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Abstract

Area-level models for small area estimation typically rely on areal random effects to shrink design-based direct
estimates towards a model-based predictor. Incorporating the spatial dependence of the random effects into
these models can further improve the estimates when there are not enough covariates to fully account for the
spatial dependence of the areal means. A number of recent works have investigated models that include
random effects for only a subset of areas, in order to improve the precision of estimates. However, such
models do not readily handle spatial dependence. In this paper, we introduce a model that accounts for
spatial dependence in both the random effects as well as the latent process that selects the effects. We
show how this model can significantly improve predictive accuracy via an empirical simulation study based
on data from the American Community Survey, and illustrate its properties via an application to estimate
county-level median rent burden.
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1 Introduction

Small area estimation (SAE) has become an integral tool in official statistics to produce estimates
for quantities of interest, such as means and totals, for subpopulations with small sample size. The
term small area usually refers to geographic subregions but can also be demographic groups or a
combination of the two. SAE models play a vital role in the effective implementation of govern-
ment policies. One of the many policy-relevant estimates of interest is rent burden, defined as
the share of household income spent on rent.

The cost of housing is a very pressing issue in the United States. According to 2017-2021 ACS
5-year estimates, over 19 million US renter households were paying more than 30% of income on
rent, making them cost burdened (Cromwell, 2022). More recently in 2022, 22.5 million house-
holds, half of all US renters, were estimated to be cost burdened, based on the ACS 2022 1-year
estimates (Harvard Joint Center for Housing Studies, 2024; U.S. Census Bureau, 2023).
Furthermore, 12.1 million households are estimated to be severely cost burdened, paying more
than half of their incomes on rent. These severe rent burdens heavily affect households with lower
incomes that do not have sufficient funds to cover basic necessities after paying rent (Desmond,
2018; U.S. Bureau of Labor Statistics, 2024).

US housing policy is highly decentralized. Although the central (or ‘federal’) government admin-
isters subsidies to housing consumers, most subsidies are directed at homeowners rather than rent-
ers, despite renters typically falling into lower-income categories (Crump & Schuetz, 2021).
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In other key areas of housing policy, especially in land use planning and development permitting,
the federal government has quite limited powers (Quigley, 2008). Most of the consequential policy
debates affecting renters today are therefore happening at the level of local and state governments.
Thus, providing accurate and granular estimates at the local and state level is critical to good pol-
icy making.

Direct survey estimators often fail to produce reliable estimates at the level of a small area (e.g.
counties or census tracts). This is due to the fact that transnational surveys like the American
Community Survey (ACS) are usually designed for accuracy at a high level of aggregation.
Thus, model-based approaches may become necessary for reliable SAE without the development
of new surveys. In this paper, we primarily focus on what is known as area-level modelling, where
aggregated direct estimates at discrete areas of interest are modelled. This approach contrasts with
unit-level SAE models, where individual survey responses are directly modelled. For a review of
unit-level models, see Parker, Janicki, et al. (2023).

The foundational area-level model was introduced by Fay and Herriot (1979). Their model uti-
lizes a regression-based estimate with independent, normally distributed random effects that have
and a common variance. The estimates from such a model can be viewed as a weighted combin-
ation of the direct survey estimates and the regression-based estimates, where the weights are con-
structed according to the ratio of the survey variance and the variance of the random effects. If the
survey variance is relatively large, then the Fay—Herriot (FH) model puts more weight on the
regression-based estimate and vice versa. This allows for more accurate estimation in areas with
small sample size by borrowing strength from areas with larger samples. The FH model has be-
come one of the most widely used tools for SAE. Extensions that generalize the FH model to
new types of data and/or relax modelling assumptions have grown substantially over the years.

One convenient assumption the FH model makes is that the survey variances are fixed and
known, when in reality they are estimated via the sample design and then plugged into the model.
You (2016) and Sugasawa et al. (2017) introduce Bayesian models that use a weighted estimate
similar to the FH approach to model the survey variance in addition to the small area mean,
with the latter allowing the use of covariates. These models were compared in You (2021).
Parker, Holan, et al. (2023) further extend the approach by proposing a model that yields conju-
gate full conditional distributions to further allow for spatial modelling of the survey variances.

There is also a growing body of literature dedicated to proposing alternate structures for the
random effects used within the FH model. For instance, instead of assuming independence, one
might consider a spatial structure to the random effects. This allows for models that account
for spatial dependence of the quantities of interest, which is commonly observed in many SAE ap-
plications. A common distributional choice is the conditional autoregressive (CAR) structure.
Examples of previous work using the CAR structure include Zhou and You (2008) and Porter
et al. (2015), the latter providing an extension for multivariate data. Another common choice is
the simultaneous autoregressive (SAR) structure. For examples, see Singh et al. (20035), Petrucci
and Salvati (2006), and Schmid and Minnich (2014). Chung and Datta (2022) provides a
Bayesian overview of CAR, SAR, and other spatial models. The authors also demonstrate how
the Bayesian approach extends naturally to settings where direct estimates are not available for
some areas. The quickly growing spatial SAE literature suggests that incorporating spatial depend-
ence can substantially improve the precision of model-based estimates.

Another area of exploration has been to address the normality and common variance assump-
tions of the random effects. These assumptions can cause the FH model to be less robust in situa-
tions where large random effect values are needed for relatively few areas. Many recent papers
have proposed extensions that move away from one or both of these simplifying assumptions.
An overview of this topic is given by Jiang and Rao (2020). One approach is to assume heavier-
tailed distributions for the random effects, which was explored by Datta and Lahiri (1995) and
Fabrizi and Trivisano (2010), among others. Chakraborty et al. (2016) use a mixture of two nor-
mal distributions, one with a small variance and the other with a large variance, to relax the com-
mon variance assumption. Finally, Janicki et al. (2022) take a novel approach by using a Bayesian
nonparametric (BNP) model to estimate counts for multi-way contingency tables (e.g. race and age
groups by county). Using a BNP prior to model both the fixed and random effects is an effective
way to model contingency tables that exhibit heterogeneity both in the coefficient-response rela-
tionships as well as spatial patterns.
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A more recent (and somewhat related) avenue of research was spurred by a number of works
that have questioned whether all of the random effects are necessary in the presence of appropriate
covariates. The first round of inquiry was done via a hypothesis test by Datta et al. (2011). But the
test could only test whether all or none of the random effects are necessary and the presence of
large effects for even one area could result in a small p-value. This has led to development of mod-
els that use shrinkage priors, pushing the unnecessary random effects towards zero. More specif-
ically, Datta and Mandal (2015) proposed an SAE model with a discrete-normal spike-and-slab
prior that shrinks the unnecessary random effects to zero, selecting which random effects are ne-
cessary. A continuous analogue to the Datta—Mandal (DM) model were introduced by Tang et al.
(2018) with a multivariate extension by Ghosh et al. (2022), using the class of global-local shrink-
age priors for the random effects. In the global-local approach, the variance of each random effect
is a product of a global shrinkage parameter and a local parameter that serves as an area-specific
adjustment.

Shrinkage guided by the spatial structure of the areas of interest may further improve the accuracy of
model-based estimates. Intuitively, if a random effect is not necessary in a given region, it may be likely
that it is also not necessary in a neighbouring area. On the other hand, if a random effects are necessary
for two neighbouring areas, the value of the random effects may be similar as well. Therefore, spatial
dependence can be built in on two different levels: in the latent selection process that selects/shrinks
the random effects as well as in the magnitude of the random effects that are selected.

Building in spatial dependence for the random effects themselves is somewhat straightforward
within the global-local framework, as demonstrated by Tang and Ghosh (2023), who used a CAR
prior for the random effects. However, building in spatial dependence for the shrinkage process is
complicated by the distributional requirements of the global-local prior. For instance, using a spa-
tial horseshoe prior on the random effects would require the use of a Gaussian copula on the local
parameters (Reich & Staicu, 2021). Given these complications, a modelling approach that uses a
spike-and-slab prior may provide a more natural starting point.

In this paper, we introduce a model that incorporates spatial dependence on both the selection
process and the random effects themselves, extending the work of Datta and Mandal (2015). The
remainder of this paper is organized as follows. In Section 2, we first discuss area-level modelling,
introducing the FH model in addition to the relevant spatial and shrinkage extensions. In Section
3, we introduce our proposed model and discuss prior specification. In Section 4, we describe pos-
terior inference for our proposed model, including the full conditional distributions of each par-
ameter. In Section 5, we conduct an empirical simulation study that shows how the proposed
model can significantly improve the accuracy of both point and interval estimates of median
rent burden, using ACS county-level data for North Carolina. In Section 6, we use the proposed
model to estimate the median rent burden for all counties in the South Atlantic Census Division.
Finally, we conclude with a discussion in Section 7.

2 Area-level modelling

Consider a survey in a study region partitioned into # small areas. Let the small area means 8=
(01, ..., 0,) be the quantities of interest. For each area i=1, ..., n, a survey is used to provide
design-based direct estimates of 6;, denoted as y;, with survey variances d;, which are assumed
to be known. Let N; represent the population size in area  and y;; denote the value of some variable
of interest for the jth population unit in area i, where j € {1, ..., N;}. Under the design-based per-
spective, the small area means are treated as fixed but unknown quantities (i.e. 8; = Nizl;i 1 i)
The commonly used Horvitz and Thompson (1952) estimator incorporates design information
through inverse-probability weighting,

1 Yij
YVi = ﬁ )
! jeS; iy
where S; denotes the collection of sample indices for area i and z;; represents the probability that

the jth unit in area i is included in the sample. Direct estimators like the Horvitz—Thompson have
important properties such as being design unbiased.
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However, for areas where the sample size is small, direct estimators can have unreasonably high
standard errors (SE), which may necessitate the use of a model. A standard area-level model can be
written as

[y| 0] ~N,(0,D) and 60=XB+u,

where y = (y1, ..., y.)", the # X n covariance matrix is D = diag{dy, ..., d,}, X is a n xj full-rank
covariate matrix, and f is the corresponding coefficient vector (a.k.a. fixed effects). Finally, the
length 7 vector u represents the random effects. The random effects # capture the variability in
0; that cannot be fully explained by the covariates in X. A great deal of research in SAE is focused
on the distributional choice for u.

The random effects for the foundational FH model (Fay & Herriot, 1979) are assumed to be
independent and identically distributed (IID) normal random variables with common variance:

[]6%] ~ N,(0, &°I).

In a Bayesian setting, the FH model is often used with the improper prior z(8, 6%) 1. Despite its
widespread acceptance, there are some shortcomings with this model, as previously mentioned.
These limitations are generally driven by the assumption that the random effects are IID and nor-
mally distributed. Assuming that all random effects are normally distributed with a common vari-
ance ¢ causes issues with robustness. The independence is also a questionable assumption because
spatial dependence of the random effects are often observed in practice.

2.1 Incorporating spatial dependence in the random effects

Instead of assuming independence among random effects, one could model some dependence
structure in the random effects

[#16%, p] ~ N,.(0, > Q" (p)),

where ¢ represents the random effect variance and p denotes additional parameters needed for Q,
the precision matrix. A common choice for Q is the CAR structure (Besag, 1974). The CAR pre-
cision matrix has the form Q = diag{A;}l_; — pA where p € (-1, 1) is the spatial correlation par-
ameter and A is a n X n spatial adjacency matrix whose 7, kth element a;;, is equal to one if areas
and k are seen as spatially adjacent (e.g. share a border), and equal to zero otherwise. Positive
(negative) values of p indicate positive (negative) spatial correlation with stronger spatial
correlation indicated by values close to +1, although it is common practice to restrict p > 0.
Setting p = 1 results in the degenerate Intrinsic CAR (ICAR) prior.

Existing literature indicates that the CAR model may lead to misleading results when there is no
spatial correlation actually present in the data (Leroux et al., 2000; Wakefield, 2007). A flexible
alternative to the CAR prior is a Besag—York-Mollié (BYM) prior (Besag et al., 1991) that includes
a separate spatial and nonspatial random effect components,

u=v; + v, where [v] ~ N,(0,07I) and [v2] ~ N,(0,03Q").

Note that sum-to-zero constraints are placed on v, v, for identifiability and that Q is the gener-
alized inverse of the ICAR precision matrix. Under this prior, the random effects are a sum of two
components: IID normal effects v1 and the ICAR spatial effects v,. When there is zero spatial cor-
relation present, the posterior values of the random effects would be dominated by v1, making the
estimates similar to an IID FH model. Conversely, if the heterogeneity is very spatially dependent
on the posterior values of v, would be larger than v;. There are also many instances where having
both the IID effects in addition to the ICAR spatial effects helps best capture the heterogeneity. The
overall balance of the spatial vs. nonspatial components can be determined by comparing the pos-
terior distribution of the random effect variances o7, o3.
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In order to aid in the prior specification of o3, we found it useful to scale the ICAR precision
matrix by dividing it by the geometric mean of the diagonal elements, as recommended by
Serbye and Rue (2014). We denote the scaled ICAR precision matrix by Q. Scaling the ICAR pre-
cision matrix allows the parameter o3 to reflect the typical variance, allowing the prior of the IID
variance o7 to be roughly comparable to that of o3 (Freni-Sterrantino et al., 2018; Riebler et al.,
2016).

2.2 Incorporating random effect shrinkage

Datta and Mandal (2015) introduced the first SAE model that uses Bayesian variable selection
methodology for the random effects. Specifically, they use a spike-and-slab prior that assumes a
discrete-normal mixture for the random effects

u=00v,
[vi16i=1, 5] ™ N(0, &),
[vil6;=0]=0,
[6;1p i Bernoulli(p),

|
[p] ~ Beta(a, b).

To complete the model, they use an inverse-gamma prior on 6> and 7(f) « 1. Note that we use ®
to represent the operator for an element-wise vector product. In the DM model, a given random
effect, v;, for area 7 is only included if the corresponding selection indicator, J;, is equal to
1. This approach relaxes the common variance assumption because o> only applies to random
effects for areas that are selected (i.e. §; = 1). Meanwhile, the effects that are not selected are
degenerate with zero variance. Note that in the extreme case if random effects for all areas
are selected (i.e. ;=1 for all i=1, ..., n), then the DM is equivalent to the independent FH
model.

The mechanism behind the shrinkage of the random effects for the DM model can be under-
stood from the posterior selection probability, p;, for a given area 4,

. p-d(yilx]B+vi dz; 1)

b =P <Py lxTB+vi, di) + (1 =p) - $(yi|x] B, di)’

where ¢(z | 1, %) is the normal density function with mean x and variance 2, evaluated at the
point z. The value of p, can be interpreted as the posterior probability that a random effect is
necessary in the area i. The global level of shrinkage across all areas is influenced by the par-
ameter p. If the posterior distribution of p is close to one, it indicates that most areas need
random effects and vice versa. Area-specific selection probabilities also depend on the normal
likelihood evaluations both with and without the random effect. For example, even if p has
mass towards zero, if the fit without the random effect is very poor for a given area i, then
#(vi | x] B+ v;, d;) will be much greater than ¢(y; | x] 8, d;), which will be reflected in the selec-
tion probability.

3 The spatially selected and dependent random effects model

We propose a model that accounts for spatial dependence on both the selection process and the
random effects themselves. The data model is given by

[y| 0] ~N,(0,D) and 60=XB+u,

where 72 again is the number of small areas. Again, y is the vector of direct estimates, D is the 7 X 7
covariance matrix, X is a 7 X j full-rank covariate matrix, and f is the corresponding coefficient
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vector. Similar to Datta and Mandal (2015), we consider a spike-and-slab prior for the random
effects, although we include spatial structure,

Note that for identifiability purposes, we place a sum-to-zero constraint on v; and v, while Q™ is
the generalized inverse of the ICAR precision matrix, which is scaled by the geometric mean of the
diagonal elements, as suggested by Serbye and Rue (2014). Again, we use © to represent the op-
erator for an element-wise vector product. Also note that the selection indicators themselves are
assumed independent, but each has a separate selection probability parameter, p;,. We further
model dependence within the selection process through the prior on these selection probabilities:

logit(p) =y + s,
[V/] |S%] ~ Nn(O, 5%1)3

[w, | s3] ~ N,(0, $307),

where, again, Q7 is the generalized inverse of the scaled ICAR precision matrix. We used the logit
link to map probability to the entire real line in order to model spatial dependence with a multi-
variate normal distribution. This allows for the use of the BYM structure on the logit effects that
form the selection probabilities, mirroring what was done for the random effects. Moreover, using
the logit link allows the use of Pélya-Gamma (PG) data augmentation (Polson et al., 2013) which
has computational advantages.

This model can capture spatial and nonspatial heterogeneity in both the random effects and the
selection process. Thus, we refer to this model as the spatially selected and dependent (SSD) ran-
dom effects model. Using the BYM structure twice allows for greater flexibility that avoids having
to predetermine a spatial or nonspatial structure to the random effects and selection. The overall
balance of the spatial vs. nonspatial components can be determined by comparing the posterior
distribution of o2, o3 for the random effects and s2, s3 for the selection process.

3.1 Prior specification

To simplify prior specification for the SSD model, we recommend fitting on scaled data (y, D),
similar to what is done in other shrinkage methods such as the Bayesian Lasso (Park & Casella,
2008). Specifically, we recommend scaling such that the direct estimates, y, have zero mean and
unit variance. That is, if ¥ is the sample mean and s, is the sample standard deviation, then
each direct estimate is scaled by (y; —¥)/s, fori=1, ..., n. Also, the survey variances are corres-
pondingly scaled di/sf, to form the diagonal matrix D.

In the SSD model, priors for three sets of parameters need to be specified: the regression coeffi-
cients f3, the random effect variances o3, 03, and the logit variances s, s3. The choice of prior on the
random effect variances a7, o3 require some care, as they can influence the selection probabilities of
the random effects, which may affect the estimates. In order for the model to be able to distinguish
between the degenerate spike at zero and the slab normal distribution, a prior needs to avoid vari-
ance values that are too small, while still being sufficiently diffuse. The inverse-gamma distribu-
tions have a gap near the origin, which can be adjusted to provide the necessary qualities. Thus,
we place inverse-gamma priors on the random effect variances with [07] ~IGl(c, d), and
[63] ~ IG(c, d). Note that X ~ IG(c, d) refers to an inverse-gamma distribution with the density:
f(x|c, d) x (1/x) texp(—d/x), where ¢, d > 0 are the shape and scale parameters. We conducted
a detailed sensitivity analysis on multiple datasets and found that priors that avoids values near
zero and are sufficiently diffuse, such as IG(3, 5), work well for scaled data. The result of the sen-
sitivity analysis is included in the online supplementary materials.
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For the regression coefficients, we specify the proper prior [f] ~ N;(0, k*I) where the hyperpara-
meter k2 is sufficiently large as to be noninformative. This could depend on the scale of the data,
but for the suggested standardized data, we recommend k* = 100%. The prior choice of s7, s3, the
logit variances, can affect convergence of the MCMC chains but they have minimal impact on the
estimates themselves, especially given that these parameters are far down the model hierarchy. We
let st ~ IG(r, q) and s3 ~ IG(r, q) for fixed hyperparameters r, q, where we recommend 7 = § and
q =10.

3.2 Relationships to related models

Note that each of the models discussed in Section 2 is a limiting case of the SSD model introduced
here. The BYM is an SSD model where all of the random effects are selected (i.e. 6; =1 for all
i=1, ...,n). The DM is a limiting case of the SSD model where the spatial component, both in
the random effects and the selection process is zero (i.e. if 65 and s3 are degenerate at zero). The
independent FH model is the limiting case of the SSD model if both are true: all of the random
effects are IID only (i.e. 03 and s3 are degenerate at zero) and the random effects are all selected
(e.d;=1foralli=1, ..., n).

Also, note that the posterior selection probability for the SSD model is

N pi- d(yilx] B+ vii + vai, di) 5
o (2)

bi pi- (il x] B+ vii+v2i, di) + (1= pi) - $(yi | x] B, di)’
where y; are the scaled direct estimates, d; are the scaled survey variances, and ¢ is the normal dens-
ity function as previously described. Note that the structure of the posterior selection probability
here is essentially the same as that of the DM model (1), except that the random effect has the form
v1; + v2; and there is distinct p; for each area, instead of shared, global p parameter. Just like the
DM model, area-specific selection probabilities also depend on the normal likelihood evaluations
both with and without the random effect. Thus, areas with larger magnitude random effects will
lead to more definitive conclusions about whether an effect is necessary during posterior inference.
But unlike the DM, there will be some spatial smoothing resulting from the BYM structure on the
effects and the selection probabilities [i.e. logit(p;) = wy; + w»,]. Please see Figure 4 in the online
supplementary materials for a visual explanation.

4 Posterior inference

Let © denote the set of parameters in the SSD model. Then, the full posterior distribution can be
written, up to a constant of proportionality, as

m(Q]y, X, D) x exp {—%(y—Xﬂ—éO [vi+v2) "D (y - XB -6 O [v1 +vz])}

1\"*1\"? 1 . R
><<;1> (;2) exp{—z—o_%zq UI_EUZ sz}

x[Tpi(t-p)'=
=1

1 n/2 1 n/2 1 . 1 .
x J— J— _— _—
<S%) <S%> exp { 25% Vi ¥iq 25% 5] QWZ}

x 7(f)n(o7)x(o3)m(s?)m(s3).

This model and the chosen priors leads to full conditional distributions all from standard paramet-
ric families, when PG data augmentation is applied (Polson et al., 2013). Then, Gibbs sampling
can be used to sample from the posterior distribution. We will denote vy, X, D as data for ease
of notation. Please see Section 4 in the online supplementary materials for the derivation of the
full conditional distributions.
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Full conditional distributions of vy, v;, and . The fixed and random effects # and vy, v2 can be
sampled in a block. In order to do so, we set y= (8", v], v})T and Z=(X A A) where A=
diag{d;};_; and Zy=Xp+ 6 O (v1 +v2). Provided that there exists i such that d; # 0, the full
conditional of y is then

[y|0%, 03, 9, data] ~ Ni+2n<P;1D_1ZTy, Py_l),

where
Ii/k* 0 0
P,=Z'D'Z+A, and A= 0 L/&3 O
0 0 Q/o

Note that we have 7 areas, j covariates, and I,,, denotes an identity matrix of rank 72 and Q again is
the scaled ICAR precision matrix. If §; =0 foralli=1, ..., n, then v; = v, = 0 and the posterior
distribution of f is:

B3, o3, data] ~ N,(P,;lD-ley, P;l) where Py =X'D™'X + I;/k*.

Full conditional distribution of é. For the SSD model, the posterior selection probability p, for
area 7, is given by equation 2 in Section 3.2. The full conditional distribution of & is then

[6; | pis v1is v2iy B, data] ind Bern(p;) fori=1, ...,n.

Full conditional distributions of w,, y,, and latent variables w. The posterior conditional distri-
bution of y;, w, can be sampled with PG data augmentation (Polson et al., 2013). A random vari-
able with a PG distribution with parameters b > 0 and ¢ € R is denoted as X ~ PG(b, c¢). For more
on the PG random variable, including its formal definition, we refer you to Polson et al. (2013). We
have provided a detailed explanation of PG data augmentation in the online supplementary
materials (Section 4).

We use the PG data augmentation strategy to sample the full conditional of y, w, in a block.
We set the blocked logit effects ¥ = (], wj)" and H = (I, I,,). We introduce PG latent variables
[wi] ~ PG(1, 0) and set W = diag{w;}7,. We also set & = (6 — 1/2, ..., 6, —1/2)".

Conditional on the latent variables w; and the variance parameters (s?,s3), the blocked
logit effects, can be sampled from

[¥1si, 53, W] ~ Now(Py' H'w, P'),

where

_ T _ In/S% 0
Py =H'WH + Ay and Aqf—( 0 Q/S% .

The latent variables used for the PG data augmentation are also conjugate. Conditional on the log-
it effects ¥, w; can be sampled from

[ww; | W] "™ PG(1, h] )

fori=1, ..., n, where b; is the ith row of H=(I,, I,) and h] ¥ = yy; + ;.
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Full conditional distributions of o3, 03 and s?, s3. The full conditional for the two sets of vari-
ance parameters are

[067 1] ~IG(n/2 + ¢, v]v1/2+d) and [0} |v2] ~1G(n/2 + ¢, v} Qua/2 + d),

[sT 1wl ~IG(/2 + 7, wiw /2 +q) and  [s3]y,] ~IG(1/2 + 7, y; Oy, /2 + q).
Note that these sets of variance parameters, (o7, 03) and (s7, s3), are not necessarily on the same
scale.

5 Empirical simulation study

5.1 Simulation description

In constructing our simulation study, we aim to generate data that behave similarly to what might
be observed in practice. Rather than generating data synthetically from a model, we take direct
estimates from an existing survey dataset and add noise based on the reported survey variances
to generate data. We took this approach to preserve many of the characteristics associated with
the real data when creating synthetic datasets. The setup is similar to what is done in Bradley
et al. (2015, 2018), and Janicki et al. (2022).

Specifically, the data for this simulation study was based on the publicly available ACS 5-year
estimates from 2015 to 2019 (U.S. Census Bureau, 2020). The code used to conduct this simula-
tion study was written in R (R Core Team, 2023) using publicly available packages. For details,
please see the Data Availability section.

Let z; be the observed direct estimate of median rent as a percentage of household income (me-
dian rent burden) for the ith county in North Carolina. Note that there are # =100 counties in
total. Also, let d; be the reported sampling variance associated with z;. In this simulation study,
we treat the 2= (21, ..., 2,)" as the truth, or the unobserved true small area means of interest.
Figure 1 shows the spatial distribution of the z and a scatterplot of \/d; and z. The map
Figure 1(a) provides evidence for the spatial correlation present throughout the state, including
a cluster of counties in the eastern portion of state with the highest rent burden. There are also
multiple instances of low and high-rent burden counties being adjacent to each other (known as
negative spatial correlation). This includes Gates and Perquimans counties, near the northeastern
corner of the state, that represent the highest and lowest values in the state. The scatterplot
Figure 1(b) shows that the counties with highest rent burdens also have some of the largest survey
variances. All of these factors will test the robustness of the various estimators.

In this simulation study, we run G = 300 simulations, each with a different synthetic dataset
that is created by perturbing z with noise distribution that uses the reported survey variances.
Specifically, we generate

¥ % N(0; = log(z:), di/2?)

fori=1, ...,nand g=1, ..., 100, where i is the index for a given county and g is the index for
the simulation. As the rent burden can be skewed, with a lower bound at zero, we take a log trans-
formation to better meet the Gaussian assumption. Note that since the sampling variance for the
log transformed rent burden is not known, we use the delta method to estimate this quantity. Note
that although we use the log transformation to generate the data, the predictive performance is all
assessed on the original scale [assessed on the estimates of z;, not log (z;)].

In each simulation, we use the synthetic dataset y'&) = {y(lg), <,y and D= diag{di/ziz}:’::lloo to
predict z. We compare the predictive performance of the SSD model with four other methods:
three model-based methods and the direct survey estimate using this synthetic dataset. The three
other model-based estimates we compared were the independent FH model, the DM
spike-and-slab model, and a FH model with BYM spatial random effects. As a reminder, BYM
models spatial dependence but does not select random effects. The DM model performs selection
but does not incorporate spatial dependence for the random effects or the selection process like the
SSD.
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Figure 1. (a) A map of the direct estimates z; of rent burden, which we treat as the true small area means for our
simulation study. (b) A scatterplot of the survey standard errors +/d; and z;.

The model-based estimates used {y®, D} in addition to covariates X to fit the model. The matrix
X contained ACS estimates for rates of college graduates, residents receiving public assistance in-
come or Supplemental Nutrition Assistance Program in the past 12 months, residents who own a
car, the poverty rate, racial makeup of residents (White, Black, Native, Asian), and the rate of
Hispanic residents.

The model-based approaches were all fit using Markov Chain Monte Carlo (MCMC). Each
model used the same MCMC sample size (S = 2,000) with varying amounts of burn-in; the non-
spatial models used 9,000 iterations while the spatial models used 2,000 iterations for burn-in. A
randomized set of simulations was checked and lack of convergence was not detected based on a
thorough visual inspection trace plots for all parameters and all models.

The standard improper prior z(f, o%;) « 1 was used for the FH. The DM used an improper prior

#(f) 1, in addition to an Empirical-Bayes like prior a3, ~ IG(3, 2d), where d =1 3" | d;, was
recommended by the authors (Datta & Mandal, 2015) and acts as a scaling mechanism. The
BYM model used z(f) « 1 and an noninformative IG(c, ¢) prior for o2, 03 with ¢=5x107.
Finally, the SSD model which, again, was fit after scaling the data, used a noninformative f ~
N;(0, k2I;) with k> = 1002, an IG(S, 5) prior for o7, 03, and IG(S, 10) for the logit-variance param-
eters s2, s5. Note that both the BYM and SSD models scaled the ICAR precision matrix. All of the
models used noninformative priors for the fixed effects. Note that the random effect variance pri-
ors are not easily comparable across models. This is due to some models having one random effect
term while the spatial models have two, as well as the SSD model using scaled data.

5.2 Assessment
We compare the predictive capability of the various methods for G = 300 simulations. For a given
county i and dataset g, let 2 z denote the point estimate (posterior mean for the model-based esti-

mates) of rent burden and {l,- , h,- } be the lower and upper endpoints of the 90% credible interval
(e =0.1). We compare the performances of the various methods using mean squared error (MSE),
coverage rate, and interval score, averaged across the G = 300 simulations. We also compare the ab-
solute bias of the estimators produced by each method. The coverage rate and interval scores are not
computed for the direct estimates as they do not produce credible intervals. Note that the predictive
performance is all assessed on the original scale [assessed on the estimates of z;, not log (z;)].

The average of MSE serves as an overall measure of performance, balancing both bias and vari-
ance of the estimator. It is given by

n

A MSE—li1 )2
vg —nglnt : Zi) .
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Table 1. A comparison of estimates from various methods in our empirical simulation study, which used ACS median
rent burden data from North Carolina

Estimator MSE 90% Cr. Int. Interval score Absolute bias
coverage rate for 90% Cr. Int.

Direct estimate 11.1x10°* - - 0.0018

BYM 7.0x107* 0.828 0.1124 0.0110

FH 6.9%x107* 0.833 0.1093 0.0108

DM 6.8x107* 0.789 0.0980 0.0110

SSD model 5.4x10* 0.894 0.0769 0.0087

Note. The simulation study contained 300 simulation iterations. The Direct Estimate along with four model-based
estimates were compared: independent FH model, the DM model, FH model with BYM effects, and the proposed
SSD model. For the models, posterior means were used as point estimates and 90% Credible Intervals (Cr. Int.) were
used for the interval estimates. Bold values indicate the best performing model for a given metric. ACS = American
Community Survey; MSE = mean squared error; FH = Fay-Herriot; DM = Datta—Mandal; BYM = Besag—York-Mollié;
SSD = spatially selected and dependent.

The average Coverage Rate indicates how well the 90% credible intervals perform in terms of cap-
turing the true small area means across areas and simulations. This is given by

1E 1
Ave C Rate=—Y =
vg Coverage Rate G ; p

Y ¥ <z Iz < i),
g=1"1i=

=1

The interval score is a more comprehensive way to assess interval estimates, as discussed by
Gneiting and Raftery (2007). The interval score penalizes for length of the interval and missed
coverage on both the upper and lower endpoints. The average interval score for the simulation
study is given by

LRI o ey, 2 e i)
Avg Interval Score=—» =% (&% = [¥) + = (¥ — z;)[{[}¥ > z3)
G prr e a
2 < (g) -+ (8)
+ &(zi —u; M{z; > u; 1

where a corresponds to the (1 — a) x 100% credible interval (o= 0.1 in this case).
Finally, we also compare the average absolute bias for each estimator, given by

n

1 1&
Avg Absolute Bias = - Z G- Z Qf.g) .
i1 =1

5.3 Results

Table 1 summarizes the results from the simulation study. Comparing the average MSE, the SSD
model outperforms the direct estimate by 52 %, the BYM by 23%, the FH by 22%, and the DM by
21%. Note that the two best-performing methods used shrinkage priors for the random effects.
Figure 2 compares the log MSE of the estimates of the SSD model against those from the other
methods for the 300 simulations. We see that the SSD model consistently outperforms the other
methods across simulations and can be used to greatly improve MSE of the small area estimates.
Moreover, among the model-based approaches, the SSD model achieves the lowest bias by a 19%
margin compared to the FH (the model with the second-lowest bias).

In terms of coverage rate, the SSD model is the only model whose 90% credible intervals actu-
ally contains the truth, z, about 90% of the time with a coverage rate of 89.4%. The BYM, FH,
and DM all exhibit varying degrees of undercoverage. This superior coverage is achieved without
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Figure 2. Comparison of the Log mean squared error (MSE) of the estimates from the spatially selected and
dependent (SSD) model against alternative methods for each of the 300 simulations. Points above the dotted line
indicate simulations where the SSD model had lower MSE while the points below the dotted line correspond to
simulations where the SSD model had higher MSE.

excessively large intervals, as indicated by the interval score; the SSD model has a lower interval
score than the DM by 22% (the model with the second lowest score). See Section 1 in the
online supplementary materials for more details.

6 Estimates of median rent burden for the South Atlantic Census Division

In this section, we fit the SSD model in order to estimate median rent burden in the United States
South Atlantic Census Division, using 2015-2019 5-year ACS data (U.S. Census Bureau, 2020).
The South Atlantic Census Division comprises of eight states plus the District of Columbia.
There are n =588 counties in total for this Census Division. We consider the same covariates
used in Section 5, in addition to adding state-level fixed effects. Also, we used the same priors
from the simulation study.

The MCMC algorithm for the SSD model was run for 4,000 iterations with the first 1,500 dis-
carded as burn-in. No lack of convergence was detected. For North Carolina datasets with 7z = 100
areas used for the simulation study, all of the candidate models take less than a minute to fit. For
the South Atlantic Census Division with 7z = 588 areas, the runtimes for the spatial models are sig-
nificantly higher: CAR takes ~48 min, BYM takes ~37 min, and SSD takes ~#66 min ona 2021 M1
Macbook Pro. The high computational burden in high dimensions is a problem with spatial mod-
els in general. That said, we do not think this degree of computational burden is a real obstacle to
the practical use of these models. All of the code used to conduct this analysis was written in R
(R Core Team, 2023). For details, see the Data Availability section.

The maps in the first row of Figure 3 compare the estimates from our proposed SSD model with
the direct estimates. We see that both estimators exhibit the same overall spatial pattern, but there
is a smoothing effect through the use of the model-based estimates, as expected. The impact of the
smoothing is noticeable near the boundary between West Virginia and Virginia, in central South
Carolina, as well as eastern North Carolina. The maps in the second row of Figure 3 compare the
log SE of the direct estimates with the log SE (posterior standard deviations) from the SSD model.
We can see a reduction in the log SE from the SSD throughout the division. The reduction is
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Figure 3. Comparison of the estimates and standard errors for county-level median rent burden using the direct
estimates (D.Est) and the spatially selected and dependent (SSD) model. The study region is the South Atlantic
Census Division, which consists of 588 counties from D.C. and eight states.

especially noticeable in West Virginia, Western and Eastern ends of North Carolina, Georgia, and
Northern Florida.

We also fit the DM model to estimate median rent burden for comparison. A Monte-Carlo
Simulation of Geary’s C test with 1,000 iterations was performed on the posterior means of the
random effects from the DM model. The resulting p-value was below 0.001. This indicates that
there is a strong spatial dependence in the random effects of the DM, despite the model’s assump-
tion of independence and the inclusion of state-level fixed effects. More details on the random ef-
fects in this analysis, including a comparison of random effects from different models can be found
in Section 2 of the online supplementary materials.
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Figure 4. Comparison of the posterior mean of the random effect selection probabilities between the Datta—Mandal
(DM) (left) and the spatially selected and dependent (SSD) model (right). If the selection probability for a given county
is high, the data indicates the need for inclusion of a random effect for that county.

Finally, Figure 4 shows the posterior means of the random effect selection probabilities of the
DM and SSD models. We can see in Figure 4 that the selection probabilities of the DM model
also have a strong spatial pattern, again, despite the inclusion of state-level fixed effects. Most
counties in central and southern Florida, for example, have selection probabilities close to
1. The spatial pattern is shown by the selection probabilities in the DM model is directly modelled
in the SSD approach. Correspondingly, we see that the SSD selection probabilities exhibit a
smoother spatial pattern. This analysis, as well as the empirical simulation study, suggests that in-
corporating spatial dependence in both the random effects and the shrinkage/selection probabil-
ities may be useful for improving estimates in certain settings.

7 Discussion

In this work, we develop a new SAE model combining both shrinkage of random effects and spa-
tial modelling. The proposed Bayesian model incorporates spatial dependence through priors on
both the random effects and the selection probabilities of the spike-and-slab prior, extending the
approach by Datta and Mandal (2015). Inference of our model can be carried out with a compu-
tationally efficient Gibbs sampler by using PG data augmentation (Polson et al., 2013).

Using data from the American Community Survey, we conducted an empirical simulation study
and data analysis, both centred around estimation of median rent burden, a policy-relevant stat-
istic. In the simulation study, we showed that the new model can produce far more accurate point
and interval estimates, compared to standard approaches (direct survey estimates and the inde-
pendent FH) and approaches that use shrinkage or spatial priors alone (DM and the BYM). We
also demonstrated the ability of the SSD model to reduce uncertainty in the data analysis compared
to the direct estimate. Both the simulation study and the data analysis illustrate the benefits of in-
corporating spatial dependence for both the random effects and the latent selection process.
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High computational burden is an issue for many spatial models. The Gibbs sampler for fitting
our proposed model requires two inversions of the covariance matrix for every MCMC iteration:
one for the blocked fixed and random effects and the other for the blocked logit parameters (see
Section 4). These matrix inversions can make fitting the model time-intensive for applications with
a large number of small areas. Future work involves development of a more efficient sampler or use
of approximations to help speed up the computation for massive datasets.

The simulation study and data analysis in this article both focused on estimating county-level
median rent burden using ACS data. However, the SSD model is of general interest and applicable
to many other Small Area Estimation scenarios where the covariates explain the variable of inter-
est well in many areas and the area-level random effects are expected to exhibit spatial shrinkage
and dependence. The random effect priors used for the SSD model could also be adapted in a
straightforward manner to spatial models in other domains such as disease mapping.
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