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Abstract—The focus of this research is to develop a learning-
based method that computes self-motion manifolds (SMMs) ef-
ficiently and accurately to enable real-time global fault-tolerant
motion planning. The proposed method first develops a learnable,
closed-form representation of SMMs based on Fourier series. A
cellular automaton is then applied to cluster workspace locations
having the same number of SMMs and group SMMs with similar
shape by homotopy classes, such that the SMMs of each homotopy
class can be accurately learned by a neural network. To approx-
imate the SMMs of an arbitrary workspace location, a neural
network is first trained to predict the set of homotopy classes be-
longing to this workspace location. For each set of homotopy classes,
another neural network is trained to approximate the Fourier series
coefficients of the SMMs, and the joint configurations along the
SMMs can be retrieved using the inverse Fourier transform. The
proposed method is validated on planar 3R positioning, spatial 4R
positioning, and spatial 7R positioning and orienting robots, using
10 000 randomly sampled workspace locations each. The results
show that the proposed method can approximate SMMs with high
accuracy and is much faster than the traditionally used nullspace
projection method, a sampling-based method, and a grid-based
method. The performance of the proposed method in real-time
fault-tolerant motion planning applications is also demonstrated
using the simulation of the spatial 7R robot and physical experi-
ments on a planar 3R robot. Due to the computational efficiency
of the proposed method, both robots are able to quickly plan
trajectories which maximize the likelihood of task completion after
the failure of one arbitrary joint.

Index Terms—TFault tolerance, kinematics, motion and path
planning, redundant robots.

1. INTRODUCTION

OBOTS are an ideal choice to replace human workers
in dangerous and remote tasks, such as nuclear waste
remediation [1], space exploration [2], and disaster rescue [3].
However, these environments have harsh conditions, such as ex-
treme temperatures, high levels of radiation, and highly unstable
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structures, which can cause joint failures [4]. Furthermore, it is
impossible for humans to safely access these environments to
repair the robots after failures. Thus, fault tolerance which is the
ability for a robot to complete the remainder of the assigned task
after a failure of one arbitrary joint, is critical for ensuring the
reliability and robustness of robotic systems operating in these
environments. The most frequently occurring joint failures are
locked joint failures, which result in a robot’s joint becoming im-
mobilized while the other joints can continue operating normally
within their joint limits. Other common failure modes, such as
free-swinging joint failures can be transformed into locked joint
failures by failure recovery mechanisms that employ fail safe
brakes [5]. This research work mainly focuses on the locked joint
failure mode. Applying kinematically redundant robots is one
potential way to realize fault tolerance because they have more
degrees of freedom (DOFs) than the minimum DOFs required
to complete the assigned tasks. However, kinematic redundancy
alone cannot guarantee fault tolerance, thus intelligent motion
planning algorithms that optimize performance before and after
the failure of one arbitrary joint need to be developed [6].

Fault-tolerant motion planning can be considered in two
different phases. The first phase is prefailure motion planning,
which maximizes the task completion probability in anticipation
of all potential joint failures [7], [8], [9], [10], [11]. The second
phase is postfailure motion planning, i.e., failure recovery, which
attempts to use a robot’s remaining healthy joints to complete
the assigned task [12], [13], [14], [15]. In addition, prefailure
fault-tolerant motion planning can be classified in two cate-
gories. The first category is local fault-tolerant motion planning,
which only considers the local fault-tolerant performance of the
current configuration, such as the postfailure dexterity [16]. The
other category is global fault-tolerant motion planning, which
considers the global fault-tolerant performance of the entire tra-
jectory, such as the reachability of the desired task locations [8].
Global fault-tolerant motion planning is typically much more
complicated than local fault-tolerant motion planning, and it can
be even more difficult when the task locations are not known a
priori. This requires real-time global motion planning.

For redundant robots, there are infinitely many configurations
associated with a desired task location due to the extra DOFs.
All of these possible configurations can be grouped into several
distinct manifolds called the self-motion manifolds (SMMs).
The SMMs that can be smoothly deformed between one another
belong to the same homotopy class. Examples of the SMMs
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Fig. 1. Example SMMs of a planar 3R robot projected onto the #3-65 plane.
The purple curve represents the SMM of task point a, while the two red curves
represent the two branches of the SMMs belonging to task point b.

>

belonging to two different workspace locations of an equal link
length planar 3R robot are shown in Fig. 1. The purple curve
represents the SMM associated with the workspace location a,
while the two red curves both represent SMMs associated with
the workspace location b. Because none of these three SMMs
can be smoothly deformed between each other, there are three
homotopy classes in this example. As SMMs represent all of
the joint configurations associated with a target location, most
prefailure motion planning algorithms rely on SMMs to check
the reachability of the task location. Thus, the accurate and
efficient computation of SMMs is very important.

The goal of this work is to develop an efficient and accurate
learning-based method to approximate the SMMs of robots
with one degree of redundancy, and thus the approximated
SMMs can be used for real-time global motion planning, such
as fault-tolerant motion planning. To accomplish this goal, a
learnable, closed-form representation of SMMs is developed by
using Fourier series. Because the SMMs of different workspace
locations can vary greatly in both number and shape, a cellular
automaton is used to cluster workspace locations having the
same number of SMMs and group SMMs with similar shapes
by homotopy classes. Once the SMMs have been grouped by
homotopy classes, a neural network is trained to predict the
homotopy classes belonging to an arbitrary workspace location.
For each set of homotopy classes, an additional neural network
is trained to approximate the Fourier series parameters of the
SMMs. The main novelties and contributions of this article are
as follows: 1) a closed-form representation of 1-D SMMs is
established using Fourier series, which can be accurately learned
by neural networks. 2) An intelligent strategy is developed to
cluster workspace locations and group their SMMs by homo-
topy class, greatly improving the accuracy of the approximated
SMMs. 3) The SMMs efficiently computed by this new algo-
rithm provide global configuration space information associated
with workspace locations, which can be used for real-time global
motion planning.

The rest of this article is organized as follows. The next section
introduces the background on fault-tolerant motion planning
and the nullspace projection method of computing SMMs. In
Section1V, alearnable representation of SMMs based on Fourier
series is proposed. In Section V, a method to approximate SMMs
using neural networks is developed. The performance of this
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method is validated and its application to real-time fault-tolerant
motion planning is discussed in Section VI. Finally, Section VII
concludes this article.

II. RELATED WORKS

In the context of motion planning, robot tasks can be generally
divided into two categories: point-to-point tasks and trajectory
following tasks, both represented in the robot’s task space and
requiring distinct fault-tolerant motion planning strategies. For
point-to-point tasks, the reachability of the task point after
the failure of one arbitrary joint should be checked at each
configuration along a trajectory [7]. The simplest method to
guarantee reachability is to constrain the robot’s configuration
within the ranges of the bounding box enclosing the SMMs
belonging to the task point. These SMMs represent all possible
joint configurations that reach the desired end-effector location.
For multiple task points, fault tolerance can be guaranteed by
constraining the robot to stay within the intersection of all the
SMM bounding boxes [8]. However, this method relies on very
restrictive conditions, such as the existence of the intersection of
the bounding boxes. This necessitates an approach to determine
the optimal trajectory to reach the overlap of the bounding
boxes as soon as possible to maximize the probability of task
completion [9]. For trajectory following tasks, the task space
trajectory is discretized and the SMMs are computed for each
location. The fault-tolerant joint configurations are identified by
checking whether or not the remaining trajectory is reachable
given the failure of one arbitrary joint [ 10]. This method requires
computing all of the SMMs for each discrete location along
the given trajectory, which is very inefficient. An alternative
approach is to place the end-effector trajectory inside the fault-
tolerant workspace, which is defined as the intersection of the
prefailure and postfailure workspaces given a set of artificial
joint limits [11].

Once a failure has occurred, some failure recovery strategy for
completing the rest of the task is necessary. For point-to-point
tasks, either the inverse kinematics [12] or more advanced mo-
tion planning algorithms, such as Rapidly-Exploring Random
Trees* (RRT+) [13], can be used with the robot’s postfailure
structure to complete the given task. For trajectory following
tasks, special care must be taken to ensure that tracking errors
after a joint failure are minimized. This problem can be solved as
an optimization problem, where joint velocities are minimized
subject to the desired end-effector velocity [14], [15].

Because SMMs represent all of the joint configurations to
reach a target location, the accurate and efficient computation
of SMMs is very important. The most common general method
for computing SMMs, named the nullspace projection method,
is moving along the null space of the Jacobian using a small step
size to reach a new configuration, and this process is repeated
until the entire SMM is computed. To keep the end-effector at
the given workspace location, the end-effector error is mini-
mized by using the pseudoinverse of the Jacobian [17]. This
method may have issues computing SMMs containing singular
configurations. An algorithm based on this method is developed
in [18] to compute SMMs with high dimensional nullspaces.
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An alternative method for computing SMMs is using redundant
parameters to reduce a redundant robot to a nonredundant robot,
and solving the inverse kinematics with a finite number of
solutions. Some examples of redundant parameters include the
first joint angle [19], the end-effector orientation angle [20],
and the arm angle defined as the angle between the arm plane
and the reference plane for a spatial 7R robot [21]. Recently,
two search-based algorithms have been developed to compute
SMMs. The first computes all SMMs associated with homotopy
classes of interest by randomly sampling joint configurations,
and driving these configurations to the closest SMM by using
Jacobian-based inverse kinematics [22]. The other method dis-
cretizes the joint space into a grid, and the SMMs are solved for
by searching through the grid elements that are intersected by
the null space of their neighbors [23].

As all of the above approaches are iterative approaches, their
computational cost is very high, and thus none of them can be
used for real-time global motion planning. An early attempt
to improve the efficiency of computing SMMs was developed
in [24] by using neural networks to approximate the SMMs
belonging to distinct workspace regions. This method uses a
representation of SMMs that is difficult to learn, and it clusters
workspace locations by homotopy classes without accurate data
on the number and shape of SMM branches, which makes learn-
ing complex SMMs difficult and causes large approximation
errors. To solve these problems, a learning-based algorithm
is developed to approximate SMMs efficiently and accurately,
which can be used in real-time global motion planning.

ITI. BACKGROUND

A. Fault-Tolerant Motion Planning Using SMM Bounding
Boxes

A common task for a robot is a point-to-point task, where the
robot moves from a starting point to a task point with no restric-
tions on the trajectory it follows. To guarantee fault-tolerance,
the robot should be able to reach the task point despite the failure
of one arbitrary joint. The SMMs belonging to a workspace
location consist of all possible joint configurations to reach this
point. Therefore, the reachability of a task point after a failure
can be guaranteed by constraining all joints to move within
the ranges of the SMMs associated with this task [8]. For a
single task point, these ranges are defined as the bounding boxes
enclosing the SMMs. For example, Fig. 2(a) shows the SMM of
task point @ and its associated bounding box in purple. If either
joint 2 or joint 3 are locked inside of the SMM bounding box,
at the green configuration for instance, the robot can still reach
task point a by moving to one of the four yellow configurations.
On the contrary, if either joint 2 or joint 3 are locked outside of
the SMM bounding box, at the red configuration for instance,
then the robot cannot reach task point a. Likewise, the two
SMMs belonging to task point b are shown with their respective
bounding boxes inred inFig. 2(b). For multiple task points, these
ranges are defined as the intersection of the bounding boxes of
each task point, as shown by the green regions. The intersection
of SMM bounding boxes provides a set of artificial joint limits
for the robot. Various motion planning algorithms can be used
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Fig. 2. (a) Bounding box of the SMM belonging to task point a. The green

configuration in (a) is fault tolerant because the four yellow configurations along
the SMM of task point a can still be reached even after a failure of either joint
2 or joint 3. Conversely, the red configuration in (a) is fault intolerant because
none of the configurations along the SMM can be reached after a failure of either
joint 2 or joint 3. (b) Bounding box of the two SMMs belonging to task point b
and their intersections with the bounding box of the SMM of task point a.

to constrain the robot’s motion within the artificial joint limits.
After a failure occurs, the artificial joint limits are released, and
the robot moves toward the configuration along the SMM where
the value of the locked joint is valid.

The implementation of this fault-tolerant motion planning
algorithm is relatively straightforward. However, computing all
of the SMMs of an arbitrary workspace location is difficult and
time consuming. In particular, for scenarios requiring real-time
fault-tolerant motion planning, the computational efficiency of
the method used to compute SMMs is critical.

B. Nullspace Projection Method for Computing SMMs

The most commonly used method for computing SMMs of
robots with one degree of redundancy is the nullspace projection
method, which is an iterative approach that integrates along the
tangent vector of an SMM [17]. This tangent vector is the null
vector of the Jacobian J, denoted fiy, which represents joint
velocities that map to zero end-effector velocity. Therefore, in
each iteration, the change in joint configuration A# used to move
along the SMM can be computed as follows:

AG =iy +ITAx, (1)
where -y in the first term is the step size along the null vector,
and the second term J*+Ax, represents the end-effector error
correction.

The nullspace projection method can compute SMMs ac-
curately. However, the main issue of this method is its low
computational efficiency due to the following two properties.
First, the computation of each SMM uses an iterative approach
where a small step size is used to preserve end-effector accuracy.
Second, the number of SMM branches belonging to a workspace
location is unknown prior to computation. Thus, to find all
SMM branches, the algorithm needs to try many different initial
configurations to find potentially new branches. Furthermore,
computing these initial configurations using inverse kinematics
is also an iterative approach, which further increases computa-
tional cost. This motivates the development of a learning-based
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SMM approximation algorithm, which utilizes the highly effi-
cient computational characteristics of neural networks, enabling
the real-time computation of SMMs.

IV. LEARNABLE CLOSED-FORM REPRESENTATION OF SMMs
A. Representing SMMs as Fourier Series

To effectively approximate SMMs with neural networks, the
SMMs should be represented in a manner that maximizes their
ability to be learned. Unfortunately, analytical equations for
SMMs are unavailable due to their high degree of nonlinearity.
Thus, the SMMs computed by most existing methods, including
the nullspace projection method, are represented as sequences
of discrete joint configurations, which are difficult to learn
effectively. This is because the accurate estimatation of SMMs
requires a large amount of discrete joint configurations. This
corresponds to an increase in neural network complexity and
the memory footprint of the training datasets. These issues are
evident from the research in [24], where the SMMs of a planar
3R robot were learned with an average forward kinematics (FK)
error of about 4% of the robot’s total link length, which is very
large for such a simple robot.

To solve these issues, a learnable closed-form representa-
tion of SMMs is proposed based on the Fourier series of
the sequences of discrete joint configurations computed by
the nullspace projection method. Using this representation of
SMMs in the frequency domain, each SMM can be accurately
represented as a continuous function of a finite set of Fourier
series components, which can be precisely learned by simple
neural networks. For a workspace location x, its associated
SMMs can be represented as a set of branches, denoted My =
{MQ), i ,M}([B)}, where B is the number of branches. Each
branch MJ(: ) is represented by a sequence of discrete joint
configurations, denoted MY = {6),...,6M)}, where N is
the number of discrete joint configurations. The value of N can
be kept constant for all workspace locations and SMM branches
through interpolation. A sequence MS) can be transformed
to its corresponding Fourier series using the discrete Fourier
transform, defined as follows:

N : :
0¥ =Y 61 exp (—3211'(&: —1)(i — 1))
i=1

N (2)

where k represents the ™ Fourier series frequency component
of the given sequence, and j is the imaginary unit. Thus, an
alternative representation of MJ(:;) is its Fourier series repre-
sentation, denoted M) = {©), ..., @)}, where K is the
number of Fourier series frequency components, which equals
the number of discrete joint configurations V. Once the Fourier
series components have been computed, a closed-form equation
for the joint configurations along the SMMs, as a function
of parameter ¢, is obtained from the inverse discrete Fourier
transform as follows:

K ] u
0u(t) = =3 O exp (W) _

k=1

3
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B. Establishing a Unique Representation of SMMs

The above derivation of the Fourier series representation of
SMMs is based on the sequences of discrete joint configurations
computed by the nullspace projection method. However, the
nullspace projection method can choose an arbitrary starting
configuration and follow an arbitrary direction along the SMM.
Thus, the same SMM can be represented by different sequences
of discrete joint configurations, which leads to multiple different
Fourier series. To establish a unique representation of SMMs,
the following two issues will be addressed in this section: 1)
determining a consistent starting configuration, and 2) choosing
a unique direction to move along the SMM.

The shift theorem states that changing the first element in a se-
quence will affect the phase, but not magnitude, of the sequence’s
Fourier series frequency components. Thus, a method must be
established to choose the first joint configuration of a sequence of
discrete joint configurations representing an SMM. A consistent
choice can be obtained by placing a constraint on the phase of
the first positive frequency component of the first joint, then
using the shift theorem to adjust the remaining frequencies
accordingly. Thus, the shift constant can be computed as follows:

ok = |aam2aOI) RO 32| @
where |-| denotes the rounding operation to the nearest integer.
The symbols J(-) and R(-) represent the imaginary and real parts
of a complex number, respectively. The symbol ijl represents
the second term of the Fourier series of joint 1 for an SMM at
workspace location X, i.e., the first positive frequency compo-
nent of joint 1. This shift constant is used to change each Fourier
series component from O to ©F) exp(:jzirﬂ). Concep-
tually, this represents reordering the underlying sequence of
discrete joint configurations representing the SMM as follows:

MO = {69,600, 08} @)

After the initial joint configuration is determined, the SMM
can still be moved along in two opposite directions. This results
in two sets of Fourier series with the same frequency components
in the opposite order. Therefore, at the starting configuration, a
unique direction to move along the SMM must be determined.
Once this direction is chosen, the following directions at each
configuration of the SMM should be consistent with the previous
direction to avoid moving back and forth. As introduced in
Section III-B, the direction to move along the SMM, i.e., the
tangent vector of the SMM, is the null vector of the Jacobian.
The following closed-form equation for the null vector provides
smoothly varying directions [25]

iy = (—1%) - det(J\j;) (6)

where 73 ; represents the i element of the null vector and J \:
represents the Jacobian J with the i column j; removed.

C. Reducing High Frequency Terms of Fourier Series

While the above method based on Fourier series can be used to
create a unique representation of SMMs, the number of Fourier
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series components, which is equal to the number of discrete joint
configurations, can be very large. This large amount of data will
be difficult to learn. However, there are some high frequency
components that can be removed without losing information of
the original SMMs. It has been shown that when Fourier series
are applied to periodic sequences that have small and smooth
variance between adjacent elements, their high frequency terms
are negligible. The research in [17] shows that 1-D SMMs can
always be deformed into a unit circle, therefore moving along
a fixed direction will always return to an initial configuration,
which results in the SMM being periodic. Thus, the following
two strategies are taken to ensure the sequences of discrete joint
configurations representing SMMs satisfy these properties.

The first strategy is to keep the value of + in (1) constant and
small. This will ensure that the sequences of discrete joint con-
figurations vary smoothly with a small difference. The second
strategy is to map joint configurations from the real space to the
circle group, denoted S' = {z € C : |z| = 1}, which is defined
as follows:

T(6) = exp(i6). ™

The circle group is the most accurate representation of joint
configurations, as it reflects the geometry of rotational joints,
i.e., arotation of 27n, n € Z, returns to the original joint angle.
This can ensure that sequences of discrete joint configurations
along an SMM are periodic, regardless of any rotations of 2mn
about a joint. Finally, a low-pass filter can be used to remove the
negligible high frequency terms.

Based on all of the above discussion, the final learnable,
closed-form representation of SMMs based on the discrete
Fourier transform is defined as follows:

N . 5
0 =3 T(6Y)exp (_3 il 1)) . ®
i=1

N

Note that 7(8")) is a complex number, but this does not cause
any issues for the discrete Fourier transform. The following
inverse of 7

T-1(6) = atan2(3(6), R(8)) )

can return joint configurations from the circle group to the real
space. The following equation can be used to map from the final
representation of SMMs in (8) back to real joint configurations
along SMMs

K sa g |
Ox(t) =T 1 (% > 0P exp (M)) . (10)

k=1

To show the effectiveness of this proposed learnable closed-
form representation of SMMs based on Fourier series, SMMs
belonging to 100 randomly selected workspace locations for
an equal link length planar 3R positioning robot, the optimally
fault-tolerant spatial 4R positioning robot designed in [26], and
the optimally fault-tolerant spatial 7R positioning and orienting
robot designed in [27] are computed. These SMMs are then
converted to their Fourier series representation using (8), and
different numbers of high frequency components are removed
using low-pass filters. After the low-pass filter is applied, the
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Fig. 3. Mean absolute errors between SMMs of 100 randomly selected
workspace locations before and after applying low-pass filters to remove differ-
ent numbers of frequency components are shown for a planar 3R, a spatial 4R,
and a spatial 7R robot.

SMMs are converted back to the time domain using (10). The
mean absolute error between the filtered and unfiltered SMMs is
then calculated, as shown in Fig. 3. It can be seen that using only
40 of the original 128 Fourier series frequency components can
achieve mean absolute errors of less than 0.0006, 0.0008, and
0.006 radians for the planar 3R, spatial 4R, and spatial 7R robots,
respectively. This extremely small error after reducing the num-
ber of variables to 32% of the original data size demonstrates
the effectiveness of this representation.

An illustrative example of representing SMMs using Fourier
series is given in Fig. 4 for a planar 3R robot with equal
link lengths. The two SMM branches for the given workspace
location [0.30, 0.00] are shown in Fig. 4(a), and the pink branch
is used to illustrate the method introduced in this section.
The sequences of discrete joint configurations of this branch
computed by the nullspace projection method are shown in
Fig. 4(b), where the individual joints are shown in different
colors. These joint configurations are mapped to the circle group
as shown in Fig. 4(c). The discrete Fourier transform is applied
to the sequence of joint configurations in the circle group. The
magnitudes of the Fourier series components of joint 1 are shown
in Fig. 4(d), where the gray region represents the removed high
frequencies. The phases of the Fourier series components of joint
1 are shown in Fig. 4(e). It can be seen that after applying the shift
theorem, the phase of the first positive frequency component
(k = 2) of joint 1 is roughly zero, as shown by the blue point.

V. PREDICTING SMM HomMOTOPY CLASSES AND RESPECTIVE
FOURIER SERIES

A. Algorithm Overview

Now that a learnable representation for SMMs has been
developed, this section will employ deep feedforward neural
networks to efficiently and accurately approximate SMMs for
arbitrary workspace locations. This cannot be accomplished
with a single neural network because the changes in SMMs with
respect to changes in their associated workspace locations are
extremely complicated in terms of the number of SMM branches
and their shapes. To model these changes, a cellular automaton
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Fig. 4. Example of applying the Fourier series to SMMs is given. (a) Two
SMM branches of a given workspace location. For the pink SMM branch, the
corresponding sequence of discrete joint configurations represented in the (b)
real space and (c) circle group. (d) Magnitudes and (e) phases of the Fourier
series components of joint 1.

is used to cluster workspace locations based on their number
of SMM branches and the shape of these branches. Within
each workspace location cluster, SMM branches with similar
shapes are grouped together into homotopy classes so they can
be learned by the same neural network.

Once the relationships established by the cellular automaton
have been learned, the SMMs of a given workspace location
are approximated as follows. First, a neural network is used to
predict the workspace location cluster and its associated SMM
homotopy classes for a given workspace location, as shown in
Step 1 in Fig. 5. Second, an additional neural network corre-
sponding to the predicted SMM homotopy classes is used to ap-
proximate the SMM branches of the given workspace location,
which is Step 2 in Fig. 5. The output of this neural network is the
approximated Fourier series for all SMM branches associated
with the given workspace location. The joint configurations
belonging to these SMM branches are then obtained by using the
inverse Fourier transform as defined in (10). Finally, the FK error
of the joint configurations along the approximated SMMs can be
further reduced by applying Jacobian-based inverse kinematics
if high precision is required.

B. Clustering Workspace Locations

As previously discussed, the relationship between SMM
branches belonging to different workspace locations can be
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Fig.5. Algorithm developed to approximate SMMs of an arbitrary workspace
location x is shown.
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Fig. 6. Example of SMM homotopy classes and workspace location clusters
is given. (a) Four homotopy classes determined based on the shape of the given
SMM branches. (b) Corresponding workspace locations are grouped into three
clusters based on their SMM homotopy classes.

extremely complicated. For example, in Fig. 6(a) the SMMs
of workspace locations a and b have one branch each, and these
two SMMs can be smoothly deformed between each other. Thus,
they can be classified into the same homotopy class, which is
also true for the SMMs of workspace locations c and d. However,
the SMMs of workspace locations a and c are not smoothly
deformable, and therefore belong to different homotopy classes
H, and H,, respectively. Clearly, the SMMs of workspace
locations with two branches, such as the SMMs of e and f,
do not belong to either Hy or Hz. The SMM branches e; and
f1 belong to the same homotopy class H3 because they can be
smoothly deformed between each other. The same holds for the
SMM branches e and f3, which belong to homotopy class H4.
Based on the above analysis, the workspace locations a, b, ¢, d,
e, and f can be grouped into three clusters C;, Cz, and Cs, as
shown in Fig. 6(b), each having SMMs of the same homotopy
classes.

Cellular automata are discrete computational models that use
a collection of stateful cells that evolve as a function of some
update rule and the states of each cell’s neighbors. Clustering
the workspace locations based on the features of the SMMs is
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Fig. 7. Example of clustering workspace locations using cellular automata is

given. Workspace locations with the same number of SMM branches are shown
in the same color. (a) and (b) Initial states of the cells and the final states after
convergence, respectively.

extremely complicated because of the following reasons. First,
the shape of each workspace location cluster is highly irregular.
Second, workspace locations whose SMMs contain singular
configurations act as a boundary between workspace location
clusters, and these boundaries are very difficult to accurately
identify. Cellular automata can easily handle both of these
problems by using a carefully constructed workspace grid and an
appropriate update rule that only allows for cells within the same
workspace location cluster to communicate with each other.
Therefore, cellular automata are applied in this work to achieve
the following two goals: 1) to cluster workspace locations based
on their number of SMM branches, and 2) to group the SMMs of
workspace locations within the same workspace location cluster
by homotopy classes based on their shapes.

To achieve the first goal, the workspace locations of a given
robot arm are divided into a grid. A unique integer is assigned
to each cell, which represents its state. The neighbors of a
cell are defined as its adjacent cells with the same number of
associated SMM branches. During each step, the state of each
cell updates to become the minimum state amongst itself and its
neighbors. Finally, the evolution process converges when each
cell has the same state as its neighbors, and cells with the same
state represent a workspace location cluster. A simple illustrative
example is given in Fig. 7, where the workspace is divided into
a grid with nine cells. Cells with the same number of SMM
branches are shown in the same color. The integers in Fig. 7(a)
are the cells’ initial states. After two steps, the cellular automaton
converges, with the final states shown in Fig. 7(b).

However, workspace locations with the same number of SMM
branches may not belong to the same workspace location cluster
because their SMMs are quite different in shape and thus belong
to different homotopy classes, such as workspace locations a
and c, in Fig. 6. As SMMs with singular configurations act
as a boundary between homotopy classes, their corresponding
workspace locations will bound workspace location clusters.
Therefore, these workspace locations will be identified and used
to separate cells in the cellular automaton with the same number
of SMM branches.

To improve the computational efficiency of the cellular au-
tomata, the dimension of its positioning workspace grid is
reduced by one. This can be done because rotating about joint 1
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Fig. 8. Real example of applying cellular automata to cluster workspace
locations of the spatial 4R positioning robot designed in [26] is given. The states
of the cells after (a) 0% , (b) 33% . (c) 67% . and (d) 100% of the evolutionary

process are shown. Finally, this results in 24 workspace location clusters, shown
by the different colors in (d).

will shift the SMMs along the 6 axis, but will not change their
shape. Thus, the 3-D positioning workspace grid can be fully
represented by a half-plane whose normal is perpendicular to the
rotation axis of joint 1 [11]. Similarly, for spatial 7R positioning
and orienting robots, the dimension of the orienting workspace
grid can also be reduced by one if the last rotational joint does
not affect its end-effector position.

A real example of using cellular automata to cluster the
workspace locations of the optimally fault-tolerant spatial 4R
positioning robot designed in [26] is given in Fig. 8. The 3-D
workspace grid fully represented by the X—Z half-plane. The
states of each cell after 0% , 33% , 67% , and 100% of the
evolutionary process are shown in Fig. 8(a), (b)(c), and (d),
respectively. Finally, the workspace locations are grouped into
24 clusters, which are shown by different colors in Fig. 8(d).
Workspace locations whose SMMs contain singular configura-
tions are seen as the white points separating different workspace
location clusters.

C. Grouping SMMs by Homotopy Classes

After clustering workspace locations, the cellular automaton
is used again to group SMMs of each workspace location cluster
by homotopy class, such that they can be accurately learned by a
single neural network. To accomplish this goal, the deformation
matrix is proposed to determine the pairs of SMM branches,
associated with two workspace locations, that belong to the same
homotopy class. Given workspace locations x; and X3 belonging
to the same workspace location cluster with B SMM branches,
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the deformation matrix D is defined as

AMELME) o MM M)

D= : (11)
AME, M) . AMED ME)

where A(Mgl) ; E;J) represents the deformation between the

i'™ branch of workspace location x; and the ;™ branch of
workspace location x,. This metric is defined as the average of
the distances from each configuration along My, to its closest
configuration on My, i.e.,

A(MM,MH)—NZ pin {562,60))  (12)

i= 18"2

The function § reg:vresents the distance between joint configura-
tions 8@ and 6 represented in the circle group, and is defined

as follows:
(@)_g(®) - J5AN
a = = i
5(0,00)=,1>"T ol (13)
i=1 i
If A(MQI) , MY )) is very small, then these two branches can be

smoothly deformed between each other, and thus belong to the
same homotopy class.

To pair the B SMM branches of workspace locations x; and
X9 in an optimal way, the total deformation between all of the
paired SMM branches should be minimized. In addition, each
SMM branch belongs to only one homotopy class, and different
SMM branches of the same workspace location should belong
to different homotopy classes. This can be viewed as the assign-
ment problem, where the SMM branches of x are “assigned” to
the SMM branches of x;, with the cost between them being their
respective deformation. The Hungarian algorithm is an efficient
method for solving this problem, where the above optimization
problem is equivalent to minimizing the trace of D with respect
to its column permutations, i.e.,

P* = argmin tr(DP) (14)
P

where tr(-) is the trace operator and P is an arbitrary column
permutation matrix. Conceptually, the solution P* produces a set
of paired SMM branches between the two workspace locations,
{ME MD) - D} &= = 1}, which belong to the same homotopy
class. For example, given workspace locations e and f in Fig. 6,
SMM branch e; should be paired with f1, and e; with fs.

To apply this process to the entire workspace, the cellular
automaton is used again with the same evolution mechanisms as
described in the previous section, but with a different definition
of state. The state in this problem is defined as a binary value
that represents whether or not the SMM branches of a given
workspace location have been paired with the SMM branches
of another workspace location belonging to the same workspace
location cluster. After the workspace clustering cellular automa-
ton converges, the states of the cells whose initial states were the
minimum in their respective workspace location cluster are now
set to one. The states of the remaining cells are set to zero.
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During each step, each cell has their SMM branches paired with
the SMM branches of their neighboring cells with a state of one.
Once the SMMs branches of a cell have been paired, the cell’s
state is updated to one. This cellular automaton converges when
every cell has a state of one, and it identifies the corresponding
SMM homotopy classes for each workspace location cluster.

D. Predicting Homotopy Classes and Approximating SMM
Fourier Series

With the workspace locations clustered and their SMM
branches grouped by homotopy class, the neural networks
are now implemented to approximate the SMMs of arbitrary
workspace locations. First, a deep feedforward neural network is
used to predict the probabilities that the input workspace location
belongs to each workspace location cluster. The argmax function
is used to select the most likely workspace location cluster and
thus identify the homotopy classes associated with this cluster.
For each set of homotopy classes, another neural network will
approximate the real and imaginary parts of the Fourier series
of the SMMs belonging to this given workspace location.

To learn the probabilities of a workspace location belonging
to each workspace location cluster, the first neural network
is trained on the one-hot encodings of the labeled workspace
location clusters. This neural network is trained using backprop-
agation to minimize the following cross entropy loss function

9 Dl

where Y is the training set of one-hot encoded cluster labels of
the workspace locations and Y is the set of probabilities that
each workspace location belongs to a given cluster. D is the size
of the given training set and C is the total number of workspace
location clusters. The softmax function with inputs y € R* and
an integer 7 (1 < ¢ < k) is defined as follows:

£(Y,Y) log (softmax (y(*), c)) (15)

exp (v:)
e,
> j=1xP (y5)

To learn the Fourier series of SMMs, the neural networks
corresponding to each set of homotopy classes are trained on
the real and imaginary parts of the Fourier series components of
the SMMs. All of the SMM approximation neural networks are
trained using backpropagation to minimize the following mean
squared error loss function

softmax(y, i) = (16)

D

~ 1 . :
e () _ ()2

LY, Y) =5 _El ly™ =3Il (17)

=

where Y is the set of Fourier series components representing

the SMMs belonging to each workspace location, Y is the

approximated Fourier series components, and D is the size of

the given training set.

E. Further Reducing FK Error of Approximated SMMs

In some applications, such as human-robot handover tasks,
picking items out of cluttered objects, and placing items in
containers, the required precision of the end-effector can be
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TABLE1
DH PARAMETERS OF THE OPTIMALLY FAULT TOLERANT SPATIAL 4R ROBOT

[ i | ai[rad] | a; [m] | di [m] | 6; [rad] |
T /2 | 142 ]| 0 0
2 -7 /2 1.4142 1 0
I 72 | 14142 | 0
4 0 1.2247 0.5 0

relatively low. The approximated SMMs should be accurate
enough to be used in these cases. However, some applications
may rely on high-precision operations requiring extremely small
FK errors, e.g., assembly tasks or surgery. In these use cases, if
the FK error of the approximated joint configurations is larger
than the application-specific tolerance, it can be further reduced
by using Jacobian-based inverse kinematics, where the joint
configurations are updated as follows:

A6 = J+Ax,. (18)

This very simple error correction mechanism is widely applied,
as seen in the nullspace projection method from (1), in the
sampling-based method in [22], and in the learning-based in-
verse kinematics method in [28]. Because the approximated
SMMs computed by the proposed method have relatively low
errors, only a very small number of iterations of the above
Jacobian-based inverse kinematics are required to achieve ex-
tremely high precision. The small addition to the computational
cost does not have any noticeable impact on the real-time appli-
cability of the proposed method.

VI. RESULTS
A. SMMs Estimation

The above proposed method is validated using the following
three robots: an equal link length planar 3R positioning robot, the
optimally fault-tolerant spatial 4R positioning robot designed
in [26], and the optimally fault-tolerant spatial 7R position-
ing and orienting robot designed in [27]. These two optimally
fault-tolerant robots are obtained from their respective optimally
fault-tolerant Jacobians, which are defined as being isotropic
before a joint failure and having the maximum worst-case failure
tolerance after an arbitrary joint failure. While these robots are
optimized using local fault-tolerance metrics (i.e., prefailure and
postfailure dexterity), their global fault-tolerant performance
(i.e., reachability of a target point after an arbitrary joint failure)
cannot be guaranteed without using SMM information. The
Denavit—Hartenberg parameters for the 4R and 7R robots are
listed in Tables I and II, respectively. It can be seen that these
two robots have much more complicated structures than many
standard spatial 4R and spatial 7R industrial robots, and thus
their SMMs can be extremely complicated. To generate the
training data using the cellular automata, the entire positioning
workspace is discretized into 200 and 100 000 (250 x 400)
for the 3R and 4R robots, respectively. Roughly 10% of the
positioning workspace for the 7R robot is discretized into 12 800
(80 x 160) cells, while the entire orienting workspace associated
with these positions is discretized into 12 000 cells. The discrete
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TABLEIl
DH PARAMETERS OF THE OPTIMALLY FAULT TOLERANT SPATIAL 7R ROBOT

[ ¢ ] eilrad [ ai[m] | di [m] | 6; [rad] ]
1] -1.7104 | 017 0 0
2 [ -19897 | 142 167 0
3 -11519 | 142 | -0.69 0
4| 08726 | 056 | -1.77 0
5| -1.6057 | 132 | 242 0
6 | -16150 | 127 | -0.38 0
7 0 0 0.95 0

joint configurations along the SMMs computed by the nullspace
projection method were interpolated to have 128 samples, and
only the 90 lowest frequencies were kept once converted to their
Fourier series representation.

The structures and parameters of the implemented neural
networks are given as follows. The neural networks used to
predict the workspace location cluster probabilities have 2, 3,
and 4 hidden layers with 5, 50, and 150 neurons each for the
3R, 4R, and 7R robots, respectively. The activation function
for these neural networks is the Leaky Rectified Linear Unit
(ReLU) function, and they are trained using the AdamW [29],
[30] optimizer with a learning rate of 0.001. The neural networks
used to predict the Fourier series of SMM branches have 4, 5,
and 6 hidden layers with 150 neurons each for the 3R, 4R, and 7R
robots, respectively. The activation function for these networks
is the Leaky ReLU function, and they are also trained using the
AdamW optimizer, but with a learning rate of 0.003.

To prove the performance of the proposed method, the trained
neural networks belonging to each robot are used to approximate
the SMMs of 10 000 randomly sampled workspace locations.
These approximations are compared with the SMMs computed
by the nullspace projection method, the sampling-based method
in [22], and the grid-based method in [23], both in terms of effi-
ciency and accuracy. To compare the computational efficiency,
all of the algorithms are implemented on the same computer,
which has an Intel i7-8565 U CPU, 16 GB of RAM, an Nvidia
MX150 GPU, and 3 GB of VRAM:; and the runtime of all of the
methods are recorded.

To validate the accuracy of the proposed method, three metrics
are used. The first metric considers the FK error of a single
joint configuration along the approximated SMM, which is the
distance between the workspace position corresponding to this
approximated joint configuration, p, and the actual workspace
position, p. To normalize the FK position error between different
robots, the position error, ey, is divided by the total link length
of the arm, L. The FK orientation error, e,, is calculated as
arccos((tr(RTR) — 1)/2), where R is the rotation matrix of the
actual orientation and R is the rotation matrix corresponding to
the approximated joint configuration. This metric represents the
magnitude of the smallest rotation to make R and R equiva-
lent. To combine the position and orientation error for the 7R
positioning and orienting robot, the above orientation error is
divided by the maximum value of arccos, 7, and the total FK
error, e, is then the average of the position and orientation error,
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TABLE I
COMPARISONS BETWEEN THE PROPOSED METHOD. THE NULLSPACE PROJECTION METHOD, THE SAMPLING-BASED METHOD, AND THE GRID-BASED METHOD

[ Robot | Algorithm | Time (s) [ FKEmor (%) | Locations with Different Branch Count |
Nullspace Projection 0.63 022 £ 0.11 .
Sampling-Based Method 0.45 0.0095 £ 0.0003 No branch information is provided by this method.
3R Grid-Based Method 16.28 232 £ 1.34 0.0%
Proposed Before Error Correction | 0.0014 0.29 £ 0.15 0.70%
Proposed After Error Correction 0.0026 7.3x107 + 0.0009 0.70%
Nullspace Projection 2.31 0.24 £ 0.13 -
4R Sampling-Based Method 0.98 0.022 + 0.54 No branch information is provided by this method.
Proposed Before Error Correction 0.0016 0.66 £+ 0.61 2.16%
Proposed After Error Correction 0.0047 0.0011 £+ 0.016 2.16%
Nullspace Projection 6.82 0.09 + 0.03 -
7R Sampling-Based Method 5.11 0.154 £ 0.855 No branch information is provided by this method.
Proposed Before Error Correction 0.0017 2074137 6.02%
Proposed After Error Correction 0.0083 0.016 £ 0.090 6.02%

defined as follows:
1
€=3 (ep + €0)

1 . 1 S
— 57 Ip = Bll + 5 arccos(f(R'R) = 1)/2).  (19)

Because both e, and e, represent percentage errors, the average
of these values is used so that e is a percentage as well. The
second metric is the FK error of a workspace location, which is
the average FK error of all of the joint configurations along the
approximated SMMs of this given workspace location. The third
metric is the percentage of workspace locations having different
numbers of SMM branches between the proposed and nullspace
projection methods.

Table III shows the results of the proposed method, before
and after error correction using the Jacobian-based inverse
kinematics, compared to the nullspace projection method, the
sampling-based method, and the grid-based method for each
of the three robots. It can be seen that the average computa-
tion time of computing the SMMs of each workspace location
using the nullspace projection method improves from 0.63 s,
2.31s,6.82stoonly 0.0014 s, 0.0016 s, and 0.0017 s using the
proposed method before error correction for the 3R, 4R, and 7R
robots, respectively. The runtime of the sampling-based method
depends on the number of sampled joint configurations for each
workspace location. In this experiment, the SMMs are computed
using 2000, 3000, and 5000 random samples for the 3R, 4R, and
7R robots to obtain a good approximation of the SMMs. The
average computational time is 0.45 s, 0.98 s, and 5.11 s for the
3R, 4R, and 7R robots. Compared to the proposed method, these
computational times are many times larger and the efficiency
of this method severely degrades in higher dimensions. The
runtime of the grid-based method depends on the resolution of
the grids. In this experiment, the resolution along each dimension
is 100. The runtime of this method for the planar 3R robot is
16.28 s, which is much more computationally expensive than any
of the other tested methods. As such, this method is only tested
on the planar 3R robot. The runtime of the proposed method
after error correction is 0.0026, 0.0047, and 0.0083 s for the 3R,
4R, and 7R robots, respectively, which demonstrates the small
computational cost of the error correction mechanism. These
results show that the proposed method significantly improves

the computational efficiency of computing SMMs, and it is
the most computationally efficient method tested. In addition,
unlike the nullspace projection method and the sampling-based
method, the computational efficiency of the proposed method
remains almost constant as the dimension of the joint space
increases. This is true because the complexity of the neural
networks used to approximate the SMMs is very similar for
each robot. Furthermore, because the proposed method relies
on highly parallelizable neural networks, another advantage of
this method is that its computational time does not increase as
fast as increases in the number of input workspace locations.
This is not the case for the nullspace projection method and
the sampling-based method, as they rely on complex iterative
computations that are not well suited for parallelization. Due to
the above advantages of the proposed method, only the proposed
method can guarantee that global motion planning based on
SMMs can be done in real-time.

In the fourth column of Table III, the average and standard
deviation of the FK error of all the joint configurations along
the approximated SMMs of the 10 000 randomly sampled
workspace locations are shown for each robot. As the nullspace
projection method and the sampling-based method include an
end-effector error correction term, they always have good accu-
racy with errors around 0.09% to 0.24% and 0.009% to 0.15%
, respectively. The FK error of the grid-based method is greatly
impacted by the resolution of the grids, and is on average
2.32% for the 3R robot in this experiment, which is much larger
than the FK errors of the nullspace projection method and the
sampling-based method. The FK error of the proposed method
is only slightly larger than the nullspace projection method for
the 3R, 4R, and 7R robots, with averages of 0.29% , 0.66% ,
and 2.1% , respectively. These errors are well within acceptable
ranges for any global motion planning applications that do not
require extremely high precision. This is particularly true for
global fault-tolerant motion planning applications, where only
the ranges of the SMMs need to be computed accurately. It can
also be seen that the FK error of the proposed method for the
planar 3R robot is much less than the 4% FK error achieved
in [24]. For high-precision applications, the average FK error
of the proposed method can be further reduced to 7.3 x 10°%
, 0.0011% , and 0.016% for the 3R, 4R, and 7R robots, re-
spectively, using only three inverse kinematics iterations. These
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resulting errors are even much smaller than the errors of all of the
other methods, and the computational time is still fast enough
to be used in real-time motion planning.

The accuracy of the homotopy classes prediction is also
analyzed. It is a fact that the true number of SMM branches
belonging to a given workspace location is unknown for general
robots. However, it can be assumed that when the number of
random initial configurations is large enough, the SMMs com-
puted by the nullspace projection method are roughly equivalent
to the true SMMs. Therefore, the final column in Table III,
which shows the percentage of the 10 000 randomly sampled
workspace locations whose number of SMM branches estimated
by the proposed method is different than the number computed
by the nullspace projection method, can provide insights into
the accuracy of the approximated SMMs. It can be seen that
the proposed method generally predicts a number of SMM
branches consistent with the nullspace projection method. A
fundamental issue with the sampling-based method is that it
can only obtain discrete points along the SMMs, and thus the
geometric information, such as the number of branches and the
range of the SMMs along each joint, is not available. Therefore,
this method cannot be used in either online or offline global
fault-tolerant motion planning.

The distribution of the FK error for each joint configuration
along the approximated SMMs for the planar 3R robot are
shown in Fig. 9(a), (c), and (e) for the nullspace projection
method, the proposed method before error correction, and the
proposed method after error correction, respectively. For the
nullspace projection method, all of the 1.59 x 10° joint con-
figurations along the approximated SMMs have errors below
0.6% , with the majority having errors around 0.22% . The
FK error of the proposed method before error correction is
slightly larger, with an average error of 0.29% . However, after
applying three iterations of Jacobian-based inverse kinematics,
the error was significantly reduced to 7.3 x 107. The 10 000
randomly sampled workspace locations and their associated
average FK errors are shown in color for the nullspace projection
method, the proposed method before error correction, and the
proposed method after error correction in Fig. 9(b), (d), and
(f), respectively. It can be seen that the majority of workspace
locations have very small average errors for all three methods.
The workspace locations with high average FK error tend to
be clustered around the workspace boundaries. This can be
attributed to the unusual shapes of the SMMs at the workspace
boundaries. The distribution of the FK error of the two remaining
robots using the three above methods are shown in Figs. 10
and 11. It can be seen that, while the accuracy of the proposed
method is less than the nullspace projection method, the error
correction is capable of reducing the FK error of the proposed
method to be notably lower than that of the nullspace projection
method.

Examples of the SMMs approximated by the proposed
method are given. For the 3R and 4R robots, Figs. 12 and 13 show
the approximated SMMs belonging to three different workspace
locations whose average FK errors are in the 25", 50%, and 75"
percentiles as the red, purple, and blue curves, respectively. The
SMMs computed by the nullspace projection method belonging
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Fig. 9. FK errors of the approximated SMMs are shown for the planar 3R

positioning robot. The distribution of FK errors for each joint configuration along
the approximated SMMs are shown for the (a) nullspace projection method,
(c) proposed method before error correction, and (e) proposed method after
error correction. (b), (d), and (f) Average FK errors of the 10 000 randomly
sampled workspace locations for each of the above respective methods.

to these same workspace locations are shown underneath these
curves as the wider, transparent curves of the same color. As
can be seen, the proposed method approximates SMMs, which
are almost exactly the same as the SMMs produced by the
nullspace projection method, regardless of the complexity of the
SMM'’s shape. For the 7R robot, Fig. 14 shows the approximated
SMMs belonging to two different workspace locations whose
average FK errors are in the 33™ and 66" percentiles as the
red and blue curves, respectively. The SMMs computed by the
nullspace projection method are shown as wider, transparent
curves of the same color. While the SMMs approximated by
the proposed method are slightly different than the SMMs
computed by the nullspace projection method, they are still
very similar despite the extremely complicated shapes of these
SMMs.

B. Real-Time Fault-Tolerant Motion Planning Simulation
Experiment

To demonstrate the application of the proposed method in
real-time global fault-tolerant motion planning, several exam-
ples of locked-joint failures of joints 1 and 4 occurring during the
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Fig. 10. FK errors of the approximated SMMs are shown for the spatial 4R
positioning robot. The distribution of FK errors for each joint configuration along
the approximated SMMs are shown for the (a) nullspace projection method,
(c) proposed method before error correction, and (e) proposed method after
error correction. (b), (d), and (f) Average FK errors of the 10 000 randomly
sampled workspace locations for each of the above respective methods.

operation of the spatial 7R robot are simulated in this subsection.
Because the ranges of the SMM bounding boxes along joints 2,
3,5, 6, and 7 are typically very close to the entire 27 joint range,
failures of these joints will not affect the reachability of the
task locations and are therefore not considered. Joint limits and
self-collisions are not considered in these experiments. First, the
robot moves without any information on its next target location,
as shown in Fig 15(a). This information is then provided by some
external sensing system, such as camera-based object detection
and localization, as shown by the green ball (position) with three
axes (orientation) in Fig. 15(b). The SMMSs associated with the
target location are then computed using the proposed method.
During the 0.003 s, which the SMMs are being computed, the
robot moves toward this target location using the damped least
squares solution, as shown by the red trajectory in Fig. 15(c).
Note that this red trajectory in Fig. 15(c) is extremely small and
almost invisible because only 0.003 s are needed for the proposed
method to compute the SMMs. After the SMMs are computed,
the robot moves toward the closest bounding box enclosing these
SMMs, as shown by the purple trajectory in Fig. 15(d). Because
the SMM information is available in real time when using the
proposed method, the robot is able to reach and move inside of
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Fig. 11. FK errors of the approximated SMMs are shown for the spatial 7R

positioning and orienting robot. The distribution of FK errors for each joint
configuration along the approximated SMMs are shown for the (a) nullspace
projection method, (c) proposed method before error correction, and (e) pro-
posed method after error correction. (b}, (d), and (f) Average FK errors of the
10 000 randomly sampled workspace locations for each of the above respective
methods.
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Fig. 12. Examples of the SMMs approximated by the proposed method for

three workspace locations of the equal link length planar 3R positioning robot
are shown projected onto the (a) #1-62 and (b) #2-03 planes. The red, purple,
and blue curves have errors in the 251, 50t and 75t percentiles, respectively.
The SMMs computed by the nullspace projection method are shown as the
transparent curves of the same color.

the SMM bounding box before a joint failure occurs, as seen by
the pink trajectory in Fig. 15(e). One joint is randomly locked
during the motion to verify the fault-tolerant performance, where
joint one is locked at 5.6 s in this experiment, as seenin Fig. 15(f).
The robot is still capable of reaching the target location despite
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Fig. 13. Examples of the SMMs approximated by the proposed method for
three workspace locations of the optimally fault-tolerant spatial 4R positioning
robot are shown projected onto the (a) #1-62 and (b) #3-64 planes. The red,
purple. and blue curves have errors in the 25t 5ot and 75th percentiles,
respectively. The SMMs computed by the nullspace projection method are shown
as the transparent curves of the same color.

5
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Fig.14. Examples of the SMMs approximated by the proposed method for two
workspace location of the spatial 7R positioning and orienting robot are shown
projected onto the (a) 61-82, (b) #3-04. (c) 05-g, (d) and 67-0; planes. The
red and blue curves have errors in the 33™ and 66" percentiles, respectively.
The SMMs computed by the nullspace projection method are shown as the
transparent curves of the same color.

the failure of joint one, by following the orange trajectory in
Fig. 15(g).

Unfortunately, this fault-tolerant result is not achievable when
using the nullspace projection method. The SMMs are computed
in 4.3 s, while the robot uses the damped least squares solution
to move toward the goal location in the meantime, as shown
by the long, red trajectory in Fig. 16(c). After the SMMs are
computed, the robot begins to move toward the bounding box
enclosing the closest SMM, as shown by the purple trajectory
in Fig. 16(d). However, the robot does not have enough time to
move into the SMM bounding box before the failure of joint one
occurs because the nullspace projection method cannot compute
the SMMs fast enough. This is demonstrated by the lack of a
pink trajectory, as opposed to the result in Fig. 15(e). Joint one
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Fig. 15. Example of applying the proposed method to real-time fault-tolerant
motion planning is shown. (a) Robot is initially unaware of the next target
location. (b) Target location is provided, the SMMs are computed using the
proposed method. While they are being computed, (c) robot uses the damped
least squares solution to move toward the goal location. After 0.003 s, the SMM
information is available and then the (d) robot moves toward the bounding box
enclosing the closest SMM. (e) Robot moves inside of the bounding box, (f) joint
one is locked at 5.6 seconds. (g) Robot is still able to reach the target location
despite the failure of joint one.

is locked at the same time as above, as shown in Fig. 16(e).
Because the robot is not inside of the SMM bounding box, it is
not able to reach the goal location after the failure of joint one, as
shown in Fig. 16(f). The failure of joint 4 is also simulated and
the results demonstrate that the proposed method works equally
well when joints other than joint 1 are locked."

C. Real-Time Fault-Tolerant Motion Planning Physical
Experiment

To further validate the proposed method in real-time global
fault-tolerant motion planning, two physical experiments are
conducted on a planar 3R robot which is generated from a

! The simulation videos are available on YouTube at: https://youtu.be/
orYHjaKYb2Y
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Fig. 16. Comparative example of applying the nullspace projection method to
real-time fault-tolerant motion planning is shown. (a) Robot is initially unaware
of the next target location. (b) Once the target location is provided, the SMM:s are
computed using the nullspace projection method. (c) They are being computed,
the robot uses the damped least squares solution to move toward the goal location.
(d)y After 4.3 s, the SMM information is available and then the robot moves
toward the bounding box enclosing the closest SMM. (e) Because the nullspace
projection method cannot compute the SMMs fast enough, the robot is not able
to reach the SMM bounding box before joint one is locked at 5.6 s. (f) Robot is
unable to reach the target location after the failure of joint one.

Kinova Gen3 robot by only using three joints whose axes are
parallel to each other, as shown in Fig. 17(a). Joint limits and
self-collisions are not considered in these experiments. The goal
of the experiment is to successfully grasp a toy bear, whose
position is initially unknown, after the robot experiences an
arbitrary locked-joint failure. The experiment begins with the
robot moving without knowledge of the bear’s location, as shown
in Fig. 17(b). The bear is then placed at a random location in
the robot’s workspace, and an RGB-D camera system is used to
detect the bear and obtain its location, as shown in Fig. 17(c).
After the target workspace location is determined, the SMMs
belonging to this workspace location are immediately computed
using the proposed method. The bounding boxes of these SMMs
are then computed and used to plan a fault-tolerant trajectory,
where the robot is shown moving toward the SMM bounding
box in Fig. 17(d) and is inside of the SMM bounding box in
Fig. 17(e). Joint 2 then becomes locked after 5.75 s, as shown
in Fig. 17(f). Despite this joint failure, the robot is still able to
successfully grasp the bear, as shown in Fig. 17(g). A second
experiment was performed with a failure of joint 3, and the robot
was again able to successfully grasp the bear.’

2 The physical experiment videos are available on YouTube at: https:/youtu.
be/orYHjaKYb2Y
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Fig. 17. (a) Physical experiment of real-time global fault-tolerant motion
planning is conducted on a planar 3R robot. (b) Robot begins moving without
information on the target location. (c) Bear is placed at a random position,
and the camera then determines its location. (d) SMMs belonging to this target
location are computed immediately and the robot then begins to move toward
the bounding box of the closest SMM. (e) Robot moves into the corresponding
SMM bounding box and after 5.8 seconds, (f) joint 2 becomes locked. (g) Robot
is still able to grasp the toy bear despite this joint failure.

VII. CONCLUSION

This work presents a learning-based method to accurately
approximate the SMMs of arbitrary robots with a single degree
of redundancy in an efficient manner for real-time global motion
planning. To achieve this goal, a learnable closed-form repre-
sentation of SMMs and a novel method of clustering workspace
locations and grouping SMMs by homotopy classes are devel-
oped. Given an arbitrary workspace location, the associated set
of homotopy classes is first predicted by a neural network, and
the SMMs of these homotopy classes are then approximated by
an additional neural network. On average, the proposed method
computes the SMMs of workspace locations in 0.0014, 0.0016,
and 0.0017 s for 3R, 4R, and 7R robots, respectively. This is
much faster than the average runtimes of the nullspace projection
method, the sampling-based method, and the grid-based method.
This high computational efficiency is achieved while also re-
taining a high level of approximation accuracy with average
FK errors of 0.29% , 0.45% and 2.09% , respectively. After
applying a simple error correction mechanism, these average
errors are reduced to 7.3 x 10°% , 0.0011% , and 0.016% |,
respectively. Furthermore, given the highly parallelizable char-
acteristics of neural networks, the computational cost of the
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proposed method does not scale directly with increases in the
number of input workspace locations. As is illustrated by the
fault-tolerant motion planning demonstration, this is the only
method that can be used for real-time global motion planning
based on the approximated SMMs.

This method can be further improved in the following aspects.
First, the proposed method can be further extended to robots
with multiple degrees of redundancy. This can be done by using
redundant parameters to reduce the degrees of redundancy of a
given robot to one and approximating the SMMs of this reduced
robot with the proposed method. These approximated SMMs
are slices of the high-dimensional SMMs along the redundant
parameters. An alternative approach is to represent SMMs using
the n-dimensional Fourier transform and learning these Fourier
coefficients. Second, obstacle avoidance and joint limits will also
be considered in future works to plan fault-tolerant collision-free
trajectories. The SMM bounding boxes and collision-free poly-
topes will be intersected in the joint space and convex optimiza-
tion algorithms can be used to compute optimal collision-free
trajectories [31]. The above improvements will be considered in
our future work.
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