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3.1 Introduction and Motivation 

The culminated amount of electronic data generated each day is equal to three 
hundred billion gigabytes. A significant chunk of this data comes from user 
equipment (UE) including but not limited to smartphones, wellness devices, traffic 
cameras, autonomous connected vehicles, unmanned aerial vehicles (UAVs), and 
augmented reality equipment – collectively categorized under the umbrella of 
internet of things (IoT). Increasingly, to enable effective services, health devices 
– including clinical and wellness devices – form part of the IoT networks which 
are expected to exceed 25 billion devices connected to the internet by 2030 [1]. 
Forecasts by Statista show that the industrial IoT market which was worth $285 
billion USD in 2017 will almost double in 5 years to $540 billion USD. Figure 3.1 
charts this exponential growth and provides statistics on how various industries grew 
over a 5-year period from 2017 to 2022. The healthcare devices market share will 
reach $200 billion USD as shown in Fig. 3.1. 

With increasing number of devices, it is estimated that more than 73.1 zettabytes 
(.∼1021) of data will be generated from these devices [1] by 2025. To enable 
useful scientific, clinical, or commercial value, much of the data analytics depend 
on machine learning (ML) techniques. These techniques include traditional ML 
such as regression (linear and logistic), support vector machines (SVM), neural 
networks (NN) and deep learning (DL) including the deep NN (DNN), convo-
lutional NN (CNN), the residual neural net (ResNet), and Transformers, among 
others. Most of these techniques solve an underlying unconstrained optimization 
problem using iterative approaches such as the gradient descent (GD). Because these 
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Fig. 3.1 Edge computing market share forecast of various industries from 2023 to 2028. (Data 
was taken from [3] for healthcare and [4] for other applications). As clearly observable, two of 
the largest industries include smart transportation and consumer with healthcare a distant fifth. 
However, over 5 years, healthcare clearly takes over other sectors to become the joint second 
largest revenue generator 

iterative approaches can be computationally exhaustive for single processor devices, 
distributed machine learning (DML) approaches have been used. Mostly, offline 
training with DML is done using performance computing (HPC) with clusters 
of graphical processing units (GPUs) and CPUs. Even for inference at the edge, 
cloud-based approaches are used where the collected data from multiple nodes 
is transferred to a central cloud for inference or re-training. However, due to the 
load on backhaul links and rising privacy concerns, the trend is moving toward 
inference at the edge along with training and model updates. This has led to the 
development of the paradigm of federated learning (FL) [2] which supports the 
cooperative training of ML models at the edge without the involvement of cloud 
servers. 

The goal of this chapter is to promote a generic framework for centrally 
optimized DML at the edge called mobile edge learning (MEL) with a focus on 
healthcare applications. The MEL paradigm fully encompasses FL and is also 
alternatively known in the literature as “Edge Artificial Intelligence” (Edge AI) 
or “federated learning (FL) at the resource-constrained edge.” MEL supports both 
parallelized learning (PL) and FL which separates it from other approaches. In PL, 
edge devices (hereafter: “learners”) distribute their data to trusted devices within the 
edge network to update the ML model for a specific task. In contrast, each learner 
owns their own dataset in FL which is more suitable for similar applications but 
under different conditions and requirements. 

While edge analytics and edge AI (or edge intelligence, EI for short) may not 
completely replace cloud, it has significantly changed how intelligent IoT systems 
operate [5]. Advantages of EI include reduced communication costs, low storage 
requirements as most data can be discarded, and enhanced privacy and security
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for the customers. It is expected that MEL will play a critical role in providing 
some of these features. Though there are several applications such as self-driving 
vehicles [6] and smart cities [7], one of the most interesting applications is health-
IoT (H-IoT) or the internet of medical things (IoMT) [8]. Recent works cite FL 
as having a key role to play in IoMT/H-IoT analytics [9, 10]. There are several 
applications where real-time decision-making can either significantly enhance the 
quality of life or save lives. Model training with MEL can significantly improve the 
performance of such technologies. For example, MEL can be useful when predicting 
cardiac events by applying ML to data from a wearable electrocardiogram (ECG) or 
for seizure detection or prediction from a wearable electroencephalograph (EEG). 
While techniques presented in the next sections apply to MEL broadly, we will refer 
to H-IoT applications wherever applicable. 

The rest of the chapter is organized as follows. We begin by introducing the 
general MEL model in Sect. 3.2. Section 3.3 then discusses synchronous MEL with 
only timeliness requirements. Section 3.4 introduces additional energy consumption 
limits. Detailed implementation details follow in Sect. 3.5 followed by results and 
discussions in Sect. 3.6. Lastly, Sect. 3.7 expands more on the H-IoT applications 
and provides a mathematical roadmap on how MEL can be tailored for H-IoT. 

3.2 System Model and Parameters 

Machine learning is the ability of machines (computers) to make decisions using 
prior data without being explicitly programmed. ML can be supervised when 
labeled data is available, or unsupervised in the absence of the data labels. In 
either case, the ML model must be trained. For most ML techniques, the model 
parameters are updated using an iterative optimization procedure based on a 
predefined loss/cost function. In supervised learning, the trained model is then 
evaluated in the validation/testing phase by generating an output without training on 
the validation/test dataset. The final output can be continuous or discrete depending 
upon the type of the task. 

Let us consider a dataset . D comprising a total of d samples. Each data sample 
.Dn for .n = 1, . . . , d that has . F features is represented by a feature that can be 
denoted by . xj where .j = 1, . . . ,F. The set of features belonging to data sample 
number n can be denoted by .xn = {x1, . . . , xj , . . . , xF}. These features serve as 
the ML model input and there may be a predefined output or target given by . yn. 
The objective is to find a set of model parameters . w that minimize a loss function 
.F (xn, yn,w). If we represent the loss as .Fn (w) for short because . xn and . yn are 
known, the total loss is given by: 

.F(w) = 1

d

d∑

n=1

Fn (w) (3.1)
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This optimization is typically done using iterative approaches such as the gradient 
descent (GD) because an analytical solution is not available. Then, at any discrete 
time-step l, for .l = 1, . . . , L, the model is updated as follows: 

.w[l] = w[l − 1] − η∇F (w[l − 1]) (3.2) 

The learning rate represented by . η is usually set on the interval .(0, 1) and influences 
the convergence rate and the final accuracy. This process is iteratively applied 
sample by sample or batch by batch as in stochastic GD (SGD) [11] until the 
whole dataset is covered. Multiple epochs are performed until a stopping criterion 
is reached. 

3.2.1 General Distributed Machine Learning 

Many ML and DL techniques, including regression, support vector machine (SVM), 
and neural networks (NN), are built on iterative gradient-based learning. Distributed 
ML (DML) has been proposed to reduce the load on one processor due to 
intense compute requirements of such iterative approaches. One approach with 
data parallelism (DP) is where a central node distributes a large dataset to multiple 
other nodes to train local models. The central node maintains a global model and 
performs frequent global updates to maintain an optimal global model. Assume 
there is a central parameter server (referred to as the orchestrator hereafter) that 
initiates the DML process on a set of .K = {1, . . . , k, . . . , K} learners. Each learner 
k updates the local model using a batch of the data . Dk of size . dk (which may be 
locally owned or received by the orchestrator). After initializing a global model 
and from then on, after every global cycle, the orchestrator will send the global 
model . w and possibly . dk samples to each learner .k ∈ K which performs multiple 
. τk updates of the local model . wk in parallel. Then, the orchestrator collects all 
local models for global aggregation. One such cycle can be called the global update 
cycle. Figure 3.3 illustrates one such cycle. These cycles repeat until the orchestrator 
reaches a stopping criteria such as a achieving desired validation loss, depletion of 
resources, or exceeding the time limit dedicated to the learning task. 

.wk[l] = wk[l − 1] − η∇Fk(wk[l − 1]) (3.3) 

The local model parameter set at learner k is given by . wk , the local loss is given 
by .Fk(.), . η is the learning rate, and the gradient operation is denoted by . ∇. The  
local loss .Fk ∀ k ∈ K can be calculated using the local dataset . Dk of size . dk in the 
following way [12]: 

.Fk(wk) = 1

dk

dk∑

n=1

Fn(wk) (3.4)
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Fig. 3.2 Illustration of the 
DML process with DP and 
synchronous global updates 

The global model can be obtained by aggregating the local models by applying 
an aggregation mechanism. One such method is the following [12]: 

.w = 1

d

K∑

k=1

dkwk (3.5) 

If the local updates are synchronized, then the global aggregation occurs after 
.τk = τ ∀k ∈ K time-steps, whereas in the asynchronous case, . τk may differ for 
each learner. The orchestrator may perform multiple global cycles until a stopping 
criterion is reached (e.g., good performance or resource depletion). This process is 
summarized in Fig. 3.2. 

3.2.2 Transition to Wireless MEL 

Let us transition the above described DML system to wireless MEL where the 
learners have heterogeneous communication capabilities. For example, the devices 
can range from power laptops to smartphones with medium-sized processors to 
smart watches with limited capabilities. Consider an MEL system with a set of 
learners .K = {1, . . . , k, . . . , K} as depicted in Fig. 3.3. Each learner . k ∈ K
updates the local model . τk times on a batch of size . dk in every global update. 
The data/model communication occurs on wireless channel defined by gain .hkO
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Fig. 3.3 System model of an MEL setting. Learners can be of different types including a wireless 
wearable EEG (e.g., learner 1), a microcontroller (e.g., learner 2), wearable ECG (learner 3), etc. 
Each learner performs . τk local model updates in every global cycle on a dataset of size .dk ∀ k ∈ K. 
It has a local processor with clock speed . fk and a channel to the orchestrator represented by gain 
.hkO ∀ k ∈ K. Both respectively define the computation and communication capability of each 
learner .k ∈ K which are heterogeneous 

which can drastically vary spatially (among devices) and temporally (over time 
across multiple global updates). In contrast, in DML with HPC or wired nodes, 
resources are more homogeneous and less limited such that .τk = 1 which 
converges to the centralized case. To quantify this heterogeneity, we will relate the 
communication/computation parameters as well as the ML model specifics to each 
learner’s time and energy consumption. 

Let us recall the two closely related but distinct scenarios for MEL: federated 
learning (FL) and parallelized learning (PL). In FL, the learner generates its own 
data but cannot transfer it to a central cloud or other peers due to certain constraints 
(mainly privacy but also potentially bandwidth limitation [13]). On the other hand, 
the PL scenario usually involves a main node, which may be the edge server or one 
of the end devices. This edge server/end device parallelizes the learning process 
over its local dataset on multiple cores/nodes due to one or more reasons (e.g., 
limited main node resources, faster processing, lower energy consumption) [14]. In 
either case, the learning process cycles between a central orchestrator distributing 
the global model at the beginning of each cycle, learners updating the local model 
on their individual datasets, the orchestrator collecting the local models, and finally, 
performing the global aggregation until a stopping criterion is reached. The only 
difference is that in PL, the orchestrator also distributes the data subsets along 
with the global model at the start of each global cycle. Figure 3.4 illustrates the 
differences between both approaches. Clearly, PL fully encompasses FL, which 
will be reflected in the mathematical derivations later, but only adds to it the batch



3 Machine Learning at the Wireless Edge 39

Fig. 3.4 Illustration of the 
differences between FL and 
PL, both paradigms that are 
part of MEL 

transfer component from the orchestrator to the learners. We will therefore mainly 
formulate the problems with respect to PL but indicate the minor changes applicable 
to FL whenever necessary. 

The goal is to minimize the local loss function [15]. The total size of all batches 
is denoted by .d = ∑K

k=1 dk , which is usually preset by the orchestrator O given 
its computational capabilities, the desired accuracy, and the time/energy constraints 
of the training/learning process. The number of local iterations or local updates run 
by learners on their allocated batch is denoted by . τk . For the synchronous case, 
.τk = τ ∀ k ∈ K, whereas in asynchronous task allocation, each learner can perform 
a different number of . τk local iterations. 

In addition to the two approaches, two key aspects of the MEL process are the 
expected task completion time and the energy consumption per learner .k ∈ K. 
In this chapter, we will consider both time and energy constraints in our model 
since both constraints are useful in the context of health and wellness IoT. There 
are multiple variables that can impact the time and energy consumption in MEL, 
whereas some of these may also impact the accuracy. For example, the number of 
local updates will directly impact the execution time and the dataset size will impact 
both the execution time and the transmission time. If MP is applied, dataset size may 
impact the completion time in both FL and PL, whereas with DP, it will only impact 
in PL. A smaller batch size may allow for more local updates which may improve 
accuracy because typically, in SGD, the loss decreases as the number of iterations 
are increased. However, if the dataset size is too small, that may also adversely 
affect the accuracy. Other variables that may impact the local completion time and 
energy consumption include the transmission power, local computational power, 
and the complexity of the ML model. Whereas these components may not be of 
significant influence when DL is executed over controlled wired and infrastructural 
servers, their high heterogeneity can tremendously impact the performance of DL 
when applied in wireless and mobile edge environments.
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As in health and wellness devices specifically that require some sort of mitigation 
steps, the orchestrator will demand the results within preset duration within which 
all of these four steps should be completed. In previous works, it has been assumed 
that only devices that are charging or fully charged will take part in MEL. However, 
for most health devices that require real-time continuous monitoring, these devices 
or learners in MEL may not be fully charged or on direct power and may have a 
limit on the amount of battery power they are willing to drain. To this end, in the 
following two subsections, we define the time taken and the energy consumed by 
one learner .k ∈ K, respectively, to complete the MEL process. 

3.2.2.1 Relationship to Completion Time and Energy Consumption 

In the following paragraphs, we will relate these parameters for user k to both its 
local time and energy consumption for one global cycle. The orchestrator performs 
the aggregation of the parameters only once after all learners send back their result 
within the global update cycle after doing .τk ∀ k local updates. To summarize, the 
global update process in MEL occurs in periodic cycles that we will refer to as the 
global update cycles. This process should include the following phases: 

1. The orchestrator transmits global model . w and dataset of size . dk to each learner 
.k ∈ K (in the common FL, only . w is transmitted). 

2. Each learner k computes . τk local model updates. 
3. Each learner returns the local model .wk ∀ k ∈ K to the orchestrator. 
4. The orchestrator performs global aggregation is defined in (3.5). 

Consider that . dk data samples can be expressed in .Bdata
k bits as follows: 

.Bdata
k = dkFPd (3.6) 

where . F is the feature vector size and . Pd is a factor that accounts for the precision 
and compression ratio. The size of the local model .wk ∀ k in bits is denoted by 
.Bmodel

k can be expressed as: 

.Bmodel
k = Pm (dkSd + Sm) (3.7) 

where .Pm is the model bit precision or compression ratio. This size consists of 
two parts, the constant part specific to the model architecture described by . Sm and 
a dynamic part . Sd dependent upon the dataset size which can be used to support 
model parallelism (MP). Please note that the aggregation mechanism described in 
(3.5) cannot be employed with MP. 

At the start of each global cycle, the orchestrator sends the optimal global model 
of size .Bmodel

k bits and dataset of size .Bdata
k bits (in FL, .Bdata

k = 0). We assume 
communication occurs over ideal binary symmetric orthogonal channels without 
interference with channel bandwidth W , gain  . hkO , and noise spectral density . N0.
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Assuming a transmission power of .PkO , the time .tSk ∀ k ∈ K taken to complete the 
first step can be given by: 

.tSk = dkFPd + Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) (3.8) 

The total computations . Xk required for one local update by each learner . k ∈ K
is given by: 

.Xk = dkCm (3.9) 

where .Cm is the computational complexity of the model. The time . tCk ∀ k ∈ K
needed to perform one local update is: 

.tCk = Xk

fk

= dkCm

fk

(3.10) 

where . fk is each learner k’s local processor frequency dedicated to the DL task. The 
time for the second step will be .τk × tCk ∀ k ∈ K. Next, the time taken for the third 
step .tRk ∀ k ∈ K to send the updated local model to the orchestrator can be described 
as: 

.tRk = Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) (3.11) 

The time for the last stage is negligible compared to the first three stages due to 
it being simple aggregation and use of efficient over-the-air approaches. Thus, the 
global cycle time, which is the total time .tk ∀ k ∈ K taken by learner k to complete 
the first three processes of MEL, is equal to: 

. tk = tSk + τkt
C
k + tRk

= dkFPd + 2Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) + τk

dkCm

fk

(3.12) 

Given the above-described MEL model, each learner k consumes energy when 
performing the . τk local model updates and when transmitting the local model . wk

to the orchestrator. For the time being, we do not consider the energy consumed by 
the orchestrator because it will have a negligible impact on learner k, especially if 
the orchestrator is an edge server connected to a main supply. Given the processor 
speed of . fk in GHz, the energy .eC

k ∀ k ∈ K consumed to perform one local update 
on a dataset of size . dk is given by [16]: 

.eC
k = μXkfk

ν−1 = μdkCmfk
ζ−1, k ∈ K (3.13)
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where . μ is the onboard chip capacitance (typically .10−9 ∼ 10−12 F) and . ν = 2
[16]. The energy .eR

k ∀ k ∈ K consumed by learner k to send the most up-to-date 
local model is: 

.eR
k = PkOBmodel

k

Rk

= Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) , k ∈ K (3.14) 

The total energy .ek ∀ k ∈ K consumed in one global update cycle can be given 
by: 

. ek = τke
C
k + eR

k

= PkOPm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) + τkdkμCmfk
ζ−1 (3.15) 

3.2.3 Problem Formulation 

It is clear that both . tk and .ek ∀ k ∈ K depend upon a number of parameters including 
the number of local updates . τk , the local dataset size . dk , transmission power . Pko, 
model size . Sm, model computational complexity . Cm, etc. Some of these will be 
preset by the orchestrator with DL model selection such as . Sm and . Cm, whereas 
others may depend upon the wireless communication protocol (.PkO,HkO,W ) or  
the device type (e.g., . fk). However, .τk , dk , Pko ∀ k ∈ K can be optimized or 
controlled for best use of the resources. We limit our discussion to the optimization 
of these variables though other works [17–19] focus on optimizing the wireless 
communication. As discussed earlier, previous works have focused on optimizing 
. τk’s [12, 15, 20, 21]. 

However, the impact of dataset size .dk ∀ k ∈ K allocation and the PL scenario 
have never been studied, which are covered in this chapter. To this end, we will 
study the joint impact of . τk and . dk on resource consumption in the form of time and 
energy and try to optimize them such that it enhances ML model performance. 

To make things more compact, we rewrite the expressions of .tk ∀ k ∈ K in (3.12) 
as a function of . τk and . dk as follows: 

.tk = C2
k τkdk + C1

k dk + C0
k (3.16) 

where . C2
k , . C

1
k , and . C

1
k represent the quadratic, linear, and constant coefficients as 

follows: 

.C2
k = Cm

fk

. (3.17)
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C1 
k = 

FPd + 2PmSd 

W log2
(
1 + Pkohko 

N0

) . (3.18) 

C0 
k =

2PmSm 

W log2
(
1 + Pkohko 

N0

) (3.19) 

We can also rewrite the expression for .ek ∀ k ∈ K in (3.15) as follows:  

.ek = G2
kτkdk + G1

kdk + G0
k (3.20) 

The quadratic, linear, and constant coefficients are denoted by . G2
k , . G

1
k , and . G

1
k , 

respectively, in the following way: 

.G2
k = μCmfk

ζ−1 (3.21) 

.G1
k = Pk0PmSd

W log2
(
1 + Pkohko

N0

) (3.22) 

.G0
k = Pk0PmSm

W log2
(
1 + Pkohko

N0

) (3.23) 

It is clear that the expressions in (3.16) and (3.21) are quadratic with respect 
to . τk and .dk∀ k ∈ K. Though the significance of this will be outlined later, it is 
worth noting the complete heterogeneity aware (HA) MEL system model can be 
described by these equations. With respect to optimization, we can either go for the 
synchronous implementation .τk = τ ∀ k ∈ K (HA-Sync) or the semi-synchronous 
with different values for . τk (HA-Asyn). Further, we can either consider only time 
constraints or dual-time and energy constraints. This gives rise to four possible 
scenarios: 

1. HA-Sync with time constraints only 
2. HA-Asyn with time constraints only 
3. HA-Sync with dual-time and energy constraints 
4. HA-Asyn with dual-time and energy constraints 

In this chapter, we will only focus on HA-Sync (scenarios 1 and 3) and refer readers 
to [22] for more details on HA-Asyn. We will begin with HA-Sync with only time 
constraints and then move on to dual-time and energy constraints.
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3.3 Synchronous MEL with Only Time Constraints 

In this section, we discuss the first scenario where all learners perform a syn-
chronous number of local updates in every global update.1 In Sect. 3.2.3, we  
introduced the MEL system model parameters and how they relate to the time 
consumed in each global cycle by each learner .tk ∀k ∈ K. In synchronous MEL, the 
orchestrator sets an upper limit T such that .tk ≤ T ∀k ∈ K and the number of local 
updates are synchronized such that .τk = τ ∀k ∈ K. 

3.3.1 Formulation 

The goal is to minimize the loss of the MEL model. In general, the loss of GD-
based optimization methods approaches a minimum as the learning iterations are 
increased. For synchronous DML, this is equivalent to maximizing the number of 
local updates . τ given a fixed number of global updates as demonstrated by the 
following convergence proof. 

Lemma 1 Let .w[L] denote the global model at update step L and . w∗ denote the 
optimal global model. For simplicity, assume that . τ local updates are performed 
in each global update for a fixed number of global updates G such that .L = Gτ . 
Then, the difference between the loss at update step L and the global optimal loss 
.
[
F(w[L]) − F(w∗)

] → 0 as .τ → ∞. 
This is a factual error as initially, the authors considered presenting both, the 

synchronous and asynchronous models. However, due to space limitations, the 
authors only presented the synchronous model. Unfortunately, while making the 
appropriate changes, the Lemma related to the synchronous version was removed 
erroneously whereas it is the Lemma related to the asynchronous version which 
should have actually been removed. In contrast, the proof related to Lemma of 
the synchronous version was retained in Appendix 1 while the proof related to the 
Lemma of the asynchronous version was correctly removed via the elimination of 
Appendix 4. 

Thus, maximizing the MEL accuracy is achieved by maximizing . τ . Therefore, 
the problem can be expressed as the following optimization program: 

max 
τ,dk ∀ k∈K 

τ (3.24) 

s.t. C2 
k τdk + C1 

k dk + C0 
k ≤ T ,  ∀k ∈ K (3.24a)

1 This section is part of two papers: “Adaptive Task Allocation for Mobile Edge Learning” 
published in proceedings of the IEEE WCNCW 2019 [23] and “Dynamic Task Allocation for 
Mobile Edge Learning” published in IEEE Transactions on Mobile Computing. 
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K∑

k=1 

dk = d (3.24b) 

τ ∈ Z+ (3.24c) 

dk ∈ Z+, k  ∈ K (3.24d) 

Constraint (3.24a) guarantees that .tk ≤ T .∀ k ∈ K. Constraint (3.24b) ensures that 
the whole dataset is covered across the set of all learners. Constraints (3.24c) and 
(3.24d) are simply nonnegative integer constraints on the optimization variables . τ
and . dk which, recall, are quadratically related in constraint (3.24a). Consequently, 
the problem can be expressed as a quadratically constrained integer linear program 
(QCILP). This formulation applies to both FL and PL, with the exception of the 
value of constant . C1

k which does not impact the solution approach. 

3.3.2 Solution 

Because QCILP are NP-hard [24] in general and heuristic polynomial time 
approaches incur a high computational cost, we can at least relax the integer 
constraints in (3.24) and (3.24a). The relaxed problem is given by: 

max 
τ,dk ∀ k∈K 

τ (3.25a) 

s.t. C2 
k τdk + C1 

k dk + C0 
k ≤ T ,  k  ∈ K (3.25b) 

K∑

k=1 

dk = d (3.25c) 

τ ≥ 0 (3.25d) 

dk ≥ 0, k  ∈ K (3.25e) 

The resulting program in (3.25) is quadratically constrained linear program (QCLP) 
which can be efficiently solved using research/commercially available solvers such 
as OPTI [25]. To obtain the suboptimal integer . τ ∗ and .d∗

k ∀ k ∈ K, we can floor the 
obtained real values and cases where either .τ = 0 or one more of .dk = 0 for any 
.k ∈ K represent the infeasibility of MEL. 

However, these solvers are still too computationally complex. Notice that the 
associated matrix of each quadratic constraint in (3.25b) is symmetric. These 
matrices will have one positive and one negative eigenvalue each which results in 
the problem being non-convex. This leads to the inefficiency and the inability to 
derive analytical solutions. However, we can derive a more efficient solution using
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Lagrangian analysis and the Karush-Kuhn-Tucker (KKT) conditions to obtain upper 
bounds on the optimal optimization variables . τ and .dk ∀ k ∈ K. 

The Lagrangian function of (3.25) can be written as: 

. L (x, λ, ν, α) = −τ +
K∑

k=1

λk

(
C2

k τdk + C1
k dk + C0

k − T
)

+

ν

(
K∑

k=1

dk − d

)
− α0τ −

K∑

k=1

αkdk (3.26) 

where .λk ∀ k ∈ K, . ν, and . α0/.αk ∀ k ∈ K are the Lagrangian multipliers associated 
with constraints (3.25b), (3.25c), (3.25d), and (3.25e), respectively. Using the KKT 
conditions, Theorem 1 introduces bounds on . τ ∗ and .d∗

k ∀ k ∈ K. 
Theorem 1 The optimal value of the batch size .d∗

k ∀ allocated to each learner 
.k ∈ K satisfies the following bound: 

.d∗
k ≤ T − C0

k

τ ∗C2
k + C1

k

∀ k ∈ K (3.27) 

Further, the analytical upper bound on the optimization variable . τ belongs to the 
solution set of the polynomial equation: 

.d

K∏

k=1

(
τ ∗ + bk

) −
K∑

k=1

ak

K∏

l=1
l /=k

(
τ ∗ + bl

) = 0 (3.28) 

where .r0k = C0
k − T , .ak = − r0k

C2
k

, and .bk = C1
k

C2
k

, . ∀ k ∈ K. 

Proof Please refer to “Appendix 2” for the proof. ⨅⨆

3.4 Synchronous MEL with Dual-Time and Energy 
Constraints 

The solutions in the previous section apply to MEL when optimal task allocation 
needs to be done only under time constraints. However, edge devices, especially 
UEs, are usually battery operated which means energy is a premium resource. 
Though most FL literature assumes only devices being charged or under direct 
power supply will participate in MEL, this may not always be feasible. Therefore, 
we study the same HA-Sync model but this time under dual-time and energy 
constraints.



3 Machine Learning at the Wireless Edge 47

3.4.1 Formulation 

Recall the MEL model described in Sect. 3.3 where the time taken . tk and the energy 
consumed .ek ∀ k ∈ K for one global update cycle is given by (3.16) and (3.21), 
respectively. We have established that local model updates per global update can 
improve validation performance. However, now the objective is to perform batch 
size (. dk) allocation such that the number of local updates . τ per global update is 
maximized without violating the global cycle time T and for each learner .k ∈ K, 
without exceeding the local energy consumption limit defined as . E0

k J of energy 
per global cycle. (Notice that for synchronous MEL, .τk = τ , and the optimization 
variables are .τ, dk ∀ k ∈ K.) We can rewrite the time and energy constraints as 
respectively shown in (3.29) and (3.30). 

.tk = C2
k dkτ + C1

k dk + C0
k ≤ T ∀ k ∈ K (3.29) 

.ek = G2
kdkτ + G1

kdk + G0
k ≤ E0

k ∀ k ∈ K (3.30) 

The coefficients . C2
k , . C

1
k , and . C

0
k , related to the completion time . tk , and the 

coefficients . G2
k , . G

1
k , and . G

0
k , related to the energy consumption .ek ∀ k ∈ K, have  

been described in Section 3.2.3. 
Since the relationship between the optimization variables is quadratic in both 

the time and energy constraints, and the variables are integers, the problem will 
still be an NP-hard QCILP. Once again, we can relax the integer constraints on 
the variables. While the problem still presents as a non-convex QCLP but allows 
for obtaining suboptimal solutions in polynomial time, the relaxed problem can be 
expressed as the following optimization program: 

max 
τ,dk ∀ k 

τ (3.31) 

s.t. C2 
k dkτ + C1 

k dk + C0 
k ≤ T ,  ∀k ∈ K (3.31a) 

G2 
kdkτ + G1 

kdk + G0 
k ≤ E0 

k , ∀k ∈ K (3.31b) 

K∑

k=1 

dk = d (3.31c) 

τ ≥ 0 (3.31d) 

dk ≥ dl, ∀k ∈ K (3.31e) 

Constraints (3.31) and (3.31a) guarantee that the MEL process does not violate 
the limits on the global cycle time and local energy consumption, respectively. 
Constraint (3.31c) ensures the utilization of the complete dataset of size d.
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Constraints (3.31d) and (3.31e) ensure that . τ is nonnegative and the batch sizes 
. dk’s are nonnegative integers . ∀k. This ensures that some learners are not completely 
eliminated or have too few data samples which may also affect MEL performance. 

3.4.2 Proposed Solution 

The problem in (3.31) can be solved numerically using commercial solvers that may 
employ approaches such as interior point methods, branch and bound techniques, 
heuristics, etc. However, we propose a more efficient analytical-numerical solution 
based on a relaxation approach. Based on the suggest-and-improve (SAI) method 
[26], we will derive upper bounds on the optimal variables using Lagrangian 
analysis and then use a local optimizer (coordinate descent) to reach the optimal 
solution. 

The equality constraint in (3.31c) can be written as the following two inequality 
constraints: .

∑K
k=1 dk − d ≤ 0 and .−∑K

k=1 dk + d ≤ 0. In that case, the Lagrangian 
function of the relaxed problem is given by: 

. L (x,λ, 𝚪, α, ᾱ, ω, ν) = −τ+
K∑

k=1

λk

(
C2

k τdk + C1
k dk + C0

k − T
)

+
K∑

k=1

γk

(
G2

kτdk + G1
kdk + G0

k − E0
k

)
+

α

(
K∑

k=1

dk − d

)
− ᾱ

(
K∑

k=1

dk − d

)
− ωτ −

K∑

k=1

νkdk (3.32) 

The Lagrange multipliers associated with the global cycle time and local energy 
constraints are given by . λk and . γk , respectively, .∀ k ∈ K. The Lagrange multipliers 
related to the two total task size constraint inequalities are given by . α/. ̄α, and . ω/. νk

.k ∈ K are the Lagrangian multipliers associated with the nonnegative constraints of 
both sets of optimization variables . τ and . dk , respectively. 

Let us denote the set of optimization variables by . x = [τ d1 d2 . . . dk . . . dK ]T

and the set of Lagrange multipliers by .𝚪 = [λ, 𝚪, α, ᾱ, ω, ν]T , where . λ =
[λ1 . . . λk . . . λK ]T , .γ = [γ1 . . . γk . . . γK ]T , and .ν = [ν1 . . . νk . . . νK ]T . 
Theorem 2 The set of optimal Lagrange multipliers . 𝚪∗ can be obtained by solving 
the dual problem in the following semi-definite program (SDP): 

max
𝚪

ζ (3.33) 

s.t.

[
F2 (𝚪) 1 

2 f
1 (𝚪) 

1 
2 f

1 (𝚪) f0 (𝚪) − ζ

]
≾ 0

𝚪 ≾ 0
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The functions of the Lagrange multipliers .F2(𝚪), .f1(𝚪), and .f0(𝚪) are defined in 
the proof. 

Proof Please refer to “Appendix 3” for the proof. ⨅⨆
A candidate solution is given by: 

.x̂ = −1

4
F2 (𝚪)−1 f1 (𝚪) (3.34) 

In the case of a convex QCQP, the resulting solution will be optimal with zero 
duality gap, i.e., .x̂ = x. In our case, because of the problem being non-convex, 
we have to use a simple local optimizer called the coordinate descent method to 
improve the candidate solution where the optimal solution . x∗ is given by [26]: 

.x∗ = coordinate-descent(x̂) (3.35) 

3.5 Heterogeneous Simulation Setup and MEL Algorithm 

In this section, we will setup the simulation environment and describe the important 
parameters based on real-world settings. Unless otherwise specified, these param-
eters will be used throughout the next section to study the performance of MEL in 
terms of achievable local updates . τ and ML model validation performance. Typi-
cally, a wireless MEL environment will include a set of end devices (learners) with 
heterogeneous capabilities connected via heterogeneous wireless communication 
links. We will first study the important parameters influencing both computation 
and communication, describe the modelling strategy, and quantify its effect on 
heterogeneity. Then we will present the complete simulation environment including 
the underlying ML model parameters. We will then demonstrate the superiority of 
the proposed HA schemes and illustrate how they can be employed in the real world 
with algorithmic steps. 

3.5.1 Heterogeneity Analysis 

The main variable that represents the computational capabilities of the learners is 
the processor clock speed .fk ∀ k ∈ K. After taking into account the speedups 
offered by modern multicore processing, we must consider the range of speeds 
offered by different devices such as laptops (6GHz), mobile phones (2.4GHz), 
various microcontroller types (0.5–1.5GHz), etc. Therefore, the modeling strategy 
will include selecting a fixed lower end reference speed, to which we will add an 
additional amount to represent the variations in resources dedicated to the MEL
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process by each learner .k ∈ K. At the start of each global cycle, the clock speed 
.fk ∀ k ∈ K will be drawn from: 

.fk ∼ fref + fσ U, k ∈ K (3.36) 

The reference clock is given by .fref , whereas . fσ represents the maximum additional 
clock speed. .U ∼ U{0, 1} is the uniformly distributed random variable on . [0, 1]
which ensures additional amount drawn from .[0, fσ ]. To emulate different devices, 
we will use four references: .fref,1 = 6000MHz, .fref,2 = 2000MHz, . fref,3 =
1000MHz, and .fref,2 = 500MHz. The associated additional maximum amounts 
are . fσ,1, . fσ,2, . fσ,3, and . fσ,4, respectively. 

The communication capability can be measured by the achievable rate . ρk ∀ k ∈
K which is defined as: 

.ρk = W log2

(
1 + Pkohko

N0

)
, k ∈ K (3.37) 

The rate is influenced by the bandwidth W , each learner’s transmission power 
.Pko ∀ k, and the channel gain .hko ∀ k. The gain is mainly determined by the path 
loss which is inversely proportional to the distance of the learner .RkO ∀ k from 
the orchestrator. We will simulate two different types of environments: Wi-Fi and 
cellular channels. Assuming a log-normal shadowing model with flat-fading, the 
gain .hkO can be calculated as the inverse of the signal attenuation as follows: 

. hkO =

⎧
⎪⎨

⎪⎩

[
Linear

{
7 + 2.1 log(RkO

R0
) +N{0, 10}

}]−1
Wi-Fi

[
Linear

{
128.1 + 37.5 log(RkO

R0
) +N{0, 10}

}]−1
Cellular

(3.38) 

Conversion from decibel scale to linear is represented by the Linear operation, . RkO

is the distance of learner k to the orchestrator, and . N is a zero-mean Gaussian 
random variable with standard deviation 10 dB. As we are not doing resource 
allocation (studied in other works [19, 27–29]), the bandwidth will be constant. 
Further, small-scale fading will be much lower compared to path loss and the 
impact of noise will be similar across multiple learners. Therefore, the most 
impactful variables on the rate heterogeneity will be the transmission power . PkO

and the distance .RkO . Based on wireless communication standards, the maximum 
transmission power limit .P max

k is 23 dBm (or 0.1995W in linear scale). We further 
assume that each learner-orchestrator pair use a lower power level per global cycle 
instead of the maximum allowed. Then, the transmission power .Pk ∀ k ∈ K is drawn 
from the following distribution: 

.Pk ∼ P max
k − Pσ U, k ∈ K (3.39)
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The variable . Pσ represents the maximum value by which the power can be reduced 
and .U ∼ U{0, 1}. To simulate the heterogeneous co-location of learners, the 
distances are simply drawn from .Rk ∼ Rσ U . .Rσ is the maximum possible 
distance of the learner from the orchestrator. Note that the maximum radius of the 
environment . R0 can be different depending upon the environment. 

Quantifying the heterogeneity exactly is difficult due to the complex nonlinear 
relations among the different important parameters. However, note that the maxi-
mum deviation among the most impactful variables . fk , .PkO and .RkO is bound by 
. fσ , . Pσ , and . Rσ , respectively. Hence, we define a newmetric called the heterogeneity 
factor .Hf ac as follows: 

.Hf ac = Pσ

P max
k

+ Rσ

R0
+

i=4∑

i=1

fσ,i

fref,i

(3.40) 

.Hf ac is the sum of ratios of the maximum deviations to the reference values. 
Taking the ratios accounts for the different units of measurements for the physical 
quantities making .Hf ac unitless. The heterogeneity factor is also not calibrated, 
(e.g., limited to range [0,1]) and a higher .Hf ac simply implies a more heterogeneous 
environment. 

3.5.2 Simulation Environment 

We use four different reference clock speeds to emulate the capacity of different 
types of devices such as laptops and roadside units (.fref,1 = 6GHz), smartphones 
and tablets (.fref,2 = 2GHz), commercial microcontrollers such as the Raspberry 
Pi (.fref,3 = ‘ GHz), and lower grade microcontrollers such as the Arduino 
(.fref,4 = 0.5GHz). These may be attached to IoT devices such as traffic con-
trollers, onboard units, cameras, industrial sensors, etc. We examine two different 
types of environments: 802.11-type environment (e.g., Wi-Fi) and a cellular-type 
environment. The maximum distance . R0 is set to 50m for the former and 500m 
for the latter environment. To test the MEL with real-world ML tasks, we consider 
the classification task using two different datasets: the pedestrian [31] and MNIST 
[32] datasets. For both classification tasks, the measure of MEL performance is 
the validation accuracy. The pedestrian dataset has 8,000 training images from 
pedestrian crossing traffic light cameras. Each image has 684 features (18 . × 36 
pixels). The task is to predict whether a pedestrian is present in the image, a 
binary classification task for which we use a single-layer neural network with 300 
neurons in the hidden layer. The set of model parameters includes two matrices 
.w = [w1, w2], where .w1 is 300 × 648 and w2 is 300 × 1. Thus, the model size 
.Bmodel

k is 6,240,000 bits, whereas the forward and backward passes will require 
.Cm = 781,208 floating point operations [33]. The MNIST dataset is also used for 
a classification task, but it has slightly larger images (28 . × 28 pixels) leading to
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Table 3.1 List of simulation parameters 

Parameter Value 

Wi-Fi attenuation model .7 + 2.1 log(R) dB [30] 

Cell attenuation model .128 + 37.1 log(R) dB [16] 

Learner bandwidth .(W) 5MHz  

Maximum distance indoor .(R0) 50m 

Maximum distance outdoor .(R0) 500m 

Max. tran. power .(P max
k ) 23 dBm 

Noise power density .(N0) . −174 dBm/Hz 

Reference clock speeds .(fref,[1−4]) .{6, 2, 1, 0.5}GHz 
Pedestrian dataset size .(d) 9,000 images 

Pedestrian dataset features .(F) 648 (. 18 × 36 ) pixels  

MNIST dataset size (d) 60,000 images 

MNIST dataset features .(F) 784 (. 28 × 28 ) pixels  

.F = 784. A more complex three-layer DNN is used which has a size . Bmodel
k =

8,974,080 bits and complexity .Cm = 67,424,160 floating point operations [33]. All 
of these parameters including the channel attenuation models are given in Table 3.1. 

To perform the heterogeneity analysis, we vary . Pσ from 0.01 to 0.10 in steps 
of 0.01W and . Rσ from 5m to  .R0 = 50m in steps of 5m for an 802.11-type 
environment. The clock speed heterogeneity is emulated by varying .fσ,1 from 
60 to 600MHz, .fσ,2 from 40 to 400MHz, .fσ,3 from 30 to 300MHz, and . fσ,4
from 20 to 200MHz in steps of 60, 40, 30, and 20MHz, respectively. For the 
remaining simulations, we fix . Rσ equal to . R0 (i.e., 50m for 802.11-type and 500m 
for cellular-type environments), whereas . Pσ is set to 0.05W. The processor clock 
speed variations are emulated by setting .fσ,1 = 600MHz, .fσ,2 = 400MHz, 
.fσ,1 = 300MHz, and .fσ,2 = 200MHz. These parameters are selected to have a 
.Hf ac ∈ [1.45, 1.65] which represents a high heterogeneity level where the HA 
schemes provide noticeable gains. Moreover, this selection strategy truly shows the 
robustness of the HA schemes compared to HU because it supports more varying 
clock speeds, transmission powers, and channel gains. 

3.5.3 MEL Algorithm 

Though these are simulations, in the real world, it is assumed that the orchestrator 
and all K learners will exchange this information at the start of each global cycle for 
the orchestrator to run the centralized optimization. For example, each learner . k ∈ K
sends the information related to the clock speed . fk and transmission power .PkO it 
can dedicate for the next cycle. The communication time of parameter exchange is 
negligible compared to model/data transmission times. Further, channel gains and
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Algorithm 1 Process at the Orchestrator 
Input: T , d, d0, K 
Output: w 

Initialize w and set the flag STOP ← FALSE 
1: while not STOP do 
2: In Parallel: Send  w to each learner k ∈ K 
3: In Parallel: Receive PkO , hkO , fk , and  e0 k from k ∈ K 
4: if Only Time Constraints then 
5: Solve (3.28) to obtain τ ∗ and (3.27) to get  d∗

k 
6: else 
7: Solve (3.34) to obtain the candidate τ̂ , d̂k 
8: Use candidates to obtain τ ∗ and d∗

k by solving (3.35) 
9: end if 
10: In Parallel: SEND  τ = ⎿τ ∗⏌, dk = ⎿d∗

k ⏌ to each learner k ∈ K 
11: if PL then 
12: In Parallel: SEND  dk data samples to each learner k ∈ K 
13: end if 
14: WAIT for T s to let each learner perform τ local updates 
15: In Parallel: RECEIVE wk ∀ k ∈ K 
16: Obtain w using (3.5) 
17: if STOPPING CRITERIA REACHED then 
18: Set STOP ← TRUE 
19: end if 
20: end while 
21: return w 

distances are known to the orchestrator via standard wireless channel estimation 
and triangulation algorithms. The complete steps followed by the orchestrator over 
multiple global cycles are summarized in Algorithm 1. 

3.6 Results and Discussions 

We plot the achievable number of local updates . τ versus the heterogeneity factor 
.Hf ac and compare the performance of the HA and HU schemes. It can be seen 
that the HA-PL and HA-FL both offer a gain on the number of achievable local 
updates per global cycle as .Hf ac increases. This gain can be observed specifically 
for values of .Hf ac ≥ 1. On the other hand, the achievable . τ remains constant 
for the HU schemes with increasing .Hf ac implying that these are truly HU. Our 
HA schemes are able to perform flexible local dataset size allocations per global 
cycle to maximize local updates. In the following subsections, we will show that 
for fixed numbers of global cycles, this also translates to higher final validation 
accuracies and lower convergence times. Figure 3.5 plots the achievable number of 
local updates . τ versus the heterogeneity factor .Hf ac and compares the performance 
of the HA and HU schemes.
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Fig. 3.5 Achievable local 
updates . τ for the MNIST 
dataset versus the 
heterogeneity factor for 
different sets of learners and 
global cycle times 
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Fig. 3.6 Achievable local updates . τ per global cycle for the MNIST and Pedestrian datasets for 
all schemes for (a) different values of T versus K and (b) for .K = 10 and 20 versus T 

3.6.1 Impact of Time Constraints on Local Model Updates 

Figure 3.6 presents the simulation results for the PL scenario in an 802.11-type 
environment for both MNIST and pedestrian classification tasks. The top two 
subfigures demonstrate the achievable local updates . τ when performing MNIST 
and pedestrian classification tasks with the above-described simulation parameters 
in Figs. 3.6a (versus increasing number of learners K) and 3.6b (versus increasing 
global cycle times T ). We compare the results for . τ for the HA scheme (HA-Sync) 
from the analytical upper bounds proposed in Theorem 1 (denoted by HP-PL-Ana) 
against numerical results from a commercially available solver (denoted by HA-PL-
Num). As observable, there is no optimality gap as witnessed by how well the lines 
representing HA-PL-Ana stack up with HA-PL-Num. We also plot the achievable . τ

for the HU scheme (denoted by HU-PL).
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In general, it can be observed that the HA-Sync approach allows for significantly 
more local updates . τ compared to HU-Sync with gains in the region of 200% to 
600%. For instance, Fig. 3.6a shows that both HA-PL-Ana and HA-PL-Num make 
it possible to perform .τ = 6 updates for MNIST classification with a system of 
.K = 20 learners and .T = 30 s, a gain of 600% against the HU-PL which allows 
only 1 local update. Further, HA-PL provides better performance with (less than) 
half the resources. For example, for a system of .K = 20 learners, HU-PL performs 
worse with .T = 60 s than HA-PL with .T = 30 s for MNIST classification. Further, 
for pedestrian classification as shown in Fig. 3.6b, HA-Sync with .K = 10 performs 
better than HU-PL with .K = 20 for fixed global cycle time .T = 05s with a gain  
of up to 500%. These performance gaps are reflected in the validation performance 
superiority of HA-Sync. 

3.6.1.1 Improvements in Validation Accuracy 

Figure 3.7 compares the progression of the validation accuracy after each global 
cycle for the MNIST and pedestrian datasets using both HA-Sync and HU-Sync 
schemes. Observably, HA-Sync offers a validation accuracy improvement up to 
0.6% for the MNIST dataset and 8% for the pedestrian dataset. Furthermore, the 
HA schemes can offer up to 56% reduction in conversion times to certain accuracy 
thresholds. For example, performing MNIST classification with a system of . K = 10
learners with a .T = 30 s global cycle time constraint can be achieved with 96.50% 
accuracy in five global cycles with the proposed HA schemes in this section. In 
contrast, the HU schemes require nine global cycles which represent a reduction of 
44% or 2 minutes. The designed HA scheme in this section can allow more local 
updates per global cycle which result in higher validation performance and lower 
convergence times. 

Fig. 3.7 Validation accuracy 
progression comparison 
between HA and HU for the 
MNIST dataset for up to 10 
global cycles and for the 
pedestrian dataset up to 20 
global cycles 
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3.6.2 Comparing FL versus PL 

To really test the strength of the proposed HA schemes, we further evaluate them 
in a more challenging cellular type of environment for the same tasks with the all 
other simulation parameters being the same. In addition to HA-Sync with HA-PL-
Ana/Num, we also compare against FL by adding results for HA-FL-Ana/Num as 
shown in Fig. 3.8. Once again, Figs. 3.8a,b present the achievable local updates for 
the MNIST and pedestrian classification tasks versus K and T , respectively. It is 
clear again that there is no optimal gap between the upper bounds in Theorem 1 and 
the numerical solutions from the solver. 

In general, we observe that HA-FL/PL provide more achievable local updates 
compared to HU-FL/PL with gains ranging from 100% to 600%, and the FL 
approaches provide nominally more local updates than PL. Recall that the only 
difference between FL and PL is that there is an additional component of data 
transfer from the orchestrator to each learner .k ∈ K in PL. However, since the 
ML models sizes usually dominate the dataset sizes (especially batches or subsets 
of data), the difference between the achievable local updates . τ is nominal. It is more 
pronounced for the pedestrian dataset in Fig. 3.9 because the model used is much 
smaller, making its size comparable to the dataset size. 

In terms of the validation accuracy performance, both HA-FL/PL provide gains 
up to 0.7% for MNIST classification and 8% for pedestrian classification with 
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Fig. 3.8 Achievable local updates . τ for: (a) the MNIST dataset versus K for .T = 30s and  . T =
60s and versus T for K = 10 and 20 (b) the Pedestrian dataset versus K for .T = 1s and  .T = 2s 
and versus T for K = 10 and 20
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Fig. 3.9 Validation accuracy 
results HA/HU-Sync for both 
PL and FL approaches for 
MNIST classification with 
.K = 10 and .T = 60s and  
Pedestrian classification with 
.K = 10 and .T = 5s 
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convergence time reductions up to 53% as illustrated in Fig. 3.9. While the goal of 
FL and PL is different for various applications, we compare the performance of both 
to establish scientific rigor. In general, the performance of both HA-FL/PL is similar, 
especially for the MNIST datasets where both schemes have similar number of local 
updates. However, FL does reach many accuracy milestones faster than PL such as 
having a lower convergence time by 50% to reach a validation accuracy of 77% for 
the pedestrian dataset as shown in Fig. 3.9. Nevertheless, both approaches reach a 
similar final validation accuracy for both tasks. The initial speedup achieved by FL 
may directly result from performing more local updates per global update. However, 
recall that FL updates the local model using only a subset of the same local dataset 
which makes it more “deterministic” compared to PL where SGD may be applied by 
shuffling the dataset in between global updates. This implies that the improvements 
offered by more local updates . τ per global cycle may be overshadowed by the more 
“stochastic” nature of HA-PL compared to FL. 

3.6.3 Comparison to Centralized Approaches 

To demonstrate the superiority of MEL in general for resource-constrained wireless 
edge environments, we compare both PL and FL against centralized approaches in 
terms of achievable validation accuracy and communication overhead. Centralized 
approaches imply that the learning task is executed at a single central entity which 
assumes to be an edge server such as a base station. For PL, it will simply mean 
the orchestrator sends all data to the server distributing among its peers. For FL, 
it will involve all K learners transmitting their local dataset to the server. Thus, 
the training phase will comprise three steps: transmission of the data from one 
or more learners to the edge, ML training within a time limit, followed by return 
of the trained model to each learner. Assuming a global cycle time T , the total 
training time is set to 10T for MNIST classification and 20T for pedestrian. The
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Table 3.2 Final accuracy and communication overhead of the HA schemes compared to central-
ized learning 

Environment Dataset K T (s)  PL acc FL acc Cen acc PL over FL over Cen over 

802.11 MNIST 20 12 97.31 % - 94.63 % 39.60 % - 1.25 % 

802.11 MNIST 10 30 97.41 % - 95.35 % 31.46 % - 0.38 % 

802.11 Pedestrian 20 03 81.86 % - 50.00 % 22.78 % - 2.73 % 

802.11 Pedestrian 10 05 80.76 % - 50.00 % 33.05 % - 6.83 % 

Cellular MNIST 10 60 97.41 % 97.40 % 95.27 % 14.69 % 1.47 % 0.02 % 

Cellular Pedestrian 10 05 80.76 % 80.34 % 50.00 % 19.62 % 2.30 % 0.01 % 

Cellular Pedestrian 10 02 80.15 % 80.83 % 50.00 % 42.70 % 4.52 % 0.89 % 

Cellular Pedestrian 20 02 79.38 % 81.98 % 50.00 % 46.03 % 4.74 % 0.79 % 

communication overhead for each learner is .Vk = (tSk + tRk )/tk ∀ k ∈ K which 
is the ratio of the communication to total time. The average overhead is given by 
.1/K

∑K
k=1 Vk . While the experiments are done with the same parameters described 

in Section 3.5.2, the edge server for the cellular environment is assumed to have 
far superior compute capabilities represented by a clock speed of 10GHz. Table 3.2 
shows that the centralized approaches either completely fail or at least provide an 
inferior validation accuracy performance. In contrast, MEL with either FL or PL 
does incur a higher communication overhead cost with frequent model updates. As 
expected, PL has the highest communication overhead due to the additional data 
transfer component. 

3.6.4 Complexity Analysis and Execution Time 

In addition to the time needed for ML model training, the HA-Sync schemes will 
require an additional amount of time for optimization which must be considered. 
Recall that the problem of interest is a non-convex QCLP after relaxation which 
is typically solved using interior point methods whereas the proposed solution for 
HA-Sync relies upon solving a .Kth degree-polynomial. Most polynomial solvers 
use the companion matrix method where the complexity mainly arises from the QR 
factorization needed for diagonalization and can be expressed as . O

(
4/3K3 + K2

)

[34]. In contrast, for a convex QCLP with n quadratic matrices and m quadratic 
constraints, the computational complexity is .O

(
n1/2 [m + n] n2

)
[35] which can be 

expressed as .O
(
[K + 1]1/2

[
2K3 + 5K2 + 4K + 1

])
for our problem. However, 

because the problem is non-convex, the complexity is actually much higher. 
Figure 3.10 better illustrates the complexity in terms of execution time of HA-

PL-Ana, HA-PL-Num, and HU-PL. The optimizations are done on an 8-core Intel 
i7 2.4GHz processor; numerical optimizations were done using the OPTI toolbox 
[25] used for the numerical optimization, whereas MATLAB’s polynomial solver 
were used for HA-PL-Ana. The experiments were repeated 100 times for each
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Fig. 3.10 HA optimization 
algorithm execution time 
comparisons using the 
MNIST dataset for the PL 
scheme versus K for . T = 30
and 60 s 
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configuration of K learners with two different values of .T = 30 and 60 s. As 
expected, the numerical solution with HA-PL-Num incurred the highest execution 
time more than 500% in most cases. Further, decreasing T seemed to have a high 
impact which can be explained by the tightening of the solution space. In contrast, 
the box plot demonstrates doing HA-Sync with the proposed analytical upper 
bounds requires an optimization time comparable to the HU approach. In fact, for up 
to a system of 40 learners, the execution time required is much lower compared to 
HU-PL which has a constant-time complexity as it requires solving a simple linear 
program. Moreover, even though the subsequent increase is exponential, it is on the 
order of milliseconds which is negligible compared to the substantial improvements 
offered in convergence time reductions and validation accuracy improvement. 

3.6.5 Performance with Energy Constraints 

The subsection’s major contribution is to quantify the impact of local energy 
consumption limits .E0

k ∀ k ∈ K joules (J or watt-seconds) per global cycle in 

addition to the time constraint T . This is equivalent to . E
0
k

3.6 milliwatt-hours (mWh). 
For example, a learner that uses up 20 J per global update cycle for 12 cycles will 
consume a total of 66.67mWh. This is handy for real-world comparison as battery 
capacities are rated by their amperage (mAh) and voltage (V) which can easily be 
converted to mWh. Now, consider a smartphone battery rated at 4000mAh and 3.6V 
for a capacity of 14,400mWh. For a learner consuming 20 J per global cycle, after 
12 cycles, . 66.6714,400 ∗ 100 = 0.46% of the battery would have been drained by the 
complete learning process.
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To simulate the impact of different levels of energy availability, we define 
an average energy constraint EJ for all K learners across all global cycles. In 
each global cycle, the local energy consumption limit . E0

k will be drawn from 
.[E − 2.5, E +2.5] J to represent the differences in the available/dedicated energy to 
the learning task by each learner .k ∈ K. We use the set of values . {10, 15, 20, 25}
which corresponds to a battery drainage of .{0.23, 0.35, 0.46, 0.57}%. With respect 
to the other aspects of the simulation setup, we consider a cellular environment 
and the MNIST classification task to test the HA/HU Sync with dual-time/energy 
constraints. All of the remaining relevant parameters are as described in Table 3.1 
in Sect. 3.5. 

Figure 3.11a compares the HA scheme against the HU scheme in terms of the 
achievable number of local updates . τ per global cycle. Clearly, the HA schemes 
provide a higher number of local updates compared to HU with gains up to 
300%. Further, as energy consumption limits are increased, the HU schemes fail 
to show any improvement in the number of local updates. In contrast, the HA 
schemes can offer increasing gains in achievable local updates as T is increased 
as clearly shown by Fig. 3.11b. One reason may be that a higher T gives more 
flexibility in performing the batch size allocation. This behavior is reflected directly 
in the validation accuracy performance as depicted in Figs. 3.11d–g. As the allowed 
average energy consumption is increased from 10 to 15 J per global cycle, there is a 
bump in the performance of HU schemes but then it saturates. In contrast, the HA 
schemes are able to offer about a 0.1% gain in validation accuracy at each global 
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Fig. 3.11 Achievable number of local updates . τ for average energies of 5 to 25 J in steps of 5 J by 
all schemes (a) vs  K for .T = 20s and  (b) vs  T for .K = 20. (c) Validation accuracy progression for 
up-to 12 global updates for .K = 20 for all HA schemes at different levels of energy constraint. HA 
vs HU validation comparison for energy constraint levels of (d) .E =10J, (e) .E =15J, (d) .E =20J 
and (e) .E =25J
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update step each time the average energy consumption is increased by 5 J. With the 
exception of global update 11 which is an outlier, this behavior is corroborated by 
Fig. 3.11c. The major takeaway is that the HA schemes offer the best performance 
timeliness and energy constraints are the most stringent; they also offer the highest 
gains when the constraints are relaxed. 

3.7 Extension of IoMT/H-IoT to EEG Data 

With the increasing acceptance of ML techniques by the medical community 
for image-based diagnostics, attention has now turned to real-time ML-based 
event prediction with H-IoT/IoMT. Almost invariably, most applications of H-IoT 
rely upon multichannel time series data from various sensors. For example, one 
application is fall detection for people with dementia, Alzheimer’s disease (AD), 
or Parkinson’s disease (PD) using accelerometers, motion sensors, and gait sensors 
[36]. In case an inertial measurement unit is used, data comes from three channels 
(pitch, roll, and yaw) as a time series. Another possible application is cardiac event 
detection such as atrial fibrillation [37] from multi-lead electrocardiogram (ECG). 

We will focus our discussion on another exciting application which is real-time 
seizure detection and/or early prediction using wearable electroencephalography 
(EEG) sensors. However, the mathematical formulations and methods discussed 
apply equally to any real-time multichannel time series data. Though offline training 
from benchmark datasets may be suitable for design and development of new 
predictive models and architectures, real-time inference with partial re-training for 
personalization is more suitable for real-world applicability. In practice, offline 
learning from large datasets is suitable for coming up with new models and 
techniques. However, the purpose of using ML for automatic diagnosis of cardiac 
events is better served by applying these models directly or with transfer learning 
at the edge for real-time inference as shown in for atrial fibrillation detection and 
potentially re-training for personalization [38]. Because of their superiority to other 
form of sensors for seizure detection/prediction and better accessibility compared 
to implant-based technologies, epileptic seizure detection/prediction using wearable 
EEG with end-to-end deep learning is an active area of research. Consider a set of 
users wearing long-term wearable wireless EEG monitoring devices co-located in 
a dense urban environment comprising multiple edge servers. This scenario can 
happen in a clinical setting such as a neurology ward with multiple patients of 
epilepsy. Alternatively, it can occur in home care settings where facilities cater to 
specific populations that may have epileptic seizures as a symptom of their disease 
such as cerebral palsy or tuberous sclerosis (TSC). If the people who suffer from 
scenarios are equipped with wearable EEG, one large predictive model can be 
deployed initially but then re-trained partially to personalize for a specific patient. 
Similar strategies are followed at an individual level for implant-based seizure 
control technologies such as responsive neuro-stimulation (RNS) where it takes up 
to 6 months for the device to become effective.
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If we apply this strategy to seizure prediction with wearables, collecting all 
the data from multiple users at the edge, transmitting to the cloud, re-training, 
and deploying the model may not be feasible. It will put an unnecessary load 
on the backhaul networks where upload speeds may be limited and give rise to 
privacy concerns. Recently, leveraging the power of ES and fog nodes training with 
federated learning at the edge with the concept of “trusted edge” in the healthcare 
and biomedical sectors has been proposed [9]. Instead of cloud-based training, the 
predictive model can be co-cooperatively re-trained either fully or partially using 
MEL with associated capable fog nodes. The data can remain locally stored for 
sharing with medical professionals later or discarded depending upon the users’ 
choices. Encryption or distortion techniques may be used to ass another layer of 
privacy [39]. 

3.7.1 Mathematical Formulation for EEG data 

Consider a set of users who have epilepsy and are using wearable EEG along with 
a companion app running on a smartphone that executes the inference model and 
generates a seizure alert. The smartphone serves as the edge device or “learner” 
and uses a 4G base station as the edge server or orchestrator in this scenario. The 
learners will execute the inference model on segments of EEG data and the presence 
or lack of a seizure alert will be the class label for this data. The orchestrator can 
improve the general model by running FL on a set of multiple learners. In contrast, if 
an individual user wants to “personalize” the model to its own data, it can enlist the 
help of trusted edge devices (e.g., laptops, wireless routers, smart home equipment, 
other smartphones, etc.) in the vicinity to act as learners. 

In this scenario, the expression for the model size in (3.7) will change as follows: 

.Bmodel
k = Pm (dkSd + Sm) ∀ k ∈ K (3.41) 

where .Pm accounts for the compression ratio and bit precision, . Sm represents 
the size of the non-trainable part/layers, and the term .dkSd is replaced . Sr , which 
represents the size of the part/layers of the model being re-trained. In addition, 
the time series for each learner .k ∈ K will be collected from a frame of duration 
.T D

k seconds sampled at . FS
k Hz via .NC

k channels. This will mainly impact the PL 
scenario where the expression for the data subset size in (3.6) changes as follows: 

.Bdata
k = dkF

S
k T D

k NC
k Pd ∀ k ∈ K (3.42) 

where . Pd is accounts for the precision/compression ratios. The rest of the model, 
solutions, and algorithm in Sects. 3.2, 3.3, 3.4, and 3.5 can be applied as discussed 
prior. 

This is a very brief description without a detailed discussion of the results. 
However, there are several other innovations possible which though beyond the
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scope of the chapter, we mention here briefly. For example, specific to PL, the 
physical parameters related to the sensors including sampling rates, frame durations, 
and number of channels can also be optimization parameters. Further, the size of 
the model used for re-training can be part of the problem statement. All of this will 
require extensive solutions to the resulting optimization problem and analysis of the 
complexity to guarantee the performance gains. Further, the optimization problem 
itself can be part of the MEL solution with techniques such as distributed deep 
reinforcement learning (DDRL). This will be more in line with the trend of moving 
away from central optimization to distributed optimization. The benefits include 
avoiding a single point of failure, more robustness to injection attacks, and more 
flexibility in ML model training. 
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Appendix 1 

The global model’ loss is denoted by .F(w). Let us assume that this function has the 
following three properties: 

1. .F(w) is convex. 
2. .F(w) is .ρ-Lipschitz: . ‖F(w) − F(w̄)| ≤ ρ|w − w̄|
3. .F(w) is .β-smooth: . ‖∇F(w) − ∇F(w̄)| ≤ β|w − w̄|
Each learner .k ∈ K in HA-Sync performs a total of L updates. Then, the difference 
between the loss at update L and the optimal global model denoted by . w∗ is bounded 
by: 

.F(w[L] − F(w∗) ≤ 1

Gτ [A + B(1 − C)]
(3.43) 

The learning rate is given by . η and we can define a control parameter .φ = 1 − ηβ
2 . 

The local losses are bound by the parameter . ϵ whereas the function . h(τ) = δ
β
[(ηβ+

1)τ −1]−ηδτ . For more details on . δ and . ϵ, the reader is referred to [12]. In general, 
. η is selected such that .0 < ηβ < 1, .ηφ − ρh(τ)

τϵ2
≥ 0, and .(ηβ + 1)τ ≥ ηβτ + 1. 

Consider the case where MEL is not optimized and each global cycle allows each 
learner .k ∈ K to perform the same integer number of local updates . τ . Then, in a 
fixed number of global updates G, MEL will allow for a total of .L = Gτ updates. 
Let us define the constants .A = ηφ + ρδ

ϵ2
, .B = ρδ

βϵ2
, and .C = ηβ +1. Based on these 

definitions and assumptions, we can define the upper bound on the loss as follows:



64 U. Mohammad and F. Saeed

.F(w[L] − F(w∗)) ≤ 1

Gτ [A + B(1 − C)]
(3.44) 

It is observable that .A + B(1 − C) ≥ 0, and further, the number of global updates 
G are fixed. Hence, the bound on the loss will converge to zero as .τ → ∞. 

Appendix 2 

Let us write the KKT optimality conditions for (3.25) as shown  in  (3.45) and (3.51). 
The conditions (3.45) ensures that dataset size of any learner .k ∈ K satisfies (3.27) 
and (3.47) ensures that the bound in (3.27) holds with equality for any learner . k ∈ K
if .λ∗

k ≥ 0. This is significant because strong duality holds for some feasible . τ ∗ when 
strictly speaking, .λ∗

k > 0 ∀ k ∈ K. This means the upper bound will be the optimal 
solution. 

.C2
k τ ∗d∗

k + C1
k d∗

k + C0
k − T ≤ 0, k ∈ K. (3.45) 

α∗
0 , α

∗
k , and λ∗

k ≥ 0 k ∈ K. (3.46) 

λ∗
k

(
C2 

k τ ∗d∗
k + C1 

k d∗
k + C0 

k − T
)

= 0, k  ∈ K. (3.47) 

−α∗
0τ

∗ = 0. (3.48) 

−α∗
k d∗

k = 0 k ∈ K. (3.49) 

K∑

k=1 

d∗
k − d = 0 (3.50) 

. − ∇τ ∗ +
K∑

k=1

λ∗
k∇

(
C2

k τ ∗d∗
k + C1

k d∗
k + C0

k − T
)

+

ν∗∇
(

K∑

k=1

d∗
k − d

)
− α∗

0∇τ ∗ − ∇
(

K∑

k=1

α∗
k d∗

k

)
= 0 (3.51) 

We can then rewrite the bound on . d∗
k in (3.27) as an equality and substitute it 

back in (3.50) to obtain the following relation: 

.d =
K∑

k=1

d∗
k =

K∑

k=1

[
T − C0

k

τ ∗C2
k + C1

k

]
=

K∑

k=1

[
ak

τ ∗ + bk

]
(3.52) 

The expression on the rightmost hand-side has the form of a partial fraction 
expansion of a rational polynomial function of . τ ∗ where .ak, bk ∈ R++. Therefore, 
we can expand (3.52) to the form shown in (3.53).
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. 
a1

τ ∗ + b1
+ a2

τ ∗ + b2
+ · · · + ak

τ ∗ + bk

+ · · · + aK

τ ∗ + bK

=
1

(τ ∗ + b1)(τ ∗ + b2) . . . (τ ∗ + bk) . . . (τ ∗ + bK)
×

[
a1(τ

∗ + b2)(τ
∗ + b3) . . . (τ ∗ + bk) . . . (τ ∗ + bK) +

a2(τ
∗ + b1)(τ

∗ + b3) . . . (τ ∗ + bk) . . . (τ ∗ + bK) + . . . +
ak(τ

∗ + b1)(τ
∗ + b2) . . . (τ ∗ + bk−1)(τ

∗ + bk+1) . . . (τ ∗ + bK)

+ · · · + aK(τ ∗ + b1)(τ
∗ + b2) . . . (τ ∗ + bk) . . . (τ ∗ + bK−1)

]
(3.53) 

Finally, the expanded form can be cleaned up in the form of a rational function 
with respect to . τ ∗, which is equal to the total dataset size d as shown in (3.54). 
Please note that the degrees of the numerator and denominator will be .K −1 and K , 
respectively. Furthermore, the poles of the system will be .−bk , and since .bk ≥ 0, 
the system will be stable. Furthermore, .τ ∗ = −bk is not a feasible solution for the 
problem because it is eliminated by the .τ ≥ 0 constraint. Therefore, we can rewrite 
(3.54) as shown  in  (3.28). By solving this polynomial, we obtain a set of solutions 
for . τ ∗, where one of them is feasible. The problem being non-convex, this feasible 
solution . τ ∗ will constitute the upper bound to the solution of the relaxed problem. 

.d =
∑K

k=1 ak

∏K
l=1
l /=k

(τ ∗ + bl)

∏K
k=1 (τ ∗ + bk)

(3.54) 

As a last step, to ensure that the solution set is feasible, it must be noted that 
according to (3.48) and (3.49), . α∗

0 and .α∗
k ∀ k must be equal to 0. Expanding 

the vanishing gradient condition in (3.51), it can be shown that the following two 
relations can be derived (representing .K + 1 equations): 

.λ∗
kC

2
k τ ∗ + λ∗

kC
1
k + ν∗ = α∗

k , k ∈ K (3.55) 

. − 1 +
K∑

k=1

λ∗
kC

2
k d∗

k = α∗
0 (3.56) 

By setting .α∗
0 = 0 and .α∗

k = 0 for .k ∈ K, we can write . λ∗
k in terms of . ν∗ as shown 

in (3.57) and substitute the resulting expression in (3.56) to find . ν∗ using the values 
of . d∗

k and . τ ∗ obtained from (3.27) and (3.28), respectively. 

.λ∗
k = − ν∗

C2
k τ ∗ + C1

k

, k ∈ K (3.57)
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.ν∗ = − 1
∑K

k=1
C2

k d∗
k

C2
k τ∗+C1

k

(3.58) 

The values of . λ∗
k for .k ∈ K can be obtained by back-substitution of . ν∗ in (3.57). As 

one can observe, as long as there exists a . τ ∗ greater than zero, . ν∗ will be negative 
and hence, . λ∗

k for .k ∈ K will be strictly greater than zero. Hence, as long as there 
exists a .τ ∗ > 0 in the feasible set such that .d∗

k > 0, there will exist a set of .λ∗
k > 0 for 

.k ∈ K. This fact can be used to verify the feasibility of the solution. This step is also 
helpful when there may exist multiple values of . τ greater than zero for choosing the 
optimal . τ ∗. Extensive simulations presented in Sect. 3.5 demonstrated that there was 
no optimality gap between the analytical upper bounds and the numerical solution. 

Appendix 3 

Recall that the optimization variables are given by .x = [τ d1 d2 . . . dk . . . dK ]T . 
Then, the relaxed problem in (3.25) can be rewritten in the standard form of a QCQP 
as follows: 

min 
x 

xT Fx + fT x + f0 (3.59) 

s.t. xT Pkx + pT 
k x + p0 

k ≤ 0, ∀k ∈ K (3.59a) 

xT Qkx + qT 
k x + q0 

k ≤ 0, ∀k ∈ K (3.59b) 

xT Ax + aT x + a0 ≤ 0 (3.59c) 

xT Āx + āT x + ā0 ≤ 0 (3.59d) 

xT Ux + UT x + u0 ≤ 0 (3.59e) 

xT Vkx + vT 
k x + v0 k ≤ 0, ∀k ∈ K (3.59f) 

The time and energy constraints are defined by (3.59a) and (3.59b), respectively. 
Constraints (3.59c) and (3.59d) are two inequality constraints used to simplify the 
equality constraint of total dataset size allocation. The nonnegative constraints on . τ

and . dk are given in (3.59e) and (3.59f), respectively. The expressions for problem 
definition and each constraint have three terms each: a quadratic term, a linear term, 
and a constant term. The constant terms.p0

k = C0
k − T and . q0

k = G0
k − E0

k ∀ k ∈ K
and are associated with the time and energy constraints, respectively. The remaining 
constant terms .a0 = −d , .āo = d and .v0k = dl,∀ k whereas .u0 = 0 and .f0 = 0. 
In contrast, the coefficients associated with the linear terms in the objective (. f) and
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constraints (. pk , . qk , . a, . ̄a, . u, and . vk) can be represented by the following set of 
vectors: 

. f =
[
−1 0 0 . . . C1

k . . . 0
]T

(3.60) 

pk =
[
0 0 0  . . .  C1 

k . . .  0
]T 

,∀ k 

qk =
[
0 0 0  . . .  G1 

k . . .  0
]T 

,∀ k 

a = [0 1 1  . . .  1 . . .  1]T 

ā = [0 − 1 − 1 . . .  − 1 . . .  − 1]T 

u = [−1 0 0  . . .  0 . . .  0]T 

vk = [0 0 0  . . .  − 1 . . .  0]T ,∀ k 

In general, the coefficients associated with the quadratic terms are . (K + 1) ×
(K + 1) matrices. Because this is a QCLP, the quadratic term in the objective is 
.0(K+1)×(K+1), a .(K +1)× (K +1) zero matrix. The coefficients associated with the 
time and energy constraints, . Pk and . Qk , respectively, can be described as follows: 

.Pk(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5C2
k , if

i = 1 & j = k + 1

i = k + 1 & j = 1

0, otherwise

(3.61) 

.Qk(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5G2
k, if

i = 1 & j = k + 1

i = k + 1 & j = 1

0, otherwise

(3.62) 

The quadratic coefficients of the remaining constraints . A, . Ā, . U and . Vk are all 
.0(K+1)×(K+1). We can now define the functions .F2(𝚪), .f1(𝚪) and .f0(𝚪) as [26]: 

.F2(𝚪) =
K∑

k=1

λkPk + γkQk (3.63) 

.f1(𝚪) =
K∑

k=1

(λkpk + γkqk + νkvk) + αa + ᾱā + ωu (3.64) 

.f0(𝚪) =
K∑

k=1

(
λkp

0
k + γkq

0
k + νkv

0
k

)
+ αa0 + ᾱā0 (3.65)
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