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ABSTRACT The employment of robots in numerous emerging applications, e.g., disaster rescue, nuclear
waste remediation, and space exploration, is of paramount importance due to their improved safety,
flexibility, and productivity. Due to the harsh environmental conditions, the robotic arm joint motors
and power electronic drives are vulnerable to electrical faults and mainly contribute to joint failures.
To substantially improve the reliability and robustness of the robot arms utilized in remote, hazardous,
and safety-critical environments, autonomous fault-tolerant and fail-active operation for these robotic arms
experiencing joint failures should be developed. In the literature, many strategies have been proposed for
fault prognosis, diagnosis, and health monitoring of electric motors and drives using online data analytics
of the fault signature information. Thus, this paper presents an extensive up-to-date review of joint motor
types, common fault types, and robot joint fault prognostics, diagnostics, and health management. First,
various joint motors are introduced and compared, considering their performance advantages, disadvantages,
and wide applications. Furthermore, joint motors for collaborative robotic applications are summarized
and compared as illustrative examples. After that, fault types are reviewed with a further classification by
fault locations, namely, stator windings, rotors, and bearings. In addition, health monitoring techniques are
classified into methods for stator winding, rotor, and bearing faults. These methods are intensively compared
with respect to motor and fault types, proposed health monitoring techniques, and control strategies. Finally,
conclusions and future research trends are summarized.

INDEX TERMS Collaborative robots, joint motors, fault prognosis, fault diagnosis, health monitoring.

I. INTRODUCTION

Robots have demonstrated promising prospects in numerous
emerging applications, such as space exploration [1], surgical
applications [2], nuclear waste remediation [3], [4], rescue
missions [5], and human-robot interaction [6], [7]. Robotic
arms utilized in these applications should be reliable, robust,
and fault-tolerant, since they are vulnerable to hardware
failures due to harsh environmental conditions, e.g., high
temperature, humidity, and radiation [8]. Particularly, electric
motors and power electronic drives contribute to persistent
robot joint failures [9], [10]. Thus, robot protection in remote,
safety-critical, and hazardous environments has emerged as a
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crucial necessity to ensure the ability of the robotic arm to
perform fail-active operation, which is defined as the ability
of robots to continuously operate when unpredictable failures
and degradation occur [11].

The existing electric motors and drive technologies in
robotic modeling have been recently reviewed in [12]. The
electric motors can be classified according to the magnetic
flux directions, namely, radial, axial, and transverse magnetic
flux motors. Radial-flux motors are the most commonly
used motor type in robotic applications and can be further
categorized into AC motors, brushed DC motors, brushless
DC (BLDC) motors, servo motors, and stepper motors [13].
High-speed brushed DC and BLDC motors offer compact
sizes; however, they are costly because they entail reduction
gearboxes to improve torque production capability [14].
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For example, in [15], a BLDC motor has been utilized
in fast-legged locomotion. On the contrary, stepper motors
inherently exhibit high torque, but with a high weight [16].
Servo motors have several advantages, including improved
efficiency and high power to motor size, albeit at a high cost
and complicated controller [17].

The above-mentioned electric machines are prone to sev-
eral faults, e.g., stator winding faults, rotor faults, and bearing
faults [18]. The main causes of these faults, besides insulation
degradation, are overloading and overheating. Faults in elec-
tric machines affect the overall system performance and may
yield system failures. Therefore, fault prediction and early
detection are crucial to avoid severe damage and enhance
system reliability. Several fault prognosis and diagnosis
strategies have been introduced in the literature [19], [20],
[21], [22]. Moreover, health monitoring for electric machines
can be defined as the process of checking the machines’
parameters to recognize any undesirable faults at an early
stage to increase the reliability and lifetime of the electrical
machines, while decreasing the likelihood of breakdowns
and maintenance expenses. Fault prognosis and diagnosis in
electric machines have gained significant attention to ensure
the reliability and robustness of the robotic arm.

This paper introduces several joint motors that can be
employed in robotic applications. Since robotic arms are
mainly proposed for safety-critical applications, their relia-
bility and robustness are among the key design objectives.
In this paper, a comprehensive overview of the state-of-
the-art robotic arm joint motors is provided for engineers
and researchers in the robotics area. First, joint motors
are introduced and the utilized motors in commercial
collaborative robots are summarized for illustration. After
that, the electrical fault types in joint motors are thoroughly
reviewed and classified into stator winding, rotor, and bearing
faults. Finally, online health monitoring, which has been
intensively studied in the recent literature, is presented in
detail. Various techniques for fault prognosis, diagnosis, and
health monitoring in electric machines have been summarized
based on the fault types to enhance the system reliability and
avoid economic loss.

The rest of the article is organized as follows. The research
motivation and contribution are introduced in Section II to
provide an overview of the recent research activities in the
field of online health monitoring. Sections III and IV will
cover the joint motor and fault types, respectively. In Sec-
tion V, fault prognosis, diagnosis, and health monitoring
methods are reviewed and compared with respect to several
screening factors. Furthermore, future research trends are
summarized in Section VI. Finally, conclusions are drawn in
Section VIL.

Il. RESEARCH MOTIVATION AND CONTRIBUTION

In recent decades, various references reviewed and summa-
rized the research content on robots from different perspec-
tives, e.g., control techniques [23], [24], robot protection [8],
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[25], and artificial intelligence in robots [26], [27]. However,
this paper gives an extensive review of robotic arm joint
motors, which has not been conceived thus far.

Moreover, online health monitoring in electric machines
has been recently surveyed in several applications, e.g.,
aircraft electromechanical actuators and electric vehicles
(EVs). For instance, fault modes and health monitoring
are the focus of the aircraft electromechanical actuators
(EMA) comprehensive survey proposed by Yin et al. [28].
Besides, Xu et al. proposed an overview of intelligent fault
diagnosis in EV applications [29]. In [30], fault diagnostic
and health monitoring strategies for permanent magnet (PM)
machines have been extensively reviewed, shedding light on
unbalanced magnetic pull, PM demagnetization, rotor eccen-
tricity, as well as short- and open-circuit windings faults.
Moreover, smart health monitoring of electrical machines has
been discussed using machine learning (ML) based artificial
intelligence (AI) algorithms [31]. Furthermore, in [32],
common mechanical and electrical faults in electric motors
and suggested condition monitoring strategies to diagnose
these faults are introduced.

Given the aforementioned discussion, it is clear that fault
prognostics, diagnostics, and health monitoring are crucial
to increase the system’s reliability and reduce the risk of
potential economic loss. Thus, motivated by these facts, this
paper introduces state-of-the-art robotic arms, shedding light
on joint motor types, common fault types, and robot joint
fault prognosis, diagnosis, and health monitoring. Eventually,
health monitoring strategies have been categorized by the
fault types into strategies for stator winding, rotor, and
bearing faults, a notable contribution of this survey. On the
other hand, the main limitation of this study is that other
fault modes of robots, e.g., electric drive, mechanical, and
sensor faults, are not included and will be introduced in future
work. A comparison of the proposed study with recent ones
on health monitoring of electric motors is revealed in Table 1.
Recent studies have been compared with the proposed one,
considering main contributions, limitations, classification of
fault detection methods, and targeted applications.

llIl. ROBOTIC ARM JOINT MOTOR TYPES

This section presents joint motors for robotic arms and
summarizes the motor types in commercial collaborative
robots as an illustrative example. The electric motors utilized
in robotic arms include AC motors, brushed DC motors,
BLDC motors, direct drive electric motors, servo motors, and
stepper motors [13]. Compliant robot arms have been gaining
attention in collaborative and personal robotics since they
can interact with their surroundings. A servo motor based on
brushless gimbal motors has been designed for a low-cost
robot arm with seven degrees of freedom (DOF) [14]. The
proposed servo motor consists of a brushless gimbal motor,
controller board, and mounting plate. Eight servos have been
used to drive the robot arm, which substantially decreases the
cost of the overall system. Another example of a low-cost
7-DOF robotic manipulator has been presented in [16].
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TABLE 1.

Comparison of recent studies on health monitoring of electric motors.

Ref.

Contributions

Limitations

Fault Detection Methods

Applications

[28] - Aircraft electromechanical actuator faults. - Fault prediction and health - Model-based. aircraft elec-
- Fault diagnosis, prognosis, and health management are only slightly - Data-driven. tromechanical
management. presented. actuators
[29] - Intelligent fault diagnosis for PM machines. - Further investigation of coupling - Support vector machine. Electric vehicles

- Health monitoring in multi-physics
environment.

faults and their suggested fault
detection methods.

- Expert system.
- Neural network.

- Health monitoring in multi-variable
working environment.

- Fuzzy logic.
- Deep learning.

[30] - Fault diagnostic and health monitoring
strategies for PM machines.

- Faults in PM machine and drives. presented.

- Fault diagnosis techniques for
sensor and mechanical faults are not

PM motors and
drives in general
applications

- Unbalanced magnetic pull.

- PM demagnetization.

- Rotor eccentricity.

- Stator winding.

- Power semiconductor switches.

[32] - Mechanical and electrical faults in electric
motors.

- Condition monitoring strategies for motors.  investigated.

- Other fault modes, such as electric
drive and sensor faults are not

Various industrial
applications

- Signature analysis.

- Vibration monitoring.

- Acoustic noise monitoring.
- Temperature monitoring.

This - Robot joint motor and common fault types.
work - Robot joint fault prognosis, diagnosis, and
health monitoring.

- Other fault modes of robots, e.g.,
electric drive, mechanical, and
sensor faults, are not included.

- Stator winding faults.
- Rotor faults.
- Bearing faults.

Robotic arm joint
motors

In [33], the design of a three-phase BLDC motor-
based electromagnetic actuator for robotic applications is
introduced. A genetic algorithm (GA) was used to optimize
the original design with the torque-to-weight and torque-to-
inertia ratios as the primary optimization goals. These goals
are essential for machines to respond promptly. Besides,
A new optimization technique for three-phase hybrid stepper
motors (HSMs) has been presented in [34]. This optimization
method reduces the computational time by combining the 3D
finite element (FE) analysis and the Taguchi optimization
method. Moreover, it aims at reducing the audible noise in
the machine by optimizing the tooth shape of the employed
HSM. As a result, the torque ripple is improved, and the total
harmonic distortion (THD) is reduced by 21%, which yields
a significant reduction in the optimized motor noise.

A. JOINT MOTOR TYPES

1) AC MOTORS

AC motors are widely utilized for driving high dynamic
load in industrial robots [35]. The common types of AC
motors are induction motors (IMs) and synchronous motors.
Stator cores, stator windings, rotors, and bearings constitute
the essential parts of the AC motors [36]. Based on
electromagnetics, a magnetic field is produced when an AC
current is supplied to the stator windings. This magnetic
field induces current within the enclosed rotor bars, which
further produces the rotor magnetic fields. Thus, the motor
start rotating as a result of the developed torque deriving
from the interaction of the two magnetic fields. AC motors
exhibit several advantages, such as high power to weight
ratio, simple design, and less maintenance. On the contrary,
rotor positioning control and eddy current loss might be
among the main drawbacks of AC motors.

2) BRUSHED DC MOTORS
A brushed DC motor typically consists of the stator,
rotor/armature, brushes, and commutator [37]. There are
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various types of brushed DC motors, including permanent
magnet (PM), shunt-wound, series-wound, and compound-
wound brushed DC motors. The PM brushed DC motors
have been widely utilized in robotics [38]. The brushed
DC motor generates torque when the rotor windings are
energized by the DC supply. As a result, a magnetic field
is produced, which will be attracted to the opposite poles
generated by the stator and further drive the rotor to rotate.
As the motor rotates, mechanical commutation is a basic
necessity to ensure that the two fields from the stator and rotor
do not overrun [39]. The low initial cost and simple control
are among the advantages of brushed DC motors; however,
high maintenance costs, low lifespan, and noise constitute
their main shortcomings.

3) BLDC MOTORS

Unlike brushed DC motors, BLDC motors do not have
brush assembly for commutation and are lighter for the
same output power. BLDC motors mainly consist of a stator,
stator windings, a rotor, and PMs [40]. Basically, the stator
windings are supplied through a control circuit. After that,
the rotor magnets tend to align with the energized stator
windings, and the next stator winding is energized. Thus,
torque is produced owing to the interaction between the
magnetic fields developed by the stator windings and the
PMs, and the rotor keeps rotating [41]. The main merits
of BLDC motors are high efficiency, high reliability, and
long lifespan. On the contrary, BLDC motors entail high
initial costs and an electronic controller. Based on the above-
mentioned advantages, the BLDC motors are of particular
interest for robotic applications [15], [33].

4) DIRECT DRIVE MOTORS

In direct drive motors, either linear or rotary, the motor
is tied directly to the load, and the transmission element
and pulley systems are omitted. The proposed study in [42]
focuses mainly on rotary direct drive motors because they
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are preferably utilized in selective compliance articulated
robot arm (SCARA) and 6-axis robot arms. These motors
can be brushless or synchronous motors, like a servo motor,
albeit with a large number of poles. Moreover, they include
typical motor parts with frameless designs [42]. Basically,
rotary direct drive motors operate based on the interaction
between magnetic fields from the stator windings and the
rotor magnets. Direct drive motors have several advantages,
such as dynamic performance, i.e., higher acceleration and
deceleration with heavy loads, and less noise. Besides,
these motors are capable of producing high torque at low
speeds [43]. However, the main disadvantage of direct drive
motors is the large size of the machines due to the scaling law
of torque and size.

5) SERVO MOTORS

Servo motors consist of several key elements: motor (DC
or AC) with a gear system, closed-loop position/speed
controllers, potentiometer, and servo arm [44]. In order
to control the rotational speed and position, servo motors
consolidate closed-loop positional feedback, the most vital
part of the servo motor. Thereafter, the servo motor receives
either an analog or digital signal, which defines the amount
of movement. Typically, speed and position feedback are
provided by an encoder. Eventually, the motor stops when
there is no difference between the reference signal and the
signal generated by the position sensor [17].

Servo motors can drive an object with high precision,
so they are used in many applications, such as airplanes and
robotics. For example, positional rotational servo motors,
which can be controlled from 0 to 180 degrees, are used
in small-scale robots. Moreover, continuous rotation Servo
motors, which can be controlled from 0 to 360 degrees, are
utilized in mobile robots and robotic arms. Lastly, linear servo
motors are preferred in heavy-duty systems [44]. The main
advantages of servo motors constitute high power to motor
size and weight, high efficiency, and quiet at high speeds.
On the other hand, high overall cost, complex controls, and
limited peak torque to a 1% duty cycle constitute the main
drawbacks of these motors.

6) STEPPER MOTORS

Unlike servo motors, stepper motors usually run in open-
loop and can respond promptly and position accurately
without costly sensors. Stepper motors consist of a stator,
stator windings, a rotor, and PMs [45]. Stepper motors act
as brushless motors with a much smaller step size due to
the different structures of the magnets. When the driver,
i.e., the controller, transmits pulses to the motor, it starts
rotating with one step for each pulse. The number of motor
steps is equal to the number of the controller pulses, and
the motor will run at the frequency of those pulses [57].
The stepper motors are more advantageous than their servo
counterparts since they offer smaller sizes, quicker responses,
and lower costs. However, servo motors outperform stepper
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TABLE 2. Comparison of electric drivelines for robotic arms.

Motor Advantages Disadvantages Applications
types
AC motors | - Simple design. - Eddy current loss. Ref. [35,
- High power to - Poor positioning 46, 47]
weight ratio. control.
- Less maintenance.
DC motors | - High efficiency. - High maintenance Ref. [48-50]
- Simple control. costs.
- Short lifespan.
- Noisy.
BLDC - High efficiency. - High initial cost. Ref. [15,
motors - High reliability. - Complex control. 33, 51]
- Long lifespan.
Direct - Dynamic - Torque limitations. | Ref. [52-54]
drive performance. - Complex control.
motors - High torque at low
speeds.
- Quiet.
Servo - High power to - High overall cost. Ref. [14,
motors motor size. - Complex control. 55, 56]
- High efficiency. - Limited peak
- Quiet at high torque.
speeds.
Stepper - High torque at low | - Lower torque at Ref. [16,
motors speeds . high speed. 34]
- high precision. - No peak torque.
- Compact size. - Open-loop
operation.

ones since they exhibit high torque at high speed and closed-
loop operation [34].

Several addressed motor types are compared according to
their advantages, disadvantages, and applications. A broad
comparison of these types is revealed in Table 2. According
to the analysis of robotics introduced in [13], the servo
motor is the most commonly used type in current robot
arms. AC motors are not commonly used in small to
medium-sized robotic arms [45]; however, they are mainly
utilized in industrial robots where high torque is needed [35].
BLDC motors have been used in robotic applications due to
their high reliability, improved torque-producing ability, and
affordable maintenance costs [33].

B. JOINT MOTORS FOR COLLABORATIVE ROBOTIC
APPLICATIONS

Collaborative robots, i.e., cobots, have shown promise in
production and manufacturing industries since they can
automate various tasks, such as pick-and-place and quality
inspection [26], [58]. The main goal of collaborative robot
designers and researchers is to increase human safety during
human-robot interaction while boosting the robot’s payload
capacity [59]. In addition, they seek to maintain and improve
mobility and flexibility in collaborative robots [60], [61].
The reliability of robotic arms is a key factor that affects
their performance, i.e., reliable robotic arms ensure contin-
uous operation, reduce maintenance and operational costs,
and enhance worker and product safety. Joint motors are
essential to guarantee the reliability robotic arms. It is worth
mentioning that the payload capacity, a key characteristic of
cobots, is the maximum amount of mass that a robotic wrist
can support [62]. Besides, the robotic arm’s utmost reach is
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TABLE 3. Commercial collaborative robots’ joint motor specifications.

Brand Model Year Joint Power Joint Peak Continuous Max. Weight
motor (Watts) velocity torque payload (kg) reach (kg)
(°/s) (Nm) (mm)
KINOVA Gen3 ultra 2022 BLDC 36 180-250 54 4 902 8.2
[65] lightweight
UNIVERSAL| THE URS5e 2021 Stepper 570 180 10 5 850 18.4
ROBOTS
[67]
KUKA [69] LBR iiwa 7 2022 Servo - 98-180 104 7 800 239
R800
ABB [72] IRB 14000 2022 AC 80 180-400 101 0.5 559 38
motor
FRANKA FRANKA 2022 BLDC 80 150-301 - 3 855 17.8
EMIKA [74] Production 3
ZeroErr - 2022 Servo 75 180 19 3 600 13
[75]

measured from its center to its furthest extension. Robots
typically consist of various key components, such as the
base, actuators, and interface and vision modules [63], [64].
Kinova, ABB, Universal Robots, and KUKA are amongst the
leading manufacturers in the robotics field.

Kinova Gen3 ultra-lightweight robotic arm offers various
advantages, including enhanced closed-loop control, smart
actuators with torque sensors, and infinite rotation of
its joints [65]. Moreover, it is ideal for mobile robotics
applications owing to its low power consumption, small
footprint, and embedded controller. In [66], an algorithm
for maximizing the probability of task completion has
been illustrated for the Kinova Gen3 robot. The URS5e,
by Universal Robots, is another interesting, adaptable, and
lightweight collaborative industrial robot that is optimal for
medium-duty applications [67]. Easy programming, fast set-
up, flexible deployment, and safety constitute the main merits
of this robot. An open-source training system has been
introduced in [68] based on Virtual reality and the URSe
robot.

Furthermore, the KUKA LBR iiwa is the world’s first
robot that is compatible with human-robot collaboration
(HRC [69]. It is advantageous due to its ability to learn,
sensitivity, independency, and quick reactions. Moreover, its
parameters have been identified in [70], taking into account
the physical feasibility constraints. Moreover, the ABB and
Franka Emika robots have been extensively introduced in the
literature [71], [72], [73], [74]. The ZeroErr offers a variety
of rotary actuators and suggests several configurations for
robotic arms [75].

The above-mentioned collaborative robots have been
compared, considering the brand, model, model year, joint
motor, power, joint velocity, peak torque, continuous payload,
maximum reach, and weight. Table 3 reveals the data and joint
motors of the commercial collaborative robots. Among the
presented robots, Kinova Gen3 exhibits the maximum reach
at the lightest weight, with 902 mm and 8.2 kg, respectively.
The maximum continuous payload is offered by the KUKA
robot, while the minimum payload is achieved by the ABB
one, with 7 kg and 0.5 kg, respectively.
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IV. FAULT TYPES

This section introduces several fault types presented in the
literature for electric machines, as shown in Fig. 1. The
visualization of some common faults in the electric machines
is therefore depicted in Fig. 2. It is worth noting that the fault
modes are not limited to motor faults; however, electric drive,
mechanical, and sensor faults can also occur to the robotic
systems [28]. Since joint motors are the main focus of this
study, other fault modes of robots are outside the scope of the
present study and will be addressed in future work.

Motor fault modes are broadly categorized into stator
winding, rotor, and bearing faults [28], [80]. Stator winding
faults, e.g., short-circuit and open-circuit faults, usually occur
in electric motors. The most common faults are the short-
circuit ones, such as turn-to-turn, phase-to-phase, and coil-to-
ground faults [81]. The main causes of these faults are insula-
tion failure owing to overloading and overheating operations
and high transient voltage. As a result, unbalanced winding
impedance, excessive heat generation, and whole system
failure are the main consequences of short-circuit faults.
Unlike short-circuit faults, open-circuit ones due to large
starting current are scarce and yield reduced output torque
and substantial rise in current in healthy phases [81], [82].

Rotors are prone to two main faults: demagnetization
when the rotor is equipped with rare-earth PMs and
eccentricity [83], [84]. The PM demagnetization is caused
by cooling system issues, aging of magnets, and overheating.
Thus, the motor’s lifetime time is highly impacted, and its
efficiency deteriorates [85]. Moreover, improper mounting of
the stator, rotor, or bearing and bent motor shaft constitute
main causes of the eccentricity [86]. This fault type results in
an unbalanced magnetic pull, excessive vibration, and high
cogging torque.

Bearing faults are typical and represent the highest
percentage of motor failures [87]. Bearing faults are affected
by materials and environmental conditions, e.g., material
fatigue and pollution. Besides, bearing and shaft currents
and bad lubrication may yield bearing failures. Noise and
vibration, low efficiency, and poor performance are the main
impacts of bearing faults [88].
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FIGURE 1. Fault types in robotic joint motors.

(d)

FIGURE 2. Common faults in electric motors. (a) Stator short-circuit fault (SCF) [76]. (b) Winding and stator core short-circuit fault [77].
(c) Stator rub caused by eccentricity [78]. (d) Bearing with outer race fault [79].

V. FAULT PROGNOSIS, DIAGNOSIS, AND HEALTH
MONITORING

Based on the analysis of fault types presented in the previous
section, fault prognostics and diagnostics in electric machines
are of particular interest, not only for improving the system
reliability but also for avoiding potential economic loss [29],
[89], [90], [91]. This is mainly due to the fact that electric
machines are susceptible to several failures, such as stator
winding and bearing faults. Thus, fault prognosis, diagnosis,
and health management have been extensively addressed
in the recent literature [85], [92]. In addition to insulation
deterioration, overloading and overheating are the main
causes of these defects, as explained in the previous section.
Electric machine faults can result in system breakdowns and
have an impact on system performance as a whole. Therefore,
it is essential to foresee faults and detect them early to
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reduce the previously mentioned demerits. In the literature,
several fault prognosis and diagnosis methodologies have
been developed using signal-based, model-based, and data-
driven methods [93], [94] with a further classification
by the employed technique: load angle [95], winding
impedance [96], [97], torque ripple [98], and motor current
and voltage signatures [51], [99].

Since BLDC motors are widely used in robotic applica-
tions, their health monitoring is necessary to ensure high
reliability and avoid severe damage. BLDC motors are
prone to various faults, such as stator winding and magnet
faults [100]. In [87], possible faults and their proposed
diagnosis techniques are reviewed for BLDC machines.
Moreover, the fault diagnosis of inter-turn short circuit faults
(ISCFs), i.e., widespread electrical faults, is of particular
interest in BLDC motors [101]. An initial model-based fault
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diagnosis technique has been introduced for BLDC motors
by comparing nominal and computed parameters [102].
Moreover, in [103], the effects of both stator ISCF and
rotor demagnetization have been highlighted in SPM-type
BLDC motors. Also, several fault modeling strategies have
been reviewed. In fault cases, it is proved that the improved
winding function theory (IWFT) enhances the winding
inductance analysis. Finally, the steady-state performances,
e.g., rotor back electromotive force (EMF) and radial
magnetic flux density, have been realized with better accuracy
and less computational time.

For PM motors, a fault prognostic and diagnostic method
has been developed in [104] to forecast the remaining useful
lifetime (RUL). Additionally, it modifies the system and
reduces the fault using the output of the prognosis algorithm.
In [105], a prognostic model of a servo motor has been pre-
sented using the hidden semi-Markov model. Accordingly,
the RUL of a linear actuator driven by an AC servo motor is
predicted using only current measurements. Another control
methodology has been presented based on the hidden Markov
model [106]. Moreover, optimal iterative learning control
(ILC) has been recent presented for linear systems [107]. The
efficacy of the proposed ILC has been validated by simu-
lations of a mobile robot. In addition, a fault identification
system has been introduced for servo actuators based on
the logic-dynamic approach, which used linear techniques
to study nonlinear systems [34]. A latter survey on motor
fault diagnosis has been introduced based on motor phase
current signatures [108]. Furthermore, an experimental data
set has been designed to compare synchronous motor fault
classifiers [109]. The data set includes five common electrical
faults, namely, open-phase, phase-to-phase short-circuit,
phase-to-neutral, rotor excitation voltage, and rotor excitation
current faults. Eventually, the designed data set is available
online and can be utilized by the community as a benchmark.

Health management of electric machines is crucial for
safety-critical applications, where electric machines are vul-
nerable to several fault types [32]. Advanced signal process-
ing and Al technologies have been used in health monitoring
applications to facilitate online diagnosis and automatic inter-
pretation since they offer fast calculations, smart analysis,
and low cost [110], [111], [112]. The general procedures
of fault prognosis, diagnosis, and health monitoring for
electromechanical actuators have been intensively introduced
in [28]. The health monitoring strategy mainly comprises
three steps, namely, fault prognosis and RUL estimation,
fault diagnosis, and fault-tolerant operation, and follows
reasonable and adequate standards, as shown in Fig. 3.

In terms of the evaluation criteria of a health monitoring
method, accuracy, robustness, no intrusion, computational
time, and implementation cost represent the major criteria in
electric machines’ health monitoring. These standards can be
briefly explained as:

1) Accuracy: accuracy of the fault identification and

post-fault operation is of particular interest in electric
machine condition monitoring.
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FIGURE 3. Health monitoring of robot joint motors.

2) Robustness: the proposed condition monitoring strat-
egy should be robust to dynamic operating condi-
tions [113].

3) Non-intrusive: due to the fact that the installation of
speed and torque transducers is intrusive, it is hard
to install these transducers in some situations where
the motors are not accessible. Therefore, nonintrusive
techniques have been preferred over their intrusive
counterparts since they depend on terminal voltages
and currents during the motor’s normal operation [114].

4) Computational time: computational burden is an
important factor in evaluating the health monitoring
methodology. The improvement in computational time
of fault prognosis and diagnosis is prominent without
affecting the accuracy of the used method [115].

5) Implementation cost: lower implementation cost plays
important role in machines’ health monitoring from a
practical realization point of view.

Multiple health monitoring methodologies for electric
machines have been introduced in the literature [116], [117],
[118]. An interesting solution using dual redundancy BLDC
motor has been proposed for winding fault detection and
thus increasing the drive system reliability [119]. In that
case, the motor is equipped with two winding groups, and
each group is individually controlled. This approach is more
advantageous than using multiple motors since it offers
low cost and is lightweight. In [120], another model-based
technique for fault prognosis and diagnosis in BLDC motors
has been developed. In the following subsections, several
health monitoring strategies are summarized and broadly
classified into techniques for stator winding faults, rotor
faults, and bearing faults.

A. HEALTH MONITORING STRATEGIES FOR STATOR
WINDING FAULTS

A new inter-turn short circuit fault (ISCF) diagnosis approach
for PM synchronous motors has been developed, considering
electromechanical torque, as shown in Fig. 4 [22]. An ISCF
is prevalent in PMSMs and should be diagnosed since it
may deteriorate the machine’s performance. In that case,
Fast Fourier Transform (FFT) is used to extract the torque
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frequency distribution, which is utilized in the stator winding
fault detection. Particularly, the ISCF in the stator winding is
determined by the 2" and 4" torque harmonic components.
Compared to the healthy case, the 2"¢ and 4" harmonic
components are considerably increased in faulty cases.
A similar approach has been prior introduced, considering the
spatial harmonic owing to rotor PMs distribution [121].

FIGURE 4. ISCF fault representation.
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FIGURE 5. Flow chart of a fault diagnosis approach.

Moreover, a stator inter-turn fault (ITF) diagnosis tech-
nique has been proposed for PM-type BLDC motors with
concentrated windings [51]. This methodology has been
validated for both SPM and interior permanent magnet (IPM)
BLDC motors. This methodology detects the ITFs based
on the line currents’ third harmonic components, which are
significant for fault detection under supply imbalance and
structural asymmetry. Therefore, a system-matrix-based FE
model of the reemployed BLDC motor with an ITF has
been proposed, taking into consideration the asymmetric
magnetic fields. The proposed fault detection approach using
the Kalman filter is shown in Fig. 5. Although the suggested
approach can be utilized in traditional inverters with no extra
sensors, it is not suitable in either light load or low-speed
conditions.

Furthermore, fault diagnosis of the stator windings of a
surface-mounted PM (SPM) machine has been presented
using high-frequency (HF) voltage signal injection [19]. The
main focus of the proposed technique is to detect the stator
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winding short-circuit faults and insulation degradation. Fig. 6
depicts the online detection scheme. It measures the online
saliency profile of the SPM machine under normal operation
and compares it with the magnetic signature of the machine
under healthy conditions to detect abnormal incidents in
the stator windings. The ability of the proposed monitoring
approach to identify both elementary and full short-circuit
faults has been experimentally verified.

Another technique that incorporates open-circuit fault
detection for the three-phase PMSM is shown in Fig. 7 [21].
It utilizes the grey prediction theory which estimates the rule
of the system by collecting some current data. The employed
PMSM is controlled based on the vector control technique,
and the inverter is driven by the speed and current controllers.
In normal conditions, the proposed fault diagnosis approach
identifies the running state of the motor in real time based
on the acquired stator currents. After that, the currents
are predicted at the next interval and compared with the
actual current values. Finally, an open-circuit fault detection
variable is determined according to the absolute value of the
difference between the predicted and actual current values of
a single phase. Compared to conventional current detection
methods, the proposed one is fast and accurate.

A recent ISCF detection and evaluation strategy has been
developed for BLDC motors, as shown in Fig. 8 [101].
The proposed methodology to diagnose an ISCF comprises
two steps: analyzing the zero-sequence voltage component
(ZSVC) spectrum to deduce the fault feature and evaluating
the faulty phase and the severity of the ISCF based on fault
indicators. It is worth mentioning that the fault indicators are
defined by monitoring the slope variation of phase current
and ZSVC. The proposed technique is fast and accurate and
offers real-time fault diagnosis. The efficacy of the proposed
fault detection strategy has been validated through simulation
and experimental tests.

In [122], A stator inter-turn-short fault (ITSF) has been
extensively analyzed in an IPM machine equipped with
fractional-slot concentrated winding (FSCW). This paper
investigated the effect of the control drive on the characteristic
of the ITSF since the fault signatures are affected by
controller actions during online fault detection. In that
case, the six-step square-wave control (SSC) in an open-
loop control drive is compared to field-oriented control
(FOC) in a closed-loop one. The latter outperforms the
former since it exhibits improved ITSF mitigation capability,
lower common-mode voltage, and lower peak-to-peak torque
ripple. Thus, FOC assures that the drive is functional during
faults. It can be noted that the proposed controllers can
alleviate the ITSF based on flux weakening strategy, i.e.,
decreasing the magnitude of circulating current. Finally,
a three-phase 400 W FSCW-based IPM motor has been
developed to validate the theoretical findings.

A novel localization technique for PMSMs with ITSFs
has been recently introduced based on the search coil
(SC) array [123]. The proposed SC method is utilized to
observe the stator tooth flux and is introduced for m-phase
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direct-drive PMSM. It can be noted that the SC is presented
for m-phase PMSM with n branches per phase and z
coil groups per branch. In this case, the proposed SCs
are wrapped around a stator tooth through the proposed
arrangement to avoid any unnecessary complications of the
fault coil localization technique. Moreover, the back EMF
and the residual back EMF are identified and used as ITSF
indicators. Thus, an analytical model has been developed
to study the mapping relationship between the fault coil
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location and each SC’s back EMF. Finally, the proposed
approach has several advantages, including less complexity
and lower computational burden, which have been verified
using simulation and experimental results.

An interesting methodology for measuring stator insula-
tion capacitance of inverter-fed machines has been inves-
tigated using accelerated ageing experiments [124]. The
proposed method is capable of monitoring the ground-
wall insulation based on a multi-frequency measurement
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FIGURE 9. Model of ground-wall insulation.

of equivalent capacitance. The ground-wall insulation is
considered as a parallel plate with the stator iron and
winding copper forming the insulating dielectric, as shown
in Fig. 9. Based on the long-term ageing experiments of
four machines, it is clear that the remaining useful lifetime
(RUL) can be estimated based on the equivalent capacitance,
i.e., a significant indicator of ageing. The consistency of the
capacitance pattern over time for all test samples and the
normalized capacitance value at the end of life were the most
key findings. In recent machine drives, the suggested method
shows a practical and precise tool for real-time insulation
health monitoring.

Besides, a custom power converter has been developed
for online stator winding insulation health monitoring based
on high-frequency current oscillations, as shown in Fig. 10
[125]. The proposed converter is not only capable of
performing the FOC, but also capable of measuring the high-
frequency current ringing during the switching transitions
and acquiring parameters, references, and commands through
communication with an external PC. These functions are
implemented using a single Xilinx Zynq System-on-Chip
(SoC), which contains two processor cores and a field-
programmable gate array (FPGA) and is mounted on a
control board. In this study, the insulation status has been
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assessed based on selected metrics, e.g., RMS and peak
values of the MHz-range current ringing. In order to emulate
the various insulation conditions, external capacitors were
inserted between turns and between turns and ground.
Therefore, a quasi-linear behavior can be noticed with
respect to the changes in capacitance. Moreover, the pro-
posed measurements were assessed on hardware with lower
requirements while keeping their monitoring capabilities.
Finally, these measurements could also be performed with
straightforward analog circuits to prevent the requirement for
a greater sampling frequency.
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FIGURE 10. Custom power converter control scheme.

B. HEALTH MONITORING STRATEGIES FOR ROTOR FAULTS
An innovative motor fault diagnosis approach has been
recently presented using convolutional neural network (CNN)
feature fusion, as depicted in Fig. 11 [56]. Primarily,
the preprocessing of the vibration and current signals
is performed. Thereafter, the processed data is sampled
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FIGURE 11. Architecture of the CNN-based fault diagnosis.

using a segmented multi-time window synchronous window.
Finally, motor faults can be accurately distinguished through
time series fusion and feature extraction procedures of the
preprocessed signals. The proposed fault detection approach
has been validated by simulating various motor faults, i.e.,
bearing outer and inner ring, rotor broken bar, and inter-
turn short-circuit faults. As a result, the fault diagnosis
is enhanced by combining the fault features of the motor
vibration and current signals. Eventually, higher accuracy and
greater stability of the motor fault detection are provided
through the multi-signal input compared to its single signal
counterpart.

In [126], experimental verification of a progressive fault
diagnosis method (PFDM) for an electro-hydrostatic actu-
ator (EHA) is carried out using double redundancy EHA
servo mechanism, loading equipment, and servo controller.
Moreover, monitoring DSPs are used to monitor the system
status and detect system faults. The flowchart of the proposed
PFDM consists of sensor fault diagnosis based on the Kalman
filter, threshold-based fault detection, and discrimination
based on EHA system logic and analysis, as shown in Fig. 12.
Unlike conventional fault diagnosis techniques, the proposed
PFDM uses double redundancy EHA system to enable system
reconstruction after fault diagnosis. It is concluded that the
proposed PFDM offers accurate and fast fault detection and
thus improves system reliability. A recent IM fault detection
methodology has been introduced to investigate rotor and
bearing failures based on neural networks, vector machine,
and boosting methods [127]. In this case, fault diagnosis was
performed using the obtained real-time vibration data. It is
concluded that the vector machine and neural networks have
the highest accuracy; however, the boosting methods offer the
shortest computational time.

Furthermore, a PM demagnetization fault diagnostic
methodology has been latterly introduced for PMSM based
on the ML approach [128]. First, feature extraction of
the PM fault from the stator currents has been performed
using a short-time Fourier transform (STFT). After that,
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two ML algorithms, namely, k-nearest neighbors (KNN) and
multilayer perceptron (MLP) are used for automatic PM
demagnetization fault diagnosis. Moreover, the effects of the
key parameters, input vector elements, and ML algorithms’
structures on the efficacy of the proposed detection technique
have been verified. The KNN algorithm outperforms its MLLP
counterpart since it offers high diagnosis effectiveness at
a shorter response time. For example, the response time
of the KNN model is 0.002 seconds in comparison with
the 0.0071 seconds needed by the MLP model. Another
methodology to differentiate between short-circuit and local
PM demagnetization faults has been recently elaborated
in [129].

In [130], a recent approach for PM health management
and diagnosis has been investigated using a magnetic sensor,
as depicted in Fig. 13. The proposed FBG-based air-
gap magnetic sensor is of particular interest, not only for
monitoring the rotor PMs’ health in SPM machines but also
for straightforward installation without invasive behavior to
core parts in comparison with conventional methods. The
main idea is to identify the air-gap magnetic flux density
of an inverter-fed synchronous machine under healthy and
demagnetized PM cases. Experimental results show that
the proposed magnetic sensing scheme can recognize the
magnetization degree of the rotor PMs, allowing for the
monitoring of their health. Ultimately, the application of in-
situ magnetic sensor measurements for the relative quantifi-
cation of PM demagnetization fault severity is made possible
by a diagnostic index that is presented and experimentally
verified.
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FIGURE 13. PM health monitoring of a SPM motor.

Another interesting study has been previously presented
for fault diagnosis of PMSMs using the SC-based electro-
magnetic signature analysis [131]. In this case, several fault
types are considered, e.g., eccentricity, inter-turn short circuit,
and PM demagnetization faults. The proposed technique is
not affected by the induced harmonics by power electronic
dive circuits because fault diagnosis is performed using
only the first-order harmonic. Moreover, the need for a
pattern recognition algorithm is omitted since the faults’
signatures are easily recognized which saves considerable
computational time. Besides, it is capable of locating the
direction of eccentricity and winding short-circuit turns.
Due to the fact that the proposed method is of an invasive
nature, it is designed for an electric machine during the
manufacturing process to install the search coils. Finally,
the proposed technique has been verified using 2D FE
simulations and experimental results.

C. HEALTH MONITORING STRATEGIES FOR BEARING
FAULTS

In [132], an intelligent and adaptive bearing fault diagnosis
approach has been introduced using tacholess order tracking
(TOT) for various electric machines, e.g., BLDC motor and
PM synchronous generator (PMSG). In addition to decom-
posing the machine current signal, the proposed adaptive
synchrosqueezing wavelet transform (ASWT) additionally
reconstructs the component associated with rotation by
adaptively choosing the instantaneous frequency (IF) curve.
Fig. 14 depicts the flowchart of the proposed methodology.
Digital signal processing techniques are used to test the
efficacy of the suggested method on machine current signals.
The proposed technique is also justified by creating and
analyzing an electric machine model through mathematical
derivation. Finally, the diagnosis of bearing defects in
other electric machines operating at varying speeds can be
accomplished using the ASWT approach.

Other solutions have been introduced in the available
literature for bearing fault diagnostics of PMSMs. In this
context, a new approach for bearing damage diagnosis
is depicted in Fig. 15 [133]. The proposed methodology
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identifies the bearing damages based on the stator current
feature developed by a frequency selection in the current
spectrum. After that, linear discriminant analysis (LDA)
assesses these features, and the Bayes classifier performs
the fault diagnosis. To verify the proposed methodology,
two bearing damages at various load cases have been
experimented. The faulty bearings are, therefore, identified
from the healthy ones. On the other hand, bearing fault
diagnostics cannot be performed using the proposed approach
in specific load conditions, such as low speeds and radial
forces.

A novel method for bearing health monitoring has
been presented under both healthy and faulty conditions
using fiber Bragg grating (FBG) sensors [134]. This paper
utilizes concurrent thermo-mechanical sensing to identify the
operational status of inverter-fed IMs. Fig. 16 depicts the
architecture of the proposed technique for bearing healing
monitoring. First, the sensing heads are embedded on the
bearing outer ring surface. Thus, its parameters are measured
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with the healthy bearing operation and faulty cases with
rolling element fault. After that, the thermal and mechanical
effects are distinguished through the thermal calibration
of the sensor before its in-service application. It is worth
mentioning that the sensitivity can be improved by placing
the FBG sensor in the bearing load area. Finally, the efficacy
of the proposed technique has been proved in the monitoring
of electric machine bearings, i.e., thermal and mechanical
operating information.

Detection

RUL (SVM)
-- Step 3 diagnostic

FIGURE 17. Bearing fault prognosis and diagnosis using Hilbert-Huang
transform.

In order to monitor ball bearings, the study in [135]
introduces a novel method that consolidates the Hilbert-
Huang transform, the support vector machine (SVM), and
the support vector regression (SVR), as shown in Fig. 17.
The proposed method employs the Hilbert-Huang transform
to separate health indicators from stationary/non-stationary
sound signals that can track the deterioration of vital
bearing components. A supervised classification method,
SVM, is used to identify the degradation states, and the
extracted health indices are examined to provide a fault
diagnosis. Furthermore, the remaining useful lifetime (RUL)
is estimated based on SVR, i.e., one-step time series
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prediction. According to experimental findings, the proposed
approach has shown promise in improving the diagnostic
and prognostic of bearing deterioration. The applicability
of this approach is limited in cases where historical data
about the bearings’ degradation are hard to acquire, a notable
demerit of this method. Another approach for bearing health
monitoring has been recently introduced based on vibration
signals analysis [136].

Unlike conventional diagnostic techniques with limited
capability of dealing with real-time environments, a vibro-
acoustic fusion technique has been latterly presented for
precise fault detection under various conditions. The pro-
posed technique utilizes multi-input CNN (MI-CNN) to
fuse the features of acoustic and vibration signals. There-
fore, the diagnosis efficiency is highly improved [137].
Another CNN-based bearing fault detection technique has
been introduced in [138]. Unlike traditional strategies, the
proposed method is not affected by the surroundings and
can achieve accurate remote detection. Another FBG-based
approach for monitoring motors’ vibrations has been pre-
sented [139]. In this case, a wideband optical accelerometer
is proposed to substantially enhance the sensitivity and the
resonant frequency when compared to conventional FBG
accelerometers. In addition, In [140], a novel bearing fault
diagnosis technique has been presented on the basis of time-
frequency information fusion. Unlike the current diagnosis
methods which are based on supervised learning, this paper
proposed an unsupervised cross-domain diagnosis technique,
which leverage the processing capability of the wavelet
packet decomposition approach, i.e., extract more fault
signatures, eliminate redundant information, and preprocess
the vibration signal.
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In [55], a robust fault diagnostic model for servo motors
in robotic applications has been developed. The flowchart
of the proposed method is given in Fig. 18. First, data
acquisition and preprocessing have been performed, which
are followed by feature extraction based on wavelet packet
decomposition (WPD). Second, feature reduction/selection
methods are utilized to reduce the computation burden.
Finally, the classification performance is performed using
both the artificial neural network (ANN) and SVM to find out
defect features in various operating scenarios. Current data
for both normal and fault scenarios are gathered to identify
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TABLE 4. Comparison of motor fault prognosis and diagnosis approaches.

Ref. Figure Motors Fault type Technique Control strategy | Evaluation Summary
[22] Fig. 4 SPM ISCF Electromechanical Vector control - High accuracy fault detection.
torque - Improves the accuracy of fault classification methods.
[51] Fig. 5 BLDC ITF Third harmonic Six-step - Diagnosis of BLDC motor with concentrated windings.
components of commutation - Inadequate in low speed.
line currents
[19] Fig. 6 SPM Short- HF signal Sensorless - Simple implementation.
circuit injection control - No additional transducers.
- Successful detection of full short-circuit faults.
[21] Fig. 7 PMSM Open- Grey prediction Vector control - Fast and accurate.
circuit theory - Diagnosis of the open-circuit faults and power switch.
[101] Fig. 8 BLDC ISCF Signal Six-step - Considerable accuracy and rapid response.
analysis-based commutation - Real-time fault diagnosis.
[122] — IPM ITSF Flux weakening SSC and FOC - Consider the effect of the control drive.
strategy - Compare fault characteristics in open-loop and closed-
loop control drives.
- FOC is better than SSC from fault mitigation perspective.
[123] — PMSM ITSF Search coil array — - A fault coil localization methodology to decrease the
complexity of fault diagnosis.
- A generalized approach since it depends on the winding
layout and does not entail any motor parameters.
- Low computational cost.
[124] Fig. 9 Servo Stator Accelerated Space vector - Effective in the gradual ageing detection.
insulation ageing PWM - Estimate the RUL based on the equivalent capacitance.
methodology
[125] | Fig. 10 IM Stator High-frequency FOC - Develop a custom converter for high-frequency stator
insulation current ringings current oscillations.
- Use analog circuits to implement the proposed metrics and
thus obviate the need for higher sampling frequency.
[56] Fig. 11 Servo Various CNN-based — - Fault identification with high accuracy.
feature fusion - Improved motor fault diagnosis.
- Greater stability with multi-signal input.
[126] | Fig. 12 Servo Various Progressive fault Three-loops - Identify 22 faults of the EHA with high accuracy.
diagnosis control of - Enhance the response time to 4 msec.
position, speed, - Increase the safety and reliability.
and current
[128] — PMSM PM Current signal FOC - An effective model in off- and on-line tests.
processing and - Employ simple ML algorithms for an effective symptom
ML algorithms extraction process.
- Offer shorter response and training time.
[130] | Fig. 13 SPM PM Air-gap magnetic Vector control - Effective determination of the magnetization level through
flux density in-situ measurements.
sensing - Extraction of the demagnetization severity data based on
a fault index.
[131] — SPM Various Electromagnetic Vector control - Distinguish between the various fault signatures easily.
signature analysis - Evaluate the severity of each fault.
with search coils - Need to be consider during the manufacturing process.
[132] | Fig. 14 Various Bearing Tacholess order Six-step - Intelligent and adaptive bearing fault detection.
tracking commutation for - Able to be extended to other AC motors.
BLDC motor
[133] | Fig. 15 PMSM Bearing Linear Vector control - Fault diagnostics based on the Bayes classifier.
discriminant - Damaged bearings are identified with various loads.
analysis - Cannot be used in small load cases.
[134] | Fig. 16 M Bearing Thermo- V/f control - Both thermal and mechanical operating conditions can be
mechanical fibre clarified based on the FBG sensors’ measurements.
optic sensing - Improved sensitivity is obtained by the placements of
sensors in the bearing load zone.
[135] | Fig. 17 AC motor Bearing Hilbert-Huang Speed control - Focusing on ball bearings’ fault prognosis and diagnosis.
transform, SVM, - Ability to track the degradation of bearings based on
and SVR Hilbert-Huang transform.
- The implementation of the proposed technique entails
historical data about bearings’ degradation.
[55] Fig. 18 Servo Bearing Feature selection — - Proposed method mimics real environmental scenarios.
and reduction - The employed algorithms are general and verified for two
methods distinct ML classifiers.
- Feature selection decreases computational burden.

servo-motor faults. The proposed model is viable in real
environmental conditions under variable speed and loading.
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Eventually, all the health monitoring strategies are
compared according to the motor types, fault types,
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technique, strategy, as

VI. FUTURE RESEARCH TRENDS

This section aims to present the future research directions
introducing the main opportunities and challenges in the field
of robotic arm joint motors and their online health monitoring
techniques, which are elaborated as follows:

A. SMART HEALTH MONITORING
1) Health monitoring based on deep learning applica-

tions, e.g., using neural networks (NNs) with another
algorithm to avoid mistakes from approximating the
function [31]. This approach can be extended to IMs
with bearing faults.

2) Proper performance of artificial neural networks
(ANNs) since overfitted sub-optimization systems may
yield uncertain forecast outcomes [141], [142].

3) Intelligent health management with fast calculations,
low cost, and smart analysis [143]. This method can be
used to extend the lifetime of PM machines based on
digital twin.

B. HIGH RELIABILITY SOLUTIONS
1) Accurate measurements and their impacts on the fault

detection efficacy [128]. This technique can be utilized
for demagnetization fault diagnosis of PMSMs.

2) Advanced data processing of the state signals to
alleviate the effect of noise and transient behaviors.

3) Industry 4.0 standards and maintenance of electrical
equipment [144]. This approach can be extended to IMs
with various faults.

4) Fault prognosis and condition monitoring in indus-
trial systems to ensure reliable, robust, and precise
results [145], [146]. This method can be extended
for IMs bearing faults to implement remote health
monitoring.

C. JOINT MOTOR LIFETIME EXTENSION
1) Modern data-driven RUL prediction techniques, such

as Al and statistical model-based ones [147], which can
be utilized for bearing faults.

2) Considering the varying operating condition of the
electric machine to predict the RUL in a better
way [28]. This method can be extended to either IMs
or PM machines with various fault types.

3) Development of deep learning-based RUL prognos-
tic methods to precisely simulate the degradation
aspects of features [148]. This technique can be used
to extend the lifetime of several joint motors by
adding new perspectives to the well-known data-driven
methods.

D. HEALTH MONITORING BY FAULT TYPES
1) Monitoring sensitivity optimization and exploring fault
signatures for rotor bearing health management [134].
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2) KNN-based embedded microcontroller realization for
PM fault detection [128].

3) Novel interturn short-circuit fault diagnosis in PMSMs
with different winding layouts to estimate the fault
severity [149].

VII. CONCLUSION

Robots have been increasingly utilized in harsh environ-
mental conditions, such as operation fields with extreme
temperatures or high radiations. These harsh environmental
conditions may induce electrical and mechanical failures of
the joint motors and their related power electronic drives.
It is concluded that the robot arm with faulty joint motors
cannot complete the assigned tasks, which manifests the
prominence of online health monitoring for robot joint
motors. Thus, online health monitoring for robotic joint
motors is crucial to ensure the system’s reliability and avoid
downtime cost. This paper investigated the state-of-the-art
robot joint motors, highlighting motor and possible fault
types, online health monitoring of the presented joint motors,
and examples of collaborative robotic applications. Various
types of joint motors are presented while elaborating on
their merits, limitations, and applications. Besides, different
types of faults are summarized and visualized to highlight the
impacts of these faults on the employed motors. Furthermore,
the application of health management for joint motors is
illustrated. These health monitoring strategies have been
thoroughly investigated and their diagnostic characteristics
are presented. In this study, commercial collaborative robots
are introduced and compared based on screening factors, e.g.,
continuous payload and maximum reach.

This paper sheds light on the joint motors for robotic arms
and provides researchers and engineers in the area of robots
with an extensive survey that will help understand the joint
motors, their common faults, and how to manage these faults
with advanced online health monitoring strategies.
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