
Received 5 July 2024, accepted 19 August 2024, date of publication 21 August 2024, date of current version 20 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3447573

A Review of Robotic Arm Joint Motors and Online
Health Monitoring Techniques

MOHAMED Y. METWLY1, (Graduate Student Member, IEEE), CHARLES L. CLARK2, (Student Member, IEEE),

JIANGBIAO HE1, (Senior Member, IEEE), AND BIYUN XIE 2, (Member, IEEE)
1Department of Electrical Engineering and Computer Science, The University of Tennessee at Knoxville, Knoxville, TN 37996, USA
2Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA

Corresponding author: Jiangbiao He (jiangbiao.he@utk.edu)

This work was supported by U.S. National Science Foundation under Grant 2205292.

ABSTRACT The employment of robots in numerous emerging applications, e.g., disaster rescue, nuclear

waste remediation, and space exploration, is of paramount importance due to their improved safety,

flexibility, and productivity. Due to the harsh environmental conditions, the robotic arm joint motors

and power electronic drives are vulnerable to electrical faults and mainly contribute to joint failures.

To substantially improve the reliability and robustness of the robot arms utilized in remote, hazardous,

and safety-critical environments, autonomous fault-tolerant and fail-active operation for these robotic arms

experiencing joint failures should be developed. In the literature, many strategies have been proposed for

fault prognosis, diagnosis, and health monitoring of electric motors and drives using online data analytics

of the fault signature information. Thus, this paper presents an extensive up-to-date review of joint motor

types, common fault types, and robot joint fault prognostics, diagnostics, and health management. First,

various joint motors are introduced and compared, considering their performance advantages, disadvantages,

and wide applications. Furthermore, joint motors for collaborative robotic applications are summarized

and compared as illustrative examples. After that, fault types are reviewed with a further classification by

fault locations, namely, stator windings, rotors, and bearings. In addition, health monitoring techniques are

classified into methods for stator winding, rotor, and bearing faults. These methods are intensively compared

with respect to motor and fault types, proposed health monitoring techniques, and control strategies. Finally,

conclusions and future research trends are summarized.

INDEX TERMS Collaborative robots, joint motors, fault prognosis, fault diagnosis, health monitoring.

I. INTRODUCTION

Robots have demonstrated promising prospects in numerous

emerging applications, such as space exploration [1], surgical

applications [2], nuclear waste remediation [3], [4], rescue

missions [5], and human-robot interaction [6], [7]. Robotic

arms utilized in these applications should be reliable, robust,

and fault-tolerant, since they are vulnerable to hardware

failures due to harsh environmental conditions, e.g., high

temperature, humidity, and radiation [8]. Particularly, electric

motors and power electronic drives contribute to persistent

robot joint failures [9], [10]. Thus, robot protection in remote,

safety-critical, and hazardous environments has emerged as a
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crucial necessity to ensure the ability of the robotic arm to

perform fail-active operation, which is defined as the ability

of robots to continuously operate when unpredictable failures

and degradation occur [11].

The existing electric motors and drive technologies in

robotic modeling have been recently reviewed in [12]. The

electric motors can be classified according to the magnetic

flux directions, namely, radial, axial, and transverse magnetic

flux motors. Radial-flux motors are the most commonly

used motor type in robotic applications and can be further

categorized into AC motors, brushed DC motors, brushless

DC (BLDC) motors, servo motors, and stepper motors [13].

High-speed brushed DC and BLDC motors offer compact

sizes; however, they are costly because they entail reduction

gearboxes to improve torque production capability [14].
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For example, in [15], a BLDC motor has been utilized

in fast-legged locomotion. On the contrary, stepper motors

inherently exhibit high torque, but with a high weight [16].

Servo motors have several advantages, including improved

efficiency and high power to motor size, albeit at a high cost

and complicated controller [17].

The above-mentioned electric machines are prone to sev-

eral faults, e.g., stator winding faults, rotor faults, and bearing

faults [18]. The main causes of these faults, besides insulation

degradation, are overloading and overheating. Faults in elec-

tric machines affect the overall system performance and may

yield system failures. Therefore, fault prediction and early

detection are crucial to avoid severe damage and enhance

system reliability. Several fault prognosis and diagnosis

strategies have been introduced in the literature [19], [20],

[21], [22]. Moreover, health monitoring for electric machines

can be defined as the process of checking the machines’

parameters to recognize any undesirable faults at an early

stage to increase the reliability and lifetime of the electrical

machines, while decreasing the likelihood of breakdowns

and maintenance expenses. Fault prognosis and diagnosis in

electric machines have gained significant attention to ensure

the reliability and robustness of the robotic arm.

This paper introduces several joint motors that can be

employed in robotic applications. Since robotic arms are

mainly proposed for safety-critical applications, their relia-

bility and robustness are among the key design objectives.

In this paper, a comprehensive overview of the state-of-

the-art robotic arm joint motors is provided for engineers

and researchers in the robotics area. First, joint motors

are introduced and the utilized motors in commercial

collaborative robots are summarized for illustration. After

that, the electrical fault types in joint motors are thoroughly

reviewed and classified into stator winding, rotor, and bearing

faults. Finally, online health monitoring, which has been

intensively studied in the recent literature, is presented in

detail. Various techniques for fault prognosis, diagnosis, and

healthmonitoring in electricmachines have been summarized

based on the fault types to enhance the system reliability and

avoid economic loss.

The rest of the article is organized as follows. The research

motivation and contribution are introduced in Section II to

provide an overview of the recent research activities in the

field of online health monitoring. Sections III and IV will

cover the joint motor and fault types, respectively. In Sec-

tion V, fault prognosis, diagnosis, and health monitoring

methods are reviewed and compared with respect to several

screening factors. Furthermore, future research trends are

summarized in Section VI. Finally, conclusions are drawn in

Section VII.

II. RESEARCH MOTIVATION AND CONTRIBUTION

In recent decades, various references reviewed and summa-

rized the research content on robots from different perspec-

tives, e.g., control techniques [23], [24], robot protection [8],

[25], and artificial intelligence in robots [26], [27]. However,

this paper gives an extensive review of robotic arm joint

motors, which has not been conceived thus far.

Moreover, online health monitoring in electric machines

has been recently surveyed in several applications, e.g.,

aircraft electromechanical actuators and electric vehicles

(EVs). For instance, fault modes and health monitoring

are the focus of the aircraft electromechanical actuators

(EMA) comprehensive survey proposed by Yin et al. [28].

Besides, Xu et al. proposed an overview of intelligent fault

diagnosis in EV applications [29]. In [30], fault diagnostic

and health monitoring strategies for permanent magnet (PM)

machines have been extensively reviewed, shedding light on

unbalanced magnetic pull, PM demagnetization, rotor eccen-

tricity, as well as short- and open-circuit windings faults.

Moreover, smart health monitoring of electrical machines has

been discussed using machine learning (ML) based artificial

intelligence (AI) algorithms [31]. Furthermore, in [32],

common mechanical and electrical faults in electric motors

and suggested condition monitoring strategies to diagnose

these faults are introduced.

Given the aforementioned discussion, it is clear that fault

prognostics, diagnostics, and health monitoring are crucial

to increase the system’s reliability and reduce the risk of

potential economic loss. Thus, motivated by these facts, this

paper introduces state-of-the-art robotic arms, shedding light

on joint motor types, common fault types, and robot joint

fault prognosis, diagnosis, and health monitoring. Eventually,

health monitoring strategies have been categorized by the

fault types into strategies for stator winding, rotor, and

bearing faults, a notable contribution of this survey. On the

other hand, the main limitation of this study is that other

fault modes of robots, e.g., electric drive, mechanical, and

sensor faults, are not included and will be introduced in future

work. A comparison of the proposed study with recent ones

on health monitoring of electric motors is revealed in Table 1.

Recent studies have been compared with the proposed one,

considering main contributions, limitations, classification of

fault detection methods, and targeted applications.

III. ROBOTIC ARM JOINT MOTOR TYPES

This section presents joint motors for robotic arms and

summarizes the motor types in commercial collaborative

robots as an illustrative example. The electric motors utilized

in robotic arms include AC motors, brushed DC motors,

BLDCmotors, direct drive electric motors, servo motors, and

stepper motors [13]. Compliant robot arms have been gaining

attention in collaborative and personal robotics since they

can interact with their surroundings. A servo motor based on

brushless gimbal motors has been designed for a low-cost

robot arm with seven degrees of freedom (DOF) [14]. The

proposed servo motor consists of a brushless gimbal motor,

controller board, and mounting plate. Eight servos have been

used to drive the robot arm, which substantially decreases the

cost of the overall system. Another example of a low-cost

7-DOF robotic manipulator has been presented in [16].
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TABLE 1. Comparison of recent studies on health monitoring of electric motors.

In [33], the design of a three-phase BLDC motor-

based electromagnetic actuator for robotic applications is

introduced. A genetic algorithm (GA) was used to optimize

the original design with the torque-to-weight and torque-to-

inertia ratios as the primary optimization goals. These goals

are essential for machines to respond promptly. Besides,

A new optimization technique for three-phase hybrid stepper

motors (HSMs) has been presented in [34]. This optimization

method reduces the computational time by combining the 3D

finite element (FE) analysis and the Taguchi optimization

method. Moreover, it aims at reducing the audible noise in

the machine by optimizing the tooth shape of the employed

HSM. As a result, the torque ripple is improved, and the total

harmonic distortion (THD) is reduced by 21%, which yields

a significant reduction in the optimized motor noise.

A. JOINT MOTOR TYPES

1) AC MOTORS

AC motors are widely utilized for driving high dynamic

load in industrial robots [35]. The common types of AC

motors are induction motors (IMs) and synchronous motors.

Stator cores, stator windings, rotors, and bearings constitute

the essential parts of the AC motors [36]. Based on

electromagnetics, a magnetic field is produced when an AC

current is supplied to the stator windings. This magnetic

field induces current within the enclosed rotor bars, which

further produces the rotor magnetic fields. Thus, the motor

start rotating as a result of the developed torque deriving

from the interaction of the two magnetic fields. AC motors

exhibit several advantages, such as high power to weight

ratio, simple design, and less maintenance. On the contrary,

rotor positioning control and eddy current loss might be

among the main drawbacks of AC motors.

2) BRUSHED DC MOTORS

A brushed DC motor typically consists of the stator,

rotor/armature, brushes, and commutator [37]. There are

various types of brushed DC motors, including permanent

magnet (PM), shunt-wound, series-wound, and compound-

wound brushed DC motors. The PM brushed DC motors

have been widely utilized in robotics [38]. The brushed

DC motor generates torque when the rotor windings are

energized by the DC supply. As a result, a magnetic field

is produced, which will be attracted to the opposite poles

generated by the stator and further drive the rotor to rotate.

As the motor rotates, mechanical commutation is a basic

necessity to ensure that the two fields from the stator and rotor

do not overrun [39]. The low initial cost and simple control

are among the advantages of brushed DC motors; however,

high maintenance costs, low lifespan, and noise constitute

their main shortcomings.

3) BLDC MOTORS

Unlike brushed DC motors, BLDC motors do not have

brush assembly for commutation and are lighter for the

same output power. BLDC motors mainly consist of a stator,

stator windings, a rotor, and PMs [40]. Basically, the stator

windings are supplied through a control circuit. After that,

the rotor magnets tend to align with the energized stator

windings, and the next stator winding is energized. Thus,

torque is produced owing to the interaction between the

magnetic fields developed by the stator windings and the

PMs, and the rotor keeps rotating [41]. The main merits

of BLDC motors are high efficiency, high reliability, and

long lifespan. On the contrary, BLDC motors entail high

initial costs and an electronic controller. Based on the above-

mentioned advantages, the BLDC motors are of particular

interest for robotic applications [15], [33].

4) DIRECT DRIVE MOTORS

In direct drive motors, either linear or rotary, the motor

is tied directly to the load, and the transmission element

and pulley systems are omitted. The proposed study in [42]

focuses mainly on rotary direct drive motors because they
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are preferably utilized in selective compliance articulated

robot arm (SCARA) and 6-axis robot arms. These motors

can be brushless or synchronous motors, like a servo motor,

albeit with a large number of poles. Moreover, they include

typical motor parts with frameless designs [42]. Basically,

rotary direct drive motors operate based on the interaction

between magnetic fields from the stator windings and the

rotor magnets. Direct drive motors have several advantages,

such as dynamic performance, i.e., higher acceleration and

deceleration with heavy loads, and less noise. Besides,

these motors are capable of producing high torque at low

speeds [43]. However, the main disadvantage of direct drive

motors is the large size of the machines due to the scaling law

of torque and size.

5) SERVO MOTORS

Servo motors consist of several key elements: motor (DC

or AC) with a gear system, closed-loop position/speed

controllers, potentiometer, and servo arm [44]. In order

to control the rotational speed and position, servo motors

consolidate closed-loop positional feedback, the most vital

part of the servo motor. Thereafter, the servo motor receives

either an analog or digital signal, which defines the amount

of movement. Typically, speed and position feedback are

provided by an encoder. Eventually, the motor stops when

there is no difference between the reference signal and the

signal generated by the position sensor [17].

Servo motors can drive an object with high precision,

so they are used in many applications, such as airplanes and

robotics. For example, positional rotational servo motors,

which can be controlled from 0 to 180 degrees, are used

in small-scale robots. Moreover, continuous rotation servo

motors, which can be controlled from 0 to 360 degrees, are

utilized inmobile robots and robotic arms. Lastly, linear servo

motors are preferred in heavy-duty systems [44]. The main

advantages of servo motors constitute high power to motor

size and weight, high efficiency, and quiet at high speeds.

On the other hand, high overall cost, complex controls, and

limited peak torque to a 1% duty cycle constitute the main

drawbacks of these motors.

6) STEPPER MOTORS

Unlike servo motors, stepper motors usually run in open-

loop and can respond promptly and position accurately

without costly sensors. Stepper motors consist of a stator,

stator windings, a rotor, and PMs [45]. Stepper motors act

as brushless motors with a much smaller step size due to

the different structures of the magnets. When the driver,

i.e., the controller, transmits pulses to the motor, it starts

rotating with one step for each pulse. The number of motor

steps is equal to the number of the controller pulses, and

the motor will run at the frequency of those pulses [57].

The stepper motors are more advantageous than their servo

counterparts since they offer smaller sizes, quicker responses,

and lower costs. However, servo motors outperform stepper

TABLE 2. Comparison of electric drivelines for robotic arms.

ones since they exhibit high torque at high speed and closed-

loop operation [34].

Several addressed motor types are compared according to

their advantages, disadvantages, and applications. A broad

comparison of these types is revealed in Table 2. According

to the analysis of robotics introduced in [13], the servo

motor is the most commonly used type in current robot

arms. AC motors are not commonly used in small to

medium-sized robotic arms [45]; however, they are mainly

utilized in industrial robots where high torque is needed [35].

BLDC motors have been used in robotic applications due to

their high reliability, improved torque-producing ability, and

affordable maintenance costs [33].

B. JOINT MOTORS FOR COLLABORATIVE ROBOTIC

APPLICATIONS

Collaborative robots, i.e., cobots, have shown promise in

production and manufacturing industries since they can

automate various tasks, such as pick-and-place and quality

inspection [26], [58]. The main goal of collaborative robot

designers and researchers is to increase human safety during

human-robot interaction while boosting the robot’s payload

capacity [59]. In addition, they seek to maintain and improve

mobility and flexibility in collaborative robots [60], [61].

The reliability of robotic arms is a key factor that affects

their performance, i.e., reliable robotic arms ensure contin-

uous operation, reduce maintenance and operational costs,

and enhance worker and product safety. Joint motors are

essential to guarantee the reliability robotic arms. It is worth

mentioning that the payload capacity, a key characteristic of

cobots, is the maximum amount of mass that a robotic wrist

can support [62]. Besides, the robotic arm’s utmost reach is
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TABLE 3. Commercial collaborative robots’ joint motor specifications.

measured from its center to its furthest extension. Robots

typically consist of various key components, such as the

base, actuators, and interface and vision modules [63], [64].

Kinova, ABB, Universal Robots, and KUKA are amongst the

leading manufacturers in the robotics field.

Kinova Gen3 ultra-lightweight robotic arm offers various

advantages, including enhanced closed-loop control, smart

actuators with torque sensors, and infinite rotation of

its joints [65]. Moreover, it is ideal for mobile robotics

applications owing to its low power consumption, small

footprint, and embedded controller. In [66], an algorithm

for maximizing the probability of task completion has

been illustrated for the Kinova Gen3 robot. The UR5e,

by Universal Robots, is another interesting, adaptable, and

lightweight collaborative industrial robot that is optimal for

medium-duty applications [67]. Easy programming, fast set-

up, flexible deployment, and safety constitute the main merits

of this robot. An open-source training system has been

introduced in [68] based on Virtual reality and the UR5e

robot.

Furthermore, the KUKA LBR iiwa is the world’s first

robot that is compatible with human-robot collaboration

(HRC [69]. It is advantageous due to its ability to learn,

sensitivity, independency, and quick reactions. Moreover, its

parameters have been identified in [70], taking into account

the physical feasibility constraints. Moreover, the ABB and

Franka Emika robots have been extensively introduced in the

literature [71], [72], [73], [74]. The ZeroErr offers a variety

of rotary actuators and suggests several configurations for

robotic arms [75].

The above-mentioned collaborative robots have been

compared, considering the brand, model, model year, joint

motor, power, joint velocity, peak torque, continuous payload,

maximum reach, andweight. Table 3 reveals the data and joint

motors of the commercial collaborative robots. Among the

presented robots, Kinova Gen3 exhibits the maximum reach

at the lightest weight, with 902 mm and 8.2 kg, respectively.

The maximum continuous payload is offered by the KUKA

robot, while the minimum payload is achieved by the ABB

one, with 7 kg and 0.5 kg, respectively.

IV. FAULT TYPES

This section introduces several fault types presented in the

literature for electric machines, as shown in Fig. 1. The

visualization of some common faults in the electric machines

is therefore depicted in Fig. 2. It is worth noting that the fault

modes are not limited to motor faults; however, electric drive,

mechanical, and sensor faults can also occur to the robotic

systems [28]. Since joint motors are the main focus of this

study, other fault modes of robots are outside the scope of the

present study and will be addressed in future work.

Motor fault modes are broadly categorized into stator

winding, rotor, and bearing faults [28], [80]. Stator winding

faults, e.g., short-circuit and open-circuit faults, usually occur

in electric motors. The most common faults are the short-

circuit ones, such as turn-to-turn, phase-to-phase, and coil-to-

ground faults [81]. The main causes of these faults are insula-

tion failure owing to overloading and overheating operations

and high transient voltage. As a result, unbalanced winding

impedance, excessive heat generation, and whole system

failure are the main consequences of short-circuit faults.

Unlike short-circuit faults, open-circuit ones due to large

starting current are scarce and yield reduced output torque

and substantial rise in current in healthy phases [81], [82].

Rotors are prone to two main faults: demagnetization

when the rotor is equipped with rare-earth PMs and

eccentricity [83], [84]. The PM demagnetization is caused

by cooling system issues, aging of magnets, and overheating.

Thus, the motor’s lifetime time is highly impacted, and its

efficiency deteriorates [85]. Moreover, improper mounting of

the stator, rotor, or bearing and bent motor shaft constitute

main causes of the eccentricity [86]. This fault type results in

an unbalanced magnetic pull, excessive vibration, and high

cogging torque.

Bearing faults are typical and represent the highest

percentage of motor failures [87]. Bearing faults are affected

by materials and environmental conditions, e.g., material

fatigue and pollution. Besides, bearing and shaft currents

and bad lubrication may yield bearing failures. Noise and

vibration, low efficiency, and poor performance are the main

impacts of bearing faults [88].
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FIGURE 1. Fault types in robotic joint motors.

FIGURE 2. Common faults in electric motors. (a) Stator short-circuit fault (SCF) [76]. (b) Winding and stator core short-circuit fault [77].
(c) Stator rub caused by eccentricity [78]. (d) Bearing with outer race fault [79].

V. FAULT PROGNOSIS, DIAGNOSIS, AND HEALTH

MONITORING

Based on the analysis of fault types presented in the previous

section, fault prognostics and diagnostics in electric machines

are of particular interest, not only for improving the system

reliability but also for avoiding potential economic loss [29],

[89], [90], [91]. This is mainly due to the fact that electric

machines are susceptible to several failures, such as stator

winding and bearing faults. Thus, fault prognosis, diagnosis,

and health management have been extensively addressed

in the recent literature [85], [92]. In addition to insulation

deterioration, overloading and overheating are the main

causes of these defects, as explained in the previous section.

Electric machine faults can result in system breakdowns and

have an impact on system performance as a whole. Therefore,

it is essential to foresee faults and detect them early to

reduce the previously mentioned demerits. In the literature,

several fault prognosis and diagnosis methodologies have

been developed using signal-based, model-based, and data-

driven methods [93], [94] with a further classification

by the employed technique: load angle [95], winding

impedance [96], [97], torque ripple [98], and motor current

and voltage signatures [51], [99].

Since BLDC motors are widely used in robotic applica-

tions, their health monitoring is necessary to ensure high

reliability and avoid severe damage. BLDC motors are

prone to various faults, such as stator winding and magnet

faults [100]. In [87], possible faults and their proposed

diagnosis techniques are reviewed for BLDC machines.

Moreover, the fault diagnosis of inter-turn short circuit faults

(ISCFs), i.e., widespread electrical faults, is of particular

interest in BLDC motors [101]. An initial model-based fault
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diagnosis technique has been introduced for BLDC motors

by comparing nominal and computed parameters [102].

Moreover, in [103], the effects of both stator ISCF and

rotor demagnetization have been highlighted in SPM-type

BLDC motors. Also, several fault modeling strategies have

been reviewed. In fault cases, it is proved that the improved

winding function theory (IWFT) enhances the winding

inductance analysis. Finally, the steady-state performances,

e.g., rotor back electromotive force (EMF) and radial

magnetic flux density, have been realizedwith better accuracy

and less computational time.

For PM motors, a fault prognostic and diagnostic method

has been developed in [104] to forecast the remaining useful

lifetime (RUL). Additionally, it modifies the system and

reduces the fault using the output of the prognosis algorithm.

In [105], a prognostic model of a servo motor has been pre-

sented using the hidden semi-Markov model. Accordingly,

the RUL of a linear actuator driven by an AC servo motor is

predicted using only current measurements. Another control

methodology has been presented based on the hiddenMarkov

model [106]. Moreover, optimal iterative learning control

(ILC) has been recent presented for linear systems [107]. The

efficacy of the proposed ILC has been validated by simu-

lations of a mobile robot. In addition, a fault identification

system has been introduced for servo actuators based on

the logic-dynamic approach, which used linear techniques

to study nonlinear systems [34]. A latter survey on motor

fault diagnosis has been introduced based on motor phase

current signatures [108]. Furthermore, an experimental data

set has been designed to compare synchronous motor fault

classifiers [109]. The data set includes five common electrical

faults, namely, open-phase, phase-to-phase short-circuit,

phase-to-neutral, rotor excitation voltage, and rotor excitation

current faults. Eventually, the designed data set is available

online and can be utilized by the community as a benchmark.

Health management of electric machines is crucial for

safety-critical applications, where electric machines are vul-

nerable to several fault types [32]. Advanced signal process-

ing and AI technologies have been used in health monitoring

applications to facilitate online diagnosis and automatic inter-

pretation since they offer fast calculations, smart analysis,

and low cost [110], [111], [112]. The general procedures

of fault prognosis, diagnosis, and health monitoring for

electromechanical actuators have been intensively introduced

in [28]. The health monitoring strategy mainly comprises

three steps, namely, fault prognosis and RUL estimation,

fault diagnosis, and fault-tolerant operation, and follows

reasonable and adequate standards, as shown in Fig. 3.

In terms of the evaluation criteria of a health monitoring

method, accuracy, robustness, no intrusion, computational

time, and implementation cost represent the major criteria in

electric machines’ health monitoring. These standards can be

briefly explained as:
1) Accuracy: accuracy of the fault identification and

post-fault operation is of particular interest in electric

machine condition monitoring.

FIGURE 3. Health monitoring of robot joint motors.

2) Robustness: the proposed condition monitoring strat-

egy should be robust to dynamic operating condi-

tions [113].

3) Non-intrusive: due to the fact that the installation of

speed and torque transducers is intrusive, it is hard

to install these transducers in some situations where

the motors are not accessible. Therefore, nonintrusive

techniques have been preferred over their intrusive

counterparts since they depend on terminal voltages

and currents during themotor’s normal operation [114].

4) Computational time: computational burden is an

important factor in evaluating the health monitoring

methodology. The improvement in computational time

of fault prognosis and diagnosis is prominent without

affecting the accuracy of the used method [115].

5) Implementation cost: lower implementation cost plays

important role in machines’ health monitoring from a

practical realization point of view.

Multiple health monitoring methodologies for electric

machines have been introduced in the literature [116], [117],

[118]. An interesting solution using dual redundancy BLDC

motor has been proposed for winding fault detection and

thus increasing the drive system reliability [119]. In that

case, the motor is equipped with two winding groups, and

each group is individually controlled. This approach is more

advantageous than using multiple motors since it offers

low cost and is lightweight. In [120], another model-based

technique for fault prognosis and diagnosis in BLDC motors

has been developed. In the following subsections, several

health monitoring strategies are summarized and broadly

classified into techniques for stator winding faults, rotor

faults, and bearing faults.

A. HEALTH MONITORING STRATEGIES FOR STATOR

WINDING FAULTS

A new inter-turn short circuit fault (ISCF) diagnosis approach

for PM synchronous motors has been developed, considering

electromechanical torque, as shown in Fig. 4 [22]. An ISCF

is prevalent in PMSMs and should be diagnosed since it

may deteriorate the machine’s performance. In that case,

Fast Fourier Transform (FFT) is used to extract the torque
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frequency distribution, which is utilized in the stator winding

fault detection. Particularly, the ISCF in the stator winding is

determined by the 2nd and 4th torque harmonic components.

Compared to the healthy case, the 2nd and 4th harmonic

components are considerably increased in faulty cases.

A similar approach has been prior introduced, considering the

spatial harmonic owing to rotor PMs distribution [121].

FIGURE 4. ISCF fault representation.

FIGURE 5. Flow chart of a fault diagnosis approach.

Moreover, a stator inter-turn fault (ITF) diagnosis tech-

nique has been proposed for PM-type BLDC motors with

concentrated windings [51]. This methodology has been

validated for both SPM and interior permanent magnet (IPM)

BLDC motors. This methodology detects the ITFs based

on the line currents’ third harmonic components, which are

significant for fault detection under supply imbalance and

structural asymmetry. Therefore, a system-matrix-based FE

model of the reemployed BLDC motor with an ITF has

been proposed, taking into consideration the asymmetric

magnetic fields. The proposed fault detection approach using

the Kalman filter is shown in Fig. 5. Although the suggested

approach can be utilized in traditional inverters with no extra

sensors, it is not suitable in either light load or low-speed

conditions.

Furthermore, fault diagnosis of the stator windings of a

surface-mounted PM (SPM) machine has been presented

using high-frequency (HF) voltage signal injection [19]. The

main focus of the proposed technique is to detect the stator

winding short-circuit faults and insulation degradation. Fig. 6

depicts the online detection scheme. It measures the online

saliency profile of the SPM machine under normal operation

and compares it with the magnetic signature of the machine

under healthy conditions to detect abnormal incidents in

the stator windings. The ability of the proposed monitoring

approach to identify both elementary and full short-circuit

faults has been experimentally verified.

Another technique that incorporates open-circuit fault

detection for the three-phase PMSM is shown in Fig. 7 [21].

It utilizes the grey prediction theory which estimates the rule

of the system by collecting some current data. The employed

PMSM is controlled based on the vector control technique,

and the inverter is driven by the speed and current controllers.

In normal conditions, the proposed fault diagnosis approach

identifies the running state of the motor in real time based

on the acquired stator currents. After that, the currents

are predicted at the next interval and compared with the

actual current values. Finally, an open-circuit fault detection

variable is determined according to the absolute value of the

difference between the predicted and actual current values of

a single phase. Compared to conventional current detection

methods, the proposed one is fast and accurate.

A recent ISCF detection and evaluation strategy has been

developed for BLDC motors, as shown in Fig. 8 [101].

The proposed methodology to diagnose an ISCF comprises

two steps: analyzing the zero-sequence voltage component

(ZSVC) spectrum to deduce the fault feature and evaluating

the faulty phase and the severity of the ISCF based on fault

indicators. It is worth mentioning that the fault indicators are

defined by monitoring the slope variation of phase current

and ZSVC. The proposed technique is fast and accurate and

offers real-time fault diagnosis. The efficacy of the proposed

fault detection strategy has been validated through simulation

and experimental tests.

In [122], A stator inter-turn-short fault (ITSF) has been

extensively analyzed in an IPM machine equipped with

fractional-slot concentrated winding (FSCW). This paper

investigated the effect of the control drive on the characteristic

of the ITSF since the fault signatures are affected by

controller actions during online fault detection. In that

case, the six-step square-wave control (SSC) in an open-

loop control drive is compared to field-oriented control

(FOC) in a closed-loop one. The latter outperforms the

former since it exhibits improved ITSF mitigation capability,

lower common-mode voltage, and lower peak-to-peak torque

ripple. Thus, FOC assures that the drive is functional during

faults. It can be noted that the proposed controllers can

alleviate the ITSF based on flux weakening strategy, i.e.,

decreasing the magnitude of circulating current. Finally,

a three-phase 400 W FSCW-based IPM motor has been

developed to validate the theoretical findings.

A novel localization technique for PMSMs with ITSFs

has been recently introduced based on the search coil

(SC) array [123]. The proposed SC method is utilized to

observe the stator tooth flux and is introduced for m-phase
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FIGURE 6. Short-circuit fault detection strategy using HF signal injection.

FIGURE 7. Open-circuit fault diagnosis technique using grey prediction theory.

direct-drive PMSM. It can be noted that the SC is presented

for m-phase PMSM with n branches per phase and z

coil groups per branch. In this case, the proposed SCs

are wrapped around a stator tooth through the proposed

arrangement to avoid any unnecessary complications of the

fault coil localization technique. Moreover, the back EMF

and the residual back EMF are identified and used as ITSF

indicators. Thus, an analytical model has been developed

to study the mapping relationship between the fault coil

location and each SC’s back EMF. Finally, the proposed

approach has several advantages, including less complexity

and lower computational burden, which have been verified

using simulation and experimental results.

An interesting methodology for measuring stator insula-

tion capacitance of inverter-fed machines has been inves-

tigated using accelerated ageing experiments [124]. The

proposed method is capable of monitoring the ground-

wall insulation based on a multi-frequency measurement
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FIGURE 8. Block diagram of the ISCF diagnostic strategy.

FIGURE 9. Model of ground-wall insulation.

of equivalent capacitance. The ground-wall insulation is

considered as a parallel plate with the stator iron and

winding copper forming the insulating dielectric, as shown

in Fig. 9. Based on the long-term ageing experiments of

four machines, it is clear that the remaining useful lifetime

(RUL) can be estimated based on the equivalent capacitance,

i.e., a significant indicator of ageing. The consistency of the

capacitance pattern over time for all test samples and the

normalized capacitance value at the end of life were the most

key findings. In recent machine drives, the suggested method

shows a practical and precise tool for real-time insulation

health monitoring.

Besides, a custom power converter has been developed

for online stator winding insulation health monitoring based

on high-frequency current oscillations, as shown in Fig. 10

[125]. The proposed converter is not only capable of

performing the FOC, but also capable of measuring the high-

frequency current ringing during the switching transitions

and acquiring parameters, references, and commands through

communication with an external PC. These functions are

implemented using a single Xilinx Zynq System-on-Chip

(SoC), which contains two processor cores and a field-

programmable gate array (FPGA) and is mounted on a

control board. In this study, the insulation status has been

assessed based on selected metrics, e.g., RMS and peak

values of the MHz-range current ringing. In order to emulate

the various insulation conditions, external capacitors were

inserted between turns and between turns and ground.

Therefore, a quasi-linear behavior can be noticed with

respect to the changes in capacitance. Moreover, the pro-

posed measurements were assessed on hardware with lower

requirements while keeping their monitoring capabilities.

Finally, these measurements could also be performed with

straightforward analog circuits to prevent the requirement for

a greater sampling frequency.

FIGURE 10. Custom power converter control scheme.

B. HEALTH MONITORING STRATEGIES FOR ROTOR FAULTS

An innovative motor fault diagnosis approach has been

recently presented using convolutional neural network (CNN)

feature fusion, as depicted in Fig. 11 [56]. Primarily,

the preprocessing of the vibration and current signals

is performed. Thereafter, the processed data is sampled
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FIGURE 11. Architecture of the CNN-based fault diagnosis.

using a segmented multi-time window synchronous window.

Finally, motor faults can be accurately distinguished through

time series fusion and feature extraction procedures of the

preprocessed signals. The proposed fault detection approach

has been validated by simulating various motor faults, i.e.,

bearing outer and inner ring, rotor broken bar, and inter-

turn short-circuit faults. As a result, the fault diagnosis

is enhanced by combining the fault features of the motor

vibration and current signals. Eventually, higher accuracy and

greater stability of the motor fault detection are provided

through the multi-signal input compared to its single signal

counterpart.

In [126], experimental verification of a progressive fault

diagnosis method (PFDM) for an electro-hydrostatic actu-

ator (EHA) is carried out using double redundancy EHA

servo mechanism, loading equipment, and servo controller.

Moreover, monitoring DSPs are used to monitor the system

status and detect system faults. The flowchart of the proposed

PFDM consists of sensor fault diagnosis based on the Kalman

filter, threshold-based fault detection, and discrimination

based on EHA system logic and analysis, as shown in Fig. 12.

Unlike conventional fault diagnosis techniques, the proposed

PFDMuses double redundancy EHA system to enable system

reconstruction after fault diagnosis. It is concluded that the

proposed PFDM offers accurate and fast fault detection and

thus improves system reliability. A recent IM fault detection

methodology has been introduced to investigate rotor and

bearing failures based on neural networks, vector machine,

and boosting methods [127]. In this case, fault diagnosis was

performed using the obtained real-time vibration data. It is

concluded that the vector machine and neural networks have

the highest accuracy; however, the boosting methods offer the

shortest computational time.

Furthermore, a PM demagnetization fault diagnostic

methodology has been latterly introduced for PMSM based

on the ML approach [128]. First, feature extraction of

the PM fault from the stator currents has been performed

using a short-time Fourier transform (STFT). After that,

FIGURE 12. Progressive fault diagnostic technique.

two ML algorithms, namely, k-nearest neighbors (KNN) and

multilayer perceptron (MLP) are used for automatic PM

demagnetization fault diagnosis. Moreover, the effects of the

key parameters, input vector elements, and ML algorithms’

structures on the efficacy of the proposed detection technique

have been verified. The KNN algorithm outperforms its MLP

counterpart since it offers high diagnosis effectiveness at

a shorter response time. For example, the response time

of the KNN model is 0.002 seconds in comparison with

the 0.0071 seconds needed by the MLP model. Another

methodology to differentiate between short-circuit and local

PM demagnetization faults has been recently elaborated

in [129].

In [130], a recent approach for PM health management

and diagnosis has been investigated using a magnetic sensor,

as depicted in Fig. 13. The proposed FBG-based air-

gap magnetic sensor is of particular interest, not only for

monitoring the rotor PMs’ health in SPM machines but also

for straightforward installation without invasive behavior to

core parts in comparison with conventional methods. The

main idea is to identify the air-gap magnetic flux density

of an inverter-fed synchronous machine under healthy and

demagnetized PM cases. Experimental results show that

the proposed magnetic sensing scheme can recognize the

magnetization degree of the rotor PMs, allowing for the

monitoring of their health. Ultimately, the application of in-

situ magnetic sensor measurements for the relative quantifi-

cation of PM demagnetization fault severity is made possible

by a diagnostic index that is presented and experimentally

verified.
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FIGURE 13. PM health monitoring of a SPM motor.

Another interesting study has been previously presented

for fault diagnosis of PMSMs using the SC-based electro-

magnetic signature analysis [131]. In this case, several fault

types are considered, e.g., eccentricity, inter-turn short circuit,

and PM demagnetization faults. The proposed technique is

not affected by the induced harmonics by power electronic

dive circuits because fault diagnosis is performed using

only the first-order harmonic. Moreover, the need for a

pattern recognition algorithm is omitted since the faults’

signatures are easily recognized which saves considerable

computational time. Besides, it is capable of locating the

direction of eccentricity and winding short-circuit turns.

Due to the fact that the proposed method is of an invasive

nature, it is designed for an electric machine during the

manufacturing process to install the search coils. Finally,

the proposed technique has been verified using 2D FE

simulations and experimental results.

C. HEALTH MONITORING STRATEGIES FOR BEARING

FAULTS

In [132], an intelligent and adaptive bearing fault diagnosis

approach has been introduced using tacholess order tracking

(TOT) for various electric machines, e.g., BLDC motor and

PM synchronous generator (PMSG). In addition to decom-

posing the machine current signal, the proposed adaptive

synchrosqueezing wavelet transform (ASWT) additionally

reconstructs the component associated with rotation by

adaptively choosing the instantaneous frequency (IF) curve.

Fig. 14 depicts the flowchart of the proposed methodology.

Digital signal processing techniques are used to test the

efficacy of the suggested method on machine current signals.

The proposed technique is also justified by creating and

analyzing an electric machine model through mathematical

derivation. Finally, the diagnosis of bearing defects in

other electric machines operating at varying speeds can be

accomplished using the ASWT approach.

Other solutions have been introduced in the available

literature for bearing fault diagnostics of PMSMs. In this

context, a new approach for bearing damage diagnosis

is depicted in Fig. 15 [133]. The proposed methodology

FIGURE 14. Framework of smart bearing fault diagnosis method.

FIGURE 15. Block diagram of bearing damage diagnosis method.

identifies the bearing damages based on the stator current

feature developed by a frequency selection in the current

spectrum. After that, linear discriminant analysis (LDA)

assesses these features, and the Bayes classifier performs

the fault diagnosis. To verify the proposed methodology,

two bearing damages at various load cases have been

experimented. The faulty bearings are, therefore, identified

from the healthy ones. On the other hand, bearing fault

diagnostics cannot be performed using the proposed approach

in specific load conditions, such as low speeds and radial

forces.

A novel method for bearing health monitoring has

been presented under both healthy and faulty conditions

using fiber Bragg grating (FBG) sensors [134]. This paper

utilizes concurrent thermo-mechanical sensing to identify the

operational status of inverter-fed IMs. Fig. 16 depicts the

architecture of the proposed technique for bearing healing

monitoring. First, the sensing heads are embedded on the

bearing outer ring surface. Thus, its parameters are measured
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FIGURE 16. Flowchart of the bearing health monitoring.

with the healthy bearing operation and faulty cases with

rolling element fault. After that, the thermal and mechanical

effects are distinguished through the thermal calibration

of the sensor before its in-service application. It is worth

mentioning that the sensitivity can be improved by placing

the FBG sensor in the bearing load area. Finally, the efficacy

of the proposed technique has been proved in the monitoring

of electric machine bearings, i.e., thermal and mechanical

operating information.

FIGURE 17. Bearing fault prognosis and diagnosis using Hilbert-Huang
transform.

In order to monitor ball bearings, the study in [135]

introduces a novel method that consolidates the Hilbert-

Huang transform, the support vector machine (SVM), and

the support vector regression (SVR), as shown in Fig. 17.

The proposed method employs the Hilbert-Huang transform

to separate health indicators from stationary/non-stationary

sound signals that can track the deterioration of vital

bearing components. A supervised classification method,

SVM, is used to identify the degradation states, and the

extracted health indices are examined to provide a fault

diagnosis. Furthermore, the remaining useful lifetime (RUL)

is estimated based on SVR, i.e., one-step time series

prediction. According to experimental findings, the proposed

approach has shown promise in improving the diagnostic

and prognostic of bearing deterioration. The applicability

of this approach is limited in cases where historical data

about the bearings’ degradation are hard to acquire, a notable

demerit of this method. Another approach for bearing health

monitoring has been recently introduced based on vibration

signals analysis [136].

Unlike conventional diagnostic techniques with limited

capability of dealing with real-time environments, a vibro-

acoustic fusion technique has been latterly presented for

precise fault detection under various conditions. The pro-

posed technique utilizes multi-input CNN (MI-CNN) to

fuse the features of acoustic and vibration signals. There-

fore, the diagnosis efficiency is highly improved [137].

Another CNN-based bearing fault detection technique has

been introduced in [138]. Unlike traditional strategies, the

proposed method is not affected by the surroundings and

can achieve accurate remote detection. Another FBG-based

approach for monitoring motors’ vibrations has been pre-

sented [139]. In this case, a wideband optical accelerometer

is proposed to substantially enhance the sensitivity and the

resonant frequency when compared to conventional FBG

accelerometers. In addition, In [140], a novel bearing fault

diagnosis technique has been presented on the basis of time-

frequency information fusion. Unlike the current diagnosis

methods which are based on supervised learning, this paper

proposed an unsupervised cross-domain diagnosis technique,

which leverage the processing capability of the wavelet

packet decomposition approach, i.e., extract more fault

signatures, eliminate redundant information, and preprocess

the vibration signal.

FIGURE 18. Flowchart of the health management method.

In [55], a robust fault diagnostic model for servo motors

in robotic applications has been developed. The flowchart

of the proposed method is given in Fig. 18. First, data

acquisition and preprocessing have been performed, which

are followed by feature extraction based on wavelet packet

decomposition (WPD). Second, feature reduction/selection

methods are utilized to reduce the computation burden.

Finally, the classification performance is performed using

both the artificial neural network (ANN) and SVM to find out

defect features in various operating scenarios. Current data

for both normal and fault scenarios are gathered to identify
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TABLE 4. Comparison of motor fault prognosis and diagnosis approaches.

servo-motor faults. The proposed model is viable in real

environmental conditions under variable speed and loading.

Eventually, all the health monitoring strategies are

compared according to the motor types, fault types,
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detection technique, and control strategy, as listed

in Table 4.

VI. FUTURE RESEARCH TRENDS

This section aims to present the future research directions

introducing the main opportunities and challenges in the field

of robotic arm joint motors and their online health monitoring

techniques, which are elaborated as follows:

A. SMART HEALTH MONITORING

1) Health monitoring based on deep learning applica-

tions, e.g., using neural networks (NNs) with another

algorithm to avoid mistakes from approximating the

function [31]. This approach can be extended to IMs

with bearing faults.

2) Proper performance of artificial neural networks

(ANNs) since overfitted sub-optimization systems may

yield uncertain forecast outcomes [141], [142].

3) Intelligent health management with fast calculations,

low cost, and smart analysis [143]. This method can be

used to extend the lifetime of PM machines based on

digital twin.

B. HIGH RELIABILITY SOLUTIONS

1) Accurate measurements and their impacts on the fault

detection efficacy [128]. This technique can be utilized

for demagnetization fault diagnosis of PMSMs.

2) Advanced data processing of the state signals to

alleviate the effect of noise and transient behaviors.

3) Industry 4.0 standards and maintenance of electrical

equipment [144]. This approach can be extended to IMs

with various faults.

4) Fault prognosis and condition monitoring in indus-

trial systems to ensure reliable, robust, and precise

results [145], [146]. This method can be extended

for IMs bearing faults to implement remote health

monitoring.

C. JOINT MOTOR LIFETIME EXTENSION

1) Modern data-driven RUL prediction techniques, such

as AI and statistical model-based ones [147], which can

be utilized for bearing faults.

2) Considering the varying operating condition of the

electric machine to predict the RUL in a better

way [28]. This method can be extended to either IMs

or PM machines with various fault types.

3) Development of deep learning-based RUL prognos-

tic methods to precisely simulate the degradation

aspects of features [148]. This technique can be used

to extend the lifetime of several joint motors by

adding new perspectives to the well-known data-driven

methods.

D. HEALTH MONITORING BY FAULT TYPES

1) Monitoring sensitivity optimization and exploring fault

signatures for rotor bearing health management [134].

2) KNN-based embedded microcontroller realization for

PM fault detection [128].

3) Novel interturn short-circuit fault diagnosis in PMSMs

with different winding layouts to estimate the fault

severity [149].

VII. CONCLUSION

Robots have been increasingly utilized in harsh environ-

mental conditions, such as operation fields with extreme

temperatures or high radiations. These harsh environmental

conditions may induce electrical and mechanical failures of

the joint motors and their related power electronic drives.

It is concluded that the robot arm with faulty joint motors

cannot complete the assigned tasks, which manifests the

prominence of online health monitoring for robot joint

motors. Thus, online health monitoring for robotic joint

motors is crucial to ensure the system’s reliability and avoid

downtime cost. This paper investigated the state-of-the-art

robot joint motors, highlighting motor and possible fault

types, online health monitoring of the presented joint motors,

and examples of collaborative robotic applications. Various

types of joint motors are presented while elaborating on

their merits, limitations, and applications. Besides, different

types of faults are summarized and visualized to highlight the

impacts of these faults on the employed motors. Furthermore,

the application of health management for joint motors is

illustrated. These health monitoring strategies have been

thoroughly investigated and their diagnostic characteristics

are presented. In this study, commercial collaborative robots

are introduced and compared based on screening factors, e.g.,

continuous payload and maximum reach.

This paper sheds light on the joint motors for robotic arms

and provides researchers and engineers in the area of robots

with an extensive survey that will help understand the joint

motors, their common faults, and how to manage these faults

with advanced online health monitoring strategies.
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