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Abstract
Area-level models for small area estimation typically rely on areal random effects to shrink design-based direct 
estimates towards a model-based predictor. Incorporating the spatial dependence of the random effects into 
these models can further improve the estimates when there are not enough covariates to fully account for the 
spatial dependence of the areal means. A number of recent works have investigated models that include 
random effects for only a subset of areas, in order to improve the precision of estimates. However, such 
models do not readily handle spatial dependence. In this paper, we introduce a model that accounts for 
spatial dependence in both the random effects as well as the latent process that selects the effects. We 
show how this model can significantly improve predictive accuracy via an empirical simulation study based 
on data from the American Community Survey, and illustrate its properties via an application to estimate 
county-level median rent burden.
Keywords: American Community Survey, Bayesian hierarchical model, rent burden, shrinkage prior, spike-and-slab

Received: April 18, 2024. Revised: May 12, 2025. Accepted: May 13, 2025 
© The Royal Statistical Society 2025. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction 
in any medium, provided the original work is properly cited. For commercial re-use, please contact 
journals.permissions@oup.com

1 Introduction
Small area estimation (SAE) has become an integral tool in official statistics to produce estimates 
for quantities of interest, such as means and totals, for subpopulations with small sample size. The 
term small area usually refers to geographic subregions but can also be demographic groups or a 
combination of the two. SAE models play a vital role in the effective implementation of govern
ment policies. One of the many policy-relevant estimates of interest is rent burden, defined as 
the share of household income spent on rent.

The cost of housing is a very pressing issue in the United States. According to 2017–2021 ACS 
5-year estimates, over 19 million US renter households were paying more than 30% of income on 
rent, making them cost burdened (Cromwell, 2022). More recently in 2022, 22.5 million house
holds, half of all US renters, were estimated to be cost burdened, based on the ACS 2022 1-year 
estimates (Harvard Joint Center for Housing Studies, 2024; U.S. Census Bureau, 2023). 
Furthermore, 12.1 million households are estimated to be severely cost burdened, paying more 
than half of their incomes on rent. These severe rent burdens heavily affect households with lower 
incomes that do not have sufficient funds to cover basic necessities after paying rent (Desmond, 
2018; U.S. Bureau of Labor Statistics, 2024).

US housing policy is highly decentralized. Although the central (or ‘federal’) government admin
isters subsidies to housing consumers, most subsidies are directed at homeowners rather than rent
ers, despite renters typically falling into lower-income categories (Crump & Schuetz, 2021). 
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In other key areas of housing policy, especially in land use planning and development permitting, 
the federal government has quite limited powers (Quigley, 2008). Most of the consequential policy 
debates affecting renters today are therefore happening at the level of local and state governments. 
Thus, providing accurate and granular estimates at the local and state level is critical to good pol
icy making.

Direct survey estimators often fail to produce reliable estimates at the level of a small area (e.g. 
counties or census tracts). This is due to the fact that transnational surveys like the American 
Community Survey (ACS) are usually designed for accuracy at a high level of aggregation. 
Thus, model-based approaches may become necessary for reliable SAE without the development 
of new surveys. In this paper, we primarily focus on what is known as area-level modelling, where 
aggregated direct estimates at discrete areas of interest are modelled. This approach contrasts with 
unit-level SAE models, where individual survey responses are directly modelled. For a review of 
unit-level models, see Parker, Janicki, et al. (2023).

The foundational area-level model was introduced by Fay and Herriot (1979). Their model uti
lizes a regression-based estimate with independent, normally distributed random effects that have 
and a common variance. The estimates from such a model can be viewed as a weighted combin
ation of the direct survey estimates and the regression-based estimates, where the weights are con
structed according to the ratio of the survey variance and the variance of the random effects. If the 
survey variance is relatively large, then the Fay–Herriot (FH) model puts more weight on the 
regression-based estimate and vice versa. This allows for more accurate estimation in areas with 
small sample size by borrowing strength from areas with larger samples. The FH model has be
come one of the most widely used tools for SAE. Extensions that generalize the FH model to 
new types of data and/or relax modelling assumptions have grown substantially over the years.

One convenient assumption the FH model makes is that the survey variances are fixed and 
known, when in reality they are estimated via the sample design and then plugged into the model. 
You (2016) and Sugasawa et al. (2017) introduce Bayesian models that use a weighted estimate 
similar to the FH approach to model the survey variance in addition to the small area mean, 
with the latter allowing the use of covariates. These models were compared in You (2021). 
Parker, Holan, et al. (2023) further extend the approach by proposing a model that yields conju
gate full conditional distributions to further allow for spatial modelling of the survey variances.

There is also a growing body of literature dedicated to proposing alternate structures for the 
random effects used within the FH model. For instance, instead of assuming independence, one 
might consider a spatial structure to the random effects. This allows for models that account 
for spatial dependence of the quantities of interest, which is commonly observed in many SAE ap
plications. A common distributional choice is the conditional autoregressive (CAR) structure. 
Examples of previous work using the CAR structure include Zhou and You (2008) and Porter 
et al. (2015), the latter providing an extension for multivariate data. Another common choice is 
the simultaneous autoregressive (SAR) structure. For examples, see Singh et al. (2005), Petrucci 
and Salvati (2006), and Schmid and Münnich (2014). Chung and Datta (2022) provides a 
Bayesian overview of CAR, SAR, and other spatial models. The authors also demonstrate how 
the Bayesian approach extends naturally to settings where direct estimates are not available for 
some areas. The quickly growing spatial SAE literature suggests that incorporating spatial depend
ence can substantially improve the precision of model-based estimates.

Another area of exploration has been to address the normality and common variance assump
tions of the random effects. These assumptions can cause the FH model to be less robust in situa
tions where large random effect values are needed for relatively few areas. Many recent papers 
have proposed extensions that move away from one or both of these simplifying assumptions. 
An overview of this topic is given by Jiang and Rao (2020). One approach is to assume heavier- 
tailed distributions for the random effects, which was explored by Datta and Lahiri (1995) and 
Fabrizi and Trivisano (2010), among others. Chakraborty et al. (2016) use a mixture of two nor
mal distributions, one with a small variance and the other with a large variance, to relax the com
mon variance assumption. Finally, Janicki et al. (2022) take a novel approach by using a Bayesian 
nonparametric (BNP) model to estimate counts for multi-way contingency tables (e.g. race and age 
groups by county). Using a BNP prior to model both the fixed and random effects is an effective 
way to model contingency tables that exhibit heterogeneity both in the coefficient-response rela
tionships as well as spatial patterns.
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A more recent (and somewhat related) avenue of research was spurred by a number of works 
that have questioned whether all of the random effects are necessary in the presence of appropriate 
covariates. The first round of inquiry was done via a hypothesis test by Datta et al. (2011). But the 
test could only test whether all or none of the random effects are necessary and the presence of 
large effects for even one area could result in a small p-value. This has led to development of mod
els that use shrinkage priors, pushing the unnecessary random effects towards zero. More specif
ically, Datta and Mandal (2015) proposed an SAE model with a discrete-normal spike-and-slab 
prior that shrinks the unnecessary random effects to zero, selecting which random effects are ne
cessary. A continuous analogue to the Datta–Mandal (DM) model were introduced by Tang et al. 
(2018) with a multivariate extension by Ghosh et al. (2022), using the class of global–local shrink
age priors for the random effects. In the global–local approach, the variance of each random effect 
is a product of a global shrinkage parameter and a local parameter that serves as an area-specific 
adjustment.

Shrinkage guided by the spatial structure of the areas of interest may further improve the accuracy of 
model-based estimates. Intuitively, if a random effect is not necessary in a given region, it may be likely 
that it is also not necessary in a neighbouring area. On the other hand, if a random effects are necessary 
for two neighbouring areas, the value of the random effects may be similar as well. Therefore, spatial 
dependence can be built in on two different levels: in the latent selection process that selects/shrinks 
the random effects as well as in the magnitude of the random effects that are selected.

Building in spatial dependence for the random effects themselves is somewhat straightforward 
within the global–local framework, as demonstrated by Tang and Ghosh (2023), who used a CAR 
prior for the random effects. However, building in spatial dependence for the shrinkage process is 
complicated by the distributional requirements of the global–local prior. For instance, using a spa
tial horseshoe prior on the random effects would require the use of a Gaussian copula on the local 
parameters (Reich & Staicu, 2021). Given these complications, a modelling approach that uses a 
spike-and-slab prior may provide a more natural starting point.

In this paper, we introduce a model that incorporates spatial dependence on both the selection 
process and the random effects themselves, extending the work of Datta and Mandal (2015). The 
remainder of this paper is organized as follows. In Section 2, we first discuss area-level modelling, 
introducing the FH model in addition to the relevant spatial and shrinkage extensions. In Section 
3, we introduce our proposed model and discuss prior specification. In Section 4, we describe pos
terior inference for our proposed model, including the full conditional distributions of each par
ameter. In Section 5, we conduct an empirical simulation study that shows how the proposed 
model can significantly improve the accuracy of both point and interval estimates of median 
rent burden, using ACS county-level data for North Carolina. In Section 6, we use the proposed 
model to estimate the median rent burden for all counties in the South Atlantic Census Division. 
Finally, we conclude with a discussion in Section 7.

2 Area-level modelling
Consider a survey in a study region partitioned into n small areas. Let the small area means θ = 
(θ1, . . . , θn) be the quantities of interest. For each area i = 1, . . . , n, a survey is used to provide 
design-based direct estimates of θi, denoted as yi, with survey variances di, which are assumed 
to be known. Let Ni represent the population size in area i and yij denote the value of some variable 
of interest for the jth population unit in area i, where j ∈ {1, . . . , Ni}. Under the design-based per
spective, the small area means are treated as fixed but unknown quantities (i.e. θi = 1

Ni

􏽐Ni
j=1 yij). 

The commonly used Horvitz and Thompson (1952) estimator incorporates design information 
through inverse-probability weighting,

yi =
1
Ni

􏽘

j∈Si

yij

πij
, 

where Si denotes the collection of sample indices for area i and πij represents the probability that 
the jth unit in area i is included in the sample. Direct estimators like the Horvitz–Thompson have 
important properties such as being design unbiased.
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However, for areas where the sample size is small, direct estimators can have unreasonably high 
standard errors (SE), which may necessitate the use of a model. A standard area-level model can be 
written as

[y | θ] ∼ Nn(θ, D) and θ = Xβ + u, 

where y = (y1, . . . , yn)⊤, the n × n covariance matrix is D = diag{d1, . . . , dn}, X is a n × j full-rank 
covariate matrix, and β is the corresponding coefficient vector (a.k.a. fixed effects). Finally, the 
length n vector u represents the random effects. The random effects u capture the variability in 
θi that cannot be fully explained by the covariates in X. A great deal of research in SAE is focused 
on the distributional choice for u.

The random effects for the foundational FH model (Fay & Herriot, 1979) are assumed to be 
independent and identically distributed (IID) normal random variables with common variance:

[u | σ2] ∼ Nn(0, σ2I).

In a Bayesian setting, the FH model is often used with the improper prior π(β, σ2) ∝ 1. Despite its 
widespread acceptance, there are some shortcomings with this model, as previously mentioned. 
These limitations are generally driven by the assumption that the random effects are IID and nor
mally distributed. Assuming that all random effects are normally distributed with a common vari
ance σ2 causes issues with robustness. The independence is also a questionable assumption because 
spatial dependence of the random effects are often observed in practice.

2.1 Incorporating spatial dependence in the random effects
Instead of assuming independence among random effects, one could model some dependence 
structure in the random effects

[u | σ2, ρ] ∼ Nn(0, σ2Q−1(ρ)), 

where σ2 represents the random effect variance and ρ denotes additional parameters needed for Q, 
the precision matrix. A common choice for Q is the CAR structure (Besag, 1974). The CAR pre
cision matrix has the form Q = diag{Aii}

n
i=1 − ρA where ρ ∈ (−1, 1) is the spatial correlation par

ameter and A is a n × n spatial adjacency matrix whose i, kth element aik is equal to one if areas i 
and k are seen as spatially adjacent (e.g. share a border), and equal to zero otherwise. Positive 
(negative) values of ρ indicate positive (negative) spatial correlation with stronger spatial 
correlation indicated by values close to ±1, although it is common practice to restrict ρ ≥ 0. 
Setting ρ = 1 results in the degenerate Intrinsic CAR (ICAR) prior.

Existing literature indicates that the CAR model may lead to misleading results when there is no 
spatial correlation actually present in the data (Leroux et al., 2000; Wakefield, 2007). A flexible 
alternative to the CAR prior is a Besag–York–Mollié (BYM) prior (Besag et al., 1991) that includes 
a separate spatial and nonspatial random effect components,

u = v1 + v2 where [v1] ∼ Nn(0, σ2
1I) and [v2] ∼ Nn(0, σ2

2Q−).

Note that sum-to-zero constraints are placed on v1, v2 for identifiability and that Q− is the gener
alized inverse of the ICAR precision matrix. Under this prior, the random effects are a sum of two 
components: IID normal effects v1 and the ICAR spatial effects v2. When there is zero spatial cor
relation present, the posterior values of the random effects would be dominated by v1, making the 
estimates similar to an IID FH model. Conversely, if the heterogeneity is very spatially dependent 
on the posterior values of v2 would be larger than v1. There are also many instances where having 
both the IID effects in addition to the ICAR spatial effects helps best capture the heterogeneity. The 
overall balance of the spatial vs. nonspatial components can be determined by comparing the pos
terior distribution of the random effect variances σ2

1, σ2
2.
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In order to aid in the prior specification of σ2
2, we found it useful to scale the ICAR precision 

matrix by dividing it by the geometric mean of the diagonal elements, as recommended by 
Sørbye and Rue (2014). We denote the scaled ICAR precision matrix by Q. Scaling the ICAR pre
cision matrix allows the parameter σ2

2 to reflect the typical variance, allowing the prior of the IID 
variance σ2

1 to be roughly comparable to that of σ2
2 (Freni-Sterrantino et al., 2018; Riebler et al., 

2016).

2.2 Incorporating random effect shrinkage
Datta and Mandal (2015) introduced the first SAE model that uses Bayesian variable selection 
methodology for the random effects. Specifically, they use a spike-and-slab prior that assumes a 
discrete-normal mixture for the random effects

u = δ ⊙ v,

[vi | δi = 1, σ2] ∼ind N(0, σ2),

[vi | δi = 0] = 0,

[δi | p] ∼iid Bernoulli(p),

[p] ∼ Beta(a, b).

To complete the model, they use an inverse-gamma prior on σ2 and π(β) ∝ 1. Note that we use ⊙ 
to represent the operator for an element-wise vector product. In the DM model, a given random 
effect, vi, for area i is only included if the corresponding selection indicator, δi, is equal to 
1. This approach relaxes the common variance assumption because σ2 only applies to random 
effects for areas that are selected (i.e. δi = 1). Meanwhile, the effects that are not selected are 
degenerate with zero variance. Note that in the extreme case if random effects for all areas 
are selected (i.e. δi = 1 for all i = 1, . . . , n), then the DM is equivalent to the independent FH 
model.

The mechanism behind the shrinkage of the random effects for the DM model can be under
stood from the posterior selection probability, p̌i, for a given area i,

p̌i =
p · ϕ yi | x⊤

i β + vi, di
 􏼁

p · ϕ yi | x⊤
i β + vi, di

 􏼁
+ (1 − p) · ϕ yi | x⊤

i β, di
 􏼁 , (1) 

where ϕ(z | μ, κ2) is the normal density function with mean μ and variance κ2, evaluated at the 
point z. The value of p̌i can be interpreted as the posterior probability that a random effect is 
necessary in the area i. The global level of shrinkage across all areas is influenced by the par
ameter p. If the posterior distribution of p is close to one, it indicates that most areas need 
random effects and vice versa. Area-specific selection probabilities also depend on the normal 
likelihood evaluations both with and without the random effect. For example, even if p has 
mass towards zero, if the fit without the random effect is very poor for a given area i, then 
ϕ(yi | x⊤

i β + vi, di) will be much greater than ϕ(yi | x⊤
i β, di), which will be reflected in the selec

tion probability.

3 The spatially selected and dependent random effects model
We propose a model that accounts for spatial dependence on both the selection process and the 
random effects themselves. The data model is given by

[y | θ] ∼ Nn(θ, D) and θ = Xβ + u, 

where n again is the number of small areas. Again, y is the vector of direct estimates, D is the n × n 
covariance matrix, X is a n × j full-rank covariate matrix, and β is the corresponding coefficient 
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vector. Similar to Datta and Mandal (2015), we consider a spike-and-slab prior for the random 
effects, although we include spatial structure,

u = δ ⊙ (v1 + v2),

[v1] ∼ Nn(0, σ2
1I),

[v2] ∼ Nn(0, σ2
2Q−),

[δi | pi] ∼ind Bernoulli(pi).

Note that for identifiability purposes, we place a sum-to-zero constraint on v1 and v2, while Q− is 
the generalized inverse of the ICAR precision matrix, which is scaled by the geometric mean of the 
diagonal elements, as suggested by Sørbye and Rue (2014). Again, we use ⊙ to represent the op
erator for an element-wise vector product. Also note that the selection indicators themselves are 
assumed independent, but each has a separate selection probability parameter, pi. We further 
model dependence within the selection process through the prior on these selection probabilities:

logit(p) = ψ1 + ψ2,

[ψ1 | s2
1] ∼ Nn(0, s2

1I),

[ψ2 | s2
2] ∼ Nn(0, s2

2Q−), 

where, again, Q− is the generalized inverse of the scaled ICAR precision matrix. We used the logit 
link to map probability to the entire real line in order to model spatial dependence with a multi
variate normal distribution. This allows for the use of the BYM structure on the logit effects that 
form the selection probabilities, mirroring what was done for the random effects. Moreover, using 
the logit link allows the use of Pólya-Gamma (PG) data augmentation (Polson et al., 2013) which 
has computational advantages.

This model can capture spatial and nonspatial heterogeneity in both the random effects and the 
selection process. Thus, we refer to this model as the spatially selected and dependent (SSD) ran
dom effects model. Using the BYM structure twice allows for greater flexibility that avoids having 
to predetermine a spatial or nonspatial structure to the random effects and selection. The overall 
balance of the spatial vs. nonspatial components can be determined by comparing the posterior 
distribution of σ2

1, σ2
2 for the random effects and s2

1, s2
2 for the selection process.

3.1 Prior specification
To simplify prior specification for the SSD model, we recommend fitting on scaled data (y, D), 
similar to what is done in other shrinkage methods such as the Bayesian Lasso (Park & Casella, 
2008). Specifically, we recommend scaling such that the direct estimates, y, have zero mean and 
unit variance. That is, if y̅ is the sample mean and sy is the sample standard deviation, then 
each direct estimate is scaled by (yi − y̅)/sy for i = 1, . . . , n. Also, the survey variances are corres
pondingly scaled di/s2

y to form the diagonal matrix D.
In the SSD model, priors for three sets of parameters need to be specified: the regression coeffi

cients β, the random effect variances σ2
1, σ2

2, and the logit variances s2
1, s2

2. The choice of prior on the 
random effect variances σ2

1, σ2
2 require some care, as they can influence the selection probabilities of 

the random effects, which may affect the estimates. In order for the model to be able to distinguish 
between the degenerate spike at zero and the slab normal distribution, a prior needs to avoid vari
ance values that are too small, while still being sufficiently diffuse. The inverse-gamma distribu
tions have a gap near the origin, which can be adjusted to provide the necessary qualities. Thus, 
we place inverse-gamma priors on the random effect variances with [σ2

1] ∼ IG(c, d), and 
[σ2

2] ∼ IG(c, d). Note that X ∼ IG(c, d) refers to an inverse-gamma distribution with the density: 
f (x | c, d) ∝ (1/x)c+1exp(−d/x), where c, d > 0 are the shape and scale parameters. We conducted 
a detailed sensitivity analysis on multiple datasets and found that priors that avoids values near 
zero and are sufficiently diffuse, such as IG(5, 5), work well for scaled data. The result of the sen
sitivity analysis is included in the online supplementary materials.
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For the regression coefficients, we specify the proper prior [β] ∼ Nj(0, k2I) where the hyperpara
meter k2 is sufficiently large as to be noninformative. This could depend on the scale of the data, 
but for the suggested standardized data, we recommend k2 = 1002. The prior choice of s2

1, s2
2, the 

logit variances, can affect convergence of the MCMC chains but they have minimal impact on the 
estimates themselves, especially given that these parameters are far down the model hierarchy. We 
let s2

1 ∼ IG(r, q) and s2
2 ∼ IG(r, q) for fixed hyperparameters r, q, where we recommend r = 5 and 

q = 10.

3.2 Relationships to related models
Note that each of the models discussed in Section 2 is a limiting case of the SSD model introduced 
here. The BYM is an SSD model where all of the random effects are selected (i.e. δi = 1 for all 
i = 1, . . . , n). The DM is a limiting case of the SSD model where the spatial component, both in 
the random effects and the selection process is zero (i.e. if σ2

2 and s2
2 are degenerate at zero). The 

independent FH model is the limiting case of the SSD model if both are true: all of the random 
effects are IID only (i.e. σ2

2 and s2
2 are degenerate at zero) and the random effects are all selected 

(i.e. δi = 1 for all i = 1, . . . , n).
Also, note that the posterior selection probability for the SSD model is

p̃i =
pi · ϕ yi | x⊤

i β + v1i + v2i, di
 􏼁

pi · ϕ yi | x⊤
i β + v1i + v2i, di

 􏼁
+ (1 − pi) · ϕ yi | x⊤

i β, di
 􏼁 , (2) 

where yi are the scaled direct estimates, di are the scaled survey variances, and ϕ is the normal dens
ity function as previously described. Note that the structure of the posterior selection probability 
here is essentially the same as that of the DM model (1), except that the random effect has the form 
v1i + v2i and there is distinct pi for each area, instead of shared, global p parameter. Just like the 
DM model, area-specific selection probabilities also depend on the normal likelihood evaluations 
both with and without the random effect. Thus, areas with larger magnitude random effects will 
lead to more definitive conclusions about whether an effect is necessary during posterior inference. 
But unlike the DM, there will be some spatial smoothing resulting from the BYM structure on the 
effects and the selection probabilities [i.e. logit(pi) = ψ1i + ψ2i]. Please see Figure 4 in the online 
supplementary materials for a visual explanation.

4 Posterior inference
Let Ω denote the set of parameters in the SSD model. Then, the full posterior distribution can be 
written, up to a constant of proportionality, as

π(Ω | y, X, D) ∝ exp −
1
2

(y − Xβ − δ ⊙ [v1 + v2])⊤D−1(y − Xβ − δ ⊙ [v1 + v2])
􏼚 􏼛

×
1
σ2

1

􏼒 􏼓n/2 1
σ2

2

􏼒 􏼓n/2

exp −
1

2σ2
1

v1
⊤v1 −

1
2σ2

2

v2
⊤Qv2

􏼚 􏼛

×
􏽙n

i=1

pδi
i (1 − pi)

1−δi

×
1
s2
1

􏼒 􏼓n/2 1
s2

2

􏼒 􏼓n/2

exp −
1

2s2
1

ψ1
⊤ψ1 −

1
2s2

2

ψ2
⊤Qψ2

􏼚 􏼛

× π(β)π(σ2
1)π(σ2

2)π(s2
1)π(s2

2).

This model and the chosen priors leads to full conditional distributions all from standard paramet
ric families, when PG data augmentation is applied (Polson et al., 2013). Then, Gibbs sampling 
can be used to sample from the posterior distribution. We will denote y, X, D as data for ease 
of notation. Please see Section 4 in the online supplementary materials for the derivation of the 
full conditional distributions.
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Full conditional distributions of v1, v2, and β. The fixed and random effects β and v1, v2 can be 
sampled in a block. In order to do so, we set γ = (β⊤, v⊤

1 , v⊤
2 )⊤ and Z = (X Δ Δ) where Δ = 

diag{δi}
n
i=1 and Zγ = Xβ + δ ⊙ (v1 + v2). Provided that there exists i such that δi ≠ 0, the full 

conditional of γ is then

[γ | σ2
1, σ2

2, δ, data] ∼ Nj+2n P−1
γ D−1Z⊤y, P−1

γ

􏼐 􏼑
, 

where

Pγ = Z⊤D−1Z + Λγ and Λγ =
Ij/k2 0 0

0 In/σ2
1 0

0 0 Q/σ2
2

⎛

⎝

⎞

⎠.

Note that we have n areas, j covariates, and Im denotes an identity matrix of rank m and Q again is 
the scaled ICAR precision matrix. If δi = 0 for all i = 1, . . . , n, then v1 = v2 = 0 and the posterior 
distribution of β is:

[β | σ2
1, σ2

2, data] ∼ Nj P−1
β D−1X⊤y, P−1

β

􏼐 􏼑
where Pβ = X⊤D−1X + Ij/k2.

Full conditional distribution of δ. For the SSD model, the posterior selection probability p̃i for 
area i, is given by equation 2 in Section 3.2. The full conditional distribution of δ is then

[δi | pi, v1i, v2i, β, data] ∼ind Bern(p̃i) for i = 1, . . . , n.

Full conditional distributions of ψ1, ψ2, and latent variables w. The posterior conditional distri
bution of ψ1, ψ2 can be sampled with PG data augmentation (Polson et al., 2013). A random vari
able with a PG distribution with parameters b > 0 and c ∈ R is denoted as X ∼ PG(b, c). For more 
on the PG random variable, including its formal definition, we refer you to Polson et al. (2013). We 
have provided a detailed explanation of PG data augmentation in the online supplementary 
materials (Section 4).

We use the PG data augmentation strategy to sample the full conditional of ψ1, ψ2 in a block. 
We set the blocked logit effects Ψ = (ψ⊤

1 , ψ⊤
2 )⊤ and H = (In In). We introduce PG latent variables 

[wi] ∼ PG(1, 0) and set W = diag{wi}
n
i=1. We also set κ = (δ1 − 1/2, . . . , δn − 1/2)⊤.

Conditional on the latent variables wi and the variance parameters (s2
1, s2

2), the blocked 
logit effects, can be sampled from

[Ψ | s2
1, s2

2, W] ∼ N2n P−1
Ψ H⊤κ, P−1

Ψ
 􏼁

, 

where

PΨ = H⊤WH + ΛΨ and ΛΨ = In/s2
1 0

0 Q/s2
2

􏼒 􏼓

.

The latent variables used for the PG data augmentation are also conjugate. Conditional on the log
it effects Ψ, wi can be sampled from

[wi |Ψ] ∼ind PG(1, h⊤
i Ψ) 

for i = 1, . . . , n, where hi is the ith row of H = (In In) and h⊤
i Ψ = ψ1i + ψ2i.
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Full conditional distributions of σ2
1, σ2

2 and s2
1, s2

2. The full conditional for the two sets of vari
ance parameters are

[σ2
1 | v1] ∼ IG(n/2 + c, v⊤

1 v1/2 + d) and [σ2
2 | v2] ∼ IG(n/2 + c, v⊤

2 Qv2/2 + d),

[s2
1 | ψ1] ∼ IG(n/2 + r, ψ⊤

1 ψ1/2 + q) and [s2
2 | ψ2] ∼ IG(n/2 + r, ψ⊤

2 Qψ2/2 + q).

Note that these sets of variance parameters, (σ2
1, σ2

2) and (s2
1, s2

2), are not necessarily on the same 
scale.

5 Empirical simulation study
5.1 Simulation description
In constructing our simulation study, we aim to generate data that behave similarly to what might 
be observed in practice. Rather than generating data synthetically from a model, we take direct 
estimates from an existing survey dataset and add noise based on the reported survey variances 
to generate data. We took this approach to preserve many of the characteristics associated with 
the real data when creating synthetic datasets. The setup is similar to what is done in Bradley 
et al. (2015, 2018), and Janicki et al. (2022).

Specifically, the data for this simulation study was based on the publicly available ACS 5-year 
estimates from 2015 to 2019 (U.S. Census Bureau, 2020). The code used to conduct this simula
tion study was written in R (R Core Team, 2023) using publicly available packages. For details, 
please see the Data Availability section.

Let zi be the observed direct estimate of median rent as a percentage of household income (me
dian rent burden) for the ith county in North Carolina. Note that there are n = 100 counties in 
total. Also, let di be the reported sampling variance associated with zi. In this simulation study, 
we treat the z = (z1, . . . , zn)⊤ as the truth, or the unobserved true small area means of interest. 
Figure 1 shows the spatial distribution of the z and a scatterplot of 

���
di

􏽰
and zi. The map 

Figure 1(a) provides evidence for the spatial correlation present throughout the state, including 
a cluster of counties in the eastern portion of state with the highest rent burden. There are also 
multiple instances of low and high-rent burden counties being adjacent to each other (known as 
negative spatial correlation). This includes Gates and Perquimans counties, near the northeastern 
corner of the state, that represent the highest and lowest values in the state. The scatterplot 
Figure 1(b) shows that the counties with highest rent burdens also have some of the largest survey 
variances. All of these factors will test the robustness of the various estimators.

In this simulation study, we run G = 300 simulations, each with a different synthetic dataset 
that is created by perturbing z with noise distribution that uses the reported survey variances. 
Specifically, we generate

y(g)
i ∼ind N(θi = log(zi), di/z2

i ) 

for i = 1, . . . , n and g = 1, . . . , 100, where i is the index for a given county and g is the index for 
the simulation. As the rent burden can be skewed, with a lower bound at zero, we take a log trans
formation to better meet the Gaussian assumption. Note that since the sampling variance for the 
log transformed rent burden is not known, we use the delta method to estimate this quantity. Note 
that although we use the log transformation to generate the data, the predictive performance is all 
assessed on the original scale [assessed on the estimates of zi, not log (zi)].

In each simulation, we use the synthetic dataset y(g) = {y(g)
1 , . . . , y(g)

n } and D = diag{di/z2
i }n=100

i=1 to 
predict z. We compare the predictive performance of the SSD model with four other methods: 
three model-based methods and the direct survey estimate using this synthetic dataset. The three 
other model-based estimates we compared were the independent FH model, the DM 
spike-and-slab model, and a FH model with BYM spatial random effects. As a reminder, BYM 
models spatial dependence but does not select random effects. The DM model performs selection 
but does not incorporate spatial dependence for the random effects or the selection process like the 
SSD.

J R Stat Soc Series A: Statistics in Society, 2025, Vol. XX, No. XX                                                           9
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssa/advance-article/doi/10.1093/jrsssa/qnaf063/8167071 by guest on 13 August 2025



The model-based estimates used {y(g), D} in addition to covariates X to fit the model. The matrix 
X contained ACS estimates for rates of college graduates, residents receiving public assistance in
come or Supplemental Nutrition Assistance Program in the past 12 months, residents who own a 
car, the poverty rate, racial makeup of residents (White, Black, Native, Asian), and the rate of 
Hispanic residents.

The model-based approaches were all fit using Markov Chain Monte Carlo (MCMC). Each 
model used the same MCMC sample size (S = 2,000) with varying amounts of burn-in; the non
spatial models used 9,000 iterations while the spatial models used 2,000 iterations for burn-in. A 
randomized set of simulations was checked and lack of convergence was not detected based on a 
thorough visual inspection trace plots for all parameters and all models.

The standard improper prior π(β, σ2
FH) ∝ 1 was used for the FH. The DM used an improper prior 

π(β) ∝ 1, in addition to an Empirical-Bayes like prior σ2
DM ∼ IG(3, 2d̅), where d̅ = 1

n

􏽐n
i=1 di, was 

recommended by the authors (Datta & Mandal, 2015) and acts as a scaling mechanism. The 
BYM model used π(β) ∝ 1 and an noninformative IG(c, c) prior for σ2

1, σ2
2 with c = 5 × 10−5. 

Finally, the SSD model which, again, was fit after scaling the data, used a noninformative β ∼ 
Nj(0, k2Ij) with k2 = 1002, an IG(5, 5) prior for σ2

1, σ2
2, and IG(5, 10) for the logit-variance param

eters s2
1, s2

2. Note that both the BYM and SSD models scaled the ICAR precision matrix. All of the 
models used noninformative priors for the fixed effects. Note that the random effect variance pri
ors are not easily comparable across models. This is due to some models having one random effect 
term while the spatial models have two, as well as the SSD model using scaled data.

5.2 Assessment
We compare the predictive capability of the various methods for G = 300 simulations. For a given 
county i and dataset g, let ẑ(g)

i denote the point estimate (posterior mean for the model-based esti

mates) of rent burden and {l̂i
(g)

, ĥi
(g)

} be the lower and upper endpoints of the 90% credible interval 
(α = 0.1). We compare the performances of the various methods using mean squared error (MSE), 
coverage rate, and interval score, averaged across the G = 300 simulations. We also compare the ab
solute bias of the estimators produced by each method. The coverage rate and interval scores are not 
computed for the direct estimates as they do not produce credible intervals. Note that the predictive 
performance is all assessed on the original scale [assessed on the estimates of zi, not log (zi)].

The average of MSE serves as an overall measure of performance, balancing both bias and vari
ance of the estimator. It is given by

Avg MSE =
1
G

􏽘G

g=1

1
n

􏽘n

i=1

(ẑ(g)
i − zi)

2.

Figure 1. (a) A map of the direct estimates zi of rent burden, which we treat as the true small area means for our 
simulation study. (b) A scatterplot of the survey standard errors 

���
di

√
and zi .
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The average Coverage Rate indicates how well the 90% credible intervals perform in terms of cap
turing the true small area means across areas and simulations. This is given by

Avg Coverage Rate =
1
G

􏽘G

g=1

1
n

􏽘n

i=1

I{l̂(g)
i < zi} · I{zi < û(g)

i }.

The interval score is a more comprehensive way to assess interval estimates, as discussed by 
Gneiting and Raftery (2007). The interval score penalizes for length of the interval and missed 
coverage on both the upper and lower endpoints. The average interval score for the simulation 
study is given by

Avg Interval Score =
1
G

􏽘G

g=1

1
n

􏽘n

i=1

(û(g)
i − l̂(g)

i ) +
2
α

(l̂(g)
i − zi)I{l̂

(g)
i > zi}

+
2
α

(zi − û(g)
i )I{zi > û(g)

i }, 

where α corresponds to the (1 − α) × 100% credible interval (α = 0.1 in this case).
Finally, we also compare the average absolute bias for each estimator, given by

Avg Absolute Bias =
1
n

􏽘n

i=1

zi −
1
G

􏽘G

g=1

ẑ(g)
i

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌
.

5.3 Results
Table 1 summarizes the results from the simulation study. Comparing the average MSE, the SSD 
model outperforms the direct estimate by 52%, the BYM by 23%, the FH by 22%, and the DM by 
21%. Note that the two best-performing methods used shrinkage priors for the random effects. 
Figure 2 compares the log MSE of the estimates of the SSD model against those from the other 
methods for the 300 simulations. We see that the SSD model consistently outperforms the other 
methods across simulations and can be used to greatly improve MSE of the small area estimates. 
Moreover, among the model-based approaches, the SSD model achieves the lowest bias by a 19% 
margin compared to the FH (the model with the second-lowest bias).

In terms of coverage rate, the SSD model is the only model whose 90% credible intervals actu
ally contains the truth, z, about 90% of the time with a coverage rate of 89.4%. The BYM, FH, 
and DM all exhibit varying degrees of undercoverage. This superior coverage is achieved without 

Table 1. A comparison of estimates from various methods in our empirical simulation study, which used ACS median 
rent burden data from North Carolina

Estimator MSE 90% Cr. Int. Interval score Absolute bias

coverage rate for 90% Cr. Int.

Direct estimate 11.1 × 10−4 – – 0.0018

BYM 7.0 × 10−4 0.828 0.1124 0.0110

FH 6.9 × 10−4 0.833 0.1093 0.0108

DM 6.8 × 10−4 0.789 0.0980 0.0110

SSD model 5.4 × 10−4 0.894 0.0769 0.0087

Note. The simulation study contained 300 simulation iterations. The Direct Estimate along with four model-based 
estimates were compared: independent FH model, the DM model, FH model with BYM effects, and the proposed 
SSD model. For the models, posterior means were used as point estimates and 90% Credible Intervals (Cr. Int.) were 
used for the interval estimates. Bold values indicate the best performing model for a given metric. ACS = American 
Community Survey; MSE = mean squared error; FH = Fay–Herriot; DM = Datta–Mandal; BYM = Besag–York–Mollié; 
SSD = spatially selected and dependent.
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excessively large intervals, as indicated by the interval score; the SSD model has a lower interval 
score than the DM by 22% (the model with the second lowest score). See Section 1 in the 
online supplementary materials for more details.

6 Estimates of median rent burden for the South Atlantic Census Division
In this section, we fit the SSD model in order to estimate median rent burden in the United States 
South Atlantic Census Division, using 2015–2019 5-year ACS data (U.S. Census Bureau, 2020). 
The South Atlantic Census Division comprises of eight states plus the District of Columbia. 
There are n = 588 counties in total for this Census Division. We consider the same covariates 
used in Section 5, in addition to adding state-level fixed effects. Also, we used the same priors 
from the simulation study.

The MCMC algorithm for the SSD model was run for 4,000 iterations with the first 1,500 dis
carded as burn-in. No lack of convergence was detected. For North Carolina datasets with n = 100 
areas used for the simulation study, all of the candidate models take less than a minute to fit. For 
the South Atlantic Census Division with n = 588 areas, the runtimes for the spatial models are sig
nificantly higher: CAR takes ≈48 min, BYM takes ≈37 min, and SSD takes ≈66 min on a 2021 M1 
Macbook Pro. The high computational burden in high dimensions is a problem with spatial mod
els in general. That said, we do not think this degree of computational burden is a real obstacle to 
the practical use of these models. All of the code used to conduct this analysis was written in R 
(R Core Team, 2023). For details, see the Data Availability section.

The maps in the first row of Figure 3 compare the estimates from our proposed SSD model with 
the direct estimates. We see that both estimators exhibit the same overall spatial pattern, but there 
is a smoothing effect through the use of the model-based estimates, as expected. The impact of the 
smoothing is noticeable near the boundary between West Virginia and Virginia, in central South 
Carolina, as well as eastern North Carolina. The maps in the second row of Figure 3 compare the 
log SE of the direct estimates with the log SE (posterior standard deviations) from the SSD model. 
We can see a reduction in the log SE from the SSD throughout the division. The reduction is 

Figure 2. Comparison of the Log mean squared error (MSE) of the estimates from the spatially selected and 
dependent (SSD) model against alternative methods for each of the 300 simulations. Points above the dotted line 
indicate simulations where the SSD model had lower MSE while the points below the dotted line correspond to 
simulations where the SSD model had higher MSE.
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especially noticeable in West Virginia, Western and Eastern ends of North Carolina, Georgia, and 
Northern Florida.

We also fit the DM model to estimate median rent burden for comparison. A Monte-Carlo 
Simulation of Geary’s C test with 1,000 iterations was performed on the posterior means of the 
random effects from the DM model. The resulting p-value was below 0.001. This indicates that 
there is a strong spatial dependence in the random effects of the DM, despite the model’s assump
tion of independence and the inclusion of state-level fixed effects. More details on the random ef
fects in this analysis, including a comparison of random effects from different models can be found 
in Section 2 of the online supplementary materials.

Figure 3. Comparison of the estimates and standard errors for county-level median rent burden using the direct 
estimates (D.Est) and the spatially selected and dependent (SSD) model. The study region is the South Atlantic 
Census Division, which consists of 588 counties from D.C. and eight states.
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Finally, Figure 4 shows the posterior means of the random effect selection probabilities of the 
DM and SSD models. We can see in Figure 4 that the selection probabilities of the DM model 
also have a strong spatial pattern, again, despite the inclusion of state-level fixed effects. Most 
counties in central and southern Florida, for example, have selection probabilities close to 
1. The spatial pattern is shown by the selection probabilities in the DM model is directly modelled 
in the SSD approach. Correspondingly, we see that the SSD selection probabilities exhibit a 
smoother spatial pattern. This analysis, as well as the empirical simulation study, suggests that in
corporating spatial dependence in both the random effects and the shrinkage/selection probabil
ities may be useful for improving estimates in certain settings.

7 Discussion
In this work, we develop a new SAE model combining both shrinkage of random effects and spa
tial modelling. The proposed Bayesian model incorporates spatial dependence through priors on 
both the random effects and the selection probabilities of the spike-and-slab prior, extending the 
approach by Datta and Mandal (2015). Inference of our model can be carried out with a compu
tationally efficient Gibbs sampler by using PG data augmentation (Polson et al., 2013).

Using data from the American Community Survey, we conducted an empirical simulation study 
and data analysis, both centred around estimation of median rent burden, a policy-relevant stat
istic. In the simulation study, we showed that the new model can produce far more accurate point 
and interval estimates, compared to standard approaches (direct survey estimates and the inde
pendent FH) and approaches that use shrinkage or spatial priors alone (DM and the BYM). We 
also demonstrated the ability of the SSD model to reduce uncertainty in the data analysis compared 
to the direct estimate. Both the simulation study and the data analysis illustrate the benefits of in
corporating spatial dependence for both the random effects and the latent selection process.

Figure 4. Comparison of the posterior mean of the random effect selection probabilities between the Datta–Mandal 
(DM) (left) and the spatially selected and dependent (SSD) model (right). If the selection probability for a given county 
is high, the data indicates the need for inclusion of a random effect for that county.
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High computational burden is an issue for many spatial models. The Gibbs sampler for fitting 
our proposed model requires two inversions of the covariance matrix for every MCMC iteration: 
one for the blocked fixed and random effects and the other for the blocked logit parameters (see 
Section 4). These matrix inversions can make fitting the model time-intensive for applications with 
a large number of small areas. Future work involves development of a more efficient sampler or use 
of approximations to help speed up the computation for massive datasets.

The simulation study and data analysis in this article both focused on estimating county-level 
median rent burden using ACS data. However, the SSD model is of general interest and applicable 
to many other Small Area Estimation scenarios where the covariates explain the variable of inter
est well in many areas and the area-level random effects are expected to exhibit spatial shrinkage 
and dependence. The random effect priors used for the SSD model could also be adapted in a 
straightforward manner to spatial models in other domains such as disease mapping.
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