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Abstract

Background: Alzheimer's Disease (AD) is a widespread neurodegenerative disease
with Mild Cognitive Impairment (MCI) acting as an interim phase between normal
cognitive state and AD. The irreversible nature of AD and the difficulty in early
prediction present significant challenges for patients, caregivers, and the healthcare
sector. Deep learning (DL) methods such as Recurrent Neural Networks (RNN)
have been utilized to analyze Electronic Health Records (EHR) to model disease
progression and predict diagnosis. However, these models do not address some
inherent irregularities in EHR data such as irregular time intervals between clinical
visits. Furthermore, most DLmodels arenot interpretable.To address these issues, we
developed anovel DL architecture called Time-Aware RNN (TA-RNN) to predict MCI
to ADconversion at the nextclinical visit.

Method: TA-RNN comprises of a time embedding layer, attention-based RNN, and
prediction layer based onmulti-layer perceptron (MLP) (Figure 1).For interpretability,
a dual-level attention mechanism within the RNN identifies significant visits and
features impacting predictions. TA-RNN addresses irregular time intervals by
incorporatingtimeembedding intolongitudinal cognitiveandneuroimagingdatabased
onattention weightsto create apatient embedding. The MLP,trained on demographic
data and the patient embedding predicts AD conversion. TA-RNN was evaluated
on Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's
CoordinatingCenter (NACC) datasets based on F2 score and sensitivity.

Result: Multiple TA-RNN models were trained with two, three, five, or six visits to
predict the diagnosis at the nextvisit. In one setup,the models weretrained andtested
on ADNI. In another setup, the models were trained on the entire ADNI dataset and
evaluated on the entire NACC dataset.The resultsindicated superior performance of
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TA-RNNcomparedto state-of-the-art (SOTA) and baseline approaches for bothsetups
(Figure 2A and 28). Based on attention weights, we also highlighted significant visits
(Figure 3A) and features (Figure 38) and observed that CDRSB and FAQ features and
the most recent visithadhighest influence in predictions.

Conclusion: We propose TA-RNN, an interpretable model to predict MCI to AD
conversion while handling irregular time intervals. TA-RNN outperformed SOTA and

baseline methods in multiple experiments.
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Figure I. TA-RNN architecture for predicting of conversion to AD at the next visit.
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Figure 2. F2 scores for TA-RNN models to predict conversion to AD at the next visit. (A) Models tesled on held-out
samples in ADNI after training using two, three, five, and six visits in ADNI, respectively. (B) Models tested on
NACC after training using two, three, five, and six visits in ADNI, respectively.
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Figure 3. Attention weights (A) Attention weights at the visit level for TA-RNN. TA-RNN evaluated o011 held-out
samples in ADNI after training usingsix preceding visits in ADNL (B) Average attention weights at the feature level
for TA-RNN. TA-RNN wasevaluated on held-out samples in ADNI after training usingsix preceding visits in AD!"'!.
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