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Abstract—Semantic communication is of crucial importance for
the next-generation wireless communication networks. Recent ad-
vancements have primarily benefited from the design of semantic
communication systems based on deep learning. Nevertheless,
these deep learning-based systems are vulnerable to certain
security attacks, particularly backdoor attacks. A novel attack
paradigm, backdoor attacks on semantic symbols (BASS), targets
reconstruction tasks by manipulating the reconstructed source
data or features. However, the perceivable risks associated with
BASS have not been thoroughly explored. This paper investigates
the perceivable risks of BASS in the context of computer vision
tasks. A transform-based methodology is designed to improve the
stealthiness of the poisoned reconstructed target samples in the
training dataset. In addition, while various hidden triggers have
been studied for traditional backdoor attacks, they cannot be
applied to BASS directly due to the unaligned model problem.
To address this, an iterative hidden trigger generation (IHTG)
algorithm is proposed. The simulation results demonstrate the ef-
fectiveness of the proposed methods in addressing the perceivable
risks in BASS.

Index Terms—Deep learning, semantic communication, back-
door attacks, Trojan attacks, adversarial machine learning.

I. INTRODUCTION

Building on Shannon’s information theory, conventional

communication has made significant advancements, enabling

data rate to approach the Shannon limit. However, the dramatic

increase in mobile device usage, the growing demand for

higher data rate, and the introduction of ultra-wideband services

highlight the necessity for breakthroughs to surpass this limit.

Semantic communication, proposed by Weaver and Shannon,

emerges as a compelling approach by shifting focus from

the traditional goal of accurate symbol and bit transmission

to the effective transmission and interpretation of semantic

information. Deep learning-enabled semantic communication

systems have become popular due to their capability of ex-

tracting and interpreting essential semantic information from

raw data. Despite its advantages, deep learning also introduces

vulnerabilities, notably the threat of backdoor attacks.

Backdoor attacks aim to manipulate the output of a deep

learning model to a specified target. This can be achieved

through data poisoning, which involves altering the training

dataset to poison the model during the training process. During

the inference phase, the adversary can control the output by

injecting a trigger into the input. Backdoor attacks were first

proposed in [1], known as BadNets, which injects the backdoor

into a DNN model by poisoning a small portion of the training

dataset. In BadNets, the adversary selects a set of pixels and

the color of the trigger pattern to generate the trigger. Although

simple patterns can be used as triggers to activate the backdoor,

the trigger is visible and therefore can be easily recognized

by a human visual inspection. In [2], the perceivable risk is

described in terms of whether the poisoned input samples can

be detected. To mitigate this risk, various invisible backdoor

attack triggers have been proposed to reduce suspicion of the

inputs [3], [4]. A commonly applied method is to generate

adversarial perturbations as the triggers, meanwhile minimizing

or constraining the amplitude of the triggers [5], [6]. An-

other approach is to generate the trigger by leveraging GANs.

Analysis in the frequency domain, as discussed in [7], reveals

that many existing backdoor attacks produce significant high-

frequency artifacts, leading to a proposed trigger generation

method that avoids detection in the frequency domain.

Backdoor attacks in semantic communication were first in-

vestigated in [8]. The authors demonstrated that an adversary

can alter the semantics of transmitted information in poisoned

input samples, causing misclassification to a specific target

label. However, these attacks focused on low-dimensional clas-

sification tasks that have been thoroughly explored. In addition,

they are not applicable to semantic communication scenarios

requiring the reconstruction for human inspection, such as

Machine-to-Human (M2H) and Human-to-Human (H2H) com-

munications. To further investigate the security vulnerabilities

in semantic communications, backdoor attacks on semantic

symbols (BASS) was proposed in [9]. In this context, an

adversary can manipulate the received reconstructed features or

source data in semantic communications. However, the evalua-

tion of BASS in [9] did not consider the aspect of perceivability.

Although various invisible triggers for traditional backdoor

attacks have been studied, current methods cannot be directly

applied to BASS for the following reasons: Traditional back-

door attacks make minimal changes to the internal operations of

the model to push low-dimensional outputs across the decision

boundary, allowing the use of clean models to optimize the

triggers. In contrast, altering the high-dimensional continuous

outputs for reconstructions introduces significant changes to the

model. As a result, if a clean model is used to optimize the

trigger, the generated trigger may not align with the poisoned

model. Moreover, semantic communications often occur in

resource-constrained environments, where lightweight neural
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networks with a small number of parameters are commonly

used. State-of-the-art dynamic triggers can be difficult for the

model to learn. Adversarial samples may not significantly alter

outputs toward the target, making it more difficult for the

lightweight model to learn the trigger. Subsequently, it can

potentially cause substantial degradation in model performance

and attack failure.

Additionally, high-dimensional continuous target samples in-

troduce heightened perceivable risks if the defender has access

to the complete poisoned training dataset. Unlike traditional

backdoor attacks, where perceivable risk primarily concerns the

triggers, the stealthiness of reconstructed symbols must also be

considered in the context of semantic communication.

In this paper, the perceivable risk of BASS is defined. First,

the concept of a stealth target is introduced and addressed.

Then, a novel hidden trigger generation algorithm for BASS

is proposed.

The remainder of the paper is organized as follows: Section

II introduces the system model. Section III presents the threat

model and the attack model. The perceivable risk of BASS is

defined and addressed in Section IV. Section V provides the

simulation results, and Section VI concludes the paper.

II. SYSTEM MODEL

In this paper, we consider a typical deep learning-enabled

end-to-end semantic communication system comprising a se-

mantic encoder Sβ(·), semantic decoder C−1
X (·), channel en-

coder Sα(·), channel decoder C−1
δ (·), and a physical channel.

Since this paper focuses only on reconstruction tasks, other

commonly existing semantic tasks are not shown.

During the transmission time, the transmitter extracts the

normalized semantic features, given in (1), of the inputs sample

xi for transmission through the physical channel,

Xi =
Sα(Sβ(xi))

‖Sα(Sβ(xi))‖2
. (1)

Then, the signal is sent through a wireless channel, the

received signal can be expressed as

Yi = HXi +Ni, (2)

where Yi is the received signal. At the receiver, the channel

decoder and semantic decoder work together to reconstruct

the features or source data, which can be written as x̂i =
C−1

X (C−1
δ (Yi)).

III. BACKDOOR ATTACKS AGAINST SEMANTIC

COMMUNICATION

In the training phase, data is sampled from the training

dataset D, which includes transmitted samples DT = {xi|i =
1, ...,M}, and reconstruction samples DR = {ri|i = 1, ...,M}.
The attacker can poison both DT and DR. Specifically, the

attacker is able to insert a small trigger to the input samples

x ∈ DT and modify the reconstructed semantic symbols r ∈
DR. In addition, the backdoor attacker has knowledge of the

deep learning framework used in the semantic communication

system. Before transmission, the attacker can add a trigger to

the transmit data, an example is shown in Fig. 1. This can be

realized by injecting Trojan in the software or hardware for

data pre-processing. The attacker does not possess the ability

to alter the parameters of the deep learning model directly.

Initially, the attacker poisons a small portion of the training

samples. The trigger is embedded into xi ∈ DT to produce poi-

soned input sample x
′
i, while the corresponding reconstructed

sample ri ∈ DR is replaced with the target r′i specified by the

attacker. Following the training phase with the trained dataset,

a backdoor is embedded into the model. During the inference

phase, the poisoned model allows the adversary to manipulate

the reconstructed semantic symbols received.

IV. STEALTH DATA POISONING

A. Perceivable risk of BASS

The perceivable risk Rp refers to the detectability of poisoned

samples by either humans or machines, which is defined as

follows:

Rp(DP ) = Ezk∼Pz
[D1(z

′
k)] + Eri,rj∼PDR

[D2(r
′
i, r

′
j)], (3)

where D1(·) and D2(·) are indicator functions, where

D1(·) = 1 when the poisoned input z
′
k is detectable, and

D2(·) = 1 only if the targets are detectable. The notations

Pz and PDR
denote the distributions of clean inputs z and

clean dataset DR, respectively. The first term of Equation

(2) quantifies the perceivable risk associated with the input

samples, which have been compromised by the introduction

of a trigger. In this paper, these inputs are the source data

semantic symbols, i.e., z = x. However, the multi-domain

inputs also encompasses wireless signals and sensing results

of the transmitter. The transmission process, particularly the

exposure of wireless signals, provides an adversary with the

opportunity to poison the transmitting signals. Moreover, within

certain semantic-aware communication paradigms, the trans-

mitter initially senses the environment, and then encodes both

the sensing results and the source data. This sensing process

aims to capture an observation signal of the environment and

scenarios. Such signals might include location data, spectrum

occupancy, timestamps, or other relevant communication task

information [10]. An adversary can introduce triggers to these

different domains to activate the backdoor.

The second term represents the perceivable risk associated

with targets in the poisoned dataset DR. In the context of data

poisoning in BASS, a target must appear multiple times in the

training dataset to facilitate the learning of the backdoor. While

it is natural for the same or similar samples to occur repeatedly

in some datasets, the defender can mitigate the attack by simply

discarding duplicate samples. If the dataset is clean, the training

performance will remain unaffected; if the dataset is poisoned,

most of the poisoned samples will be removed. In this case,

the attacker needs to avoid making the target samples identical.

Given that the defender has access to the entire training dataset

and that the same target appears multiple times, the indicator

function D2(·) is defined as the distance between poisoned

reconstructed samples. The poisoned samples are considered to
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Fig. 1: An example of manipulating the reconstructed data at the receiver.

be detectable when poisoned target samples have the smallest

distance.

B. Hidden target generation

One simple approach to reduce the similarity of poisoned

reconstructed samples in a training dataset is to generate

transformed targets from the original target.

The proposed hidden targets are generated from a single

target with a transformation denoted as te(·) ∈ T to prevent

poisoned samples from being detected through matching train-

ing sample pairs, where e ∼ E is a random variable with

a distribution E . Let T represents the set of transformations

for applicable to a target. The transformed target r′i in the ith
sample can be written as r

′′
i = te(r

′
i). From the perspective

of the adversary, the objective is to minimize the second term

of the perceivable risk while preserving the performance that

the model achieves in an un-transformed, poisoned semantic

communication system. This is accomplished with a fundamen-

tal transformation, which involves adding noise to increase the

distance between the target samples.

Gaussian noise with a mean of zero is employed to generate

the noise. For semantic symbols, such as images, which are con-

strained within the range of 0 to 1, the transformed values must

be clipped accordingly. The transformation can be expressed

as te(r
′) = clip(r′ + n), where clip(x) = max(0,min(1,x)).

This process projects the sample with noise into a valid range. n

follows a Gaussian distribution, i.e., n ∼ N (0, Σ̄), 0 is a vector

consisting of zeros and Σ̄ ∈ SN×N is the covariance matrix.

The variances of the noise generated before clipping for each

component are the same, given by Σ̄ = diag(σ̄2, σ̄2, . . . , σ̄2).
The covariance matrix of the clipped noise is denoted as

Σ = diag(σ2
1 , σ

2
2 , . . . , σ

2
N ), where σ2

n is the variance of the

clipped noise added on the nth component of te(r
′).

However, this method can degrade the attack performance,

especially when the target is sparse. The transformed targets

can be identified by human inspection when σn is great. To

address this, a truncated noise distribution is utilized to generate

the noise. The transformed r
′ is produced with te(r

′) = r
′+n,

where nj ∼ T N (µj , σj ; aj , bj), nj is the jth component in

n, the noise lies within the interval [aj , bj ]. In order to ensure

valid values, reduce the impact of noise on attack performance,

and enhance the stealth of transformed targets, we set µ = 0,

−a = b = ε. For the jth element in r
′, the maximum ε can be

written as ε(rj) = min(rj − 0, 1− rj).

Due to the highly non-convex nature of deep learning models

and the fact that poisoned training datasets are non-independent

and non-identically distributed (Non-IID), it is impossible to

prove that a model trained with a transformed poisoned dataset

converges to the same parameters as one trained with the

original poisoned dataset. However, it can be demonstrated that

a single-step update from the same parameters, utilizing the

transformation of truncated Gaussian noise, results in an update

with a mean error of zero.

Let θ0 represent the initial parameters of the deep learning

model, and γ denotes the learning rate at this step. The update

rule, when trained with the original poisoned samples using a

batch size of M2, can be expressed as follows:

θ = θ0 − γ(
1

M1

M1
∑

j=1

∇θ0L(Sθ0(x
′
i), r

′
i)

+
1

M2 −M1

M2
∑

j=M1

∇θ0L(Sθ0(xi), ri)),

(4)

where the second term on the right-hand side represents the

average of the gradients of the parameters when the inputs are

poisoned samples, while the third term represents the average of

the gradients with respect to the parameters when the inputs are

clean samples. ∇θ is the gradient with respect to the parameters

of the model θ. Similarly, θ′ is the expected parameters of the

deep learning model updated by the poisoned data samples with

transformed targets.

Starting from the same initial point θ0, the error in the update

of the model’s parameters is given as ∆ = gθ − gθ′ , where

gθ′ =
1

M1

M1
∑

j=1

∇θ0L(Sθ0(xi), te(r
′
i))

+
1

M2 −M1

M2
∑

j=M1

∇θ0L(Sθ0(xi), ri),

(5)

gθ =
1

M1

M1
∑

j=1

∇θ0L(Sθ0(xi), r
′
i)

+
1

M2 −M1

M2
∑

j=M1

∇θ0L(Sθ0(xi), ri).

(6)
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Here, gθ represents the gradient calculated with the original

poisoned samples, while gθ′ denotes the average gradient with

the transformed poisoned samples.

Assuming that the mean squared error (MSE) loss is em-

ployed as the training loss function, the expected value with

respect to the random variable n can be expressed as:

En[∆] = −2
M1
∑

i=1

∇θ0Sθ0(xi)En[n], (7)

where En is the expectation of a truncated Gaussian distributed

random variable. The expected value of the jth component of

Algorithm 1 Iterative Hidden Trigger Generation (IHTG)

Algorithm

Input settings:

1: Pre-trained clean model,

2: The clean training dataset D,

3: Maximum perturbation δ,

4: Target r′,
5: Initialized trigger T0,

6: Low-pass filter g,

7: The number of training epochs N .

Algorithm:

8: for i = 1, 2, . . . , num iter do

9: L ← ‖Sα(Sβ(xk + Ti−1))− Sα(Sβ(r
′))‖2,

10: ti = Ti−1 − lr(∇Ti−1
L ∗ h),

11: if ‖ti,j‖ > δ
12: ti,j ← min{max{ti,j ,−δ}, δ}
13: else

14: ti,j ← ti,j
15: end if

16: Ti = ti ∗ h,

17: for i = 1, 2, . . . , N do

18: Dp = M(subset(D) + Ti),
19: Train the model with Dp and D \ subset(D), then

evaluate the performance of attacks Pi.

20: end for

21: end for

Output:

22: T ∗ = Targmaxi Pi

n, by [11], is given as

E[nj ] = µ̄j − σ̄j ·
φ(0, 1;βj)− φ(0, 1;αj)

Φ(0, 1;βj)− Φ(0, 1;αj)
, (8)

where αj =
aj−µ̄

σ̄ ; βj =
bj−µ̄
σ̄ . σ̄j and µ̄j are the standard

variation and the mean of the jth component of the normal

distribution centered on, respectively. φ(∗) and Φ(∗) are the

PDF and CDF of Gaussian distribution, respectively. Let a =

−ε, b = ε, µ̄ = 0, φ(µ, σ2;x) = 1

σ
√
2π

e−
(x−µ)2

2σ2 . Then, we have

En[n] = 0, which implies En[∆] = 0.

C. Hidden trigger generation

Let fθ(·) denote the deep learning model with parameter

θ for the reconstruction task. The cost function for the recon-

struction task is defined as C. To ensure that the trigger remains

invisible while maintaining the effectiveness of the attack, the

attacker’s objective can be formulated as

P1 min
t
C(fθ′(x+ t), r′) + λΩ(t)

s.t. ti + xi ∈ [0, 1], ∀i

‖ti‖ < δ, ∀i, .

C(fθ′(x), r)− C(fθ(x), r) ≤ ε,

where ε is a small positive number. The function Ω(t) measures

the roughness of t given a low-pass filter h [12]. Here, θ
represents the parameters of the pre-trained clean model, while

θ′ denotes the parameters of the poisoned model. t represents

the trigger, and ti is the ith element of the trigger. The first term

of the objective function corresponds to the loss associated with

the attack, while the second term addresses the invisibility in the

frequency domain. A trade-off exists between the roughness and

the attack performance, which is controlled by the parameter λ.

The first constraint ensures that the poisoned samples remain

within a valid range. The second constraint addresses the

trigger’s visual invisibility. The third constraint ensures that

the performance of the clean samples does not significantly

degrade.

The adversary is assumed to possess knowledge of the deep

learning framework and access to the training dataset, enabling

it to train a clean model. However, the trigger generated by the

clean model cannot be directly applied to poisoned models due

to the complexity of fitting a backdoor pattern in reconstruction

tasks. To address this issue, we propose an iterative algorithm,

as shown in Algorithm 1.

Given the pre-trained model, the hidden trigger is created

by minimizing the distance between the semantic features of

the poisoned sample and those of the target, using the clean

model to generate an initial trigger. The model is then trained

on the dataset poisoned by the generated trigger for N steps.

Subsequently, the trigger is optimized using the trained model.

By repeating this process, the trigger that achieves the best

performance on the poisoned samples is selected as the final

trigger.

Given the pre-trained model, the hidden trigger is created

by minimizing the distance between the semantic features of

the poisoned sample and those of the target, using the clean

model to generate an initial trigger. The model is then trained

on the dataset poisoned by the generated trigger for N steps.

Afterward, the trigger is optimized with the trained model.

By repeating this process, the trigger that achieves the best

performance on the poisoned samples is selected as the final

trigger.

The squared L2 norm is employed as the metric to measure

the distance between the semantic features. The objective of

the optimization problem is to estimate the trigger T , which

is achieved by identifying the adversarial perturbation in the

latent space. The reason for optimizing the trigger in latent

space is that triggers generated in this space are more robust

to smooth operations in the image domain and independent of

the loss function used for training the model. Similar to the
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approach in [7], a low pass filter is utilized to eliminate high-

frequency artifacts, thereby addressing the roughness constraint.

The function M(·) is used to normalize the poisoned image

into the range of valid images. Additionally, projected gradient

descent is applied to optimize the trigger. Given the parameters

of the poisoned model, the problem of searching for the trigger

pattern can be reformulated as the following optimization

problem

P2 min
T

∑

k

‖Sα(Sβ(x
′
k))− Sα(Sβ(r

′))‖2

s.t. x
′
k = M(xk + T ),

‖Ti‖ < δ,

T = t ∗ h.

The objective function is to minimize the distance between the

normalized semantic features of poisoned samples and targets.

Ti is the ith element of the trigger and xk,i is the ith element

of the kth sample. The first constraint ensures that the poisoned

sample is in a valid range. In the second constraint, δ specifies

the invisibility requirement for the perturbation. The third term

represents that the trigger is passed through a low-pass filter h,

where ∗ is the convolution operation.

V. SIMULATION

In this section, the proposed attacks under different settings

are evaluated. The backdoor models are trained with a spectrum

ratio of 1/8 using the MNIST and CIFAR-10 datasets, where

the spectrum ratio is defined as the number of transmitted

symbols divided by the number of original symbols before

encoding. We maintain the poison ratio (PR) constant while

varying the power of Gaussian noise in the physical channel

to evaluate the performance across different signal-to-noise

ratios (SNRs) ranging from 1 to 13 dB. The relative distance

between transformed targets and clean samples across different

transformed parameters is also shown. All the models are

trained for 120 epochs with a learning rate of 0.0008. Additive

White Gaussian Noise (AWGN) channel is considered in the

following simulations. A single target is randomly selected

from the training dataset. The peak signal-to-noise ratio (PSNR)

is employed to measure the reconstruction accuracy. PSNR =
10 log10(

R2

MSE ), where R is the maximum fluctuation in the

images, and MSE is calculated based on the reconstructed data

from the decoder model and the target. The variance of the

noise created the clipped and truncated noise is calculated by

σ̄ =
√

Ps10−SNRn/10, where Ps is the power of the image.

Notably, SNRn does not refer to the signal-to-noise ratio of the

transformed target. Rather, it denotes the SNR of the noise that

un-clipped and un-truncated. For the hidden trigger generation

algorithm, the low-pass filter is a Gaussian filter with σh = 5
and kernel size 3. num iter = 15, N = 2, and PR = 0.1.

A. Perceivable risk of targets

Fig. 2 and Fig. 3 present the input samples, both poisoned

and clean, alongside their corresponding reconstructed images

from a poisoned model trained by MNIST and CIFAR10,

Fig. 2: Input and reconstructed images of the poisoned model

trained on MNIST and CIFAR10, the targets are transformed

with clipped Gaussian noise.

Fig. 3: Input and reconstructed images of the poisoned model

trained on MNIST and CIFAR10, the targets are transformed

with truncated Gaussian noise.

respectively. The targets in Fig. 2 are transformed with clipped

Gaussian noise with SNRn = 3. The truncated Gaussian noise

is used in Fig. 3, where SNRn = −10. The first rows display

the input samples of the backdoor semantic communication

model, while the corresponding reconstructed images at the

receiver are shown in the second rows. The outputs of the

poisoned model are the digit ”5”, as specified by the adversary,

while the model performs normally with benign data. It can

be observed that the basic objectgive of BASS is achieved.

However, Fig. 3 shows a better reconstruction accuracy for

the reconstructed target images compared to Fig. 2. In Fig. 2,

noticeable noise exists in the reconstructed outputs of poisoned

samples, particularly in the MNIST dataset. This deviation

from the original target is attributed to the influence of clipped

Gaussian noise. Unlike clipped Gaussian noise, the truncated

Gaussian noise is constrained by ε, which helps to improve the

reconstruction accuracy of the target.

Fig. 4 shows a comparison of PSNR for a model trained

with CIFAR10 at 1% and 5% poison ratios across various

SNR levels, using a transformation that adds clipped Gaussian

Noise, SNRn = 4. It is noted that the performance of the

poisoned model on clean samples is comparable to that of the

clean model. In addition, the attack performance achieves the

expected level. Fig. 5 illustrates the PSNR for models trained

using CIFAR10 with poison ratios of 1% and 5%, evaluated

across different SNRs using truncated Gaussian noise. Similar

to the observations from Fig. 4, both normal operation and

attack perform well. Furthermore, the comparison of Fig. 4

and Fig. 5 reveals a decline in attack performance when clipped
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Fig. 4: PSNR comparison for models trained by CIFAR10 at

1% and 5% poisoned ratios across different SNR levels with

clipped Gaussian noise.
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Fig. 5: PSNR comparison for models trained by CIFAR10 at

1% and 5% poisoned ratios across different SNR levels with

truncated Gaussian noise.

Gaussian noise is applied. This is because this method signifi-

cantly shifts the learning target, resulting in a decrease in attack

performance. Truncated Gaussian noise achieves higher attack

performance than clipped Gaussian noise, due to the truncated

Gaussian noise added to each component being constrained in

an ε-neighborhood.

Fig. 6 presents the relative L1 distances. Let d1 =
min
i,j,i 6=j

‖ri − rj‖ − min
k,l,k 6=l

‖r′k − r
′
l‖ and d2 = min

i,j,i 6=j
‖ri −
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Fig. 6: Relative L1 distance: (a) The minimum distance between

clean samples and the minimum distance between transformed

reconstruction samples with clipped Gaussian noise. (b) The

minimum distance between clean samples and the minimum

distance between transformed reconstruction samples With

truncate Gaussian noise.

rj‖ − min
k,l,k 6=l

‖r′′k − r
′′
l ‖. In Fig. 6 (a) and (b), red and black

curves represent the relative distances associated with un-

transformed and transformed samples across different SNRn

levels, respectively. That is, Fig. 6 compares the minimum

relative L1 distances before and after applying transforms. In

Fig. 6 (a), clipped Gaussian noise is used, while truncated

Gaussian noise is applied in Fig. 6 (b). The objective is to

ensure the minimum distance of the clean samples be less than

that of the targets, indicated by d2 being less than 0. It can be

observed that both transforms achieve the goal.

B. Invisible trigger

Fig. 7: Input and reconstructed images of the poisoned model

trained on MNIST and CIFAR10 with invisible triggers, where

δ = 0.02 and 0.04, respectively.

Fig. 7 shows both the poisoned and clean input samples along

with the corresponding reconstructed images of a poisoned

model trained using MNIST and CIFAR10 with the proposed

invisible triggers. The maximum perturbation is δ = 0.02
for MNIST, δ = 0.04 for CIFAR10, and the poison ratio

is 0.1. The poisoned models trained on two training datasets

successfully achieve the basic attack goal. Moreover, it is

difficult to recognize the poisoned samples through human

inspection.

Fig. 8 illustrates the difference between the spectrum of

poisoned and clean samples. Both Fig. 8 (a) and 8 (b) display

a clear pattern in the high frequencies, whereas Fig. 8 (c)

shows only small values with no significant power or pattern in

the high-frequency range. Combined with Fig. 7, the proposed

IHTG successfully achieved invisibility in both space and

frequency domains.

Fig. 9 and Fig. 10 show the PSNR comparison of models

trained on MNIST with a 10% poison ratio across SNR levels

using different trigger generation methods. NL refers to the

(a) (b) (c)

Fig. 8: Difference between the average spectrum of (a)

BADNET-poisoned and clean samples. (b) IHTG-poisoned

samples without low-pass filtering and clean samples. (c)

IHTG-poisoned and clean samples.
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Fig. 9: PSNR comparison of models trained on MNIST with

a 10% poison ratio across SNR levels using different trigger

generation methods, δ = 0.02.
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Fig. 10: PSNR comparison of models trained on CIFAR10 with

a 10% poison ratio across SNR levels using different trigger

generation methods, δ = 0.04.

proposed method with a modification in the trigger optimization

process. In NL, the trigger is optimized to minimize the

cost function rather than being optimized in the latent space.

NI refers to the method without the iterative process, where

the trigger is directly generated based on the clean model.

IHTG is the proposed method. In Fig. 9, all three methods

demonstrate comparable performance with clean inputs. This is

attributed to the simplicity of the sparse image dataset MNIST,

which allows the model to easily learn both the trigger and

the backdoor. However, the attack performance of IHTG is

superior, as it aligns with the poisoned model. In Fig. 10, it

can be observed that the proposed method achieved the best

overall performance on both clean samples and attacks. While

the overall reconstruction accuracy of NL is smaller than that of

IHTG, which is because the signal passed through the physical

channel, which improves the robustness of the decoder part to

the adversarial samples. In addition, NL has better performance

than NI, because the trigger generated on the clean model is

not aligned with the poisoned model.

VI. CONCLUSIONS

This paper defines the perceivable risk in BASS, which

differs from that in traditional backdoor attacks. The risk is

associated not only with the poisoned inputs but also with

the target samples. Based on this defined perceivable risk, the

stealthiness of BASS is explored. To prevent the defender from

detecting the poisoned samples by matching reconstructed sam-

ples, the adversary uses clipped Gaussian noise and truncated

Gaussian noise to increase the distance between targets. The

results show that the transformed targets cannot be detected

simply by matching poisoned training samples. Additionally,

to address the unaligned model problem and improve the per-

formance of the attack in BASS, an invisible adversarial trigger

is generated through iterative optimization in the latent space.

The simulation results demonstrate the significant degradation

caused by an unaligned trigger, and the effectiveness of the

proposed algorithms is shown.
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