
Chapter 3
Heterogeneity Aware Distributed
Machine Learning at the Wireless Edge
for Health IoT Applications: An EEG
Data Case Study

Umair Mohammad and Fahad Saeed

3.1 Introduction and Motivation

The culminated amount of electronic data generated each day is equal to three
hundred billion gigabytes. A significant chunk of this data comes from user
equipment (UE) including but not limited to smartphones, wellness devices, traffic
cameras, autonomous connected vehicles, unmanned aerial vehicles (UAVs), and
augmented reality equipment – collectively categorized under the umbrella of
internet of things (IoT). Increasingly, to enable effective services, health devices
– including clinical and wellness devices – form part of the IoT networks which
are expected to exceed 25 billion devices connected to the internet by 2030 [1].
Forecasts by Statista show that the industrial IoT market which was worth $285
billion USD in 2017 will almost double in 5 years to $540 billion USD. Figure 3.1
charts this exponential growth and provides statistics on how various industries grew
over a 5-year period from 2017 to 2022. The healthcare devices market share will
reach $200 billion USD as shown in Fig. 3.1.

With increasing number of devices, it is estimated that more than 73.1 zettabytes
(.∼1021) of data will be generated from these devices [1] by 2025. To enable
useful scientific, clinical, or commercial value, much of the data analytics depend
on machine learning (ML) techniques. These techniques include traditional ML
such as regression (linear and logistic), support vector machines (SVM), neural
networks (NN) and deep learning (DL) including the deep NN (DNN), convo-
lutional NN (CNN), the residual neural net (ResNet), and Transformers, among
others. Most of these techniques solve an underlying unconstrained optimization
problem using iterative approaches such as the gradient descent (GD). Because these

U. Mohammad · F. Saeed ()
Knight Foundation School of Computing and Information Sciences, Florida International
University, Miami, FL, USA
e-mail: umohamma@fiu.edu; fsaeed@fiu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. H. Amini (ed.), Distributed Machine Learning and Computing, Big and Integrated
Artificial Intelligence 2, https://doi.org/10.1007/978-3-031-57567-9_3

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57567-9protect T1	extunderscore 3&domain=pdf

 885 56845
a 885 56845 a

mailto:umohamma@fiu.edu
mailto:umohamma@fiu.edu

 9279 56845 a 9279 56845 a

mailto:fsaeed@fiu.edu
mailto:fsaeed@fiu.edu
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3
https://doi.org/10.1007/978-3-031-57567-9_3

34 U. Mohammad and F. Saeed

Fig. 3.1 Edge computing market share forecast of various industries from 2023 to 2028. (Data
was taken from [3] for healthcare and [4] for other applications). As clearly observable, two of
the largest industries include smart transportation and consumer with healthcare a distant fifth.
However, over 5 years, healthcare clearly takes over other sectors to become the joint second
largest revenue generator

iterative approaches can be computationally exhaustive for single processor devices,
distributed machine learning (DML) approaches have been used. Mostly, offline
training with DML is done using performance computing (HPC) with clusters
of graphical processing units (GPUs) and CPUs. Even for inference at the edge,
cloud-based approaches are used where the collected data from multiple nodes
is transferred to a central cloud for inference or re-training. However, due to the
load on backhaul links and rising privacy concerns, the trend is moving toward
inference at the edge along with training and model updates. This has led to the
development of the paradigm of federated learning (FL) [2] which supports the
cooperative training of ML models at the edge without the involvement of cloud
servers.

The goal of this chapter is to promote a generic framework for centrally
optimized DML at the edge called mobile edge learning (MEL) with a focus on
healthcare applications. The MEL paradigm fully encompasses FL and is also
alternatively known in the literature as “Edge Artificial Intelligence” (Edge AI)
or “federated learning (FL) at the resource-constrained edge.” MEL supports both
parallelized learning (PL) and FL which separates it from other approaches. In PL,
edge devices (hereafter: “learners”) distribute their data to trusted devices within the
edge network to update the ML model for a specific task. In contrast, each learner
owns their own dataset in FL which is more suitable for similar applications but
under different conditions and requirements.

While edge analytics and edge AI (or edge intelligence, EI for short) may not
completely replace cloud, it has significantly changed how intelligent IoT systems
operate [5]. Advantages of EI include reduced communication costs, low storage
requirements as most data can be discarded, and enhanced privacy and security

3 Machine Learning at the Wireless Edge 35

for the customers. It is expected that MEL will play a critical role in providing
some of these features. Though there are several applications such as self-driving
vehicles [6] and smart cities [7], one of the most interesting applications is health-
IoT (H-IoT) or the internet of medical things (IoMT) [8]. Recent works cite FL
as having a key role to play in IoMT/H-IoT analytics [9, 10]. There are several
applications where real-time decision-making can either significantly enhance the
quality of life or save lives. Model training with MEL can significantly improve the
performance of such technologies. For example, MEL can be useful when predicting
cardiac events by applying ML to data from a wearable electrocardiogram (ECG) or
for seizure detection or prediction from a wearable electroencephalograph (EEG).
While techniques presented in the next sections apply to MEL broadly, we will refer
to H-IoT applications wherever applicable.

The rest of the chapter is organized as follows. We begin by introducing the
general MEL model in Sect. 3.2. Section 3.3 then discusses synchronous MEL with
only timeliness requirements. Section 3.4 introduces additional energy consumption
limits. Detailed implementation details follow in Sect. 3.5 followed by results and
discussions in Sect. 3.6. Lastly, Sect. 3.7 expands more on the H-IoT applications
and provides a mathematical roadmap on how MEL can be tailored for H-IoT.

3.2 System Model and Parameters

Machine learning is the ability of machines (computers) to make decisions using
prior data without being explicitly programmed. ML can be supervised when
labeled data is available, or unsupervised in the absence of the data labels. In
either case, the ML model must be trained. For most ML techniques, the model
parameters are updated using an iterative optimization procedure based on a
predefined loss/cost function. In supervised learning, the trained model is then
evaluated in the validation/testing phase by generating an output without training on
the validation/test dataset. The final output can be continuous or discrete depending
upon the type of the task.

Let us consider a dataset . D comprising a total of d samples. Each data sample
.Dn for .n = 1, . . . , d that has . F features is represented by a feature that can be
denoted by . xj where .j = 1, . . . ,F. The set of features belonging to data sample
number n can be denoted by .xn = {x1, . . . , xj , . . . , xF}. These features serve as
the ML model input and there may be a predefined output or target given by . yn.
The objective is to find a set of model parameters . w that minimize a loss function
.F (xn, yn,w). If we represent the loss as .Fn (w) for short because . xn and . yn are
known, the total loss is given by:

.F(w) = 1

d

d∑

n=1

Fn (w) (3.1)

36 U. Mohammad and F. Saeed

This optimization is typically done using iterative approaches such as the gradient
descent (GD) because an analytical solution is not available. Then, at any discrete
time-step l, for .l = 1, . . . , L, the model is updated as follows:

.w[l] = w[l − 1] − η∇F (w[l − 1]) (3.2)

The learning rate represented by . η is usually set on the interval .(0, 1) and influences
the convergence rate and the final accuracy. This process is iteratively applied
sample by sample or batch by batch as in stochastic GD (SGD) [11] until the
whole dataset is covered. Multiple epochs are performed until a stopping criterion
is reached.

3.2.1 General Distributed Machine Learning

Many ML and DL techniques, including regression, support vector machine (SVM),
and neural networks (NN), are built on iterative gradient-based learning. Distributed
ML (DML) has been proposed to reduce the load on one processor due to
intense compute requirements of such iterative approaches. One approach with
data parallelism (DP) is where a central node distributes a large dataset to multiple
other nodes to train local models. The central node maintains a global model and
performs frequent global updates to maintain an optimal global model. Assume
there is a central parameter server (referred to as the orchestrator hereafter) that
initiates the DML process on a set of .K = {1, . . . , k, . . . , K} learners. Each learner
k updates the local model using a batch of the data . Dk of size . dk (which may be
locally owned or received by the orchestrator). After initializing a global model
and from then on, after every global cycle, the orchestrator will send the global
model . w and possibly . dk samples to each learner .k ∈ K which performs multiple
. τk updates of the local model . wk in parallel. Then, the orchestrator collects all
local models for global aggregation. One such cycle can be called the global update
cycle. Figure 3.3 illustrates one such cycle. These cycles repeat until the orchestrator
reaches a stopping criteria such as a achieving desired validation loss, depletion of
resources, or exceeding the time limit dedicated to the learning task.

.wk[l] = wk[l − 1] − η∇Fk(wk[l − 1]) (3.3)

The local model parameter set at learner k is given by . wk , the local loss is given
by .Fk(.), . η is the learning rate, and the gradient operation is denoted by . ∇. The
local loss .Fk ∀ k ∈ K can be calculated using the local dataset . Dk of size . dk in the
following way [12]:

.Fk(wk) = 1

dk

dk∑

n=1

Fn(wk) (3.4)

3 Machine Learning at the Wireless Edge 37

Fig. 3.2 Illustration of the
DML process with DP and
synchronous global updates

The global model can be obtained by aggregating the local models by applying
an aggregation mechanism. One such method is the following [12]:

.w = 1

d

K∑

k=1

dkwk (3.5)

If the local updates are synchronized, then the global aggregation occurs after
.τk = τ ∀k ∈ K time-steps, whereas in the asynchronous case, . τk may differ for
each learner. The orchestrator may perform multiple global cycles until a stopping
criterion is reached (e.g., good performance or resource depletion). This process is
summarized in Fig. 3.2.

3.2.2 Transition to Wireless MEL

Let us transition the above described DML system to wireless MEL where the
learners have heterogeneous communication capabilities. For example, the devices
can range from power laptops to smartphones with medium-sized processors to
smart watches with limited capabilities. Consider an MEL system with a set of
learners .K = {1, . . . , k, . . . , K} as depicted in Fig. 3.3. Each learner . k ∈ K
updates the local model . τk times on a batch of size . dk in every global update.
The data/model communication occurs on wireless channel defined by gain .hkO

38 U. Mohammad and F. Saeed

Fig. 3.3 System model of an MEL setting. Learners can be of different types including a wireless
wearable EEG (e.g., learner 1), a microcontroller (e.g., learner 2), wearable ECG (learner 3), etc.
Each learner performs . τk local model updates in every global cycle on a dataset of size .dk ∀ k ∈ K.
It has a local processor with clock speed . fk and a channel to the orchestrator represented by gain
.hkO ∀ k ∈ K. Both respectively define the computation and communication capability of each
learner .k ∈ K which are heterogeneous

which can drastically vary spatially (among devices) and temporally (over time
across multiple global updates). In contrast, in DML with HPC or wired nodes,
resources are more homogeneous and less limited such that .τk = 1 which
converges to the centralized case. To quantify this heterogeneity, we will relate the
communication/computation parameters as well as the ML model specifics to each
learner’s time and energy consumption.

Let us recall the two closely related but distinct scenarios for MEL: federated
learning (FL) and parallelized learning (PL). In FL, the learner generates its own
data but cannot transfer it to a central cloud or other peers due to certain constraints
(mainly privacy but also potentially bandwidth limitation [13]). On the other hand,
the PL scenario usually involves a main node, which may be the edge server or one
of the end devices. This edge server/end device parallelizes the learning process
over its local dataset on multiple cores/nodes due to one or more reasons (e.g.,
limited main node resources, faster processing, lower energy consumption) [14]. In
either case, the learning process cycles between a central orchestrator distributing
the global model at the beginning of each cycle, learners updating the local model
on their individual datasets, the orchestrator collecting the local models, and finally,
performing the global aggregation until a stopping criterion is reached. The only
difference is that in PL, the orchestrator also distributes the data subsets along
with the global model at the start of each global cycle. Figure 3.4 illustrates the
differences between both approaches. Clearly, PL fully encompasses FL, which
will be reflected in the mathematical derivations later, but only adds to it the batch

3 Machine Learning at the Wireless Edge 39

Fig. 3.4 Illustration of the
differences between FL and
PL, both paradigms that are
part of MEL

transfer component from the orchestrator to the learners. We will therefore mainly
formulate the problems with respect to PL but indicate the minor changes applicable
to FL whenever necessary.

The goal is to minimize the local loss function [15]. The total size of all batches
is denoted by .d = ∑K

k=1 dk , which is usually preset by the orchestrator O given
its computational capabilities, the desired accuracy, and the time/energy constraints
of the training/learning process. The number of local iterations or local updates run
by learners on their allocated batch is denoted by . τk . For the synchronous case,
.τk = τ ∀ k ∈ K, whereas in asynchronous task allocation, each learner can perform
a different number of . τk local iterations.

In addition to the two approaches, two key aspects of the MEL process are the
expected task completion time and the energy consumption per learner .k ∈ K.
In this chapter, we will consider both time and energy constraints in our model
since both constraints are useful in the context of health and wellness IoT. There
are multiple variables that can impact the time and energy consumption in MEL,
whereas some of these may also impact the accuracy. For example, the number of
local updates will directly impact the execution time and the dataset size will impact
both the execution time and the transmission time. If MP is applied, dataset size may
impact the completion time in both FL and PL, whereas with DP, it will only impact
in PL. A smaller batch size may allow for more local updates which may improve
accuracy because typically, in SGD, the loss decreases as the number of iterations
are increased. However, if the dataset size is too small, that may also adversely
affect the accuracy. Other variables that may impact the local completion time and
energy consumption include the transmission power, local computational power,
and the complexity of the ML model. Whereas these components may not be of
significant influence when DL is executed over controlled wired and infrastructural
servers, their high heterogeneity can tremendously impact the performance of DL
when applied in wireless and mobile edge environments.

40 U. Mohammad and F. Saeed

As in health and wellness devices specifically that require some sort of mitigation
steps, the orchestrator will demand the results within preset duration within which
all of these four steps should be completed. In previous works, it has been assumed
that only devices that are charging or fully charged will take part in MEL. However,
for most health devices that require real-time continuous monitoring, these devices
or learners in MEL may not be fully charged or on direct power and may have a
limit on the amount of battery power they are willing to drain. To this end, in the
following two subsections, we define the time taken and the energy consumed by
one learner .k ∈ K, respectively, to complete the MEL process.

3.2.2.1 Relationship to Completion Time and Energy Consumption

In the following paragraphs, we will relate these parameters for user k to both its
local time and energy consumption for one global cycle. The orchestrator performs
the aggregation of the parameters only once after all learners send back their result
within the global update cycle after doing .τk ∀ k local updates. To summarize, the
global update process in MEL occurs in periodic cycles that we will refer to as the
global update cycles. This process should include the following phases:

1. The orchestrator transmits global model . w and dataset of size . dk to each learner
.k ∈ K (in the common FL, only . w is transmitted).

2. Each learner k computes . τk local model updates.
3. Each learner returns the local model .wk ∀ k ∈ K to the orchestrator.
4. The orchestrator performs global aggregation is defined in (3.5).

Consider that . dk data samples can be expressed in .Bdata
k bits as follows:

.Bdata
k = dkFPd (3.6)

where . F is the feature vector size and . Pd is a factor that accounts for the precision
and compression ratio. The size of the local model .wk ∀ k in bits is denoted by
.Bmodel

k can be expressed as:

.Bmodel
k = Pm (dkSd + Sm) (3.7)

where .Pm is the model bit precision or compression ratio. This size consists of
two parts, the constant part specific to the model architecture described by . Sm and
a dynamic part . Sd dependent upon the dataset size which can be used to support
model parallelism (MP). Please note that the aggregation mechanism described in
(3.5) cannot be employed with MP.

At the start of each global cycle, the orchestrator sends the optimal global model
of size .Bmodel

k bits and dataset of size .Bdata
k bits (in FL, .Bdata

k = 0). We assume
communication occurs over ideal binary symmetric orthogonal channels without
interference with channel bandwidth W , gain . hkO , and noise spectral density . N0.

3 Machine Learning at the Wireless Edge 41

Assuming a transmission power of .PkO , the time .tSk ∀ k ∈ K taken to complete the
first step can be given by:

.tSk = dkFPd + Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) (3.8)

The total computations . Xk required for one local update by each learner . k ∈ K
is given by:

.Xk = dkCm (3.9)

where .Cm is the computational complexity of the model. The time . tCk ∀ k ∈ K
needed to perform one local update is:

.tCk = Xk

fk

= dkCm

fk

(3.10)

where . fk is each learner k’s local processor frequency dedicated to the DL task. The
time for the second step will be .τk × tCk ∀ k ∈ K. Next, the time taken for the third
step .tRk ∀ k ∈ K to send the updated local model to the orchestrator can be described
as:

.tRk = Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) (3.11)

The time for the last stage is negligible compared to the first three stages due to
it being simple aggregation and use of efficient over-the-air approaches. Thus, the
global cycle time, which is the total time .tk ∀ k ∈ K taken by learner k to complete
the first three processes of MEL, is equal to:

. tk = tSk + τkt
C
k + tRk

= dkFPd + 2Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) + τk

dkCm

fk

(3.12)

Given the above-described MEL model, each learner k consumes energy when
performing the . τk local model updates and when transmitting the local model . wk

to the orchestrator. For the time being, we do not consider the energy consumed by
the orchestrator because it will have a negligible impact on learner k, especially if
the orchestrator is an edge server connected to a main supply. Given the processor
speed of . fk in GHz, the energy .eC

k ∀ k ∈ K consumed to perform one local update
on a dataset of size . dk is given by [16]:

.eC
k = μXkfk

ν−1 = μdkCmfk
ζ−1, k ∈ K (3.13)

42 U. Mohammad and F. Saeed

where . μ is the onboard chip capacitance (typically .10−9 ∼ 10−12 F) and . ν = 2
[16]. The energy .eR

k ∀ k ∈ K consumed by learner k to send the most up-to-date
local model is:

.eR
k = PkOBmodel

k

Rk

= Pm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) , k ∈ K (3.14)

The total energy .ek ∀ k ∈ K consumed in one global update cycle can be given
by:

. ek = τke
C
k + eR

k

= PkOPm (dkSd + Sm)

W log2
(
1 + Pkohko

N0

) + τkdkμCmfk
ζ−1 (3.15)

3.2.3 Problem Formulation

It is clear that both . tk and .ek ∀ k ∈ K depend upon a number of parameters including
the number of local updates . τk , the local dataset size . dk , transmission power . Pko,
model size . Sm, model computational complexity . Cm, etc. Some of these will be
preset by the orchestrator with DL model selection such as . Sm and . Cm, whereas
others may depend upon the wireless communication protocol (.PkO,HkO,W) or
the device type (e.g., . fk). However, .τk , dk , Pko ∀ k ∈ K can be optimized or
controlled for best use of the resources. We limit our discussion to the optimization
of these variables though other works [17–19] focus on optimizing the wireless
communication. As discussed earlier, previous works have focused on optimizing
. τk’s [12, 15, 20, 21].

However, the impact of dataset size .dk ∀ k ∈ K allocation and the PL scenario
have never been studied, which are covered in this chapter. To this end, we will
study the joint impact of . τk and . dk on resource consumption in the form of time and
energy and try to optimize them such that it enhances ML model performance.

To make things more compact, we rewrite the expressions of .tk ∀ k ∈ K in (3.12)
as a function of . τk and . dk as follows:

.tk = C2
k τkdk + C1

k dk + C0
k (3.16)

where . C2
k , . C

1
k , and . C

1
k represent the quadratic, linear, and constant coefficients as

follows:

.C2
k = Cm

fk

. (3.17)

3 Machine Learning at the Wireless Edge 43

C1
k =

FPd + 2PmSd

W log2
(
1 + Pkohko

N0

) . (3.18)

C0
k =

2PmSm

W log2
(
1 + Pkohko

N0

) (3.19)

We can also rewrite the expression for .ek ∀ k ∈ K in (3.15) as follows:

.ek = G2
kτkdk + G1

kdk + G0
k (3.20)

The quadratic, linear, and constant coefficients are denoted by . G2
k , . G

1
k , and . G

1
k ,

respectively, in the following way:

.G2
k = μCmfk

ζ−1 (3.21)

.G1
k = Pk0PmSd

W log2
(
1 + Pkohko

N0

) (3.22)

.G0
k = Pk0PmSm

W log2
(
1 + Pkohko

N0

) (3.23)

It is clear that the expressions in (3.16) and (3.21) are quadratic with respect
to . τk and .dk∀ k ∈ K. Though the significance of this will be outlined later, it is
worth noting the complete heterogeneity aware (HA) MEL system model can be
described by these equations. With respect to optimization, we can either go for the
synchronous implementation .τk = τ ∀ k ∈ K (HA-Sync) or the semi-synchronous
with different values for . τk (HA-Asyn). Further, we can either consider only time
constraints or dual-time and energy constraints. This gives rise to four possible
scenarios:

1. HA-Sync with time constraints only
2. HA-Asyn with time constraints only
3. HA-Sync with dual-time and energy constraints
4. HA-Asyn with dual-time and energy constraints

In this chapter, we will only focus on HA-Sync (scenarios 1 and 3) and refer readers
to [22] for more details on HA-Asyn. We will begin with HA-Sync with only time
constraints and then move on to dual-time and energy constraints.

44 U. Mohammad and F. Saeed

3.3 Synchronous MEL with Only Time Constraints

In this section, we discuss the first scenario where all learners perform a syn-
chronous number of local updates in every global update.1 In Sect. 3.2.3, we
introduced the MEL system model parameters and how they relate to the time
consumed in each global cycle by each learner .tk ∀k ∈ K. In synchronous MEL, the
orchestrator sets an upper limit T such that .tk ≤ T ∀k ∈ K and the number of local
updates are synchronized such that .τk = τ ∀k ∈ K.

3.3.1 Formulation

The goal is to minimize the loss of the MEL model. In general, the loss of GD-
based optimization methods approaches a minimum as the learning iterations are
increased. For synchronous DML, this is equivalent to maximizing the number of
local updates . τ given a fixed number of global updates as demonstrated by the
following convergence proof.

Lemma 1 Let .w[L] denote the global model at update step L and . w∗ denote the
optimal global model. For simplicity, assume that . τ local updates are performed
in each global update for a fixed number of global updates G such that .L = Gτ .
Then, the difference between the loss at update step L and the global optimal loss
.
[
F(w[L]) − F(w∗)

] → 0 as .τ → ∞.
This is a factual error as initially, the authors considered presenting both, the

synchronous and asynchronous models. However, due to space limitations, the
authors only presented the synchronous model. Unfortunately, while making the
appropriate changes, the Lemma related to the synchronous version was removed
erroneously whereas it is the Lemma related to the asynchronous version which
should have actually been removed. In contrast, the proof related to Lemma of
the synchronous version was retained in Appendix 1 while the proof related to the
Lemma of the asynchronous version was correctly removed via the elimination of
Appendix 4.

Thus, maximizing the MEL accuracy is achieved by maximizing . τ . Therefore,
the problem can be expressed as the following optimization program:

max
τ,dk ∀ k∈K

τ (3.24)

s.t. C2
k τdk + C1

k dk + C0
k ≤ T , ∀k ∈ K (3.24a)

1 This section is part of two papers: “Adaptive Task Allocation for Mobile Edge Learning”
published in proceedings of the IEEE WCNCW 2019 [23] and “Dynamic Task Allocation for
Mobile Edge Learning” published in IEEE Transactions on Mobile Computing.

3 Machine Learning at the Wireless Edge 45

K∑

k=1

dk = d (3.24b)

τ ∈ Z+ (3.24c)

dk ∈ Z+, k ∈ K (3.24d)

Constraint (3.24a) guarantees that .tk ≤ T .∀ k ∈ K. Constraint (3.24b) ensures that
the whole dataset is covered across the set of all learners. Constraints (3.24c) and
(3.24d) are simply nonnegative integer constraints on the optimization variables . τ
and . dk which, recall, are quadratically related in constraint (3.24a). Consequently,
the problem can be expressed as a quadratically constrained integer linear program
(QCILP). This formulation applies to both FL and PL, with the exception of the
value of constant . C1

k which does not impact the solution approach.

3.3.2 Solution

Because QCILP are NP-hard [24] in general and heuristic polynomial time
approaches incur a high computational cost, we can at least relax the integer
constraints in (3.24) and (3.24a). The relaxed problem is given by:

max
τ,dk ∀ k∈K

τ (3.25a)

s.t. C2
k τdk + C1

k dk + C0
k ≤ T , k ∈ K (3.25b)

K∑

k=1

dk = d (3.25c)

τ ≥ 0 (3.25d)

dk ≥ 0, k ∈ K (3.25e)

The resulting program in (3.25) is quadratically constrained linear program (QCLP)
which can be efficiently solved using research/commercially available solvers such
as OPTI [25]. To obtain the suboptimal integer . τ ∗ and .d∗

k ∀ k ∈ K, we can floor the
obtained real values and cases where either .τ = 0 or one more of .dk = 0 for any
.k ∈ K represent the infeasibility of MEL.

However, these solvers are still too computationally complex. Notice that the
associated matrix of each quadratic constraint in (3.25b) is symmetric. These
matrices will have one positive and one negative eigenvalue each which results in
the problem being non-convex. This leads to the inefficiency and the inability to
derive analytical solutions. However, we can derive a more efficient solution using

46 U. Mohammad and F. Saeed

Lagrangian analysis and the Karush-Kuhn-Tucker (KKT) conditions to obtain upper
bounds on the optimal optimization variables . τ and .dk ∀ k ∈ K.

The Lagrangian function of (3.25) can be written as:

. L (x, λ, ν, α) = −τ +
K∑

k=1

λk

(
C2

k τdk + C1
k dk + C0

k − T
)

+

ν

(
K∑

k=1

dk − d

)
− α0τ −

K∑

k=1

αkdk (3.26)

where .λk ∀ k ∈ K, . ν, and . α0/.αk ∀ k ∈ K are the Lagrangian multipliers associated
with constraints (3.25b), (3.25c), (3.25d), and (3.25e), respectively. Using the KKT
conditions, Theorem 1 introduces bounds on . τ ∗ and .d∗

k ∀ k ∈ K.
Theorem 1 The optimal value of the batch size .d∗

k ∀ allocated to each learner
.k ∈ K satisfies the following bound:

.d∗
k ≤ T − C0

k

τ ∗C2
k + C1

k

∀ k ∈ K (3.27)

Further, the analytical upper bound on the optimization variable . τ belongs to the
solution set of the polynomial equation:

.d

K∏

k=1

(
τ ∗ + bk

) −
K∑

k=1

ak

K∏

l=1
l /=k

(
τ ∗ + bl

) = 0 (3.28)

where .r0k = C0
k − T , .ak = − r0k

C2
k

, and .bk = C1
k

C2
k

, . ∀ k ∈ K.

Proof Please refer to “Appendix 2” for the proof. ⨅⨆

3.4 Synchronous MEL with Dual-Time and Energy
Constraints

The solutions in the previous section apply to MEL when optimal task allocation
needs to be done only under time constraints. However, edge devices, especially
UEs, are usually battery operated which means energy is a premium resource.
Though most FL literature assumes only devices being charged or under direct
power supply will participate in MEL, this may not always be feasible. Therefore,
we study the same HA-Sync model but this time under dual-time and energy
constraints.

3 Machine Learning at the Wireless Edge 47

3.4.1 Formulation

Recall the MEL model described in Sect. 3.3 where the time taken . tk and the energy
consumed .ek ∀ k ∈ K for one global update cycle is given by (3.16) and (3.21),
respectively. We have established that local model updates per global update can
improve validation performance. However, now the objective is to perform batch
size (. dk) allocation such that the number of local updates . τ per global update is
maximized without violating the global cycle time T and for each learner .k ∈ K,
without exceeding the local energy consumption limit defined as . E0

k J of energy
per global cycle. (Notice that for synchronous MEL, .τk = τ , and the optimization
variables are .τ, dk ∀ k ∈ K.) We can rewrite the time and energy constraints as
respectively shown in (3.29) and (3.30).

.tk = C2
k dkτ + C1

k dk + C0
k ≤ T ∀ k ∈ K (3.29)

.ek = G2
kdkτ + G1

kdk + G0
k ≤ E0

k ∀ k ∈ K (3.30)

The coefficients . C2
k , . C

1
k , and . C

0
k , related to the completion time . tk , and the

coefficients . G2
k , . G

1
k , and . G

0
k , related to the energy consumption .ek ∀ k ∈ K, have

been described in Section 3.2.3.
Since the relationship between the optimization variables is quadratic in both

the time and energy constraints, and the variables are integers, the problem will
still be an NP-hard QCILP. Once again, we can relax the integer constraints on
the variables. While the problem still presents as a non-convex QCLP but allows
for obtaining suboptimal solutions in polynomial time, the relaxed problem can be
expressed as the following optimization program:

max
τ,dk ∀ k

τ (3.31)

s.t. C2
k dkτ + C1

k dk + C0
k ≤ T , ∀k ∈ K (3.31a)

G2
kdkτ + G1

kdk + G0
k ≤ E0

k , ∀k ∈ K (3.31b)

K∑

k=1

dk = d (3.31c)

τ ≥ 0 (3.31d)

dk ≥ dl, ∀k ∈ K (3.31e)

Constraints (3.31) and (3.31a) guarantee that the MEL process does not violate
the limits on the global cycle time and local energy consumption, respectively.
Constraint (3.31c) ensures the utilization of the complete dataset of size d.

48 U. Mohammad and F. Saeed

Constraints (3.31d) and (3.31e) ensure that . τ is nonnegative and the batch sizes
. dk’s are nonnegative integers . ∀k. This ensures that some learners are not completely
eliminated or have too few data samples which may also affect MEL performance.

3.4.2 Proposed Solution

The problem in (3.31) can be solved numerically using commercial solvers that may
employ approaches such as interior point methods, branch and bound techniques,
heuristics, etc. However, we propose a more efficient analytical-numerical solution
based on a relaxation approach. Based on the suggest-and-improve (SAI) method
[26], we will derive upper bounds on the optimal variables using Lagrangian
analysis and then use a local optimizer (coordinate descent) to reach the optimal
solution.

The equality constraint in (3.31c) can be written as the following two inequality
constraints: .

∑K
k=1 dk − d ≤ 0 and .−∑K

k=1 dk + d ≤ 0. In that case, the Lagrangian
function of the relaxed problem is given by:

. L (x,λ, 𝚪, α, ᾱ, ω, ν) = −τ+
K∑

k=1

λk

(
C2

k τdk + C1
k dk + C0

k − T
)

+
K∑

k=1

γk

(
G2

kτdk + G1
kdk + G0

k − E0
k

)
+

α

(
K∑

k=1

dk − d

)
− ᾱ

(
K∑

k=1

dk − d

)
− ωτ −

K∑

k=1

νkdk (3.32)

The Lagrange multipliers associated with the global cycle time and local energy
constraints are given by . λk and . γk , respectively, .∀ k ∈ K. The Lagrange multipliers
related to the two total task size constraint inequalities are given by . α/. ̄α, and . ω/. νk

.k ∈ K are the Lagrangian multipliers associated with the nonnegative constraints of
both sets of optimization variables . τ and . dk , respectively.

Let us denote the set of optimization variables by . x = [τ d1 d2 . . . dk . . . dK]T

and the set of Lagrange multipliers by .𝚪 = [λ, 𝚪, α, ᾱ, ω, ν]T , where . λ =
[λ1 . . . λk . . . λK]T , .γ = [γ1 . . . γk . . . γK]T , and .ν = [ν1 . . . νk . . . νK]T .
Theorem 2 The set of optimal Lagrange multipliers . 𝚪∗ can be obtained by solving
the dual problem in the following semi-definite program (SDP):

max
𝚪

ζ (3.33)

s.t.

[
F2 (𝚪) 1

2 f
1 (𝚪)

1
2 f

1 (𝚪) f0 (𝚪) − ζ

]
≾ 0

𝚪 ≾ 0

3 Machine Learning at the Wireless Edge 49

The functions of the Lagrange multipliers .F2(𝚪), .f1(𝚪), and .f0(𝚪) are defined in
the proof.

Proof Please refer to “Appendix 3” for the proof. ⨅⨆
A candidate solution is given by:

.x̂ = −1

4
F2 (𝚪)−1 f1 (𝚪) (3.34)

In the case of a convex QCQP, the resulting solution will be optimal with zero
duality gap, i.e., .x̂ = x. In our case, because of the problem being non-convex,
we have to use a simple local optimizer called the coordinate descent method to
improve the candidate solution where the optimal solution . x∗ is given by [26]:

.x∗ = coordinate-descent(x̂) (3.35)

3.5 Heterogeneous Simulation Setup and MEL Algorithm

In this section, we will setup the simulation environment and describe the important
parameters based on real-world settings. Unless otherwise specified, these param-
eters will be used throughout the next section to study the performance of MEL in
terms of achievable local updates . τ and ML model validation performance. Typi-
cally, a wireless MEL environment will include a set of end devices (learners) with
heterogeneous capabilities connected via heterogeneous wireless communication
links. We will first study the important parameters influencing both computation
and communication, describe the modelling strategy, and quantify its effect on
heterogeneity. Then we will present the complete simulation environment including
the underlying ML model parameters. We will then demonstrate the superiority of
the proposed HA schemes and illustrate how they can be employed in the real world
with algorithmic steps.

3.5.1 Heterogeneity Analysis

The main variable that represents the computational capabilities of the learners is
the processor clock speed .fk ∀ k ∈ K. After taking into account the speedups
offered by modern multicore processing, we must consider the range of speeds
offered by different devices such as laptops (6GHz), mobile phones (2.4GHz),
various microcontroller types (0.5–1.5GHz), etc. Therefore, the modeling strategy
will include selecting a fixed lower end reference speed, to which we will add an
additional amount to represent the variations in resources dedicated to the MEL

50 U. Mohammad and F. Saeed

process by each learner .k ∈ K. At the start of each global cycle, the clock speed
.fk ∀ k ∈ K will be drawn from:

.fk ∼ fref + fσ U, k ∈ K (3.36)

The reference clock is given by .fref , whereas . fσ represents the maximum additional
clock speed. .U ∼ U{0, 1} is the uniformly distributed random variable on . [0, 1]
which ensures additional amount drawn from .[0, fσ]. To emulate different devices,
we will use four references: .fref,1 = 6000MHz, .fref,2 = 2000MHz, . fref,3 =
1000MHz, and .fref,2 = 500MHz. The associated additional maximum amounts
are . fσ,1, . fσ,2, . fσ,3, and . fσ,4, respectively.

The communication capability can be measured by the achievable rate . ρk ∀ k ∈
K which is defined as:

.ρk = W log2

(
1 + Pkohko

N0

)
, k ∈ K (3.37)

The rate is influenced by the bandwidth W , each learner’s transmission power
.Pko ∀ k, and the channel gain .hko ∀ k. The gain is mainly determined by the path
loss which is inversely proportional to the distance of the learner .RkO ∀ k from
the orchestrator. We will simulate two different types of environments: Wi-Fi and
cellular channels. Assuming a log-normal shadowing model with flat-fading, the
gain .hkO can be calculated as the inverse of the signal attenuation as follows:

. hkO =

⎧
⎪⎨

⎪⎩

[
Linear

{
7 + 2.1 log(RkO

R0
) +N{0, 10}

}]−1
Wi-Fi

[
Linear

{
128.1 + 37.5 log(RkO

R0
) +N{0, 10}

}]−1
Cellular

(3.38)

Conversion from decibel scale to linear is represented by the Linear operation, . RkO

is the distance of learner k to the orchestrator, and . N is a zero-mean Gaussian
random variable with standard deviation 10 dB. As we are not doing resource
allocation (studied in other works [19, 27–29]), the bandwidth will be constant.
Further, small-scale fading will be much lower compared to path loss and the
impact of noise will be similar across multiple learners. Therefore, the most
impactful variables on the rate heterogeneity will be the transmission power . PkO

and the distance .RkO . Based on wireless communication standards, the maximum
transmission power limit .P max

k is 23 dBm (or 0.1995W in linear scale). We further
assume that each learner-orchestrator pair use a lower power level per global cycle
instead of the maximum allowed. Then, the transmission power .Pk ∀ k ∈ K is drawn
from the following distribution:

.Pk ∼ P max
k − Pσ U, k ∈ K (3.39)

3 Machine Learning at the Wireless Edge 51

The variable . Pσ represents the maximum value by which the power can be reduced
and .U ∼ U{0, 1}. To simulate the heterogeneous co-location of learners, the
distances are simply drawn from .Rk ∼ Rσ U . .Rσ is the maximum possible
distance of the learner from the orchestrator. Note that the maximum radius of the
environment . R0 can be different depending upon the environment.

Quantifying the heterogeneity exactly is difficult due to the complex nonlinear
relations among the different important parameters. However, note that the maxi-
mum deviation among the most impactful variables . fk , .PkO and .RkO is bound by
. fσ , . Pσ , and . Rσ , respectively. Hence, we define a newmetric called the heterogeneity
factor .Hf ac as follows:

.Hf ac = Pσ

P max
k

+ Rσ

R0
+

i=4∑

i=1

fσ,i

fref,i

(3.40)

.Hf ac is the sum of ratios of the maximum deviations to the reference values.
Taking the ratios accounts for the different units of measurements for the physical
quantities making .Hf ac unitless. The heterogeneity factor is also not calibrated,
(e.g., limited to range [0,1]) and a higher .Hf ac simply implies a more heterogeneous
environment.

3.5.2 Simulation Environment

We use four different reference clock speeds to emulate the capacity of different
types of devices such as laptops and roadside units (.fref,1 = 6GHz), smartphones
and tablets (.fref,2 = 2GHz), commercial microcontrollers such as the Raspberry
Pi (.fref,3 = ‘ GHz), and lower grade microcontrollers such as the Arduino
(.fref,4 = 0.5GHz). These may be attached to IoT devices such as traffic con-
trollers, onboard units, cameras, industrial sensors, etc. We examine two different
types of environments: 802.11-type environment (e.g., Wi-Fi) and a cellular-type
environment. The maximum distance . R0 is set to 50m for the former and 500m
for the latter environment. To test the MEL with real-world ML tasks, we consider
the classification task using two different datasets: the pedestrian [31] and MNIST
[32] datasets. For both classification tasks, the measure of MEL performance is
the validation accuracy. The pedestrian dataset has 8,000 training images from
pedestrian crossing traffic light cameras. Each image has 684 features (18 . × 36
pixels). The task is to predict whether a pedestrian is present in the image, a
binary classification task for which we use a single-layer neural network with 300
neurons in the hidden layer. The set of model parameters includes two matrices
.w = [w1, w2], where .w1 is 300 × 648 and w2 is 300 × 1. Thus, the model size
.Bmodel

k is 6,240,000 bits, whereas the forward and backward passes will require
.Cm = 781,208 floating point operations [33]. The MNIST dataset is also used for
a classification task, but it has slightly larger images (28 . × 28 pixels) leading to

52 U. Mohammad and F. Saeed

Table 3.1 List of simulation parameters

Parameter Value

Wi-Fi attenuation model .7 + 2.1 log(R) dB [30]

Cell attenuation model .128 + 37.1 log(R) dB [16]

Learner bandwidth .(W) 5MHz

Maximum distance indoor .(R0) 50m

Maximum distance outdoor .(R0) 500m

Max. tran. power .(P max
k) 23 dBm

Noise power density .(N0) . −174 dBm/Hz

Reference clock speeds .(fref,[1−4]) .{6, 2, 1, 0.5}GHz
Pedestrian dataset size .(d) 9,000 images

Pedestrian dataset features .(F) 648 (. 18 × 36) pixels

MNIST dataset size (d) 60,000 images

MNIST dataset features .(F) 784 (. 28 × 28) pixels

.F = 784. A more complex three-layer DNN is used which has a size . Bmodel
k =

8,974,080 bits and complexity .Cm = 67,424,160 floating point operations [33]. All
of these parameters including the channel attenuation models are given in Table 3.1.

To perform the heterogeneity analysis, we vary . Pσ from 0.01 to 0.10 in steps
of 0.01W and . Rσ from 5m to .R0 = 50m in steps of 5m for an 802.11-type
environment. The clock speed heterogeneity is emulated by varying .fσ,1 from
60 to 600MHz, .fσ,2 from 40 to 400MHz, .fσ,3 from 30 to 300MHz, and . fσ,4
from 20 to 200MHz in steps of 60, 40, 30, and 20MHz, respectively. For the
remaining simulations, we fix . Rσ equal to . R0 (i.e., 50m for 802.11-type and 500m
for cellular-type environments), whereas . Pσ is set to 0.05W. The processor clock
speed variations are emulated by setting .fσ,1 = 600MHz, .fσ,2 = 400MHz,
.fσ,1 = 300MHz, and .fσ,2 = 200MHz. These parameters are selected to have a
.Hf ac ∈ [1.45, 1.65] which represents a high heterogeneity level where the HA
schemes provide noticeable gains. Moreover, this selection strategy truly shows the
robustness of the HA schemes compared to HU because it supports more varying
clock speeds, transmission powers, and channel gains.

3.5.3 MEL Algorithm

Though these are simulations, in the real world, it is assumed that the orchestrator
and all K learners will exchange this information at the start of each global cycle for
the orchestrator to run the centralized optimization. For example, each learner . k ∈ K
sends the information related to the clock speed . fk and transmission power .PkO it
can dedicate for the next cycle. The communication time of parameter exchange is
negligible compared to model/data transmission times. Further, channel gains and

3 Machine Learning at the Wireless Edge 53

Algorithm 1 Process at the Orchestrator
Input: T , d, d0, K
Output: w

Initialize w and set the flag STOP ← FALSE
1: while not STOP do
2: In Parallel: Send w to each learner k ∈ K
3: In Parallel: Receive PkO , hkO , fk , and e0 k from k ∈ K
4: if Only Time Constraints then
5: Solve (3.28) to obtain τ ∗ and (3.27) to get d∗

k
6: else
7: Solve (3.34) to obtain the candidate τ̂ , d̂k
8: Use candidates to obtain τ ∗ and d∗

k by solving (3.35)
9: end if
10: In Parallel: SEND τ = ⎿τ ∗⏌, dk = ⎿d∗

k ⏌ to each learner k ∈ K
11: if PL then
12: In Parallel: SEND dk data samples to each learner k ∈ K
13: end if
14: WAIT for T s to let each learner perform τ local updates
15: In Parallel: RECEIVE wk ∀ k ∈ K
16: Obtain w using (3.5)
17: if STOPPING CRITERIA REACHED then
18: Set STOP ← TRUE
19: end if
20: end while
21: return w

distances are known to the orchestrator via standard wireless channel estimation
and triangulation algorithms. The complete steps followed by the orchestrator over
multiple global cycles are summarized in Algorithm 1.

3.6 Results and Discussions

We plot the achievable number of local updates . τ versus the heterogeneity factor
.Hf ac and compare the performance of the HA and HU schemes. It can be seen
that the HA-PL and HA-FL both offer a gain on the number of achievable local
updates per global cycle as .Hf ac increases. This gain can be observed specifically
for values of .Hf ac ≥ 1. On the other hand, the achievable . τ remains constant
for the HU schemes with increasing .Hf ac implying that these are truly HU. Our
HA schemes are able to perform flexible local dataset size allocations per global
cycle to maximize local updates. In the following subsections, we will show that
for fixed numbers of global cycles, this also translates to higher final validation
accuracies and lower convergence times. Figure 3.5 plots the achievable number of
local updates . τ versus the heterogeneity factor .Hf ac and compares the performance
of the HA and HU schemes.

54 U. Mohammad and F. Saeed

Fig. 3.5 Achievable local
updates . τ for the MNIST
dataset versus the
heterogeneity factor for
different sets of learners and
global cycle times

0 0.5 1 1.5 2
Heterogeneity Factor

0

2

4

6

8

10

12

14

16

18

20

A
ch

ie
va

bl
e

Lo
ca

l U
pd

at
es

HA-FL
HA-PL
HU-FL
HU-PL

K = 10; T = 30s
K = 10; T = 60s
K = 20; T = 30s
K = 20; T = 60s

2.5

0 10 20 30 40 50
Number of Learners [K]

0

10

20

30

40

50

60

70

80

A
ch

ie
va

bl
e

Lo
ca

l U
pd

at
es

 [
]

MNIST
(T=60s)
HA-PL-Ana
HA-PL-Num
HU-PL
(T=30s)
HA-PL-Ana
HA-PL-Num
HU-PL

Pedestrian
(T=15s)
HA-PL-Ana
HA-PL-Num
HU-PL
(T=05s)
HA-PL-Ana
HA-PL-Num
HU-PL

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Global Cycle Time [seconds]

0

5

10

15

20

25

30
A

ch
ie

va
bl

e
Lo

ca
l U

pd
at

es
 [

]
MNIST
(K=20)
HA-PL-Ana
HA-PL-Num
HU-PL
(K=10)
HA-PL-Ana
HA-PL-Num
HU-PL

Pedestrian
(K=20)
HA-PL-Ana
HA-PL-Num
HU-PL
(K=10)
HA-PL-Ana
HA-PL-Num
HU-PL

(b)

30

Fig. 3.6 Achievable local updates . τ per global cycle for the MNIST and Pedestrian datasets for
all schemes for (a) different values of T versus K and (b) for .K = 10 and 20 versus T

3.6.1 Impact of Time Constraints on Local Model Updates

Figure 3.6 presents the simulation results for the PL scenario in an 802.11-type
environment for both MNIST and pedestrian classification tasks. The top two
subfigures demonstrate the achievable local updates . τ when performing MNIST
and pedestrian classification tasks with the above-described simulation parameters
in Figs. 3.6a (versus increasing number of learners K) and 3.6b (versus increasing
global cycle times T). We compare the results for . τ for the HA scheme (HA-Sync)
from the analytical upper bounds proposed in Theorem 1 (denoted by HP-PL-Ana)
against numerical results from a commercially available solver (denoted by HA-PL-
Num). As observable, there is no optimality gap as witnessed by how well the lines
representing HA-PL-Ana stack up with HA-PL-Num. We also plot the achievable . τ

for the HU scheme (denoted by HU-PL).

3 Machine Learning at the Wireless Edge 55

In general, it can be observed that the HA-Sync approach allows for significantly
more local updates . τ compared to HU-Sync with gains in the region of 200% to
600%. For instance, Fig. 3.6a shows that both HA-PL-Ana and HA-PL-Num make
it possible to perform .τ = 6 updates for MNIST classification with a system of
.K = 20 learners and .T = 30 s, a gain of 600% against the HU-PL which allows
only 1 local update. Further, HA-PL provides better performance with (less than)
half the resources. For example, for a system of .K = 20 learners, HU-PL performs
worse with .T = 60 s than HA-PL with .T = 30 s for MNIST classification. Further,
for pedestrian classification as shown in Fig. 3.6b, HA-Sync with .K = 10 performs
better than HU-PL with .K = 20 for fixed global cycle time .T = 05s with a gain
of up to 500%. These performance gaps are reflected in the validation performance
superiority of HA-Sync.

3.6.1.1 Improvements in Validation Accuracy

Figure 3.7 compares the progression of the validation accuracy after each global
cycle for the MNIST and pedestrian datasets using both HA-Sync and HU-Sync
schemes. Observably, HA-Sync offers a validation accuracy improvement up to
0.6% for the MNIST dataset and 8% for the pedestrian dataset. Furthermore, the
HA schemes can offer up to 56% reduction in conversion times to certain accuracy
thresholds. For example, performing MNIST classification with a system of . K = 10
learners with a .T = 30 s global cycle time constraint can be achieved with 96.50%
accuracy in five global cycles with the proposed HA schemes in this section. In
contrast, the HU schemes require nine global cycles which represent a reduction of
44% or 2 minutes. The designed HA scheme in this section can allow more local
updates per global cycle which result in higher validation performance and lower
convergence times.

Fig. 3.7 Validation accuracy
progression comparison
between HA and HU for the
MNIST dataset for up to 10
global cycles and for the
pedestrian dataset up to 20
global cycles

1 2 3 4 5 6 7 8 9
Global Update Index

66

70

74

78

82

86

90

94

98

A
cc

ur
ac

y
(%

)

K = 20
HA-PL (T=12s)
HU-PL (T=12s)

HA-PL (T=3s)
HU-PL (T=3s)

K = 10
HA-PL (T=30s)
HU-PL (T=30s)

HA-PL (T=5s)
HU-PL (T=5s)

MNIST

Pedestrian

 10

56 U. Mohammad and F. Saeed

3.6.2 Comparing FL versus PL

To really test the strength of the proposed HA schemes, we further evaluate them
in a more challenging cellular type of environment for the same tasks with the all
other simulation parameters being the same. In addition to HA-Sync with HA-PL-
Ana/Num, we also compare against FL by adding results for HA-FL-Ana/Num as
shown in Fig. 3.8. Once again, Figs. 3.8a,b present the achievable local updates for
the MNIST and pedestrian classification tasks versus K and T , respectively. It is
clear again that there is no optimal gap between the upper bounds in Theorem 1 and
the numerical solutions from the solver.

In general, we observe that HA-FL/PL provide more achievable local updates
compared to HU-FL/PL with gains ranging from 100% to 600%, and the FL
approaches provide nominally more local updates than PL. Recall that the only
difference between FL and PL is that there is an additional component of data
transfer from the orchestrator to each learner .k ∈ K in PL. However, since the
ML models sizes usually dominate the dataset sizes (especially batches or subsets
of data), the difference between the achievable local updates . τ is nominal. It is more
pronounced for the pedestrian dataset in Fig. 3.9 because the model used is much
smaller, making its size comparable to the dataset size.

In terms of the validation accuracy performance, both HA-FL/PL provide gains
up to 0.7% for MNIST classification and 8% for pedestrian classification with

0 10 20 30 40 50
Number of Learners [K]

0

5

10

15

20

25

30

35

A
ch

ie
va

bl
e

Lo
ca

l U
pd

at
es

 [
]

Mnist T = 30s
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL
Mnist T = 60s
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL

Ped. T = 1s
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL
Ped. T = 2s
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL

(a)

0 2 4 6 8
Global Cycle Time [seconds]

0

10

20

30

40

50

60

70

80

A
ch

ie
va

bl
e

Lo
ca

l U
pd

at
es

 [
]

Mnist K = 10
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL
Mnist K = 20
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL

Ped. K = 10
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL
Ped. K = 20
HA-FL-Ana
HA-FL-Num
HA-PL-Ana
HA-PL-Num
HU-FL
HU-PL

(b)

 10

Fig. 3.8 Achievable local updates . τ for: (a) the MNIST dataset versus K for .T = 30s and . T =
60s and versus T for K = 10 and 20 (b) the Pedestrian dataset versus K for .T = 1s and .T = 2s
and versus T for K = 10 and 20

3 Machine Learning at the Wireless Edge 57

Fig. 3.9 Validation accuracy
results HA/HU-Sync for both
PL and FL approaches for
MNIST classification with
.K = 10 and .T = 60s and
Pedestrian classification with
.K = 10 and .T = 5s

2 4 6 8
Global Update Index

66

70

74

78

82

86

90

94

98

A
cc

ur
ac

y
(%

)

Mnist
T = 30s
HA-FL
HA-PL
HU-FL
HU-PL

Ped.
T = 2s
HA-FL
HA-PL
HU-FL
HU-PL

MNIST

Pedestrian

 10

convergence time reductions up to 53% as illustrated in Fig. 3.9. While the goal of
FL and PL is different for various applications, we compare the performance of both
to establish scientific rigor. In general, the performance of both HA-FL/PL is similar,
especially for the MNIST datasets where both schemes have similar number of local
updates. However, FL does reach many accuracy milestones faster than PL such as
having a lower convergence time by 50% to reach a validation accuracy of 77% for
the pedestrian dataset as shown in Fig. 3.9. Nevertheless, both approaches reach a
similar final validation accuracy for both tasks. The initial speedup achieved by FL
may directly result from performing more local updates per global update. However,
recall that FL updates the local model using only a subset of the same local dataset
which makes it more “deterministic” compared to PL where SGD may be applied by
shuffling the dataset in between global updates. This implies that the improvements
offered by more local updates . τ per global cycle may be overshadowed by the more
“stochastic” nature of HA-PL compared to FL.

3.6.3 Comparison to Centralized Approaches

To demonstrate the superiority of MEL in general for resource-constrained wireless
edge environments, we compare both PL and FL against centralized approaches in
terms of achievable validation accuracy and communication overhead. Centralized
approaches imply that the learning task is executed at a single central entity which
assumes to be an edge server such as a base station. For PL, it will simply mean
the orchestrator sends all data to the server distributing among its peers. For FL,
it will involve all K learners transmitting their local dataset to the server. Thus,
the training phase will comprise three steps: transmission of the data from one
or more learners to the edge, ML training within a time limit, followed by return
of the trained model to each learner. Assuming a global cycle time T , the total
training time is set to 10T for MNIST classification and 20T for pedestrian. The

58 U. Mohammad and F. Saeed

Table 3.2 Final accuracy and communication overhead of the HA schemes compared to central-
ized learning

Environment Dataset K T (s) PL acc FL acc Cen acc PL over FL over Cen over

802.11 MNIST 20 12 97.31 % - 94.63 % 39.60 % - 1.25 %

802.11 MNIST 10 30 97.41 % - 95.35 % 31.46 % - 0.38 %

802.11 Pedestrian 20 03 81.86 % - 50.00 % 22.78 % - 2.73 %

802.11 Pedestrian 10 05 80.76 % - 50.00 % 33.05 % - 6.83 %

Cellular MNIST 10 60 97.41 % 97.40 % 95.27 % 14.69 % 1.47 % 0.02 %

Cellular Pedestrian 10 05 80.76 % 80.34 % 50.00 % 19.62 % 2.30 % 0.01 %

Cellular Pedestrian 10 02 80.15 % 80.83 % 50.00 % 42.70 % 4.52 % 0.89 %

Cellular Pedestrian 20 02 79.38 % 81.98 % 50.00 % 46.03 % 4.74 % 0.79 %

communication overhead for each learner is .Vk = (tSk + tRk)/tk ∀ k ∈ K which
is the ratio of the communication to total time. The average overhead is given by
.1/K

∑K
k=1 Vk . While the experiments are done with the same parameters described

in Section 3.5.2, the edge server for the cellular environment is assumed to have
far superior compute capabilities represented by a clock speed of 10GHz. Table 3.2
shows that the centralized approaches either completely fail or at least provide an
inferior validation accuracy performance. In contrast, MEL with either FL or PL
does incur a higher communication overhead cost with frequent model updates. As
expected, PL has the highest communication overhead due to the additional data
transfer component.

3.6.4 Complexity Analysis and Execution Time

In addition to the time needed for ML model training, the HA-Sync schemes will
require an additional amount of time for optimization which must be considered.
Recall that the problem of interest is a non-convex QCLP after relaxation which
is typically solved using interior point methods whereas the proposed solution for
HA-Sync relies upon solving a .Kth degree-polynomial. Most polynomial solvers
use the companion matrix method where the complexity mainly arises from the QR
factorization needed for diagonalization and can be expressed as . O

(
4/3K3 + K2

)

[34]. In contrast, for a convex QCLP with n quadratic matrices and m quadratic
constraints, the computational complexity is .O

(
n1/2 [m + n] n2

)
[35] which can be

expressed as .O
(
[K + 1]1/2

[
2K3 + 5K2 + 4K + 1

])
for our problem. However,

because the problem is non-convex, the complexity is actually much higher.
Figure 3.10 better illustrates the complexity in terms of execution time of HA-

PL-Ana, HA-PL-Num, and HU-PL. The optimizations are done on an 8-core Intel
i7 2.4GHz processor; numerical optimizations were done using the OPTI toolbox
[25] used for the numerical optimization, whereas MATLAB’s polynomial solver
were used for HA-PL-Ana. The experiments were repeated 100 times for each

3 Machine Learning at the Wireless Edge 59

Fig. 3.10 HA optimization
algorithm execution time
comparisons using the
MNIST dataset for the PL
scheme versus K for . T = 30
and 60 s

10 20 30 40 50 60
Number of Learners (K)

0

20

40

60

80

100

120

140

160

180

E
xe

cu
tio

n
T

im
e

(m
s)

K=20; T=12s
HA-PL-Ana
HA-PL-Num
HU-PL

K=10; T=30s
HA-PL-Ana
HA-PL-Num
HU-PL

2

4

6

configuration of K learners with two different values of .T = 30 and 60 s. As
expected, the numerical solution with HA-PL-Num incurred the highest execution
time more than 500% in most cases. Further, decreasing T seemed to have a high
impact which can be explained by the tightening of the solution space. In contrast,
the box plot demonstrates doing HA-Sync with the proposed analytical upper
bounds requires an optimization time comparable to the HU approach. In fact, for up
to a system of 40 learners, the execution time required is much lower compared to
HU-PL which has a constant-time complexity as it requires solving a simple linear
program. Moreover, even though the subsequent increase is exponential, it is on the
order of milliseconds which is negligible compared to the substantial improvements
offered in convergence time reductions and validation accuracy improvement.

3.6.5 Performance with Energy Constraints

The subsection’s major contribution is to quantify the impact of local energy
consumption limits .E0

k ∀ k ∈ K joules (J or watt-seconds) per global cycle in

addition to the time constraint T . This is equivalent to . E
0
k

3.6 milliwatt-hours (mWh).
For example, a learner that uses up 20 J per global update cycle for 12 cycles will
consume a total of 66.67mWh. This is handy for real-world comparison as battery
capacities are rated by their amperage (mAh) and voltage (V) which can easily be
converted to mWh. Now, consider a smartphone battery rated at 4000mAh and 3.6V
for a capacity of 14,400mWh. For a learner consuming 20 J per global cycle, after
12 cycles, . 66.6714,400 ∗ 100 = 0.46% of the battery would have been drained by the
complete learning process.

60 U. Mohammad and F. Saeed

To simulate the impact of different levels of energy availability, we define
an average energy constraint EJ for all K learners across all global cycles. In
each global cycle, the local energy consumption limit . E0

k will be drawn from
.[E − 2.5, E +2.5] J to represent the differences in the available/dedicated energy to
the learning task by each learner .k ∈ K. We use the set of values . {10, 15, 20, 25}
which corresponds to a battery drainage of .{0.23, 0.35, 0.46, 0.57}%. With respect
to the other aspects of the simulation setup, we consider a cellular environment
and the MNIST classification task to test the HA/HU Sync with dual-time/energy
constraints. All of the remaining relevant parameters are as described in Table 3.1
in Sect. 3.5.

Figure 3.11a compares the HA scheme against the HU scheme in terms of the
achievable number of local updates . τ per global cycle. Clearly, the HA schemes
provide a higher number of local updates compared to HU with gains up to
300%. Further, as energy consumption limits are increased, the HU schemes fail
to show any improvement in the number of local updates. In contrast, the HA
schemes can offer increasing gains in achievable local updates as T is increased
as clearly shown by Fig. 3.11b. One reason may be that a higher T gives more
flexibility in performing the batch size allocation. This behavior is reflected directly
in the validation accuracy performance as depicted in Figs. 3.11d–g. As the allowed
average energy consumption is increased from 10 to 15 J per global cycle, there is a
bump in the performance of HU schemes but then it saturates. In contrast, the HA
schemes are able to offer about a 0.1% gain in validation accuracy at each global

0 10 20 30 40 50
Number of Learners [K]

0

2

4

6

8

10

12

14

16

18

A
ch

ie
va

bl
e

Lo
ca

l u
pd

at
es

 [
]

HA-PL-Num
HA-PL-Ana
HU-PL

05J
10J
15J
20J
25J

(a)

0 10 20 30 40 50 60
Global Cycle Time [seconds]

0

2

4

6

8

10

12

A
ch

ie
va

bl
e

Lo
ca

l u
pd

at
es

 [
]

HA-PL-Num
HA-PL-Ana
HU-PL

05J
10J
15J
20J
25J

(b)

5 6 7 8 9 10 11
Global Update Index

96

96.2

96.4

96.6

96.8

97

97.2

97.4

97.6

97.8

98

V
al

id
at

io
n

A
cc

ur
ac

y
[%

]

HA scheme energy comparison for K = 20 and T = 20s

25J
20J
15J
100

(c)

2 4 6 8 10 12
Global Update Index

90

91

92

93

94

95

96

97

98

V
al

id
at

io
n

A
cc

ur
ac

y
[%

]

E = 10J

HA
HU

(d)

2 4 6 8 10 12
Global Update Index

90

91

92

93

94

95

96

97

98

V
al

id
at

io
n

A
cc

ur
ac

y
[%

]

E = 15J

HA
HU

(e)

2 4 6 8 10 12
Global Update Index

90

91

92

93

94

95

96

97

98

V
al

id
at

io
n

A
cc

ur
ac

y
[%

]

E = 20J

HA
HU

(f)

2 4 6 8 10
Global Update Index

90

91

92

93

94

95

96

97

98

V
al

id
at

io
n

A
cc

ur
ac

y
[%

]

E = 25J

HA
HU

(g)

 12

 12

Fig. 3.11 Achievable number of local updates . τ for average energies of 5 to 25 J in steps of 5 J by
all schemes (a) vs K for .T = 20s and (b) vs T for .K = 20. (c) Validation accuracy progression for
up-to 12 global updates for .K = 20 for all HA schemes at different levels of energy constraint. HA
vs HU validation comparison for energy constraint levels of (d) .E =10J, (e) .E =15J, (d) .E =20J
and (e) .E =25J

3 Machine Learning at the Wireless Edge 61

update step each time the average energy consumption is increased by 5 J. With the
exception of global update 11 which is an outlier, this behavior is corroborated by
Fig. 3.11c. The major takeaway is that the HA schemes offer the best performance
timeliness and energy constraints are the most stringent; they also offer the highest
gains when the constraints are relaxed.

3.7 Extension of IoMT/H-IoT to EEG Data

With the increasing acceptance of ML techniques by the medical community
for image-based diagnostics, attention has now turned to real-time ML-based
event prediction with H-IoT/IoMT. Almost invariably, most applications of H-IoT
rely upon multichannel time series data from various sensors. For example, one
application is fall detection for people with dementia, Alzheimer’s disease (AD),
or Parkinson’s disease (PD) using accelerometers, motion sensors, and gait sensors
[36]. In case an inertial measurement unit is used, data comes from three channels
(pitch, roll, and yaw) as a time series. Another possible application is cardiac event
detection such as atrial fibrillation [37] from multi-lead electrocardiogram (ECG).

We will focus our discussion on another exciting application which is real-time
seizure detection and/or early prediction using wearable electroencephalography
(EEG) sensors. However, the mathematical formulations and methods discussed
apply equally to any real-time multichannel time series data. Though offline training
from benchmark datasets may be suitable for design and development of new
predictive models and architectures, real-time inference with partial re-training for
personalization is more suitable for real-world applicability. In practice, offline
learning from large datasets is suitable for coming up with new models and
techniques. However, the purpose of using ML for automatic diagnosis of cardiac
events is better served by applying these models directly or with transfer learning
at the edge for real-time inference as shown in for atrial fibrillation detection and
potentially re-training for personalization [38]. Because of their superiority to other
form of sensors for seizure detection/prediction and better accessibility compared
to implant-based technologies, epileptic seizure detection/prediction using wearable
EEG with end-to-end deep learning is an active area of research. Consider a set of
users wearing long-term wearable wireless EEG monitoring devices co-located in
a dense urban environment comprising multiple edge servers. This scenario can
happen in a clinical setting such as a neurology ward with multiple patients of
epilepsy. Alternatively, it can occur in home care settings where facilities cater to
specific populations that may have epileptic seizures as a symptom of their disease
such as cerebral palsy or tuberous sclerosis (TSC). If the people who suffer from
scenarios are equipped with wearable EEG, one large predictive model can be
deployed initially but then re-trained partially to personalize for a specific patient.
Similar strategies are followed at an individual level for implant-based seizure
control technologies such as responsive neuro-stimulation (RNS) where it takes up
to 6 months for the device to become effective.

62 U. Mohammad and F. Saeed

If we apply this strategy to seizure prediction with wearables, collecting all
the data from multiple users at the edge, transmitting to the cloud, re-training,
and deploying the model may not be feasible. It will put an unnecessary load
on the backhaul networks where upload speeds may be limited and give rise to
privacy concerns. Recently, leveraging the power of ES and fog nodes training with
federated learning at the edge with the concept of “trusted edge” in the healthcare
and biomedical sectors has been proposed [9]. Instead of cloud-based training, the
predictive model can be co-cooperatively re-trained either fully or partially using
MEL with associated capable fog nodes. The data can remain locally stored for
sharing with medical professionals later or discarded depending upon the users’
choices. Encryption or distortion techniques may be used to ass another layer of
privacy [39].

3.7.1 Mathematical Formulation for EEG data

Consider a set of users who have epilepsy and are using wearable EEG along with
a companion app running on a smartphone that executes the inference model and
generates a seizure alert. The smartphone serves as the edge device or “learner”
and uses a 4G base station as the edge server or orchestrator in this scenario. The
learners will execute the inference model on segments of EEG data and the presence
or lack of a seizure alert will be the class label for this data. The orchestrator can
improve the general model by running FL on a set of multiple learners. In contrast, if
an individual user wants to “personalize” the model to its own data, it can enlist the
help of trusted edge devices (e.g., laptops, wireless routers, smart home equipment,
other smartphones, etc.) in the vicinity to act as learners.

In this scenario, the expression for the model size in (3.7) will change as follows:

.Bmodel
k = Pm (dkSd + Sm) ∀ k ∈ K (3.41)

where .Pm accounts for the compression ratio and bit precision, . Sm represents
the size of the non-trainable part/layers, and the term .dkSd is replaced . Sr , which
represents the size of the part/layers of the model being re-trained. In addition,
the time series for each learner .k ∈ K will be collected from a frame of duration
.T D

k seconds sampled at . FS
k Hz via .NC

k channels. This will mainly impact the PL
scenario where the expression for the data subset size in (3.6) changes as follows:

.Bdata
k = dkF

S
k T D

k NC
k Pd ∀ k ∈ K (3.42)

where . Pd is accounts for the precision/compression ratios. The rest of the model,
solutions, and algorithm in Sects. 3.2, 3.3, 3.4, and 3.5 can be applied as discussed
prior.

This is a very brief description without a detailed discussion of the results.
However, there are several other innovations possible which though beyond the

3 Machine Learning at the Wireless Edge 63

scope of the chapter, we mention here briefly. For example, specific to PL, the
physical parameters related to the sensors including sampling rates, frame durations,
and number of channels can also be optimization parameters. Further, the size of
the model used for re-training can be part of the problem statement. All of this will
require extensive solutions to the resulting optimization problem and analysis of the
complexity to guarantee the performance gains. Further, the optimization problem
itself can be part of the MEL solution with techniques such as distributed deep
reinforcement learning (DDRL). This will be more in line with the trend of moving
away from central optimization to distributed optimization. The benefits include
avoiding a single point of failure, more robustness to injection attacks, and more
flexibility in ML model training.

Acknowledgments This material is based upon work supported by the National Science Founda-
tion (NSF) under Grant No. TI-2213951. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

Appendix 1

The global model’ loss is denoted by .F(w). Let us assume that this function has the
following three properties:

1. .F(w) is convex.
2. .F(w) is .ρ-Lipschitz: . ‖F(w) − F(w̄)| ≤ ρ|w − w̄|
3. .F(w) is .β-smooth: . ‖∇F(w) − ∇F(w̄)| ≤ β|w − w̄|
Each learner .k ∈ K in HA-Sync performs a total of L updates. Then, the difference
between the loss at update L and the optimal global model denoted by . w∗ is bounded
by:

.F(w[L] − F(w∗) ≤ 1

Gτ [A + B(1 − C)]
(3.43)

The learning rate is given by . η and we can define a control parameter .φ = 1 − ηβ
2 .

The local losses are bound by the parameter . ϵ whereas the function . h(τ) = δ
β
[(ηβ+

1)τ −1]−ηδτ . For more details on . δ and . ϵ, the reader is referred to [12]. In general,
. η is selected such that .0 < ηβ < 1, .ηφ − ρh(τ)

τϵ2
≥ 0, and .(ηβ + 1)τ ≥ ηβτ + 1.

Consider the case where MEL is not optimized and each global cycle allows each
learner .k ∈ K to perform the same integer number of local updates . τ . Then, in a
fixed number of global updates G, MEL will allow for a total of .L = Gτ updates.
Let us define the constants .A = ηφ + ρδ

ϵ2
, .B = ρδ

βϵ2
, and .C = ηβ +1. Based on these

definitions and assumptions, we can define the upper bound on the loss as follows:

64 U. Mohammad and F. Saeed

.F(w[L] − F(w∗)) ≤ 1

Gτ [A + B(1 − C)]
(3.44)

It is observable that .A + B(1 − C) ≥ 0, and further, the number of global updates
G are fixed. Hence, the bound on the loss will converge to zero as .τ → ∞.

Appendix 2

Let us write the KKT optimality conditions for (3.25) as shown in (3.45) and (3.51).
The conditions (3.45) ensures that dataset size of any learner .k ∈ K satisfies (3.27)
and (3.47) ensures that the bound in (3.27) holds with equality for any learner . k ∈ K
if .λ∗

k ≥ 0. This is significant because strong duality holds for some feasible . τ ∗ when
strictly speaking, .λ∗

k > 0 ∀ k ∈ K. This means the upper bound will be the optimal
solution.

.C2
k τ ∗d∗

k + C1
k d∗

k + C0
k − T ≤ 0, k ∈ K. (3.45)

α∗
0 , α

∗
k , and λ∗

k ≥ 0 k ∈ K. (3.46)

λ∗
k

(
C2

k τ ∗d∗
k + C1

k d∗
k + C0

k − T
)

= 0, k ∈ K. (3.47)

−α∗
0τ

∗ = 0. (3.48)

−α∗
k d∗

k = 0 k ∈ K. (3.49)

K∑

k=1

d∗
k − d = 0 (3.50)

. − ∇τ ∗ +
K∑

k=1

λ∗
k∇

(
C2

k τ ∗d∗
k + C1

k d∗
k + C0

k − T
)

+

ν∗∇
(

K∑

k=1

d∗
k − d

)
− α∗

0∇τ ∗ − ∇
(

K∑

k=1

α∗
k d∗

k

)
= 0 (3.51)

We can then rewrite the bound on . d∗
k in (3.27) as an equality and substitute it

back in (3.50) to obtain the following relation:

.d =
K∑

k=1

d∗
k =

K∑

k=1

[
T − C0

k

τ ∗C2
k + C1

k

]
=

K∑

k=1

[
ak

τ ∗ + bk

]
(3.52)

The expression on the rightmost hand-side has the form of a partial fraction
expansion of a rational polynomial function of . τ ∗ where .ak, bk ∈ R++. Therefore,
we can expand (3.52) to the form shown in (3.53).

3 Machine Learning at the Wireless Edge 65

.
a1

τ ∗ + b1
+ a2

τ ∗ + b2
+ · · · + ak

τ ∗ + bk

+ · · · + aK

τ ∗ + bK

=
1

(τ ∗ + b1)(τ ∗ + b2) . . . (τ ∗ + bk) . . . (τ ∗ + bK)
×

[
a1(τ

∗ + b2)(τ
∗ + b3) . . . (τ ∗ + bk) . . . (τ ∗ + bK) +

a2(τ
∗ + b1)(τ

∗ + b3) . . . (τ ∗ + bk) . . . (τ ∗ + bK) + . . . +
ak(τ

∗ + b1)(τ
∗ + b2) . . . (τ ∗ + bk−1)(τ

∗ + bk+1) . . . (τ ∗ + bK)

+ · · · + aK(τ ∗ + b1)(τ
∗ + b2) . . . (τ ∗ + bk) . . . (τ ∗ + bK−1)

]
(3.53)

Finally, the expanded form can be cleaned up in the form of a rational function
with respect to . τ ∗, which is equal to the total dataset size d as shown in (3.54).
Please note that the degrees of the numerator and denominator will be .K −1 and K ,
respectively. Furthermore, the poles of the system will be .−bk , and since .bk ≥ 0,
the system will be stable. Furthermore, .τ ∗ = −bk is not a feasible solution for the
problem because it is eliminated by the .τ ≥ 0 constraint. Therefore, we can rewrite
(3.54) as shown in (3.28). By solving this polynomial, we obtain a set of solutions
for . τ ∗, where one of them is feasible. The problem being non-convex, this feasible
solution . τ ∗ will constitute the upper bound to the solution of the relaxed problem.

.d =
∑K

k=1 ak

∏K
l=1
l /=k

(τ ∗ + bl)

∏K
k=1 (τ ∗ + bk)

(3.54)

As a last step, to ensure that the solution set is feasible, it must be noted that
according to (3.48) and (3.49), . α∗

0 and .α∗
k ∀ k must be equal to 0. Expanding

the vanishing gradient condition in (3.51), it can be shown that the following two
relations can be derived (representing .K + 1 equations):

.λ∗
kC

2
k τ ∗ + λ∗

kC
1
k + ν∗ = α∗

k , k ∈ K (3.55)

. − 1 +
K∑

k=1

λ∗
kC

2
k d∗

k = α∗
0 (3.56)

By setting .α∗
0 = 0 and .α∗

k = 0 for .k ∈ K, we can write . λ∗
k in terms of . ν∗ as shown

in (3.57) and substitute the resulting expression in (3.56) to find . ν∗ using the values
of . d∗

k and . τ ∗ obtained from (3.27) and (3.28), respectively.

.λ∗
k = − ν∗

C2
k τ ∗ + C1

k

, k ∈ K (3.57)

66 U. Mohammad and F. Saeed

.ν∗ = − 1
∑K

k=1
C2

k d∗
k

C2
k τ∗+C1

k

(3.58)

The values of . λ∗
k for .k ∈ K can be obtained by back-substitution of . ν∗ in (3.57). As

one can observe, as long as there exists a . τ ∗ greater than zero, . ν∗ will be negative
and hence, . λ∗

k for .k ∈ K will be strictly greater than zero. Hence, as long as there
exists a .τ ∗ > 0 in the feasible set such that .d∗

k > 0, there will exist a set of .λ∗
k > 0 for

.k ∈ K. This fact can be used to verify the feasibility of the solution. This step is also
helpful when there may exist multiple values of . τ greater than zero for choosing the
optimal . τ ∗. Extensive simulations presented in Sect. 3.5 demonstrated that there was
no optimality gap between the analytical upper bounds and the numerical solution.

Appendix 3

Recall that the optimization variables are given by .x = [τ d1 d2 . . . dk . . . dK]T .
Then, the relaxed problem in (3.25) can be rewritten in the standard form of a QCQP
as follows:

min
x

xT Fx + fT x + f0 (3.59)

s.t. xT Pkx + pT
k x + p0

k ≤ 0, ∀k ∈ K (3.59a)

xT Qkx + qT
k x + q0

k ≤ 0, ∀k ∈ K (3.59b)

xT Ax + aT x + a0 ≤ 0 (3.59c)

xT Āx + āT x + ā0 ≤ 0 (3.59d)

xT Ux + UT x + u0 ≤ 0 (3.59e)

xT Vkx + vT
k x + v0 k ≤ 0, ∀k ∈ K (3.59f)

The time and energy constraints are defined by (3.59a) and (3.59b), respectively.
Constraints (3.59c) and (3.59d) are two inequality constraints used to simplify the
equality constraint of total dataset size allocation. The nonnegative constraints on . τ

and . dk are given in (3.59e) and (3.59f), respectively. The expressions for problem
definition and each constraint have three terms each: a quadratic term, a linear term,
and a constant term. The constant terms.p0

k = C0
k − T and . q0

k = G0
k − E0

k ∀ k ∈ K
and are associated with the time and energy constraints, respectively. The remaining
constant terms .a0 = −d , .āo = d and .v0k = dl,∀ k whereas .u0 = 0 and .f0 = 0.
In contrast, the coefficients associated with the linear terms in the objective (. f) and

3 Machine Learning at the Wireless Edge 67

constraints (. pk , . qk , . a, . ̄a, . u, and . vk) can be represented by the following set of
vectors:

. f =
[
−1 0 0 . . . C1

k . . . 0
]T

(3.60)

pk =
[
0 0 0 . . . C1

k . . . 0
]T

,∀ k

qk =
[
0 0 0 . . . G1

k . . . 0
]T

,∀ k

a = [0 1 1 . . . 1 . . . 1]T

ā = [0 − 1 − 1 . . . − 1 . . . − 1]T

u = [−1 0 0 . . . 0 . . . 0]T

vk = [0 0 0 . . . − 1 . . . 0]T ,∀ k

In general, the coefficients associated with the quadratic terms are . (K + 1) ×
(K + 1) matrices. Because this is a QCLP, the quadratic term in the objective is
.0(K+1)×(K+1), a .(K +1)× (K +1) zero matrix. The coefficients associated with the
time and energy constraints, . Pk and . Qk , respectively, can be described as follows:

.Pk(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5C2
k , if

i = 1 & j = k + 1

i = k + 1 & j = 1

0, otherwise

(3.61)

.Qk(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5G2
k, if

i = 1 & j = k + 1

i = k + 1 & j = 1

0, otherwise

(3.62)

The quadratic coefficients of the remaining constraints . A, . Ā, . U and . Vk are all
.0(K+1)×(K+1). We can now define the functions .F2(𝚪), .f1(𝚪) and .f0(𝚪) as [26]:

.F2(𝚪) =
K∑

k=1

λkPk + γkQk (3.63)

.f1(𝚪) =
K∑

k=1

(λkpk + γkqk + νkvk) + αa + ᾱā + ωu (3.64)

.f0(𝚪) =
K∑

k=1

(
λkp

0
k + γkq

0
k + νkv

0
k

)
+ αa0 + ᾱā0 (3.65)

68 U. Mohammad and F. Saeed

References

1. B. Jovanovic, Internet of things statistics for 2023 – taking things apart Online (2023). https://
dataprot.net/statistics/iot-statistics/

2. B. McMahan, D. Ramage, Federated learning: collaborative machine learning without cen-
tralized training data Online (2017). https://ai.googleblog.com/2017/04/federated-learning-
collaborative.html

3. Markets and markets, Edge computing in healthcare market | Revenue trends and
growth drivers Online (2023). https://www.marketsandmarkets.com/Market-Reports/edge-
computing-in-healthcare-market-133588379.html#::text=Theglobaledgecomputingin,26.1
%25from2022to2028

4. Statista, Internet of Things – US | Statista market forecast Online (2023). https://www.statista.
com/outlook/tmo/internet-of-things/united-states

5. Sciforce, Can Edge Analytics Become a Game Changer? – Sciforce – Medium Online (2019).
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727

6. S. Samarakoon, M. Bennis, W. Saad, M. Debbah, Federated learning for ultra-reliable low-
latency V2V communications, in 2018 IEEE Global Communications Conference, GLOBE-
COM 2018 – Proceedings (Institute of Electrical and Electronics Engineers Inc., Dubai, UAE,
2018). Online. https://ieeexplore.ieee.org/document/8647927

7. B. Hu, Y. Gao, L. Liu, H. Ma, Federated region-learning: an edge computing based framework
for urban environment sensing, in 2018 IEEE Global Communications Conference, GLOBE-
COM 2018 – Proceedings. (Institute of Electrical and Electronics Engineers Inc., Dubai, UAE,
2018). Online. https://ieeexplore.ieee.org/document/8647649

8. J. Jeon, J. Kim, J. Huh, H. Kim, S. Cho, Overview of distributed federated learning:
research issues, challenges, and biomedical applications, in 2019 International Conference on
Information and Communication Technology Convergence (ICTC) (IEEE, Jeju Island, South
Korea, 2019), pp. 1426–1427. Online. https://ieeexplore.ieee.org/document/8939954/

9. N. Rieke, J. Hancox, W. Li, F. Milletarì, H.R. Roth, S. Albarqouni, S. Bakas, M.N. Galtier, B.A.
Landman, K. Maier-Hein, S. Ourselin, M. Sheller, R.M. Summers, A. Trask, D. Xu, M. Baust,
M.J. Cardoso, The future of digital health with federated learning. NPJ Digital Med. 3(1), 1–7
(2020). Online. http://dx.doi.org/10.1038/s41746-020-00323-1

10. W. Yang, B. Lim, N.C. Luong, D.T. Hoang, Federated learning in mobile edge networks : a
comprehensive survey. IEEE Commun. Surv. Tutorials (Early Access), 1–33 (2020). Online.
https://ieeexplore.ieee.org/document/9060868

11. L. Bottou, O. Bousquet, The tradeoffs of large scale learning, in Advances in Neural
Information Processing Systems, ed. by J.C. Platt, D. Koller, Y. Singer, S. Roweis. NIPS
Foundation (http://books.nips.cc), vol. 20, (2008), pp. 161–168. Online. http://leon.bottou.org/
papers/bottou-bousquet-2008

12. S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, Adaptive federated
learning in resource constrained edge computing systems. IEEE J. Sel. Areas Commun. Early
Access, 1–1 (2019). Online. https://ieeexplore.ieee.org/document/8664630/

13. S. Teerapittayanon, B. McDanel, H.T. Kung, Distributed deep neural networks over the cloud,
the edge and end devices, in Proceedings – International Conference on Distributed Computing
Systems, pp. 328–339

14. J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z. Mao, M.A. Ranzato,
A. Senior, P. Tucker, K. Yang, A.Y. Ng, Large scale distributed deep networks, in Advances in
Neural Information Processing Systems, vol. 25 (2012), pp. 1223–1231. Online. https://papers.
nips.cc/paper/4687-large-scale-distributed-deep-networks

15. S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, When edge
meets learning : adaptive control for resource-constrained distributed machine learning, in
INFOCOM (2018). Online. https://ieeexplore.ieee.org/document/8486403

https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
https://dataprot.net/statistics/iot-statistics/
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.marketsandmarkets.com/Market-Reports/edge-computing-in-healthcare-market-133588379.html{#}::text=Theglobaledgecomputingin,26.1{%}25from2022to2028
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://www.statista.com/outlook/tmo/internet-of-things/united-states
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://medium.com/sciforce/can-edge-analytics-become-a-game-changer-9cc9395d2727
https://ieeexplore.ieee.org/document/8647927
https://ieeexplore.ieee.org/document/8647927
https://ieeexplore.ieee.org/document/8647927
https://ieeexplore.ieee.org/document/8647927
https://ieeexplore.ieee.org/document/8647927
https://ieeexplore.ieee.org/document/8647927
https://ieeexplore.ieee.org/document/8647649
https://ieeexplore.ieee.org/document/8647649
https://ieeexplore.ieee.org/document/8647649
https://ieeexplore.ieee.org/document/8647649
https://ieeexplore.ieee.org/document/8647649
https://ieeexplore.ieee.org/document/8647649
https://ieeexplore.ieee.org/document/8939954/
https://ieeexplore.ieee.org/document/8939954/
https://ieeexplore.ieee.org/document/8939954/
https://ieeexplore.ieee.org/document/8939954/
https://ieeexplore.ieee.org/document/8939954/
https://ieeexplore.ieee.org/document/8939954/
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
http://dx.doi.org/10.1038/s41746-020-00323-1
https://ieeexplore.ieee.org/document/9060868
https://ieeexplore.ieee.org/document/9060868
https://ieeexplore.ieee.org/document/9060868
https://ieeexplore.ieee.org/document/9060868
https://ieeexplore.ieee.org/document/9060868
https://ieeexplore.ieee.org/document/9060868
http://books.nips.cc
http://books.nips.cc
http://books.nips.cc
http://books.nips.cc
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
http://leon.bottou.org/papers/bottou-bousquet-2008
https://ieeexplore.ieee.org/document/8664630/
https://ieeexplore.ieee.org/document/8664630/
https://ieeexplore.ieee.org/document/8664630/
https://ieeexplore.ieee.org/document/8664630/
https://ieeexplore.ieee.org/document/8664630/
https://ieeexplore.ieee.org/document/8664630/
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
https://ieeexplore.ieee.org/document/8486403
https://ieeexplore.ieee.org/document/8486403
https://ieeexplore.ieee.org/document/8486403
https://ieeexplore.ieee.org/document/8486403
https://ieeexplore.ieee.org/document/8486403
https://ieeexplore.ieee.org/document/8486403

3 Machine Learning at the Wireless Edge 69

16. U.Y. Mohammad, S. Sorour, Multi-objective resource optimization for hierarchical mobile
edge computing, in 2018 IEEE Global Communications Conference: Mobile and Wireless
Networks (Globecom2018 MWN), Abu Dhabi, United Arab Emirates (2018), pp. 1–6. Online.
https://ieeexplore.ieee.org/document/8648109

17. H.H. Yang, Z. Liu, T.Q.S. Quek, H.V. Poor, Scheduling policies for federated learning in
wireless networks. IEEE Trans Commun 68(1), 317–333 (2019). Online. https://ieeexplore.
ieee.org/document/8851249

18. Z. Yang, M. Chen, W. Saad, C.S. Hong, M. Shikh-Bahaei, Energy efficient federated learning
over wireless communication networks. IEEE Trans Wirel Commun 20(3), 1935–1949 (2020).
Online. https://ieeexplore.ieee.org/document/9264742

19. M. Chen, Z. Yang, W. Saad, C. Yin, H.V. Poor, S. Cui, A joint learning and communications
framework for federated learning over wireless networks. IEEE Trans. Wirel. Commun. 20(1),
269–283 (2021). Online. https://ieeexplore.ieee.org/document/9210812, https://arxiv.org/abs/
1909.07972

20. T. Tuor, S. Wang, T. Salonidis, B.J. Ko, K.K. Leung, Demo abstract: distributed machine
learning at resource-limited edge nodes, in INFOCOM 2018 – IEEE Conference on Computer
Communications Workshops (2018), pp. 1–2

21. D. Conway-Jones, T. Tuor, S. Wang, K.K. Leung, Demonstration of federated learning
in a resource-constrained networked environment, in 2019 IEEE International Conference
on Smart Computing (SMARTCOMP) (2019). Online. https://ieeexplore.ieee.org/abstract/
document/8784064

22. U. Mohammad, S. Sorour, Adaptive task allocation for asynchronous federated and parallelized
mobile edge learning (2020) arXiv preprint, arXiv:1905.01656, Online. https://arxiv.org/abs/
1905.01656

23. U. Mohammad, S. Sorour, Adaptive task allocation for mobile edge learning, in 2019 IEEE
Wireless Communications and Networking Conference Workshop (WCNCW) (IEEE, 2019),
pp. 1–6. Online. https://ieeexplore.ieee.org/document/8902527/

24. A.D. Pia, S.S. Dey, M. Molinaro, Mixed-integer quadratic programming is in NP. Math.
Program. 162(1), 225–240 (2017)

25. J. Currie, D.I. Wilson, OPTI: lowering the barrier between open source optimizers and the
industrial MATLAB user, in Foundations of Computer-Aided Process Operations, ed. by
N. Sahinidis, J. Pinto (Savannah, Georgia, USA, 2012)

26. J. Park, S. Boyd, General heuristics for nonconvex quadratically constrained quadratic
programming (2017) arXiv e-prints. Online. http://arxiv.org/abs/1703.07870

27. M. Chen, H.V. Poor, W. Saad, S. Cui, Convergence time minimization of federated learning
over wireless networks, in IEEE International Conference on Communications. (Institute of
Electrical and Electronics Engineers Inc., 2020), pp. 1–6. Online. https://ieeexplore.ieee.org/
document/9148815

28. M. Chen, H.V. Poor, W. Saad, S. Cui, Convergence time optimization for federated learning
over wireless networks. IEEE Trans Wirel Commun. 20(4), 2457–2471 (2021). Online. https://
ieeexplore.ieee.org/document/9148815

29. A. Abutuleb, S. Sorour, H.S. Hassanein, Joint task and resource allocation for mobile
edge learning, in 2020 IEEE Global Communications Conference, GLOBECOM 2020 –
Proceedings. (Institute of Electrical and Electronics Engineers Inc., 2020), pp. 1–6. Online.
https://ieeexplore.ieee.org/document/9322399

30. S. Cebula, A. Ahmad, J.M. Graham, C.V. Hinds, L.A. Wahsheh, A.T. Williams, S.J. DeLoatch,
Empirical channel model for 2.4GHz IEEE 802.11 WLAN, in Proceedings of the 2011
International Conference on Wireless Networks (2011)

31. S. Munder, D.M. Gavrila, An experimental study on pedestrian classification. IEEE Trans.
Pattern Anal. Mach. Intell. 28(11), 1863–1868 (2006). Online. https://ieeexplore.ieee.org/
document/1704841

32. Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to docu-
ment recognition. Proc. IEEE 86(11), 2278–2324 (1998). Online. https://ieeexplore.ieee.org/
document/726791

https://ieeexplore.ieee.org/document/8648109
https://ieeexplore.ieee.org/document/8648109
https://ieeexplore.ieee.org/document/8648109
https://ieeexplore.ieee.org/document/8648109
https://ieeexplore.ieee.org/document/8648109
https://ieeexplore.ieee.org/document/8648109
https://ieeexplore.ieee.org/document/8851249
https://ieeexplore.ieee.org/document/8851249
https://ieeexplore.ieee.org/document/8851249
https://ieeexplore.ieee.org/document/8851249
https://ieeexplore.ieee.org/document/8851249
https://ieeexplore.ieee.org/document/8851249
https://ieeexplore.ieee.org/document/9264742
https://ieeexplore.ieee.org/document/9264742
https://ieeexplore.ieee.org/document/9264742
https://ieeexplore.ieee.org/document/9264742
https://ieeexplore.ieee.org/document/9264742
https://ieeexplore.ieee.org/document/9264742
https://ieeexplore.ieee.org/document/9210812
https://ieeexplore.ieee.org/document/9210812
https://ieeexplore.ieee.org/document/9210812
https://ieeexplore.ieee.org/document/9210812
https://ieeexplore.ieee.org/document/9210812
https://ieeexplore.ieee.org/document/9210812
https://arxiv.org/abs/1909.07972
https://arxiv.org/abs/1909.07972
https://arxiv.org/abs/1909.07972
https://arxiv.org/abs/1909.07972
https://arxiv.org/abs/1909.07972
https://arxiv.org/abs/1909.07972
https://ieeexplore.ieee.org/abstract/document/8784064
https://ieeexplore.ieee.org/abstract/document/8784064
https://ieeexplore.ieee.org/abstract/document/8784064
https://ieeexplore.ieee.org/abstract/document/8784064
https://ieeexplore.ieee.org/abstract/document/8784064
https://ieeexplore.ieee.org/abstract/document/8784064
https://ieeexplore.ieee.org/abstract/document/8784064
https://arxiv.org/abs/1905.01656
https://arxiv.org/abs/1905.01656
https://arxiv.org/abs/1905.01656
https://arxiv.org/abs/1905.01656
https://arxiv.org/abs/1905.01656
https://arxiv.org/abs/1905.01656
https://ieeexplore.ieee.org/document/8902527/
https://ieeexplore.ieee.org/document/8902527/
https://ieeexplore.ieee.org/document/8902527/
https://ieeexplore.ieee.org/document/8902527/
https://ieeexplore.ieee.org/document/8902527/
https://ieeexplore.ieee.org/document/8902527/
http://arxiv.org/abs/1703.07870
http://arxiv.org/abs/1703.07870
http://arxiv.org/abs/1703.07870
http://arxiv.org/abs/1703.07870
http://arxiv.org/abs/1703.07870
http://arxiv.org/abs/1703.07870
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9148815
https://ieeexplore.ieee.org/document/9322399
https://ieeexplore.ieee.org/document/9322399
https://ieeexplore.ieee.org/document/9322399
https://ieeexplore.ieee.org/document/9322399
https://ieeexplore.ieee.org/document/9322399
https://ieeexplore.ieee.org/document/9322399
https://ieeexplore.ieee.org/document/1704841
https://ieeexplore.ieee.org/document/1704841
https://ieeexplore.ieee.org/document/1704841
https://ieeexplore.ieee.org/document/1704841
https://ieeexplore.ieee.org/document/1704841
https://ieeexplore.ieee.org/document/1704841
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791
https://ieeexplore.ieee.org/document/726791

70 U. Mohammad and F. Saeed

33. B. Shillingford, What is the time complexity of backpropagation algorithm for training
artificial neural networks? – Quora (2016). Online. https://www.quora.com/What-is-the-time-
complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks

34. F. Uhlig, The DQR algorithm, basic theory, convergence, and conditional stability. Numer.
Math. 76(4), 515–553 (1997)

35. A. Nemirovski, Interior point polynomial time methods in convex programming. Lect. Notes
42(16), 3215–3224 (2004). Online. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
160.6909&rep=rep1&type=pdf

36. Y.A. Qadri, A. Nauman, Y.B. Zikria, A.V. Vasilakos, S.W. Kim, The future of healthcare
internet of things: a survey of emerging technologies. IEEE Commun. Surv. Tutorials 22(2),
1121–1167 (2020). Online. https://ieeexplore.ieee.org/document/8993839

37. J.M. Raja, C. Elsakr, S. Roman, B. Cave, I. Pour-Ghaz, A. Nanda, M. Maturana, R.N.
Khouzam, Apple watch, wearables, and heart rhythm: where do we stand?. Ann. Transl. Med.
7(17), 417–417 (2019). Online. http:///pmc/articles/PMC6787392/?report=abstract, https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/

38. S. Kiranyaz, T. Ince, M. Gabbouj, Real-time patient-specific ECG classification by 1-D
convolutional neural networks. IEEE Trans. Biomed. Eng. 63(3), 664–675 (2016)

39. O. Choudhury, A. Gkoulalas-Divanis, T. Salonidis, I. Sylla, Y. Park, G. Hsu, A. Das,
Anonymizing data for privacy-preserving federated learning. Online. https://arxiv.org/abs/
2002.09096

https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
https://www.quora.com/What-is-the-time-complexity-of-backpropagation-algorithm-for-training-artificial-neural-networks
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.6909{&}rep=rep1{&}type=pdf
https://ieeexplore.ieee.org/document/8993839
https://ieeexplore.ieee.org/document/8993839
https://ieeexplore.ieee.org/document/8993839
https://ieeexplore.ieee.org/document/8993839
https://ieeexplore.ieee.org/document/8993839
https://ieeexplore.ieee.org/document/8993839
http:///pmc/articles/PMC6787392/?report=abstract
http:///pmc/articles/PMC6787392/?report=abstract
http:///pmc/articles/PMC6787392/?report=abstract
http:///pmc/articles/PMC6787392/?report=abstract
http:///pmc/articles/PMC6787392/?report=abstract
http:///pmc/articles/PMC6787392/?report=abstract
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787392/
https://arxiv.org/abs/2002.09096
https://arxiv.org/abs/2002.09096
https://arxiv.org/abs/2002.09096
https://arxiv.org/abs/2002.09096
https://arxiv.org/abs/2002.09096
https://arxiv.org/abs/2002.09096

	Preface
	Contents
	About the Editor
	1 Distributed Machine Learning and Computing: An Overview
	References

	2 Distributed Multi-agent Meta-Learning for Trajectory Design in Wireless Drone Networks
	2.1 Introduction
	2.1.1 Related Works

	2.2 Preliminaries of RL
	2.2.1 Single Agent RL
	2.2.2 Independent Multi-agent RL
	2.2.3 Collaborative Multi-agent RL

	2.3 Representative Work
	2.3.1 System Model
	2.3.1.1 Communication Performance Analysis
	2.3.1.2 Utility Function Model
	2.3.1.3 Problem Formulation

	2.3.2 Value Decomposition-Reinforcement Learning Algorithm with Meta Training
	2.3.2.1 Value Decomposition-Based Reinforcement Learning Components
	2.3.2.2 Value Decomposition
	2.3.2.3 Value Decomposition-Based Reinforcement Learning Solution
	2.3.2.4 Convergence and Complexity Analysis

	2.3.3 Meta Training Procedure
	2.3.4 Simulation Results

	2.4 Conclusions
	References

	3 Heterogeneity Aware Distributed Machine Learning at the Wireless Edge for Health IoT Applications: An EEG Data Case Study
	3.1 Introduction and Motivation
	3.2 System Model and Parameters
	3.2.1 General Distributed Machine Learning
	3.2.2 Transition to Wireless MEL
	3.2.2.1 Relationship to Completion Time and Energy Consumption

	3.2.3 Problem Formulation

	3.3 Synchronous MEL with Only Time Constraints
	3.3.1 Formulation
	3.3.2 Solution

	3.4 Synchronous MEL with Dual-Time and Energy Constraints
	3.4.1 Formulation
	3.4.2 Proposed Solution

	3.5 Heterogeneous Simulation Setup and MEL Algorithm
	3.5.1 Heterogeneity Analysis
	3.5.2 Simulation Environment
	3.5.3 MEL Algorithm

	3.6 Results and Discussions
	3.6.1 Impact of Time Constraints on Local Model Updates
	3.6.1.1 Improvements in Validation Accuracy

	3.6.2 Comparing FL versus PL
	3.6.3 Comparison to Centralized Approaches
	3.6.4 Complexity Analysis and Execution Time
	3.6.5 Performance with Energy Constraints

	3.7 Extension of IoMT/H-IoT to EEG Data
	3.7.1 Mathematical Formulation for EEG data

	Appendix 1
	Appendix 2
	Appendix 3
	References

	4 A Comprehensive Review of Artificial Intelligence and Machine Learning Methods for Modern Healthcare Systems
	4.1 Introduction
	4.1.1 Emergence of AI, ML, and FL
	4.1.2 AI and ML in Healthcare Applications
	4.1.3 Federated Learning in Healthcare Application
	4.1.4 Organization

	4.2 Machine Learning (ML) and Artificial Intelligence (AI) Healthcare
	4.2.1 Machine Learning Algorithms in Healthcare
	4.2.2 ANN and DL for Healthcare

	4.3 Applications of Artificial Intelligence and Machine Learning Healthcare in Precision Medicine
	4.3.1 Diseases Diagnosis and Outbreak Prediction
	4.3.2 Drug Discovery and Trial
	4.3.3 Robotic Surgery
	4.3.4 Precision Medicine
	4.3.5 Bioinformatics

	4.4 Federated Learning in Healthcare
	4.4.1 Federated Learning Toward Alleviating Current Issues of Healthcare System
	4.4.2 Categories of Federated Learning
	4.4.2.1 Resource-Aware FL
	4.4.2.2 Secure/Privacy-Enhanced FL
	4.4.2.3 Incentive-Aware FL
	4.4.2.4 Personalized FL

	4.5 Applications of Federated Learning in Healthcare
	4.5.1 FL in Pathology
	4.5.2 FL in Histology
	4.5.3 FL in Genomics
	4.5.4 FL in Dermatology

	4.6 Challenges of AI, ML, and FL in Healthcare
	4.6.1 Challenges Related to AI, ML, and DL
	4.6.2 Challenges Related to FL

	4.7 Conclusion
	4.8 Summary
	References

	5 Vertical Federated Learning: Principles, Applications, and Future Frontiers
	5.1 Introduction
	5.2 Background
	5.2.1 Differences of Vertical and Horizontal Federated Learning
	5.2.2 Key Characteristics

	5.3 Principles of Vertical Federated Learning
	5.3.1 Definition and Formulation
	5.3.2 Overview of the Vertical Federated Learning Algorithm

	5.4 Applications
	5.4.1 Healthcare
	5.4.2 E-commerce
	5.4.3 Finance

	5.5 Challenges and Limitations
	5.6 Solutions and Innovations
	5.6.1 Vertical Asynchronous Federated Learning
	5.6.2 Privacy Preserving ID Alignment
	5.6.3 Split Neural Networks in VFL
	5.6.4 Handling Multiparty and Multi-class VFL Setting
	5.6.5 VFL Without a Central Trusted Server
	5.6.6 Tree-Based Models in VFL
	5.6.7 Communication Efficiency

	5.7 Future Perspectives
	5.8 Summary
	References

	6 Decentralization of Energy Systems with Blockchain: Bridging Top-down and Bottom-up Management of the Electricity Grid
	6.1 Background and Introduction
	6.2 Motivation and Perspective
	6.3 Electric Grid Operations
	6.3.1 Top-down Architecture
	6.3.2 Bottom-up Architecture
	6.3.3 Confluence of Top-down and Bottom-up Architectures

	6.4 Blockchain Technology and Applications in Energy Systems
	6.4.1 The Technology
	6.4.2 The Functionality
	6.4.3 The Value Proposition
	6.4.4 The Applications
	6.4.4.1 Applications in the Top-down Sphere
	6.4.4.2 Applications in the Bottom-up Sphere

	6.5 Peer-to-Peer Energy Trading Using Blockchain
	6.6 Conclusion and Outlook
	References

	7 Empowering Distributed Solutions in Renewable Energy Systems and Grid Optimization
	7.1 Introduction
	7.2 Empowering Renewable Energy Through Machine Learning Innovations
	7.3 Revolutionizing Renewable Energy and Grid Management through Machine Learning
	7.3.1 Unveiling ML Applications in Solar Energy
	7.3.2 Unveiling ML Applications in Wind Energy System
	7.3.3 Unveiling ML Applications in Electric Distribution and Storage

	7.4 Safeguarding the Future: Navigating Security Concerns in Smart Grid Technology
	7.5 The Role of Distributed Decision-Making and Information Processing in the Future Energy Systems
	References

	Index

