Sketched Column-based Matrix Approximation

Jeongmin Chae', Selin Bac!f, Usama Saleem*, Shaama Mallikarjun Sharada* and Urbashi Mitraf

Abstract—A new, practical algorithm, fast Sketched Column-
based Matrix Approximation (fSCMA), is proposed for low-rank
matrix approximation. fSCMA leverages randomly, but fully
sampled columns combined with structural side information, to
achieve efficient and accurate approximations. The algorithm
leverages both matrix sketching and side information to reduce
complexity. A theoretical spectral bound on the reconstruction
error is derived, improving the error bound by a factor of n
(in terms of key parameters) compared to state-of-the-art algo-
rithms (SoTA). Experimental results on synthetic data demon-
strate that fSCMA achieves competitive performance relative to
SoTA, validating theoretical bounds, while significantly reducing
computational complexity. Additionally, fSCMA shows strong
improvement over prior methods when applied to real data.

I. INTRODUCTION

Many computational science applications employ low-rank
matrix approximation [1]—[3]. For matrices of large dimension,
these low-rank approximations provide efficiency in storage
and processing [4]-[6]. Motivated by quantum chemistry ap-
plications, we previously proposed low-rank approximation
methods [7], when only a subset of columns of the matrix
are available. In [8], Quasi-Polynomial Matrix Approximation
(QPMA) recovered a ground truth matrix that admits the
following structure: M = QS + E, where S captures the prior
quasi-polynomial side information. The matrix S is known and
Q is an unknown coefficient matrix; E represents an unknown
perturbation from the polynomial structure. In fact, the matrix
S can be any full rank matrix. With this side information
in hand and only column samples, QPMA outperforms state-
of-the-art methods [9], [10]. In [11], we proposed sCMA, a
computationally efficient strategy for addressing the recovery
of M . sCMA performs sketching on QS, where Q is an
estimated coefficient matrix, and restricts access to only a
limited number of its rows. While SCMA offers a notable
reduction in complexity relative to QPMA, it still inherits
the computational burden associated with estimating Q. In
contrast, the proposed algorithm circumvents this bottleneck
by eliminating the need to solve for Q altogether.

Herein, we further improve upon QPMA and sCMA, via a
novel, low complexity method called fast Sketched Column-
based Matrix Approximation (fSCMA). fSCMA also employs
a modest number of fully sampled columns, however, the
sketching operation enables a significant reduction in complex-
ity by obviating the need for a gradient search to solve for the
coefficient matrix Q. In particular, column space estimation
is enabled by the sampled columns and its sketch and row
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space estimation is facilitated through the known S matrix. In
contrast to some prior approaches, fSCMA does not require
a singular value decomposition on the QS and thus scales
well with problem dimension. Specifically, sCMA sketches
the rows of QS while fSCMA sketches the sampled columns.

While [12], [13] investigate low-rank matrix approximation
with side information, both works rely on the assumption that
the column and row spaces of the target matrix are fully known
or can be accurately inferred from the side information. For
example, [13] assumes that the true column and row spaces are
perfectly embedded within the subspaces defined by the side
information, along with access to additional randomly sampled
entries. In contrast, our proposed method operates under a
setting where the side information is only approximately
informative.

As the name implies, fSCMA applies a randomized sketch-
ing matrix to the set of sampled columns. Matrix sketching has
been studied extensively in the context of matrix approxima-
tion [6], [14]-[17]. Sketching provides matrix approximation
via the projection onto a lower dimensional subspace while
minimizing information loss. In [6], it is assumed that the full
ground truth matrix is known and sketching is employed to
create a low rank approximation. In [16], a low-rank matrix
approximation is created from two noisy sketched matrices.
Both [6] and [16] assume the ground truth matrix is low-
rank. In contrast, herein, we assume access to only a collection
of columns of the high-rank ground truth matrix, as well as
structural side information.

Given the unique nature of our problem statement, com-
parison methods are challenging to find. To this end, the
CUR approximation [9], [18] bears some similarities to our
approach; therein, ground truth matrix is approximated as
M ~ CUR. The matrices C and R are comprised of true
columns and rows, respectively and be viewed as sketched
versions of the row and columns of M. In contrast, we
only have access to sketched columns and the side infor-
mation and we do not know anything else about the ground
truth matrix. Recently, CUR+ [9] was introduced to address
missing values within the CUR decomposition framework.
This method constructs a low-rank approximation by utilizing
a small number of fully sampled true rows and columns,
along with additional random collected samples from the
original matrix. Although CUR+ is relevant to our missing-
value scenario, it relies on access to more information than
our proposed framework. However, we do compare CUR+
to fSCMA and characterize the informativeness of our side
information and the computational efficiency of both methods.
Table I compares the information assumed to be available for
key methods that we have presented.

The key contributions of this work are as follows.

o We propose a practical low-rank matrix approximation

method that uses randomly sampled columns and struc-



Algorithm column-space row-space
fSCMA A sketch of A right singular vectors of S
QPMA A right singular vectors of QS
CUR+ A A few rows of M
sCMA A A few rows of QS

TABLE I
COMPARISON OF INFORMATION AVAILABLE FOR COLUMN-SPACE AND
ROW-SPACE ESTIMATION TO EACH METHOD

tural side information, eliminating the need for coefficient
matrix estimation.

« A theoretical bound on the reconstruction error achieved
by fSCMA is derived, characterized by the relationship
between the row-space of E and S, as well as the spectral
properties of the ground truth matrix and the sketch. This
bound shows an improvement over QPMA by a factor
related to the dimension of the ground truth matrix in
terms of the order of key parameters. !

o fSCMA is compared numerically with QPMA, CUR+,
and sCMA on synthetic data, demonstrating competitive
NMSE performance while achieving up to 50 times
greater computational efficiency compared to QPMA.
Additionally, fSCMA is validated using real data from
the original quantum chemistry application.

II. PROBLEM FORMULATION

We present the concrete problem formulation and introduce
key definitions.
A. Signal model

Let M € R™™ "™ be a matrix whose actual rank is k; this is
the matrix we wish to approximate. Herein, we consider the
problem of obtaining a low rank matrix approximation of M,
1\7[, from d randomly sampled columns, we assume that d < k.
We further assume that prior side information is captured by
a known matrix S. Thus, the true matrix M is modeled as

where, Q € R™*! is an unknown coefficient matrix with re-
spect to S. The structural side information matrix, S € R™*",

encodes the row-space prior knowledge of M and E is the
perturbation/noise matrix. We note that the side information
matrix S can be arbitrary, but should be tailored to the
corresponding application. For example, in image processing,
S can be drawn from the Discrete Cosine Transform (DCT),
where each column of the matrix represents a cosine function
with a different frequency [19] or a function of Legendre
polynomials [20]. In our prior work [7], [8], [21], we have

employed polynomial side information 2.

'In contrast to sSCMA [11], we can show that the sketch of sampled columns
is sufficient to represent the column-space of M.

2In particular, to predict chemical reaction rate coefficients [22], [23] given
information at specific points along the reaction coordinate, s = [s1, ..., Sm]
and polynomial order !, we assume that the side information S has the
following polynomial structure. In addition, when m = 4, C = {1, 3,4},
i.e.,, d = 3, the sampling operation ¥ is defined as
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We set the target rank of M as I. In particular, we consider
the following regime,

1<d<k. 3)

Since the structure of E is unknown, there exist two possible
cases with respect to the row-space of E: (1) the row-space of

E fully coincides with that of S, i.e., perfect side information,
then E = 0, and (2) the row-space of E is not fully contained
in the row-space of S. We focus primarily on the second case.
If the row-space of E completely coincides with that of S, the
rank of M becomes [, resulting in [ = d = k. In this case,
the problem becomes trivial, as it corresponds to sampling all
columns. Otherwise, the relationship [ < k always holds. We
assume that S is full row rank, i.e., rank(S) = [.

As mentioned previously, we observe a subset of the
columns of M. This column sampling operation W is defined
as follows. Let C = {c1,...,cq} C [m] denote the set of sam-
pled column indices. Clearly |C| = d. Then, ¥ € {0,1}™¢
is ¥ = I., where I is the identity matrix of dimension m
and the notation I means that we consider the sub-matrix
of I formed by its columns indexed by entries in the set C'.
Thus, the observed matrix of the sampled columns, A, can be
equivalently expressed as

A =M. “4)

B. Notation and Key Definitions

We next define the following necessary quantities. We
denote the Singular Value Decomposition (SVD) of a matrix
X e R™™ as

SVD
X = UxZxVk + Ux12x1Vx,,
rank—r approximation reminder

where 7 < min{n,m}, and Uy € R"", Ty ¢ R"™"
and VL € R™™ (the matrix formed by the left and right
singular vectors corresponding to the top-r singular values
of X). Additionally, we denote the rank-r SVD of X as

X T_S:VD UxX® XV}(. Then, the SVD of the side information
matrix S € R”™ is given by
s SYP ysovi, (©6)

where the dimension of each component is Ug € RM, g €
R and Vg € R™*!. Note that rank(S) = I << {n,m}.

Similarly, we denote the SVD of M as M SXD uxvrT,

where the dimension of each component is U € R"*™, ¥ ¢
RTTLXWI and -V E Rmxm'

Next, we consider the following standard definition of the
Johnson-Lindenstrauss Transform (JLT) [24].

Definition 1. (Johnson-Lindenstrauss Transform). A random
matrix R € R™™" forms a Johnson-Lindenstrauss transform
if, for any (row) vector x € R" and any € > 0,

—Cé%r
P[(1—eo)x[3 < xR < (1 +e)fx[3] =1 —e T,
where C' > 0 is a positive constant.

The Johnson-Lindenstrauss Transform condition is a nec-
essary assumption in our work to map high-dimensional data



from the matrix of sampled columns onto a lower-dimensional
subspace while approximately preserving the column sub-
space, all with high probability. We invoke the Johnson-
Lindenstrauss transform to establish error guarantees for ma-
trix sketching applied to the column-space approximation of
M (See the proof of Lemma 2 in Appendix E).

In addition, consider the following standard definition of an
orthogonal projector [25], and matrix incoherence [26].

Definition 2 (Orthogonal projectors). Let X be a nxm matrix.
When X has full column rank, the orthogonal projector is
defined as

Py =X (X'X) X" 7

We write Px for the unique orthogonal projector with
range(P x) = range(X).

Definition 3 (Incoherence). Let X be a n x m matrix of rank

I and X P UXVT, where the dimension is U € RnXZ,
2 e R™ and VT € R™™. Let u; be the i-th row of U and
v; be the j-th row of V. Then, the incoherence of X is given

by p(X) = max (maxie[n} 7

2 2
ui“zvmaxje[m] %HVJ”Q)

In the analysis, we will use the shorthand notation, y =
w(M) and ps = u(S). Incoherence is a crucial assumption
that ensures the “energy” of a matrix is distributed uniformly,
facilitating its recovery from a limited number of randomly
selected entries [26], [27]. Our setting differs from standard
matrix completion, where individual entries are sampled ran-
domly. In contrast, we observe only a few randomly chosen
columns. However, the incorporation of side information al-
lows us to leverage the conventional definition of incoherence.
Incoherence guarantees that sketching is likely to catch enough
information, because no single coordinate is too important.

III. FAST-SKETCHED COLUMN-BASED MATRIX
APPROXIMATION

We now introduce the proposed algorithm, fast-Sketched
Column Matrix Approximation (fSCMA). As noted in the
Introduction, when the ground truth matrix is available, low
rank approximations can be formed by sampling true columns
and rows, resulting in M ~ AUB [9], [18]. If B were known,
then a natural way to cast the optimization in our column-
based setting is

argmin |[M¥ — AZBY||g. )

ZERaAXT
We observe that the optimization over Z depends on the num-
ber of sampled columns d. Moreover, in our column-sampled
observation setting, we cannot collect row samples to form B.
Thus, we seek to determine an efficient way to estimate the
column- and row-spaces given only a set of sampled columns
and side information. Our proposed framework, fSCMA,
consists of three stages: (i) the column-space approximation
of M by randomly sketching a set of sampled columns A;
(ii) the row-space approximation of M by leveraging its side
information structure S; and (iii) performing the final low
rank matrix approximation step, constrained by the previously
obtained column and row-space approximations.

(i) Sketching-based column-space approximation. The goal
of this step is to develop a practical approach for estimating
the column-space of M given A. We argue that as long as
a sufficient number of independent columns are sampled (as
will be shown in Lemma 1), the following optimization gives
us a good low dimensional representation of A

argmin ||(I—-U,U}) XXT|| ., 9)

XERnXP
where U 4 consists of the left singular vectors corresponding
to the top-d singular values of A. If p = d in (9), the solution
to the above is given by A from Eckart-Young-Mirsky theorem
[28]. However, when p < d, we need a carefully constructed
sketch of A using the sketching matrix R as shown in (10)
using the Johnson Lindenstrauss Transform with the proper
sample complexity (as will be shown in Theorem 1). This
approach produces an n X p matrix that reliably estimates the
column space of A, and consequently, of M.

We define a sketch of a set of observed columns A, A as
follows. Let R € R**? be a Johnson-Lindenstrauss Transform
such as a random Gaussian matrix or a sparse random matrix.
We denote R a sketching matrix. Here, p is the sketching
parameter. We shall focus on the case where [ < p < d.
The sketching parameter p controls the trade-off between the
compression rate and the approximation accuracy. A larger
p implies that more information is retained, and better a
approximation of the original matrix A is achieved. A smaller
p yields greater compression, but introduces more distortion
in the singular values and subspace approximation of A. We
obtain a sketch A € R™*” of A € R™*% ag

A = AR. (10)

In Theorem 1, we characterize the sampling complexity of
d and p with respect to the reconstruction error. Empirically,
we fixed d and determined a good value of p; our findings
suggest that the relationship between p and d is approximately
p = [0.5 — 0.7 x d]. The validation of this approximation
is seen in Fig. 3. In addition, we numerically compare the
performance of fSCMA versus p in Fig. 3. We observe that
A serves as a good approximation of the column-space of M,
provided that a sufficient number of independent columns are
sampled. Furthermore, when compared to our prior approach,
QPMA [8], which estimates the column-space of M by
performing an SVD on A, the proposed algorithm, fSCMA,
significantly reduces computational complexity by eliminating
the SVD step, which costs O(ndl), versus directly utilizing A..
(ii) Row-space approximation. We next design a good
estimate of the row space of M. As previously noted, the
row-space of the side structural information, S (see (1)), for
M will be leveraged. By a standard linear algebra property
[29], for any matrix Q € R™*! and S € R"™™, the row space
of QS is contained in (or equal to) the row space of S as left
multiplication by Q forms linear combinations of the rows of
S. Therefore, it follows that rowspace(QS) C rowspace(S).
Based on the SVD representation of S in (6), M can be
expressed as: M = QUSESVg + E, which suggests that
the row-space of M can be viewed as a perturbed version of
the row-space of S, influenced by the row-space of E [30].



However, the structure of E is completely unknown. Thus,
we can only estimate the row space of M from S through the
following minimization

Vs = argmin H (I - VVT) STSHF .

VER"‘XI',VTV:I

Y

The solution to the above is readily obtained through a rank-{
SVD of S. In Theorem 1, we characterize the error bound in
terms of the relationship between the row spaces of S and
E. This approach eliminates the computational complexity
associated with solving for Q in QPMA, which requires
both gradient descent and SVD to estimate the row-space.
In particular, fSCMA avoids the cost of gradient descent,
O(nd?l - T), where T is the number of iterations, and the
cost of O(nml) for the SVD. These operations scale poorly
with the matrix dimensions n and m, making them impractical
for large-scale problems.
(iii) Low rank matrix approximation. Lastly, we exploit the
column sketch A and the row-space of S (i.e., Vg) to obtain
the desired low-rank approximation as follows,
Z :argminHqu—Axvg\IJHi. (12)
X
This is a Frobenius norm regression problem where we seek
the X that best satisfies the linear system in the least-squares
sense. The closed form solution for Z [10], [18] is given
by Z = ATMW® (VE‘II)T € RP*! where 1 denotes the
Moore-Penrose pseudo-inverse. Equation (12) solves for Z
only using the sketch of A = AR and the row-space of S,
Vg, without full knowledge of M, but with knowledge of the
column sketch and the side information S. Finally, our low
rank approximation of M, M., is then obtained as

M = AATA (VI®)' VI = AzZV].

The dimensions of Z and the computation of the pseudo-
inverse of VE'II IS R4 depend on [, p and d, we observe that
these parameters do not scale at the same rate as the system
parameters (m and n) which are much larger. The complete
algorithm is summarized in Algorithm 1.

IV. MAIN THEOREM AND ANALYSIS

In this section, we provide our main result and the proof
sketch. The full proof can be found in the Appendix. To
perform the analysis, we partition the singular value decom-
position of M as follows. Recall that the target rank of the
approximated matrix is [.

N v/
MSYPyusvT—u | ! Lxm (13)
>, V]
S~~~ ~—~
m—l (m—I)xm

The matrices 37 and 35 are square.
A. Main result

We now present our main result.
Theorem 1. Assume that d columns are sampled uniformly

at random from the underlying ground truth, M. Let R
denote the Johnson-Lindenstrauss Transform of size d X p.

Algorithm 1 Proposed fSCMA algorithm

Input: A matrix of sampled columns A € R™? Side
information matrix S € Rlxm, Column sampling matrix
W € {0,1}™*4, A JLT sketching matrix R € R**?
Parameters: Degree of S, [, Sketching matrix parameter,
p, and the number of sampled columns d

Algorithm:

1. Sketching-based column-space approximation

- Obtain a sketch of A via random projection A = AR
2. row-space approximation

- Obtain orthogonal basis of the row-space of side infor-

mation S by means of SVD: UgXsVL = svd(S)

3. Low-rank matrix approximation: Using A and Vg
obtained from the previous steps,

- Solve (12) and obtain Z = ATA (VI®)" e RP*!

- Construct M = AZV{
Output: M = AZV{

Then, with probability 1 — max{e=1€P, ¢yl =3}, where § =
max{e 1€ P ¢yl 73}, if d > max{csullnl, cypuslIni} and
p =0 (log(1/5)/€?), we have

- T2
HM—AZVSH
2
2
(M5
2
oi (M) 6n
<4—""" |54+ — 8 (1 —1)-
S 4o +d +8(+e)(m—1)-~
(g 2 4||E - EVsVT?
4 832( ) <2+m) H 5 S SHQ, (14)
oi (M) d of (M)
where v = w And c1,c9,c3,c4,€ > 0 are
o2(VI®R)-02(M) PTE T
numerical constants and 0 < § < 1. X

Proof. The full proof of Theorem 1 is provided in the
Appendix. It is derived by leveraging large-deviation results
from random matrix theory [31] to ensure that the estimated
column-space remains well-behaved, given a sufficient number
of sampled columns. This is followed by a careful application
of matrix sketching techniques.

B. Discussion

Interpreting the error. Theorem 1 addresses three primary
sources of error: (i) the unrecoverable energy resulting from
the high rank nature of the original matrix M, (ii) imper-
fections in the side information, and (iii) the loss due to
using the sketched column information in A to estimate
the column-space of M. The first and second terms in (14)
quantify the irreducible approximation error due to the high-
rank components of the matrix and the additional distortion
introduced by the sketching operator, respectively. We assume
that both terms ¢ (M) and o7 (V{ ¥R) in (14) are constant,
ie., o7 (M) = O(1) and 07 (V] ¥R) = O(1). Otherwise,
we observe that fSCMA incurs a multiplicative factor of
O(n/d+ (m—1)) in the best rank-{ approximation error, given

NETE:

by HM - MH = 07,,(M). This arises because our column-
2

based sampling strategy yields a more challenging problem
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Fig. 1. Characterizing -y as a function of p and d. -y decreases as p increases,
leading to a corresponding reduction in NMSE.

than classical rank-/ approximation. Such a multiplicative fac-
tor is standard in the high-rank matrix approximation literature
[18], [28], [32], [33].

Furthermore, we characterize the imperfections of the side
information. Due to the unknown structure of E, when E # 0,
the error arising from the structure of the row-space of E and
the side information S contributes to the third and fourth terms
in (14). First, if the row-space of E is a subspace of the row-
space S, i.e., co-range(E) C range(Vg), the row-space of E
is a linear combination of the rows in Vg. This coincides with
the case of the row-space of M being equal to that of S, and
then the rank(M) = [. Then, it is straightforward to observe

2
o1+1(M) = 0, and the error becomes HM - AZV-SFH =0,
as we sample all columns. Only in this case, can we pe%’fectly
recover M. Otherwise, M has higher rank, ! < k. Specifi-
cally, | E (I — VSVE) ||; represents how informative the side
information is. For example, the matrix I — VSVE serves as
a projection onto the complement of the row-space of S. If
rowspace(E) C rowspace(S) , then |[E (I-VgV)||, = 0.
Consequently, ||E (I—VgV3)|, effectively measures how
informative S is in describing the structure of M; the smaller
the value, the more informative the side information.

Interpreting ~. Starting from the SVD of M from (13), we
can determine an alternative expression for A which is given
by A = M¥ = UX, V¥ + UX, V] W. Here, the first
term UX; V] W represents the sampled columns of a matrix
composed of the top [ singular vectors and values of M.
Consequently, U21V1T\IIR can be interpreted as a sketch of
the best rank-/ agproximation of M. We then ogtain the bound:
U VIPR], < [UIS IS5 [ VIZR], = o?(M) -
o?(VIWR), usian classical matrix norm bounds. Thus, the

o M
TR e

in Theorem 1 is an “effective

a 12+1(M)
o (VI¥R)-0f(M)
measures how informative the sketch A is with respect to the
original matrix M. We observe that the more informative A
, i.e., a better rank-/ approximation of MM, this ratio becomes
smaller, which makes the bound tighter. When d << m,
the sketched A incurs a loss, impacting the bound. This
observation is numerically validated in Fig. 1. Lastly, as the
target rank [ increases, we observe that the influence of the
second term diminishes as the error between the high rank M
and its estimate M decreases.

term v =

eigenratio between M and A”. The term

Comparison with QPMA [8] and sCMA [11]. We compare
our spectral error result with those of our prior column-based
matrix approximation methods. We assume for the rest of the
paper that the incoherences, are constant, i.e., u = O(1) and
s = O(1). We denote the low-rank matrix approximation ob-
tained by QPMA, sCMA and fSCMA as Mgppa» Mgcma

and MfSCM A respectively. Then, with high probability,
QPMA and sCMA, converting the corresponding bounds [8],
[11] to big O notation, we have,

HM - MQPMAHE <0 (%0124-1(1\/1)) +0 (% IIEII?) :

and
. 2 n
M- Ntema; = 0 (2ot + o) v

In contrast, fSCMA shows the following error bound with
d = O(llogl),

HM - MfSCMAHz <0 (% +m— l) o1 (M) + 0 (% IIEII§) -

In comparison with QPMA which requires d = O(I%log!)
number of sampled columns, fSCMA achieves a sample
complexity of d = O(llogl), which improves the sample
complexity of QPMA by a factor of /. The additional com-
plexity O(l) of QPMA is due to the use of gradient descent
to optimize the convex objective function to solve for X in
(12). In contrast, fSCMA, has a closed form solution for X,
if p < d. Furthermore, QPMA has an additional multiplicative
factor of O(%) associated with o7, (M) compared to the
proposed method also due to the gradient descent step. This
tighter error bound in Theorem 1 is achieved by eliminating
the gradient descent step in QPMA.

Time complexity of fSCMA. We analyze the computational
time complexity of fSCMA (Algorithm 1) versus other al-
gorithms, emphasizing the dominant operations in each step,
such as the SVD, pseudo-inverse computation, and gradient
descent, versus matrix multiplication. Notably, the column-
space approximation step in fSCMA does not involve any
computationally dominant matrix operations. Next, the row-
space Vg is obtained through a rank-l SVD on S, and
this takes O(ml?) time [34]. Next, the low rank matrix
approximation step is performed by the pseudo-inverse of A,
and VIW. The pseudo-inverse of A and VLW are O(np?)
and O(I%d), respectively. Therefore, the overall complexity of
fSCMA is O(mli? + np? + [2d). On the other hand, QPMA
involves SVDs on A and QS and gradient descent, with an
overall cost is O(ndl + nd?l + nml + n%dl - T), where T
is the number of iterations during the gradient descent step.
Finally, sSCMA requires the estimation of the coefficient matrix
Q and the computation of the pseudo-inverse of Q2QSW,
where € is the row-sampling operator, with an overall cost of
O(n?%dl + d*p). We numerically compare the time complexity
of QPMA, sCMA and fSCMA in Section VI. Due to the fact
that | < p < d << min{n, m}, the runtime complexity of
fSCMA is significantly lower than that of QPMA.

V. PROOF SKETCH AND KEY LEMMAS

We present the proof sketch of our key result along with the
key lemmas required to establish Theorem 1. The full proofs



are provided in the Appegdix. For Theorem 1, we start with
bounding HM — AZVEHQ:

- 2
HM— AZV}H
2
- 2
- HM ~Py,MPy, + Py ,MPy, — szgH
2

(@ _
< 2|M - Py, MPy,|>+2 HPUAMPVS - AZV}‘

®

2
)
2

@

where (a) is due to the triangle inequality and the fact that for
a,b >0, (a+b)? < 2(a® + b?). Note that Py, = U,U]J,
where U 4 is the left singular vectors of rank-d SVD of A
and Py, = VSVE, where Vg is defined in (6). Next, we
bound each term denoted by ® and @ with high probability
via Propositions 1 and 2. Note that ® represents the energy
of M that is orthogonal to the estimated (/-dimensional) row
and column spaces.

Proposition 1. If d > ajullnl, under the conditions of
Theorem 1, we have that

IM — Py, MPv,|;
<207, (M) (1+25) +2[E-EVs V.

with probability at least 1 — asl™3, where a; and as > 0 are
constants.

Remark. The complete proof of Proposition 1 is provided
in Appendix D. The proof follows from first invoking [35,
Theorem 6] to bound the energy of M orthogonal to U 4 and
Vs.

Proposition 1 accounts for errors arising from two factors:
(i) the high rank of M, where rank(M) = k& >> [ and (ii)
the sub-sampling of columns, both of which contribute to the
first term. When E = 0, the true rank of M, k, is equal to
I and the error becomes zero. This is because o7, (M) = 0
and the row-space of E fully aligns with the row-space of S,
leading to ||E — EVSVEH; = 0. The second term arises due
to the unknown structure of E.

Next, @ represents the error arising from the use of the
sketch A for estimating the column-space of M, as well as
the final matrix approximation step, which involves estimating
Z. This error is bounded using the Proposition 2 below.

Proposition 2. If d > max{bjpllnl, bousllnl} and p =
O(log(1/8)/€?), where § = max{e=bP byl=3}, then under
the conditions of Theorem 1, we have that,

- 2
HPUAMPVS - AZV}H2

+ 403 (E) <2+ 22”) ,

with probability 1 — 0, where by, ba, b3, by and ¢ > 0 are
constants.

Remark. The proof of Proposition 2 is provided in Ap-
pendix G. It follows by carefully applying the Johnson-
Lindenstrauss transform (see Definition 1) to R with respect
to A. As will be seen in the Appendix, the impact of A is
revealed in the columns of V5 in (13). We next analyze the
error between the projection of M onto the column-space of
A and that of A. Combining Propositions 1 and 2 completes
the proof of Theorem 1.

VI. NUMERICAL RESULTS

In this section, we evaluate the performance of fSCMA on
both synthetic and real-world datasets. All experiments on syn-
thetic data are averaged over 300 independent iterations. The
code is available at https://github.com/JeongminChae/fSCMA.
Benchmark Algorithms. While most matrix approximation
algorithms require access to the complete, true rows and
columns of the matrix — making direct comparisons more
challenging — recently proposed methods such as CUR+ [9],
sCMA [11], and QPMA [8] operate using only a limited
number of sampled columns (or rows) and are thus appropriate
for comparison to fSCMA. These algorithms are assessed
based on four criteria: (i) sampling strategies employed, (ii)
the informativeness of the side information utilized, (iii) the
effectiveness of sketching, and (iv) computational efficiency.

We briefly describe QPMA, sCMA and CUR+. Similar to
fSCMA, both QPMA and sCMA compute a low-rank matrix
approximation of M using only d sampled columns and the
side information S. However, both QPMA and sCMA require
solving for Q in (1) as part of their process. QPMA consists
of three-step process; (i) column-space estimation, (ii) row-
space estimation, and (iii) low rank matrix approximation of
M. For step (i), QPMA performs and SVD on the sampled
columns, A, and derives its column-space. Next, it solves
for QQ using gradient descent, leveraging A and S. With the
estimated coefficient matrix, Q QPMA estimates the row-
space by performing an SVD on Qs. Finally, QPMA solves
for an intersection matrix using a gradient descent method
that incorporates the estimated column-space and row-space.
QPMA is implemented with a fixed step-size n = 0.01 for
solving Q via gradient descent, with a maximum number of
iterations 7" = 1500. sSCMA [11] has a two-step process; first
solving for Q employing least squares estimation, with the
given sampled columns, A, and S. And, with the estimated
coefficient matrix, Q, sCMA samples a few rows of QS.
Let the sampled row matrix be B. Then, sCMA computes its
low-rank matrix approximation as A (BW)B. Finally, CUR+
samples a subset of the full true columns, i.e., A, and full rows
of the true matrix, i.e., B. Thus, for column- and row-space
estimation, CUR+ performs an SVD on a set of true columns
and rows of M. Lastly, the low-rank matrix approximation step
(corresponding line 9 in Algorithm 1 in [8]m) is performed
with the low rank column-space, i.e., U4, and row-space,
i.e., Vg, obtained from SVD on the true columns and rows;
argming |QS — U4XVE||%. On the other hand, fSCMA
estimates the column-space and the row-space through a sketch
of A and the side information S.

To compare the sampling complexity of each algorithm,
fSCMA samples only d columns, resulting in access to a total


https://github.com/JeongminChae/fSCMA

Polynomial basis

DCT basis

Q\ -@- fSCMA-Gaussian (p=7) -@- fSCMA-Gaussian (p=7)
1011 ™ -&- fSCMA-Count (p=7) -&- fSCMA-Count (p=7)
N
(RN —-= fSCMA-SRFT(p=7) == fSCMA-SRFT(p=7)
\ -1 4
VN -8~ fSCMA-Gaussian (p=20) 107 -~ fSCMA-Gaussian (p=20)
| fSCMA-Count (p = 20) —#- fSCMA-Count (p =20)
fSCMA-SRFT(p = 20) —*- fSCMA-SRFT(p = 20)
w QPMA w8 N QPMA
g CUR+ g CUR+
= - s s 2 ‘l~\~\
-.-.— - SCMA \-t»___._-..-l...&-‘ — e SCMA ®
10—2 4
10724 e
e e i LT ST G
10 20 30 40 50 10 20 30 40 50

Number of sampled columns (d)

Number of sampled columns (d)

Fig. 2. The NMSE versus the number of true sampled columns, d when S is a polynomial basis matrix and a DCT basis. Here, k = 100 and [ = 7.

TABLE I
COMPARISON OF SAMPLING NEEDS FOR BASELINE ALGORITHMS

Algorithm | # rows | # columns | Total samples
CUR+ d d 2nd — d?
QPMA 0 d nd
sCMA 0 d nd
fSCMA 0 d nd
=& fSCMA-Gaussian (Poly)
’ =& fSCMA-Count (Poly)
H — fSCMA-SRFT (Poly)
'-_ @ fSCMA-Gaussian (DCT)
: A" fSCMA-Count (DCT)
: -+ fSCMA-SRFT (DCT)
H * QPMA (Poly)
: CUR+ (Poly)
\ H # SCMA (Poly)
Y QPMA (DCT)
w \ CUR+ (DCT)
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Fig. 3. Characterizing the informativeness of the sketch A through numerical
performance varying p when k = 100 and d = 50.

of nd entries. Additionally, fSCMA estimates the column-
space by projecting the d-dimensional space onto an p-
dimensional subspace using random projections. In contrast,
CUR+ requires a larger number of samples compared to
fSCMA, utilizing d rows and d columns each. Although
QPMA and sCMA also sample d columns similar to fSCMA,
both algorithms benefit from additional information in the
form of the estimated coefficient matrix, Q Via the com-
parison with benchmark algorithms, we seek to evaluate the
informativeness of the side information S in the absence of
coefficient information Q, as well as the effectiveness of
sketching. Table II summarizes the sampling needs of each
scheme.

A. Synthetic data
Data generation. We generate the data as follows. Matrix

dimensions are n = m = 100 throughout. The entries of
the coefficient matrix Q € R™! are drawn identically and
independently from A(0,1). For S € R™™, we consider
the discrete cosine transform (DCT) [36] and a polynomials
of the reaction coordinate values s as seen in (2). For the
DCT matrix, we generate a | X m matrix S, where each
of the [ rows corresponds to a different frequency and i-th
75 (2i+1))
m

column of S is defined as Sy; ;1 = a; cos ), where

j € {0,...,1 — 1} is the index of frequency components,
i € {0,...,m — 1} is the index for sample points. The

1 .
= 4/ if

value «; is a normalization factor, where «;

j=0and a; = \/% if 5 > 0. The polynomial matrix is
constructed using arbitrarily sampled polynomial coordinate
values [21], [23] as in Eq. (2). To control the rank of the
underlying ground truth matrix, we generate the perturbation
matrix E as UQ3R1V5S +UQS7L7[:Vl:k_l]R2VTQ—S,J_,[:71:]€7I]’
where QS SYD UQSEQ5V5S + UQS,LEQS,ivés,J; The
entries of R € R™! and R, € RFF=1 are generated
iid. from A (0,0) with o 0.001. With this approach,
we obtain the rank-k ground truth matrix, M = QS + E.
We use the normalized mean squared error (NMSE), defined
as NMSE(M, M) %,Where ||A|lr denotes the
Frobenius norm of a matrix Af to measure the performance.

Sketching is done by post-multiplying A with an d x p
JLT random matrix R. For the sketching matrix R, we
investigate the numerical performance of fSCMA using the
following three different random matrices drawn from different
distributions: (i) random Gaussian matrices whose entries are
ii.d. Gaussian random variables with zero mean and unit
variance [6], [37], [38], (ii) Count matrices [39] and (iii)
the Subsampled Randomized Fourier Transform (SRFT) [17],
[40]. We further explain how we generate R for the cases of
Count matrices and SRFT.

« Count sketching. For any fixed matrix A € R"*% and
the sketching dimension p, we first hash each column
with a discrete value which is uniformly sampled from
{1,...,p}, then flip the sign of each column with prob-
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Fig. 4. The sensitivity of fSCMA to the row-space between E and QS when
d =50,k =100,1=7and p € {10,20}.

ability %, and finally sum up the columns with the same
hash value. The result is an n x p matrix A = AR. The
matrix R € R”” has exactly one nonzero entry in each
row, and the entry can be either +1 or -1.

o Subsampled Randomized Fourier Transform (SRFT).
SRFT sketching matrix R takes the form R = DFP,
where D is a d x d diagonal matrix with independent
Rademacher entries (&1 with equal probability.); F is a
d x d discrete Fourier transform matrices; P is a d X p
restriction matrix onto p coordinates, chosen uniformly
at random.

In this paper, we denote fSCMA with Gaussian, Count and
SRFT sketching matrices as fSCMA-Gaussian, fSCMA-Count,
and fSCMA-SRFT, respectively.

Varying d. We begin by evaluating the performance of all
algorithms as a function of the number of sampled columns
(d) in Fig. 2. We evaluate performance for when the true rank
k = 100 and for two types of S, while fixing the sketching
dimension to p = {7,20} when the target rank [ = 7. Recall
the relationship between the parameters: | < p < d < k.
When d < 20, we set p = d. The standard deviation of the
components of E is set to o = 0.001. It is important to note
that the overall noise level is significantly higher, as numerical
evaluations are based on the Frobenius norm.

We first observe that as d increases, the NMSE decreases
since more information about the column-space is incorpo-
rated. As expected, the larger p = 20 shows lower NMSE
compare to when p = 7, which implies that the sketch A
contains more information about the column-space of M.
Furthermore, for both polynomial and DCT matrices, S, the
performances of all fSCMA algorithms are comparable to that
of CUR+, QPMA and sCMA when p = 20 and d > 25. This
implies that the sketch A can successfully represent the lower-
dimensional column-space of A when the number of sampled
columns d > 25 and p = 20. This is impressive because
fSCMA with p = 20 shows near identical performance to the
benchmark algorithms which sample d = 50 columns. On the
other hand, when p = 7, we see that the lower-dimensional
column-space of A & RY7 fails to capture as much
column information as when p = 20. We recall that QPMA,
CUR+, and sCMA incorporate additional information via the
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Fig. 5. Comparison of run time complexity (log scale) for all algorithms.

estimated of Q. However, the fact that NMSE performance
remains comparable when d > 25 and p = 20 numerically
confirms our argument that the performance primarily depends
on the row-space of the side information S, rather than
precisely solving for Q, as long as a sufficient number of
columns (d) are sampled. Additionally, this demonstrates that
fSCMA effectively leverages the information in S to estimate
the row-space of M without requiring the estimation of Q.
Informativeness of the sketch A. We next attempt to answer
the following question: how much column-space information
of M is being captured by the sketching matrix A? To this
end, for QPMA, CUR+, and sCMA, we fix the number of
observed columns to d = 50 and numerically compute the
p required for fSCMA to attain the same (fixed) numerical
error as that of QPMA, CUR+ and sCMA. The results are
shown in Fig 3. The data is generated following the same
procedure as described in Section VI-A with [ = 7, k = 100
and d = 50. We plot the NMSE of QPMA, CUR+ and sCMA
by comparing the best NMSE performance of fSCMA with
different sketching matrices. For the polynomial matrix S, the
NMSE of QPMA, CUR+ and sCMA when d = 50 correspond
to that of fSCMA when p is 27, 35 and 25, respectively. Also,
for the DCT matrix, the NMSE of QPMA, CUR+ and sCMA
when d = 50 correspond to that of fSCMA when p is 30,
35, and 33 Empirically, we have determined that fSCMA has
a sketching dimension that is generally some fraction of the
dimension of A, that is p ~ ad,a € [0.5,0.7] to achieve
the performance of the benchmark algorithms in case of the
polynomial matrix, and o € [0.6,0.7] for the DCT matrix.
These results also align well with those in Fig. 2, which shows
that fSCMA achieves performance comparable to that of the
benchmark algorithms when d > 25.

Varying p. Additionally, we analyze the effect of varying
the sketching parameter, p, in Fig. 3. We first observe that
the NMSE decreases as p increases. We see that a larger
p can capture more information about the column-space of
A, thereby providing more information about M to Z. For
example, if p = d, i.e., p = d = 50, A will have the complete
column-space as A, that is, A = A. We also observe that the
NMSE remains nearly constant in the p > 20 region (when
d = 50), suggesting that the sketch A adequately captures the
column-space of A with p = 20.

Sensitivity to the structure of E. We next investigate
the sensitivity of fSCMA to the structure of E in Fig. 4.
We generate the data as previously with & = 100,d =
50 and p € {10,20}. Recall that E is generated as



UgsRiVis+Uqs 111k 1R2V g | (1> Where Ra is
generated i.i.d from N (0, o). We vary the standard deviation,
o ={107%,1073,1072,107!} to control the canonical angle
[30] between QS and E. We use |[E(I — VgV])|F in
Theorem 1 (see the fourth term in (14)) as a distance measure
between the two row spaces of E and Vg. Ry plays a role
to control the distance between the row space of E and S.
A larger o indicates greater misalignment and hence a larger
distance. Only when E lies perfectly in the row-space of S,
ie., [EX—VgVI)||F =0, will rank(M) = [, and therefore
01+1(M) = 0. The numerical NMSE goes to zero as well, in
this case. As the Frobenius norm of the projection of E onto
the row-space of S increases, we observe that the NMSE of all
algorithms increase. For fSCMA in particular, this observation
is consistent with Theorem 1.

Run time complexity and efficiency. We numerically com-
pare the run-time complexity and efficiency of fSCMA in
Fig. 5. Among all the benchmark algorithms, fSCMA clearly
exhibits the shortest runtime. We recall that all benchmark
algorithms require solving for the coefficient matrix Q using
either gradient descent or least-squares, which is not necessary
for fSCMA. Furthermore, QPMA estimates the column- and
row-spaces via an SVD. The main source of runtime complex-
ity for QPMA comes from the large number of iterations for
gradient descent to solve for Q. We see that fSCMA enjoys a
significant reduction in computational run time — more than 50
times faster than QPMA and more than 20 times faster than
CUR+.

B. Real data

We evaluate fSCMA on the the matrix of Hessian eigen-
values constituting the reaction path of a chemical reaction
provided in [7], specifically the Ir reaction system, where
M € R?%*131 As [ is unknown a priori, we perform a
rank-d SVD on the randomly sampled columns A & R4
for d € {7,10,12,14,16,18,20}. Guided by the singular
value gap of A and our assumption ! < d, for the real
data we find that [ = 7 is suggested by this approach. In
addition, the polynomial basis matrix S is determined for
the reaction coordinate values s = [1 + 0.01 - m|, where
m = 131, following the methodology proposed in [7]. For
a more detailed description of the dataset, please refer to [7].
We observe that [ is a hyper-parameter. Given that a sufficient
number of columns are sampled, d (see Proposition 1), from
the Eckart-Young-Mirsky theorem [28], we can obtain a good
estimate of the target rank [ by the rank-d SVD of A.

To simulate a column-sampling-only setting while limiting
access to true rows, we implement CUR+ by providing d
estimated rows (via fSCMA) alongside 24 — d true rows;
while this is not fully fair comparison, it enables CUR+
to be implemented without access to the true rows of M.
Additionally, we set the sketching parameter p = 7. We
present the results in Fig. 6. We observe that over the entire
sampling region, fSCMA exhibits performance nearly identical
to QPMA; thus fSCMA sucessfully leverages the polynomial
matrix S to estimate the row-space of M. In addition, in the
low-sample regime when d < 11, fSCMA outperforms CUR+.

As the sample size increases, CUR+ tends to yield better
performance. However, the comparison to CUR+ is not fully
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Fig. 6. NMSE versus the number of sampled columns d for Ir chemical
system with [ =7, p =7 and k = 24.

fair, as we provide estimated rows (via fSCMA) to CUR+
which is not possible in real-world environments. Furthemore,
the computational complexity of CUR+ becomes large when
increasing the number of sampled columns. Thus, we see
that fSCMA does, in fact, work well for the application that
motivated its creation.
VII. CONCLUSIONS

We have formulated a new algorithm, fast Sketched
Column-based Matrix Approximation (fSCMA) for low rank
matrix approximation which leverages sketching and removes
the need to estimate an interim variable yielding strongly
reduced complexity over our prior methods [8]. Our ap-
proach is tailored to our constraints of access to only a few
fully sampled columns and key structural side information.
Sketching is performed on the sampled columns to estimate
the column space. We provided a theoretical guarantee on
the reconstruction error. This error bound is comprised of
a component due to the deviation of the true matrix from
the structural side information as well as a term due to the
spectral properties of the ground truth matrix and the sketching
matrices. The dependence on the sketched column-space of the
target matrix is also characterized. Numerical results validate
the theoretical guarantees and application of the proposed
method to real data shows strong complexity improvements
while maintaining performance.
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APPENDIX A
TECHNICAL PRELIMINARIES

Recall the SVD of M in (13). With this, a set of sampled
column matrix A defined in (4) and its sketch A defined in
(10) can be expressed as

¥, ¥R
~—— ——
_ _ Ixd O o Ixp
A=M¥Y=U >0, and A=AR=U SR/
~—— ——
(m—1)xd, (m—1)xp



TABLE III
SUMMARY OF KEY PARAMETERS

Parameter Description Parameter Description
l Target rank n,m Dimension of M
d # of sampled columns “w Incoherence of M
P Sketching parameter s Incoherence of S

where ¥, = VlT\Il and ¥, = V;\Il, where X1, 3o, V1T
and V3 are defined in (13). Recall the definition of SVD of

a matrix X in (5). We define rank-l SVD of A € R™*? as
1-SVD

A= ~UAEAVT, where [ < min{n, d}. Then, the rank-p
SVD of A is given by
AP YD U;Z; V5 (15)

where p is the rank of A € R™*? and [ < p < p. Lastly,
we recall the key parameters that are used throughout the
Appendix.

APPENDIX B

. PRIOR RESULTS
Our key proof relies on prior results from [25], character-

izing projections (see (7)):

Proposition 3. Let Px be an orthogonal projector onto X.
Suppose U is unitary. Then UTPxU = P 7.

Proposition 4. For a matrix M and N, suppose range(IN) C
range(M). Then, for each matrix X, it holds that |PnX||, <
[P X]ly and that |[(I—Pr) X|l; < [[(T-Py) X[,

Proposition 5. (Perturbation of Inverses). Suppose that a
matrix X is a positive semidefinite matrix, i.e., 0 < X. Then,
I-(1+X) ' X

Proposition 6. We have |X| < |[Y| + |T| for each
Y D

partitioned positive semi definite matrix X =

DT T
We also need the following results on bounding singular
values of random matrices and large deviation events:

Lemma 1. [9] With probability 1—c1173, and if d > coplInl,
for constants ¢y > 0 and c3 > 0, we have

n
IM — Py, M3 <oty M) (1+27). ®

Next, we provide an additional necessary theorem from [31]
which describes the large-deviation behavior of specific types
of matrix random variables.

Theorem 2. [31] Let X be a finite set of positive semi
definite matrices of dimension k. If there exists a constant
B < oo such that maxxex Amaz(X) < B, and, if we
sample {X1,...,X,} uniformly at random from X without
replacement, with [imas = @Amaz(E[X4]) and pimin =
gAmin(E[X1]). Then we have that,

)\max (i Xz) 2 (1 + p)/’tmaa:‘|

—Hmazx
e

P

<k-exp 1+ p)In(1 + p) — p| for p € [0,1)

P

q
i=1
< k- exp—EE (1= p)In(L = p) + g for p € [0,1).

APPENDIX C
PROOF OF THEOREM 1
In this section, we provide the proof of our main Theorem 1.
We will see below that our term of interest can be bounded by
the sum of two terms, we will then provide two propositions
(Proposition 1 and Proposition 2) which provide bounds on
these two individual terms. First, we bound HM — AZVE’ )’

- 2
HMf szgH
2
- 2
- HM ~Py,MPy, + Py ,MPy, — AZV}H2
(a) - 2
< 2||M - Py, MPy,|? +2 HPUAMPVS - szg\ ;

®

@
(16)

where (a) is due to the triangle inequality and the fact that for
real value a,b > 0, (a+b)? < 2(a?+b?). Then, Proposition 1
and Proposition 2 bound ® and @ respectively with high
probability.

APPENDIX D
PROOF OF PROPOSITION 1

Proposition 1 bounds the energy of M that is captured by
the column-space of A and the row-space of S.
Proposition 1. If d > ¢;plInl, under the condition of Theo-
rem 1, with probability at least 1 — c2l™3, and for ¢q,co > 0,
we have that

2
HM _PUAMPVS||2
n 2
< 202, (M) (1 + 25) +2|E-EVeVE[:. ®
Proof:

|M — Py, MPv, |

= HM - PUAMPVS =+ PUAMPVS - PUAMPVS Hg
(@) 2 2 2
< 2[M—-Py,MPv,|;+2[Pu,l; M -MPv.;
b

YoM - Py, M| +2|M - MPy, |2, (17)

where (a) is due to the triangle inequality and matrix norm
inequality and (b) is due to |[Py,[? = 1. We bound
M — MPv ||§ as follows.

M~ MPvy,|; = QS +E - (QS +E)Pv,|;
“ QS +E - (QUsBsVE + E) VeV
Y lQs +E - (QS + EVsVI)|[;
— |[E-EVsVE|:, (18)

where (a) is the SVD of S defined in (6) and (b) is due to
VgVS = I. By plugging Lemma 1 and (18) into (17), we
complete the proof of Proposition 1.



APPENDIX E
LEMMA 2 AND PROOF OF LEMMA 2

Lemma 2 provides a bound on the gap between the energy
of M captured by the column-space of A and that captured
by its sketch A.

Lemma 2. Ifd22 ciullnl and p = O(log(1/8)/€?), where
§ = max{e= € P c3173}, we have

[Py, M- Py, M]|;
9 2n T 1112
< 202, (M) 2+U+(1+e)(m—l)H(V1\IIR) H2

with probability 1 — § where c1,c2,c3, and ¢ > 0 are

numerical constants.
Proof: ||[Pu,M — Py M|,
= |[Pu,M~M+M - Py M|

(a) 2
< 2||Py, M — M[; +2|[M — Py, M]|[;, (19)

©1,1 ©1,2

where (a) is due to the triangle inequality. ®1 ; is bounded by
Lemma 1. Next, ®1 2 can be bounded as follows. We note that
the left unitary factor U in (13). We execute the proof for an
auxiliary ground truth matrix M = U™M and the associated
matrix A = MR defined by

. T .
M= [Elvl} and A = [El‘PlR} )

V] =, W,R (20

Recall the definition of M in (13). Due to the unitary invari-
ance of the spectral norm and Proposition 3 (see Appendix B),
we have the following identity

~ 112
o2 = [|(1=Pu )M = [UT (1-Pu,) UM]

2
= (1= Puro ) M|

A 2
(a)

2
= ; (2D
2

‘(I_PA)M‘

where (a) holds because A = M‘I{R = UTMYR =
UTAR = UTA. And P; = UTAATU = UTUAUEU.
In view of (212), it suffices to obtain an upper bound of
|(=P )M to bound |[M — Py, M|[;. First, we whiten

out the top block of A in (20) to obtain the matrix

=l

where F = X, ¥5R (\IllR)T 21_1.

W=A.(¥,R) %!

(22)

This construction ensures that range(W) C range(A),
so Proposition 4 that the error satisfies

implies
H(I -Py) 1\~/IH < ‘F(I —Pyw) 1\~/IH . Squaring each
side, we obtain2 2

~ 112 ~ 112
=], < —pwna],

=[N a—puwym| =T a-pw) 3,

where (a) follows from the definition M = VT and
the unitary invariance of the spectral norm. We next bound
|ZT (I-Pw)X|,. We provide a detailed representation of
the projector I — Pyy. The construction in (22) ensures that
W has full column rank, so we can apply the formula (7) for
an orthogonal projector to see that

I 1|1

Py = W(WTW) " WT = | ol (I+FTF) " | o

Expanding the above expression, we have the following com-
plementary projector with respect to W,

-T

I-(I1+F'F) —(I+FF)F'
~F(I+F'F) I-F(I+FF) FT|

I—PW:l

The partitioning in above conforms the dimension of 3
and 3, in the partitioning of ¥ in (13). Proposition 5
(see Appendix B) shows that the top-left block satisfies
I-—- (I + FTF)_1 < FTF. The bottom-right block satisfies
I-F(I+F'F) “'FT <1, this is due to the conjugation rule
that guarantees that 0 < F (I + FTF)f1 FT. Let us denote
the off-diagonal blocks as B — (I+FTF)FT. Then,

T
I1-Py < P}‘?)TF ]ﬂ . Now, we bound =T (I—-Py) X
as follows, S T
/F'FY, X/ BX
T _ 1 1 1 2
D) (I PW) DIES [ E'ZI'BTE1 E'2I'22 :

The conjugation rule shows that the matrix on the left-hand
side is positive semi definite, so the matrix on the right-hand
side is as well. Proposition 6 results from the norm bound

574 Pu) 5], < [STEER, + |15,
= [FSull; + (1Sl (23)
By plugging F = Z]g\I’gR(\IllR)T ! in (23), we have
|(T—Po,) M|,

2
< SRR | 415
(@) 2 2 2
< of 1 (V) + 1% 1R | (21 R) |

2 2
< o2 (M) + 02, (M) [VIWR| H(lIllR)T’ e

where (a) 2follows the matrix norm inequality. We bound
|[VI®RY|; as follows. Let x{ be i th row of V] W and y/
be i th row of VI, where 1 < i <m — L.

m—l 9
> xR,
i=1
m—I

)
< >+,

1
—1

1+ [ly7[l>

2 (a)

IVIeR][; < |[VIwR];

-
Il

A
&
3

IN

(I+e)(m—1),

where (a) follows from the definition of the Frobenius norm.
(b) follows Johnson-Lindenstrauss Transform in Definition 1.

—~
=

(25)



And (c) is due to the column sampling operator ¥. Finally,
(d) follows from y|yﬂ|§ = 1. Plugging (25) in (24) and (19),
we complete the proof of Lemma 2. X

APPENDIX F
LEMMA 3 AND PROOF OF LEMMA 3
We present Lemma 3 and its proof. Lemma 3 provides a
bound on the gap between the row-space of E and that of S.

Lemma 3. With probability 1 — c¢1173, and if d > copslInl,
for constants c¢1 > 0 and c5 > 0, we have
+ 2m
d

Proof: >

HE (I —w (viw) Vg) Hz < 02(E) (1

2
(1w (vEw) Vi)
(a) § 2
< Bl [1-w (vie) Vi
(b) 2
< et (14w (vEw) V)

< el (1+ | vi) [

where (a) is due to matrix inequaliQty and (b) and (c) are due
2 2
to |1l =1, ][ =1 and HVEH%Z L.
Now, we bound H (V}I:)*H2 in (26). Note that

2
|(vie)'], = 1o

(26)

(VI®) = 1/Amin (VIRETV).
Thus, we need to bound the minimum eigenvalue of
VIOV, where VI® € R | < d, is full rank.
We let v;, where ¢ € [m], be the ith column vector of

min

Vie R"™™. Then, we have VIewTVg = 2?21 VijViTj. It
is straightforward to show that
d 1
E[VI®®TVs] = 21, and E [vijvﬂ — 1. @)
m J m

To bound the minimum eigenvalue of VIWW¥TVg | we
leverage Theorem 2 (see Appendix B) and Definition 3, where
we first need to bound the maximum eigenvalue of v;, ViTj,
which is a rank-1 matrix, whose eigenvalue

l

T _ 2
Maxi <;<mAmaz <VijVij) = maxi<;<m|Vi|* < Hs (28)

and

b (B[0457]) = o (8 [57]) = &

Thus, we have,

(29)

P [Amm (VI®TTVg) < (1- p)i:|
<1 exp ™ (1~ p)in(1 = p) + p] for p € [0,1) (30)
Lps/m
=l-eXp;M8 (1= p)In(1 = p) + p]. 31)
By setting P = 1/2, we have

P [Ain (VE®®TVs) < 5T] < Lexpa = Lexp /T,
This expression can be algebraically manipulated, such that

with a probability 1 — [~“!, where ¢; > 0 is a constant, if
d > copslln [, for a constant co > 0, we have

Amin (VETETVg) > %. (32)

Finally, by plugging (32) into (26), we obtain Lemma 3. X

APPENDIX G
PROOF OF PROPOSITION 2

Proposition 2. If d > max{c;ul lnl,czgusllnl}, and p =
O(log(1/6)/€%) , where 6§ = max{e %€ P c4,1~3}, under the
condition of Theorem 1, we have,

- 2
HPUAMPVS - AZV}H2

<ot (M) (2 + %ﬂ + (2;(?71&;1:&)[»

+ 402 (B) (2 + 2;”) (33)

with probability 1 — max{e‘c3€2p,C4l_3} where c1, ca, c3,
c4 and € > 0 are constants. X
Proof:

- 2
HPUAMPVS - AZV}H
2

- ~ 2

- HPUA (QS + E) Py, — AATA (Vi)' VgH2

+ 2
@ ||Pu.QS +Pu,EPy. - Pu,A (Vi®) VI

b T
Y Py,Qs + Py,EPy, - Py, QS¥ (VIw) V]
1 2
— Py, E¥ (V5¥) Vi, (34)
where (a) is followed by the p-SVD of A defined in (15), i.e.,
Py, = AAT = UAU} And (b) is due to A = M¥ =

(QS + E)¥. Then, Py ,QS¥ (Vg\P)TVg in (34) can be
expressed as

t t

Py, QSY¥ (Vi¥) Vi =Py, QUsEs Vil (ViT) Vg
=Py,QUsEsVi =Py, QS.

(35)

We plug (35) in (34), and continue bounding (34) as

H (Pu, — Pu,) QS+ Py,EPy, — Py ,E¥ (VL)' VgHz
= | (Pu, —Pu;) (M —E) +Py,EPy,
- Pu,E¥ (VI¥) VI3
— [Py, M - Py M- Py,E(I-Py,)
+Py,E (1- @ (VIw) V) |3

(36)

(a) 2
22 Py, M - P M
+2’ ’2

Py .E (1 v (VE\I/)TV@ _Py,E(I-Py.)

2

® 2 To v I

< 2[[Pu,M Py M|}, +4|Pu,E (1-® (vi®) VI)|
+4||PUAE(17PVS)||§



© 2 T v
< 2[[Pu, M~ Py M|, +4||B(1- ¥ (Vi®)' VI)|

(O}
2
+4|E[;,

©2
(37)

where (a) and (b) are due to matrix norm inequality and (c) is
because of the matrix norm inequality and |Py ,||3 = 1 and
(IT— Py, ||§ = 1. Using Lemma 2 and Lemma 3 to bound ®1
and ®9 each, we finally have,

- 2
HPUAMPVS - AZVgH2

2
< 402, (M) <2 +
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