that triggers generated in this space are more robust
to smooth operations in the image domain and independent of
the loss function used for training the model. Similar to the
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approach in [7], a low pass filter is utilized to eliminate high-
frequency artifacts, thereby addressing the roughness constraint.
The function M (-) is used to normalize the poisoned image
into the range of valid images. Additionally, projected gradient
descent is applied to optimize the trigger. Given the parameters
of the poisoned model, the problem of searching for the trigger
pattern can be reformulated as the following optimization
problem

P2 min > 18a(Sp(x1)) — Sa(Ss(x))|?
k

st xp=M(x,+T),
173l <6,
T =txh.

The objective function is to minimize the distance between the
normalized semantic features of poisoned samples and targets.
T; is the ¢th element of the trigger and x, ; is the ith element
of the kth sample. The first constraint ensures that the poisoned
sample is in a valid range. In the second constraint, § specifies
the invisibility requirement for the perturbation. The third term
represents that the trigger is passed through a low-pass filter h,
where * is the convolution operation.

V. SIMULATION

In this section, the proposed attacks under different settings
are evaluated. The backdoor models are trained with a spectrum
ratio of 1/8 using the MNIST and CIFAR-10 datasets, where
the spectrum ratio is defined as the number of transmitted
symbols divided by the number of original symbols before
encoding. We maintain the poison ratio (PR) constant while
varying the power of Gaussian noise in the physical channel
to evaluate the performance across different signal-to-noise
ratios (SNRs) ranging from 1 to 13 dB. The relative distance
between transformed targets and clean samples across different
transformed parameters is also shown. All the models are
trained for 120 epochs with a learning rate of 0.0008. Additive
White Gaussian Noise (AWGN) channel is considered in the
following simulations. A single target is randomly selected
from the training dataset. The peak signal-to-noise ratio (PSNR)
is employed to measure the reconstruction accuracy. PSNR =
10 1og10(MR—SZE), where R is the maximum fluctuation in the
images, and MSE is calculated based on the reconstructed data
from the decoder model and the target. The variance of the
noise created the clipped and truncated noise is calculated by
& = \/P;10-SNRw/10 " where P, is the power of the image.
Notably, SNR,, does not refer to the signal-to-noise ratio of the
transformed target. Rather, it denotes the SNR of the noise that
un-clipped and un-truncated. For the hidden trigger generation
algorithm, the low-pass filter is a Gaussian filter with o, = 5
and kernel size 3. num_iter = 15, N = 2, and PR = 0.1.

A. Perceivable risk of targets

Fig. 2 and Fig. 3 present the input samples, both poisoned
and clean, alongside their corresponding reconstructed images
from a poisoned model trained by MNIST and CIFARI10,

cpgseplys
5EEEEcpreg 5

Fig. 2: Input and reconstructed images of the poisoned model
trained on MNIST and CIFARI10, the targets are transformed
with clipped Gaussian noise.

e pPlgs5eplss
S3333 6Pl g5

Fig. 3: Input and reconstructed images of the poisoned model
trained on MNIST and CIFAR10, the targets are transformed
with truncated Gaussian noise.

respectively. The targets in Fig. 2 are transformed with clipped
Gaussian noise with SNR,, = 3. The truncated Gaussian noise
is used in Fig. 3, where SNR,, = —10. The first rows display
the input samples of the backdoor semantic communication
model, while the corresponding reconstructed images at the
receiver are shown in the second rows. The outputs of the
poisoned model are the digit ’5”, as specified by the adversary,
while the model performs normally with benign data. It can
be observed that the basic objectgive of BASS is achieved.
However, Fig. 3 shows a better reconstruction accuracy for
the reconstructed target images compared to Fig. 2. In Fig. 2,
noticeable noise exists in the reconstructed outputs of poisoned
samples, particularly in the MNIST dataset. This deviation
from the original target is attributed to the influence of clipped
Gaussian noise. Unlike clipped Gaussian noise, the truncated
Gaussian noise is constrained by €, which helps to improve the
reconstruction accuracy of the target.

Fig. 4 shows a comparison of PSNR for a model trained
with CIFARI0 at 1% and 5% poison ratios across various
SNR levels, using a transformation that adds clipped Gaussian
Noise, SNR,, = 4. It is noted that the performance of the
poisoned model on clean samples is comparable to that of the
clean model. In addition, the attack performance achieves the
expected level. Fig. 5 illustrates the PSNR for models trained
using CIFAR10 with poison ratios of 1% and 5%, evaluated
across different SNRs using truncated Gaussian noise. Similar
to the observations from Fig. 4, both normal operation and
attack perform well. Furthermore, the comparison of Fig. 4
and Fig. 5 reveals a decline in attack performance when clipped
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Fig. 4: PSNR comparison for models trained by CIFAR10 at
1% and 5% poisoned ratios across different SNR levels with
clipped Gaussian noise.
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Fig. 5: PSNR comparison for models trained by CIFAR10 at
1% and 5% poisoned ratios across different SNR levels with
truncated Gaussian noise.

Gaussian noise is applied. This is because this method signifi-
cantly shifts the learning target, resulting in a decrease in attack
performance. Truncated Gaussian noise achieves higher attack
performance than clipped Gaussian noise, due to the truncated
Gaussian noise added to each component being constrained in
an e-neighborhood.

Fig. 6 presents the relative L1 distances. Let dy =
min ||r; — r;|| — min |r, — rj|| and d = min |r; —
1,7, k,l,k#l 4,J,i#]

400 a0
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Fig. 6: Relative L1 distance: (a) The minimum distance between
clean samples and the minimum distance between transformed
reconstruction samples with clipped Gaussian noise. (b) The
minimum distance between clean samples and the minimum
distance between transformed reconstruction samples With
truncate Gaussian noise.

;| — kr%q]lcr;llé |ty — r}/||. In Fig. 6 (a) and (b), red and black

curves represent the relative distances associated with un-
transformed and transformed samples across different SNR,,
levels, respectively. That is, Fig. 6 compares the minimum
relative L1 distances before and after applying transforms. In
Fig. 6 (a), clipped Gaussian noise is used, while truncated
Gaussian noise is applied in Fig. 6 (b). The objective is to
ensure the minimum distance of the clean samples be less than
that of the targets, indicated by dy being less than 0. It can be
observed that both transforms achieve the goal.

B. Invisible trigger

3L/ |/
233533

PEELGRDE

3
3

;Jf"rd?'r éﬁsﬂjﬁfu ;i‘ et

Fig. 7: Input and reconstructed images of the poisoned model
trained on MNIST and CIFAR10 with invisible triggers, where
0 = 0.02 and 0.04, respectively.

Fig. 7 shows both the poisoned and clean input samples along
with the corresponding reconstructed images of a poisoned
model trained using MNIST and CIFARI10 with the proposed

invisible triggers. The maximum perturbation is § = 0.02
for MNIST, § = 0.04 for CIFAR10, and the poison ratio
is 0.1. The poisoned models trained on two training datasets
successfully achieve the basic attack goal. Moreover, it is
difficult to recognize the poisoned samples through human
inspection.

Fig. 8 illustrates the difference between the spectrum of
poisoned and clean samples. Both Fig. 8 (a) and 8 (b) display
a clear pattern in the high frequencies, whereas Fig. 8 (c)
shows only small values with no significant power or pattern in
the high-frequency range. Combined with Fig. 7, the proposed
IHTG successfully achieved invisibility in both space and
frequency domains.

Fig. 9 and Fig. 10 show the PSNR comparison of models
trained on MNIST with a 10% poison ratio across SNR levels
using different trigger generation methods. NL refers to the

(a) (b) (©)

Fig. 8: Difference between the average spectrum of (a)

BADNET-poisoned and clean samples. (b) IHTG-poisoned
samples without low-pass filtering and clean samples. (c)
IHTG-poisoned and clean samples.
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Fig. 9: PSNR comparison of models trained on MNIST with
a 10% poison ratio across SNR levels using different trigger

generation methods, § = 0.02.
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stealthiness of BASS is explored. To prevent the defender from
detecting the poisoned samples by matching reconstructed sam-
ples, the adversary uses clipped Gaussian noise and truncated
Gaussian noise to increase the distance between targets. The
results show that the transformed targets cannot be detected
simply by matching poisoned training samples. Additionally,
to address the unaligned model problem and improve the per-
formance of the attack in BASS, an invisible adversarial trigger
is generated through iterative optimization in the latent space.
The simulation results demonstrate the significant degradation
caused by an unaligned trigger, and the effectiveness of the
proposed algorithms is shown.
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Fig. 10: PSNR comparison of models trained on CIFAR10 with
a 10% poison ratio across SNR levels using different trigger
generation methods, § = 0.04.

proposed method with a modification in the trigger optimization
process. In NL, the trigger is optimized to minimize the
cost function rather than being optimized in the latent space.
NI refers to the method without the iterative process, where
the trigger is directly generated based on the clean model.
IHTG is the proposed method. In Fig. 9, all three methods
demonstrate comparable performance with clean inputs. This is
attributed to the simplicity of the sparse image dataset MNIST,
which allows the model to easily learn both the trigger and
the backdoor. However, the attack performance of IHTG is
superior, as it aligns with the poisoned model. In Fig. 10, it
can be observed that the proposed method achieved the best
overall performance on both clean samples and attacks. While
the overall reconstruction accuracy of NL is smaller than that of
IHTG, which is because the signal passed through the physical
channel, which improves the robustness of the decoder part to
the adversarial samples. In addition, NL has better performance
than NI, because the trigger generated on the clean model is
not aligned with the poisoned model.

VI. CONCLUSIONS

This paper defines the perceivable risk in BASS, which
differs from that in traditional backdoor attacks. The risk is
associated not only with the poisoned inputs but also with
the target samples. Based on this defined perceivable risk, the
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