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Abstract
Functional data with non-smooth features (e.g., discontinuities in the func-
tional mean and/or covariance) and monotonicity arise frequently in practice.
This paper develops simultaneous inference for concurrent functional linear
regression in this setting. We construct a simultaneous confidence band for a
functional covariate effect of interest. Along with a Wald-type formulation,
our approach is based on a powerful nonparametric likelihood ratio method.
Our procedures are flexible enough to allow discontinuities in the coefficient
functions and the covariance structure, while accounting for discretization
of the observed trajectories under a fixed dense design. A simulation study
shows that the proposed likelihood ratio-based procedure outperforms the
Wald-type procedure in moderate sample sizes. We apply the proposed meth-
ods to studying the effect of age on the occupation time curve derived from
wearable device data obtained in an NHANES study.
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62J99.
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1 Introduction
It has been of great interest to see how certain predictors can be related to
physical activity in observational studies (Sallis, 2000). Nowadays, physical
activity is often assessed by wearable device measurements (Wright et al.,
2017). Chang and McKeague (2022a) develop inference for the mean of occu-
pation time curves constructed from such measurements; these curves give
the amount of time that a sensor reading exceeds a given activity level as
that level varies. In the presence of jump discontinuities and monotonicity of
such curves and their moments, the use of existing functional data methods
can result in a loss of information if the presence of those features is ignored.
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To our knowledge, there have not been any simultaneous inference methods
for functional regression that can incorporate such features.

To bridge this gap in the literature, we develop simultaneous confidence
bands for concurrent functional linear (CFL) regression (Ramsay and Sil-
verman, 2005) based on the framework in Chang and McKeague (2022a).
In particular, we can handle discontinuities of the functional data and their
moments, as well as non-smooth effects between the covariate and response
functions. Further, the empirical likelihood (EL) approach is used to incor-
porate monotonicity information and to achieve optimality (for example, in
terms of Bahadur efficiency; see Remark 5 after Theorem 2 for more details).
Notably, it turns out that the conditions we need are weaker than existing
conditions imposed when using smoothing to carry out simultaneous infer-
ence for CFL models under a fixed dense design (see the next paragraph
for a literature review) (Cao et al., 2012, Degras, 2011). This allows us to
deal with a wider range of functional data (beyond occupation time curves),
such as curves with non-smooth latent mean and covariance functions, or
non-smooth regression relationship (see Section 3 for an illustration). We
focus on building a confidence band for one covariate effect of interest while
adjusting for the other covariates.

While there are many methods available for the estimation (see, e.g.,
Ghosal et al. 2020, and the references therein) and simultaneous testing
(Ghosal and Maity, 2022, Wang et al., 2018) for the regression coefficient
functions in CFL models under a fixed dense design, there are relatively few
procedures for constructing simultaneous confidence bands for these func-
tions. Note that going from simultaneous testing to simultaneous confidence
bands may not be as simple as inverting a statistical test in traditional
statistics, because the simultaneous test statistic will need to be a maxi-
mally selected function of the true regression coefficient functions, and to
our knowledge such statistics have not been used in the aforementioned
simultaneous testing. Cao et al. (2020) considered a more general function-
on-function regression and derived simultaneous confidence bands based on
polynomial spline smoothing. However, they assumed continuity of at least
the first-order partial derivatives for the coefficient functions, whereas we
allow discontinuities in these functions.

The use of EL in CFL models has been considered in Wang et al. (2018),
but the confidence interval they constructed for the covariate effect of interest
is not simultaneous. Furthermore, their procedure requires smoothing and a
profile likelihood approach. In contrast, we do not require smoothing, and we
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will use plug-in estimates for those regression coefficient functions we deem as
less important; EL with plug-in has been recommended for handling infinite-
dimensional nuisance parameters due to its computational tractability (Hjort
et al., 2009).

The paper is organized as follows. The Wald-type and the EL-based con-
fidence bands are developed in Sections 2.1 and 2.2, respectively. Section 3
presents simulation results showing that proposed EL-based procedure out-
performs the Wald-type procedure. In Section 4 we analyze an example based
on NHANES data, and Section 5 provides discussion. Proofs are presented
in the Appendices.

2 Method

2.1 Functional Linear Regression for Discretized Observations In this
section, we first describe the underlying trajectories that generate the func-
tional data, and the relationship between such latent predictors and response.
Then we define a discretization mechanism that represents the lens through
which we observe the underlying trajectories, and investigate the proper-
ties of an interpolated version of the least-squares estimator (LSE) of the
regression coefficient function of interest.

Let {Yi(a), Xi(a)}, i = 1, . . . , n and a ∈ [α1, α2]}, be n i.i.d. realizations
of a measurable stochastic process {Y (a), X(a)} having right-continuous
sample paths of bounded variation. The relationship between Y (a) and X(a)
is given by

E{Y (a)|X(a)} = βT (a)X(a),

where β(a) = (β1(a), . . . , βp(a))T is a p-dimensional vector of unknown
coefficient functions. Suppose that E

(
XXT

)
(a) has full rank p for all

a ∈ [α1, α2]. Note the error process ε(a) = Y (a) − βT (a)X(a) has mean
0 due to the above display, but we do not need to assume that it is inde-
pendent of X(a) as in the existing literature (see, e.g., Wang et al. 2018,
for such an assumption in EL-based tests in a concurrent linear model
for functional data). Let β̂(a) be the LSE of β(a) at each a ∈ [α1, α2];
that is, β̂(a) = {∑n

i=1(XiX
T
i )(a)}−1{∑n

i=1(XiYi)(a)}. Instead of fully
observed trajectories (of the stochastic process {Y (a), X(a)}), we can only
observe {Y (a), X(a)} on Gn, a (not necessarily equispaced) grid of points
in [α1, α2] (including the endpoints). Denote the discretized observation as
{fn(Y )(a), fn(X)(a)}, and fn(β) and fn(β̂) the corresponding coefficient func-
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tion and sample coefficient function, respectively. Here fn(φ) is the discretiza-
tion of some real-, vector- or matrix-valued function φ over [α1, α2] defined
by

fn(φ)(a) =

{
φ(a), a ∈ Gn

φ(ba), a ∈ [α1, α2] \ Gn,
(1)

and ba is the closest point on the grid to the right of a. This discretization
fn(φ) transforms the complete trajectory of φ into a vector or matrix of step
functions. As is typical in dense functional data analysis settings (Wang
et al., 2018), the mesh of Gn (the maximal distance between adjacent grid
points) is assumed to shrink more quickly than a certain negative power of
n as n → ∞. Further, we need a condition involving the right-hand γ-Dini
derivatives (Chang and McKeague, 2022a):

D+(βj , γ)(a) = lim sup
h→0+

βj(a + h) − βj(a)
hγ

, and

D+(βj , γ)(a) = lim inf
h→0+

βj(a + h) − βj(a)
hγ

for γ > 0 and j = 1, . . . , p. These γ-Dini derivatives always exist in [−∞, ∞].
They are reminiscent of γ-Hölder continuity, but our requirement of bound-
edness of the right-hand γ-Dini derivatives in the following theorem is much
weaker than γ-Hölder continuity.

The following theorem describes the asymptotic behavior of the esti-
mated coefficient function based on the aforementioned discretization. Here
and in the sequel, the convergence in distribution (denoted by d−→) of a
sequence of random elements in a metric space D means convergence of the
expectation of every bounded, continuous real-valued function applied to
each element of the sequence (see, e.g., van der Vaart 2000, page 258). In
the following theorem we use D = �∞([α1, α2]), the space of all bounded
real-valued functions on [α1, α2], endowed with the supremum norm.

For the theorem below, define Xj(a) to be the j-th element of X(a),
and K(a, b) = K(a, b|X) = Cov{ε(a), ε(b)|X} represents a possibly het-
eroscedastic covariance function that depends on X. The proof of the theo-
rem is in Appendix A.
Theorem 1 Suppose the sample paths of Xj(a) and ε(a) are right-continuous,
have bounded variation, and are uniformly bounded by some finite constant
τ . Also assume that E(Xjε)(·) and E(XjX�)(·) have at most finitely many
jump discontinuities, j, � = 1, . . . , p, and infa∈[α1,α2] det{E(XXT )}(a) > 0.
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Then, if the mesh of Gn is o(1), for all sufficiently small δ > 0 there exists
Iδ ⊂ [α1, α2] having Lebesgue measure δ such that

√
n
{

fn(β̂) − fn(β)
}

(a) d−→U(a)

in �∞([α1, α2] \ Iδ) as n → ∞, where U(a) is a p-variate Gaussian process
with zero mean and covariance function Cov{U(a), U(b)} given by

{
E

(
XXT

)}−1

(a)E
{
K(a, b)X (a) XT (b)

} {
E

(
XXT

)}−1

(b), a, b ∈ [α1, α2].

Suppose, in addition, that D+(βj , γ)(a) and D+(βj , γ)(a) are bounded over
a ∈ [α1, α2] for some γ > 0, and that βj(a) is right-continuous, of bounded
variation, and has at most finitely many jump discontinuities, j = 1, . . . , p.
Then, if the mesh of Gn is o(n−1/(2γ)),

√
n
{

fn(β̂) − β
}

(a) d−→U(a)

in �∞([α1, α2] \ Iδ) as n → ∞.
Remark 1 Note that if we assume homoscedasticity (i.e. K(a, b) does not
depend on X), then the covariance function Cov{U(a), U(b)} becomes

K(a, b)
{
E

(
XiX

T
i

)}−1
(a)E

{
Xi (a)XT

i (b)
}{

E
(
XiX

T
i

)}−1
(b)

for a, b ∈ [α1, α2], and reduces to

K(a, a)
{
E

(
XiX

T
i

)}−1
(a),

the inverse of the Fisher information matrix at a, when a = b.
Remark 2 By a similar reasoning as in Section 11 of Chang and McKeague
(2022b), note that the right-continuity condition can be replaced by left-
continuity, with ba in the definition of fn(g)(a) changing to the closest point
on Gn to the left of a, and limits changing to left-hand ones instead in
defining the γ-Dini derivatives.
Remark 3 The first part of Theorem 1 holds irrespective of how quickly
the mesh of Gn shrinks as n → ∞. Thus, there is no distinction between
moderately dense and dense functional data here (Wang et al., 2018). Such
a distinction only matters in the second part of the theorem, which can be
used to construct a simultaneous confidence band for β(·) for essentially all



H. Chang and I.W. McKeague

a ∈ [α1, α2] (Chang and McKeague 2022b, Section 2.1), provided the mesh
of Gn tends to zero faster than n−1/(2γ).
Remark 4 The first part of the theorem applies to occupation time curves
as the response or covariate functions in CFL regression, because the
bounded variation, uniform bound and right-continuity conditions are sat-
isfied due to the monotonicity, boundedness and right-continuity of occu-
pation time curves (Chang and McKeague 2022a, Section 2.1), respectively.
The second part of the theorem applies to occupation time curves as the
response functions for γ = 1, because the instantaneous change in the mean
occupation time function from the right is bounded between 0 and the total
study time (Chang and McKeague 2022a, Section 2.1).

The distribution of the limiting process U(a) needs to be estimated
because it is not distribution-free. This can be done using the paired boot-
strap (Chatterjee and Bose, 2005) fn(U∗

n)(a) based on sampling n curves
with replacement from {fn(X1ε̂1)(a), . . . , fn(Xnε̂n)(a), a ∈ [α1, α2]}, where
U∗

n(a) =
√

n{β̂∗(a)− β̂(a)}, β̂∗(a) =
{∑n

i=1(XiX
T
i )/n

}−1 (a)
∑n

i=1{WniXi

(a)ε̂i(a)}/n, ε̂i(a) = Y (a) − β̂T (a)X(a), and Wni is the number of times
that fn(Xiε̂i)(a) is redrawn.

Bootstrap consistency of fn(U∗
n)(a) is established as follows (see Appendix

B for the proof). Interestingly, in constrast to the different conditions needed
in the two parts of Theorem 1, this bootstrap consistency result holds irre-
spective of how quickly the mesh shrinks.
Corollary 1 Under the conditions of the first part of Theorem 1, for all
sufficiently small δ > 0, there exists Iδ ⊂ [α1, α2] having Lebesgue measure
δ such that fn(U∗

n) converges weakly to U(a) in �∞([α1, α2] \ Iδ) as n → ∞,
given the data sequence {fj(Yi), fj(Xi), i = 1, . . . , j, j = 1, 2, . . .}, in proba-
bility.
From this result, according to Theorem 1, we can construct an asymptotic
100(1−α)% simultaneous confidence band for β(·) as fn(β̂)(a)±n−1/2c∗

NS,α

for essentially all a ∈ [α1, α2], where c∗
NS,α denotes the upper α-quantile of

the supa∈[α1,α2] |fn(U∗
n(a))| values obtained from B bootstrap samples; we

use B = 1000 for implementation. We refer to this as the Wald-type NS
band, where NS stands for “non-standardized”, which corresponds to the
NS band in Chang and McKeague (2022a) when X(a) ≡ 1 and p = 1.
Unfortunately, this band did not perform well in our simulation study (see
Section 3), because it does not have the optimality EL enjoys. An alternative
approach is developed in Section 2.2.

2.2 Empirical Likelihood Confidence Band for Each Regression Coeffi-
cient In this section, we develop the proposed confidence band for each
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of the regression coefficients βj(·), j = 1, . . . , p. Our approach is based on
inverting a localized form of the EL statistic at each value of a. For sim-
plicity of exposition, we define the observed EL ratio by discretizing the
fully observed trajectories of the EL ratio process in the following, instead
of defining the discretized verion of each component that determines the
EL ratio. But note that those components are available to us only in their
discretized forms.

For a given a ∈ [α1, α2], the local EL ratio for βj(a) is fn(R(β̃j))(a) at a
given value β̃j(a), where R(β̃j)(a) is

sup
{

L(Pa) : Pa

{
x
(
y − ∑

��=j β̂�(a)x� − β̃j(a)xj

)}
= 0, Pa ∈ Γa

}

sup {L(Pa) : Pa ∈ Γa} , (2)

Pa(·) is a candidate for the distribution of {Y (a), X(a)}, Pah is an abbre-
viation of

∫
hdPa for a given measurable function h of (y, x) ∈ R × R

p,
β̂j(a) is the j-th element of β̂(a), Γa is the set of distributions supported by
{Yi(a), Xi(a)}n

i=1, L(Pa) =
∏n

i=1 Pa({Yi(a), Xi(a)}) is the nonparametric
likelihood, and we follow the convention sup ∅ = 0. Note that in formulating
the local EL ratio for each regression coefficient, we treat the other regression
coefficients as nuisance parameters and replace them with plug-in LSEs.

We now state our first key result, giving the asymptotic distribution
of the EL statistic −2 log fn(R(β))(a) viewed as a process indexed by a.
Let σ2(a) = E

{
K(a, a)X (a)XT (a)

}
and g be the projection operator on

(�∞([α1, α2]))p given by

g (e) (a) = e (a) − E
(
XXT

(−j)

)
(a)

{
E

(
XXT

)}−1

(−j)
(a)e (a) ,

where for a vector/matrix v, we use v(−j) to denote the vector/matrix after
removing the j-th element/row of v.
Theorem 2 Suppose the conditions of Theorem 1 hold and in addition,
infa∈[α1,α2] det {σ2(a)} > 0 and σ2(·) has at most finitely many jump dis-
continuities. Then for all sufficiently small δ > 0, there exists Iδ ⊂ [α1, α2]
having Lebesgue measure δ such that

−2 log fn (R(βj)) (a) d−→g (E)T (a)σ−2 (a) g (E) (a)

in �∞([α1, α2] \ Iδ) as n → ∞, where E(a) is a tight p-variate Gaussian
process with zero mean and covariance function E

{
K(a, b)X (a)XT (b)

}
.
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Remark 5 The optimality properties of EL applicable to our (pointwise)
regression settings have been obtained in terms of (1) the large deviation
principle (Kitamura, 2007, Kitamura et al., 2012), and (2) Bahadur efficiency
(Bahadur, 1967, Otsu, 2010). EL enjoys these optimality properties while
other procedures (even the first-order asymptotically equivalent ones) may
not.
Remark 6 The proof (given in Appendix C) is based on a uniform approx-
imation of the EL statistic by fn(Ψ̂)(a), where Ψ̂(a) = g(En)T σ−2(a)g(En)
and En(a) =

∑n
i=1(Xiεi)(a)/

√
n. Note, however, that the asymptotic equiv-

alence of fn(Ψ̂)(a) to the EL statistic does not imply optimality of fn(Ψ̂)(a),
as mentioned in the previous remark.
Remark 7 The condition infa∈[α1,α2] det {σ2(a)} > 0 is similar to the con-
dition of a positive definite information or covariance matrix in the Wilks
type theorem (Owen, 2001). To deal with data that violate this condition, we
adapt a two-step approach that has been proposed in Nair (1984) and Section
5.1 of Chang and McKeague (2022b). More specifically, we first construct
the prescribed band up to a certain point r̂ = r̂(z) in terms of z ∈ [0, 1],
where r̂ = sup{a : infa∈[α1,α2] det {σ̂2(a)} > z}; z = 0.05 has worked well
in the literature. Second, use a principled approach as follows to extend the
confidence band beyond r̂: for the upper/lower boundaries of the confidence
bands beyond the right endpoint, we use the upper/lower boundaries of the
NS band.

For calibration, we use a similar nonparametric bootstrap method
as in Section 2.1, based on sampling n curves with replacement from
{fn(X1ε̂1)(a), . . . , fn(Xnε̂n)(a), a ∈ [α1, α2]}. Since Mn = supa∈[α1,α2]

{−2 log fn(R(βj))(a)} is asymptotically equivalent to supa∈[α1,α2] fn(Ψ̂)(a) by
the above Remark 6, it suffices to bootstrap fn(Ψ̂)(a) by fn(Ψ̂∗)(a), where
Ψ̂∗(a) = ĝ(E∗

n)T σ̂−2(a)ĝ(E∗
n), E∗

n(a) =
∑n

i=1{(Wni − 1)(Xiε̂i)(a)}/
√

n, ĝ
be the projection operator on (�∞([α1, α2]))p given by

ĝ (e) (a)=e (a)−
{

n∑

i=1

(
XiX

T
i,(−j)

)
/n

}

(a)

{
n∑

i=1

(
XiX

T
i

)
/n

}−1

(−j)

(a)e (a) ,

and σ̂2(a) =
∑n

i=1{(Xiε̂i)(Xiε̂i)T }(a)/n is the sample version of σ2(a). The
resulting bootstrap for Mn is M∗

n = supa∈[α1,α2] fn(Ψ̂∗)(a). The relevant boot-
strap consistency is established as follows (see Appendix D for the proof).
Corollary 2 Under the conditions of Theorem 2, for all sufficiently small
δ > 0, there exists Iδ ⊂ [α1, α2] having Lebesgue measure δ such that
fn(Ψ̂∗)2(a) converges weakly to g (E)T (a)σ−2 (a) g (E) (a) in �∞([α1, α2] \
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Iδ) as n → ∞, given the data sequence {fj(Yi), fj(Xi), i = 1, . . . , j, j =
1, 2, . . .}, in probability.

Corollary 2 provides an asymptotic 100(1−α)% simultaneous confidence
band for βj(·) for essentially all a ∈ [α1, α2]:

{(a, β̃j(a)) : −2 log fn(R(β̃j))(a) ≤ c∗
EL,α, β̃j ∈ Dn},

where c∗
EL,α denotes the upper α-quantile of the M∗

n values obtained from
B = 1000 (as in Section 2.1) bootstrap samples, and Dn is the class of func-
tions of the form in Eq. 1. We refer to this as the EL band. See Algorithm 1 for
a step-by-step implementation for constructing the band. In the algorithm,
V represents the grid of points in [α1, α2] where the band is evaluated. This
grid is designed to numerically approximate [α1, α2] and is typically denser
than Gn. After getting c∗

EL,α, the algorithm initiates the construction of the
EL band for a ∈ Gn and subsequently expands the band to include a ∈ V
using indba

. Here, indba
provides an index for ba in Eq. 1 with respect to

Gn, corresponding to the smallest element in Gn that is no less than a given
a ∈ V.

By a similar reasoning as in Section 7.2 of Chang and McKeague (2022b),
it can be shown that if the response function is monotone in a and the covari-
ate functions are constant in a, then the lower and upper boundaries of the
EL band will respect this monotonicity. An example of a monotonic response
function and constant covariate functions is given in our data analysis (see
Section 4), where the response is the occupation time curve and the covari-
ates are age and intercept terms.

The NS band we introduced in Section 2.1 also respects such monotonic-
ity, by the fact that fn(β̂)(a) is monotone in a and n−1/2c∗

NS,α is constant in
a. (See Figure 2 of Section 4 for an illustration of the monotonicity of both
the EL and NS bands.) However, as mentioned in Section 2.1, the NS band
is not an optimal band.

Note that both the EL and NS bands can be used for simultaneous
testing of H0 : βj(a) = βj0(a) versus H1 : H0 is not true, for some given
function βj0(a). The EL/NS test rejects H0 if there exists an a ∈ [α1, α2]
such that the corresponding EL/NS band fails to capture βj0(a).

3 Simulation Study

In this section, we compare the performance of the proposed simultaneous
confidence band with the NS band in Section 2.1. In addition, we compare
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Algorithm 1 Obtaining the EL band based on c∗
EL,α.

1: procedure EL band(B, α,Gn, {Yi(a), Xi(a), a ∈ Gn},V)
2: M ← vector(length = B) � Obtaining c∗

EL,α based on bootstrap
3: for b = 1 to B do
4: sample n vectors with replacement from {Yi(a), Xi(a), a ∈ Gn}
5: M [b] ← M∗

n computed based on the bootstrap sample obtained from line 4
6: end for
7: c∗

EL,α = the upper α-quantile of elements of M
8: nG ← length(Gn) � Obtaining the EL band on Gn

9: CB ← matrix(0, nrow = 2, ncol = nG)
10: for gi = 1 to nG do
11: a ← Gn[gi]
12: CB[1, gi] ← lower bound of {β̃j(a) : −2 log R(β̃j)(a) ≤ c∗

EL,α}
13: CB[2, gi] ← upper bound of {β̃j(a) : −2 log R(β̃j)(a) ≤ c∗

EL,α}
14: end for
15: nV ← length(V) � Expanding the EL band to V
16: CBV ← matrix(0, nrow = 2, ncol = nV )
17: for vi = 1 to nV do
18: indba ← smallest index of the elements in Gn that are ≥ V [vi]
19: CBV [1, vi] ← (CB[1, ])[indba ]
20: CBV [2, vi] ← (CB[2, ])[indba ]
21: end for
22: return CBV � The desired EL band is CBV

23: end procedure

the EL-band-based test (see the last paragraph of the previous section) with
a smoothing-based simultaneous test devised by Wang et al. (2018), along
with a version of EL-band-based test with c∗

EL,α replaced by a critical value
based on evaluating Mn on each bootstrap sample.

We generate X(a) = (1, T (a))T and β(a) = (1, β2(a))T , where T (a) =
max(J(a), 0), a ∈ [0, 1], J(a) is a zero-mean Gaussian process having a non-
smooth Cov{J(a), J(b)} = 10.6I{a < 0.25, a = b} + 0.6I{a ≥ 0.25, a =
b} + 1.5I{a, b < 0.25, a �= b} + 0.5I{a or b ≥ 0.25, a �= b}, and β2(a) =
ξI{a ≥ 0.25} is a non-smooth regression coefficient function with jump ξ �= 0.
Futher, we simulate the error process ε(a) ∼ Uniform(−s, s) for some s > 0
and obtain the response function

Y (a) = βT (a)X(a) + ε(a).

We use a regular grid Gn of 26 points and n = 50, 100, 200, 300. The coverage
is evaluated on a regular grid V of 101 points.
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The time required to run one dataset generated from the above model
with ξ = 2, s = 0.1, a regular grid Gn of 3 points (for illustration only), and
n = 50 is around 2.5 minutes for the EL band and < 1 second for the HW
band. In contrast, the smoothing-based simultaneous test and the alternative
EL test took roughly 20.5 minutes and 1.2 hours to run, respectively. These
computations were performed on a computer with an Intel Xeon E5-2620 v4
CPU @ 2.10 GHz and 384 GB RAM. While the EL band takes longer to
compute than the HW band, we believe the improved efficiency in utilizing
the data justifies the additional computational time.

Empirical coverage rates and average widths of the two simultaneous
confidence bands for β2(a) are given in Table 1, where we define the width
of a band as the average width over the range of activity levels. In all cases
considered, our EL band is narrower (i.e., more efficient) than the NS band.
However, it exhibits anti-conservativeness in smaller samples (n = 50, 100),
a phenomenon well-documented in the empirical likelihood literature (see,

Table 1: Simulation study of 95% simultaneous confidence bands for β2(a):
empirical coverage (percentage) and average width (in parenthesis); 1000
Monte Carlo replications, each with 1000 bootstrap samples, jump parameter
ξ = 1, 2, uniform location parameter s = 0.05, 0.1, n = 50, 100, 200, 300
n bands ξ = 2 ξ = 1

s = 0.1 s = 0.05 s = 0.1 s = 0.05
50 EL 84.7 84.5 84.6 84.8

(0.046) (0.023) (0.046) (0.023)
NS 95.7 95.2 95.4 95.0

(0.058) (0.029) (0.058) (0.029)
100 EL 92.0 92.3 92.1 92.3

(0.032) (0.016) (0.032) (0.016)
NS 95.7 96.4 96.4 96.4

(0.039) (0.020) (0.039) (0.020)
200 EL 94.3 94.1 94.8 94.2

(0.022) (0.011) (0.022) (0.011)
NS 94.6 95.1 94.9 94.6

(0.028) (0.014) (0.028) (0.014)
300 EL 95.1 95.0 95.0 95.1

(0.018) (0.009) (0.018) (0.009)
NS 95.3 95.2 95.2 95.2

(0.022) (0.011) (0.022) (0.011)
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e.g., Emerson and Owen 2009). Fortunately, this anti-conservative behavior
diminishes as the sample size increases to n ≥ 200. In other words, when n =
200 and 300, the empirical coverage rates of our EL band and the NS band
are both close to the nominal 95% level, but NS is wider than the EL band.
Since our real data example in Section 4 involves n > 500, we anticipate the
accuracy of our EL band in that situation. Nevertheless, for smaller samples,
we acknowledge the accuracy of the NS band and recommend its usage. For
moderate sample sizes, we conclude that the proposed EL confidence bands
have better performance in terms of the properties mentioned above.

Empirical rejection rates of the simultaneous test for H0 : βj(a) = 0
versus H1 : H0 is not true based on the EL- (labeled as EL in the table),
alternative EL-band (labeled as EL2 in the table), and a smoothing-based
simultaneous test (labeled as sm in the table) devised by Wang et al. (2018),
are given in Table 2. Under H0 (i.e., when ξ = 0), the empirical levels
based on EL and EL2 are close to the nominal level of 0.05. In contrast, the
smoothing-based test is extremely inaccurate, having an empirical rejection
rate of 1 under H0. Under H1 (i.e., when ξ > 0), EL is slightly more powerful
than EL2. On the other hand, the power of the smoothing-based test exceeds
those of EL and EL2 tests, due to the inaccurate calibration evident in the
previous results under H0. Based on these results, we can see the advantage
of using the proposed EL approach in non-smooth situations, and that there
is no need to use the more computationally intensive EL2 approach.

Table 2: Simulation study of simultaneous testing of H0 : β2(a) = 0 versus
H1 : H0 is not true, at a nominal level of 5%: empirical rejection rates (per-
centages) and their corresponding empirical standard deviations (percent-
ages, in parentheses); 450 Monte Carlo replications, each with 1000 boot-
strap samples, jump parameter ξ = 0, 0.005, uniform location parameter
s = 0.1, n = 300
ξ tests

EL EL2 sm
0 4.7 3.8 1

(1.00) (0.90) (0.00)
0.005 56.7 54.7 1

(2.34) (2.35) (0.00)
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4 Real Data Example

The occupation time data we use are based on wearable device measurements
from the 2005–06 U.S. National Health and Nutrition Examination Survey
(United States National Center for Health Statistics, 2006). Each raw activ-
ity curve was measured in one-minute epochs using a wearable ActiGraph
device for seven consecutive days (normalized to [0, τ ] = [0, 1]); we only keep
measurements that NHANES flagged as both “reliable” and “in calibration”.

We restrict attention to veteran subjects of ages ranged from 17 to 85
(n = 571); systematically selected occupation time curves are displayed in
the left panel of Figure 2. We consider the maximal range of activity levels
that has been categorized as sedentary in existing physical activity literature
(Gorman et al., 2014), namely < 500 counts/minute. The occupation time
curves are restricted to the interval [α1, α2] = [0, 499] and discretized at
each intensity count (i.e., integers). There are no missing data among these
veterans.

We are interested in the effect of age on the mean occupation time curve
among the veteran subjects. From the scatter plots in Figure 1, it seems that
there is an age effect in higher activity levels. To make more rigorous infer-
ence, we construct a confidence band for the regression coefficient function
of age in the model

E(occupation time(a)|age) = β0(a) + β1(a) × age

for all a ∈ [α1, α2]. Note that we center age during the implementation,
although it does not affect the desired confidence band.

Comparing the confidence bands based on EL and NS (see the right panel
of Figure 2), we can see that the EL band is narrower than NS, which is con-
sistent with the simulation results in Table 1. Consequently, the EL band
leads to more significant results than the NS band. More specifically, the EL
band for the regression coefficient function of age includes 0 for lower activity
levels, but decreases below 0 for activity levels ≥ 114 counts/minute. This
means there is no significant age effect for the lower activity levels; however,
for those higher activity levels, age is negatively associated with mean occu-
pation time, with activity level 499 counts/minute being the activity level of
greatest age impact. In particular, an increase in ten years of age will result
in a (50, 111)-minute decrease in the mean occupation time over one week
above activity level 499 counts/minute (i.e., the minimal quantification of
sedentary behavior in the literature). Note that these results are consistent
with the finding illustrated in the middle panel of Figure 5 in Chang and
McKeague (2022a), where there is a larger positive difference of mean occu-
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pation time curves at higher activity levels when comparing younger versus
older age groups among veterans, although now we consider a larger age
range.

5 Discussion

In this paper we develop a CFL regression method that allows left- (or
right-) discontinuities in the regression coefficient function of interest and
the relevant functional means and covariances under a dense non-random
design. Although the consideration of discontinuities is motivated by occu-
pation time data derived from wearable devices, our method applies to gen-
eral functional data that satisfy the conditions in our theory. Taking advan-
tage of optimality properties and the ability to handle the monotonicity of
these occupation time curves, our EL approach is used to construct a simul-
taneous confidence band for one regression coefficient function of interest
while adjusting for other covariates. We have shown via simulations that
the proposed confidence band maintains accuracy in moderate sample sizes
when there is a discontinuity in the regression coefficient function of inter-
est and the means and covariances of the covariate and response functions,
while being narrower than an alternative Wald-type approach. In addition,
a simultaneous test based on the proposed confidence band is shown to sub-
stantially outperform an existing test based on smoothing. We applied the
proposed procedures to wearable device data from the 2005–06 NHANES
study, obtaining narrower confidence bands than the Wald-type band; we
also obtain more significant results in the simultaneous test.

Although we can accommodate discontinuities, our approach differs from
that used in change point problems. The reasons are as follows. First, we
are not interested in estimating/selecting the change points (see, e.g., Bai
2010). Our goal is to contruct a confidence band for the coefficient function
of interest. Even if an attempt is made to modify a change point method
to do this, it would be necessary to treat those change points as plug-in
estimates. Such an approach would lead to a much more complicated theory.
Second, our assumptions regarding the functional response and predictors
are different from certain assumptions such as parametric models (see, e.g.,
Bélisle et al. 1998), smooth conditional covariances (see, e.g., Zhu et al. 2014),
or stationary (see, e.g., Xi and Pang 2021) used in the change point literature.
The key for us is to utilize the right- (or left-) continuity of the coefficient
function of interest and the data, which is enough for the above assumptions
to be relaxed. Last but not least, our work addresses an important feature of
functional data analysis that treats the observed trajectories as discretized
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versions of an underlying trajectory and is able to make inference about the
complete trajectory. In contrast, the change point literature is not known to
do that.

Acknowledgements. The research of Hsin-wen Chang was partially sup-
ported by National Science and Technology Council of Taiwan under Grant
112-2118-M-001-006. The research of Ian McKeague was partially supported
by National Institutes of Health Grant AG062401. The authors thank Shih-
Hao Huang for helpful comments, and Lin Sun for computational support.

Author contributions Both authors contributed substantially.

Funding Information See Acknowledgements.

Availability of data and materials Publicly available.

Code Availability Upon request.

Declarations

Consent for publication Both authors give consent.

Open Access. This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Bahadur, R.R. (1967). Rates of convergence of estimates and test statistics. Ann. Math.
Stat., 38, 303–324.

Bai, J. (2010). Common breaks in means and variances for panel data. J. Econom., 157,
78–92.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


H. Chang and I.W. McKeague

Bélisle, P., Joseph, L., MacGibbon, B., Wolfson, D.B. Du Berger, R. (1998). Change-point
analysis of neuron spike train data. Biometrics, 54, 113–123.

Cao, G., Yang, L., Todem, D. (2012). Simultaneous inference for the mean function based
on dense functional data. J. Nonparametric Stat., 24, 359–377.

Cao, G., Wang, S., Wang, L. (2020). Estimation and inference for functional linear regres-
sion models with partially varying regression coefficients. J. Multivar. Anal., 9, 1–14.

Chang, H., McKeague, I.W. (2022a). Empirical likelihood based inference for functional
means with application to wearable device data. J. R. Stat. Soc. Ser. B Methodol., 84,
1947–1968.

Chang, H., McKeague, I.W. (2022b). Web-based supporting materials for “empirical like-
lihood based inference for functional means with application to wearable device data”.
J. R. Stat. Soc. Ser. B Methodol.

Chatterjee, S. Bose, A. (2005). Generalized bootstrap for estimating equations. Ann. Stat.,
33, 414–436.

Cheng, G. (2015). Moment consistency of the exchangeably weighted bootstrap for semi-
parametric m-estimation. Scand. J. Stat., 42, 665–684.

Degras, D.A. (2011). Simultaneous confidence bands for nonparametric regression with
functional data. Statistica Sinica, 21, 1735–1765.

Emerson, S.C., Owen, A.B. (2009). Calibration of the empirical likelihood method for a
vector mean. Electron. J. Stat., 3,1161–1192. https://doi.org/10.1214/09-EJS518

Ghosal, R., Maity, A. (2022). A score based test for functional linear concurrent regression.
Econom. Stat., 21,114-130.

Ghosal, R., Maity, A., Clark, T., Longo, S.B. (2020). Variable selection in functional linear
concurrent regression. J. R. Stat. Soc., C: Appl. Stat., 69, 565–587.

Gorman, E., Hanson, H., Yang, P., Khan, K., Liu-Ambrose, T., Ashe, M. (2014).
Accelerometry analysis of physical activity and sedentary behavior in older adults:
A systematic review and data analysis. Eur. Rev. Aging Phys. Act. : official journal
of the European Group for Research into Elderly and Physical Activity 11, 35–49.

Hjort, N.L., McKeague, I.W., Van Keilegom, I. (2009). Extending the scope of empirical
likelihood. Ann. Stat., 37, 1079–1111.

Kitamura, Y. (2007). Empirical likelihood methods in econometrics: Theory and prac-
tice. Advances in Economics and Econometrics: Theory and Applications, Ninth
World Congress (vol. 3, pp. 174–237). https://doi.org/10.1017/CBO9780511607547.
008. Cambridge University Press

Kitamura, Y., Santos, A., Shaikh, A.M. (2012). On the asymptotic optimality of empirical
likelihood for testing moment restrictions. Econometrica, 80, 413–423.

Kosorok, M.R. (2008a). Errata for Introduction to Empirical Processes and Semiparametric
Inference (Kosorok, 2008, Springer). http://www.bios.unc.edu/∼kosorok/errata.pdf

Kosorok, M.R. (2008b). Introduction to Empirical Processes and Semiparametric Inference.
New York, Springer.

Nair, V.N. (1984). Confidence bands for survival functions with censored data: a compar-
ative study. Technometrics, 26, 265–275.

Otsu, T. (2010). On Bahadur efficiency of empirical likelihood. J. Econom., 157, 248–256.
Owen, A.B. (2001). Empirical Likelihood. Chapman & Hall/CRC.
Ramsay, J.O., Silverman, B.W. (2005). Functional Data Analysis. New York: Springer.
Sallis, J.F. (2000). Age-related decline in physical activity: a synthesis of human and animal

studies. Med. Sci. Sports Exerc., 32, 1598–1600.

https://doi.org/10.1214/09-EJS518
https://doi.org/10.1017/CBO9780511607547.008
https://doi.org/10.1017/CBO9780511607547.008
http://www.bios.unc.edu/~kosorok/errata.pdf


Concurrent Functional Linear Regression...

United States National Center for Health Statistics (2006). National health and nutrition
examination survey data. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/
default.aspx?BeginYear=2005

van der Vaart, A.W. (2000). Asymptotic Statistics. Cambridge, Cambridge University
Press.

van der Vaart, A.W., Wellner, J.A. (1996). Weak Convergence and Empirical Processes.
New York, Springer-Verlag.

Wang, H., Zhong, P. S., Cui, Y., Li, Y. (2018). Unified empirical likelihood ratio tests
for functional concurrent linear models and the phase transition from sparse to dense
functional data. J. R. Stat. Soc. Ser. B Methodol., 80, 343–364.

Wright, S.P., Brown, T.S.H., Collier, S.R., Sandberg, K. (2017). How consumer physical
activity monitors could transform human physiology research. Am. J. Physiol. Regul.
Integr. Comp. Physiol., 312, R358–R367.

Xi, D., Pang, T. (2021). Common breaks in means for panel data under short-range depen-
dence. Commun. Stat. - Theory and Methods., 50, 486–505.

Zhu, H., Fan, J., Kong, L. (2014). Spatially varying coefficient model for neuroimaging
data with jump discontinuities. J. Am. Stat. Assoc., 109, 1084–1098.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Appendix A Proof of Theorem 1

For this proof and all other proofs in the supplement, op, o, Op and O refer
to uniform bounds over a ∈ [α1, α2] \ Iδ.

A.1 The First Part Since
√

n
{

fn(β̂) − fn(β)
}

(a) can be written as

{
n∑

i=1

fn
(
XiX

T
i

)
/n

}−1

(a) ×

√
n

{
n∑

i=1

fn (XiYi) /n −
n∑

i=1

fn
(
XiX

T
i β

)
/n

}

(a) (A1)

by definition of β̂(a) in Section 2.1, we begin by studying the asymptotics
of the components in Eq. A1. More specifically, we derive the limits of∑n

i=1 fn (XiXij) (a) /n and fn(En)(a) in (�∞([α1, α2]\Iδ))p as n → ∞, where
εi(a) = (Yi − XT

i β)(a), Iδ can be constructed as
⋃J

�=1(c� − δ/J, c�), c� for
� = 1, . . . , J < ∞ are the (finitely many) discontinuities of E(Xjε)(·) and
E(XjX�)(·), Xj(a) and Xij(a) is the j-th element of X(a) and Xi(a), respec-
tively (j, � = 1, . . . , p), and δ can be any small positive number that is less
than the minimal distance between any two c�’s and between any c� and α1

https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2005
https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2005
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or α2, divided by 2. Then we use the continuous mapping theorem to get
the desired limiting process of

√
n
{

fn(β̂) − fn(β)
}

(a).
To obtain the limiting process of fn(En)(a), we begin with finding the

limiting distributions of
∑n

i=1 fn(Xi,jεi)(a)/
√

n. By checking the conditions
of a changing-class Donsker Theorem (Kosorok, 2008a, b) in a similar way
as in Supplement Section 1.1 of Chang and McKeague (2022b), we can show
that for each j = 1, . . . , p,

∑n
i=1 fn(Xi,jεi)(a)/

√
n converges in distribution

in �∞([α1, α2] \ Iδ) to a tight Gaussian process with zero mean and covari-
ance function E {K(a, b)Xj (a)Xj (b)}. Note that in the process of checking
those conditions for the changing classes Donsker Theorem, we make use of
the conditions (see the statement of Theorem 1) that the sample paths of
Xj(a) and ε(a) are right-continuous, of bounded variation, bounded by some
constant τ , and E(Xε)(·) has at most finitely many jump discontinuities.

Then we utilize an extension of the characterization of weak convergence
as asymptotic tightness plus convergence of marginals to multidimensional
bounded stochastic processes (see, e.g., van der Vaart and Wellner 1996, The-
orem 1.5.4). Specifically, we show the convergence of all finite-dimensional
marginals, and then asymptotic tightness. To show convergence of all finite-
dimensional marginals, fix any a1, . . . , ak ∈ ([α1, α2]\Iδ). By the multivariate
central limit theorem, [fn(ET

n )(a1), fn(ET
n )(a2), . . . , fn(ET

n )(ak)]T converges
weakly to a mean zero multivariate normal distribution. To prove the asymp-
totic tightness of fn(En)(a), it suffices to show that each coordinate is asymp-
totically tight (see, e.g., van der Vaart and Wellner 1996, Lemma 1.4.3),
which follows by the fact that the limit of each coordinate, namely the afore-
mentioned limiting process of

∑n
i=1 fn(Xi,jεi)(a)/

√
n for each j = 1, . . . , p,

is tight (see, e.g., van der Vaart and Wellner 1996, Lemma 1.3.8). These
results also imply the existence of a tight limiting process of fn(En)(a). Fur-
ther, this limiting process has a marginal distribution being the above mean
zero multivariate normal distribution. This implies the limiting process of
fn(En)(a) is a tight multivariate Gaussian process E(a) with zero mean and
covariance structure E

{
K(a, b)X (a)XT (b)

}
.

As for the limit of
∑n

i=1 fn (XiXij) (a) /n, it suffcies to show

n∑

i=1

fn (XijXi�) (a) /n → E (XjX�) (a) (A2)
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a.s. in �∞([α1, α2] \ Iδ) as n → ∞, for all j, � = 1, . . . , p. For each j, � =
1, . . . , p, we first obtain

sup
a∈[α1,α2]

∣
∣
∣
∣
∣

n∑

i=1

fn (XijXi�) (a) /n − fn (E (XjX�)) (a)

∣
∣
∣
∣
∣
→ 0 (A3)

a.s. as n → ∞, by the fact that the LHS of Eq. A3 is no greater than
supa∈[α1,α2] |

∑n
i=1 (XijXi�) (a) /n − E (XjX�) (a)| → 0 a.s. The last conver-

gence to 0 is by the Glivenko–Cantelli theorem because the sample path of
Xj (and hence XjX�) has bounded variation and is bounded by some con-
stant (see, e.g., Chang and McKeague 2022b, the second paragraph on page
8). Secondly, it can be shown that

sup
a∈[α1,α2]\Iδ

|fn (E (XjX�)) (a) − E (XjX�) (a)| → 0 (A4)

a.s. as n → ∞, by a similar reasoning as in Section 1.2 of Chang and McK-
eague (2022b) and the fact that E (XjX�) (·) is right-continuous, of bounded
variation, with at most finitely many jump discontinuities. Then by Eqs. A3,
A4 and the triangle inequality, we get the desired result in Eq. A2.

The result in the previous paragraph implies

fn

(
n∑

i=1

vec
(
XiX

T
i

)
/n

)

(a) → vec
{
E

(
XXT

)}
(a) (A5)

a.s. in (�∞([α1, α2] \ Iδ))p2
as n → ∞, where vec(·) denotes vectorization.

This and the asymptotic result of fn(En)(a) above imply the desired result
in the first display of Theorem 1, by the continuous mapping theorem,
infa∈[α1,α2] det{E(XXT )}(a) > 0, and the fact that the sample paths of
Xj(a) is bounded by some constant τ .

A.2 The Second Part The result follows if we can show
√

n{fn(β)(a) −
β(a)} = o(1) as n → ∞. It suffices to show

√
n{fn(βj)(a) − βj(a)} = o(1)

as n → ∞ for each j = 1, . . . , p, which follows by the same reasoning as in
Section 1.2 of Chang and McKeague (2022b) and the additional conditions
in the second part of Theorem 1.

Appendix B Proof of Corollary 1

To show bootstrap consistency of fn,a(U∗
n), we write it as U∗

n(a) =
{∑n

i=1(XiX
T
i )/n

}−1 (a)
∑n

i=1{(Wni − 1)Xi(a)ε̂i(a)}/
√

n, where Wni is the
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number of times that fn(Xiε̂i)(a) is redrawn from {fn(X1ε̂1)(a),. . ., fn(Xnε̂n)
(a), a ∈ [α1, α2]}. To eliminate the dependence among {ε̂i(a)}n

i=1, we intro-
duce U∗∗

n (a) =
{∑n

i=1(XiX
T
i )/n

}−1 (a)
∑n

i=1{(Wni − 1)Xi(a)εi(a)}/
√

n.
We first show the conditional asymptotic equivalence of fn,a(U∗

n) and
fn,a(U∗∗

n ). Secondly, we show the bootstrap consistency of fn,a(U∗∗
n ). The

aforementioned bootstrap consistency results are provided conditional on
{Y1(a), X1(a)}, {Y2(a), X2(a)}, . . ., in probability. Then the extension to
conditioning on the discretized data follows by a similar reasoning in the
last paragraph of Section 3.1 of Chang and McKeague (2022b).

We show the conditional asymptotic equivalence of fn(U∗
n)(a) and fn(U∗∗

n )(a)
as follows. It amounts to showing that

U∗∗
n (a) − U∗

n(a) =

{
n∑

i=1

(
XiX

T
i

)
/n

}−1

(a) ×

1√
n

n∑

i=1

{
(Wni − 1)XT

i (a)
}(

β̂ − β
)

(a) = op(1) (B6)

conditional on {Y1(a), X1(a)}, {Y2(a), X2(a)}, . . ., in probability. Each dimen-
sion j = 1, . . . , p of the middle term

∑n
i=1 {(Wni − 1)Xij(a)} /

√
n after the

first equality converges weakly to the limiting process of
∑n

i=1 {Xij(a) − E
(Xij)(a)} /

√
n in �∞([α1, α2]) as n → ∞, given {Y1(a), X1(a)}, {Y2(a), X2

(a)}, . . ., in probability, by Corollary S.1 of Chang and McKeague (2022b).
The first term

{∑n
i=1(XiX

T
i )/n

}−1 (a) after the first equality is Op(1) con-
ditional on {Y1(a), X1(a)}, {Y2(a), X2(a)}, . . ., in probability, by Markov’s
inequality and a similar reasoning as in the last two paragraphs of Appendix
A.1.

The last term (β̂ − β)(a) of Eq. B6 after the first equality can be written
as

{∑n
i=1(XiX

T
i )/n

}−1 (a) {∑n
i=1 (Xiεi) /n} (a), which can be shown to be

op(1) conditional on {Y1(a), X1(a)}, {Y2(a), X2(a)}, . . ., in probability. This
is true due to the last result in the previous paragraph, Markov’s inequality,
and the Glivenko–Cantelli theorem because the sample paths of X(a)ε(a)
have bounded variation and is uniformly bounded (see, e.g., Chang and
McKeague 2022b, the second paragraph on page 8). Combining the results
from the three terms of Eq. B6 after the first equality, and a routine extension
of the conditional Slutsky’s lemma (Cheng 2015, Appendix A.2, (i), (ii)) to
the case of random elements of a metric space, leads to the op(1) in Eq. B6
conditional on {Y1(a), X1(a)}, {Y2(a), X2(a)}, . . ., in probability.
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To show the bootstrap consistency of fn,a(U∗∗
n ), we can use Poissoniza-

tion and a changing classes bootstrap central limit theorem in a similar
way as in Section 3.1 of Chang and McKeague (2022b). More specifically,
a partly Poissonized version of fn,a(U∗∗

n ) is defined as fn,a(U∗∗
n,Nn

), where

U∗∗
n,Nn

(a) =
{∑n

i=1(XiX
T
i )/n

}−1 (a)
∑n

i=1{(WNn,i − 1)Xi(a)εi(a)}/
√

n and
Nn is a Poisson random variable with mean n and is independent of
the original sample. We can obtain the conditional asymptotic equiva-
lence of fn,a(U∗∗

n ) and fn,a(U∗∗
n,Nn

) by the the Glivenko–Cantelli result for
{∑n

i=1 (Xiεi) /n} (a) in the previous paragraph. Then we show the bootsrap
consistency of fn,a(U∗∗

n,Nn
) by the fact that

∑n
i=1{(WNn,i

Nn/n − 1)fn,a(Xiεi)}/
√

n

satisfies a changing classes bootstrap central limit theorem (Kosorok 2008b,
Theorem 11.23), and by a routine extension of this theorem to the case of
multidimensional empirical process. Finally, by a routine extension of the
conditional Slutsky’s lemma (Cheng 2015, Appendix A.2, (i)) to the case of
random elements of a metric space, and the conditional asymptotic equiv-
alence of fn,a(U∗∗

n ) and fn,a(U∗∗
n,Nn

), we have the bootstrap consistency of
fn,a(U∗∗

n ).

Appendix C Proof of Theorem 2

In this section, Iδ can be constructed as
⋃Q

�=1(d� − δ/Q, d�), d� for
� = 1, . . . , Q < ∞ are the (finitely many) discontinuities of E(Xjε)(·),
E(XjX�)(·), and σ2(·), and δ can be any small positive number that is less
than the minimal distance between any two d�’s and between any d� and α1

or α2, divided by 2.
To show the weak convergence of −2 log fn(R(βj))(·) as n → ∞, first we

use Lagrange’s method to get

− 2 log fn (R(βj)) (a) = 2
n∑

i=1

log{1 + fn (λ) (a) fn (Zi) (a)}, (C7)

where λ(a) satisfies the estimating equation
∑n

i=1 pi(a)Zi(a) = 0, Zi(a) =
{Xi(Yi − ∑

��=j β̂�Xi� − βjXij)}(a), and pi(a) = [n{1 + λ(a)Zi(a)}]−1.
Since Eq. C7 has the same form as the EL statistic in Supplement Section

4 of Chang and McKeague (2022b), we can use similar reasoning to show
fn(λ)(a) = Op(1/

√
n). We also need the following additional large sample

results: fn(Z)(a) = Op(1/
√

n),

fn

(
σ2

)
(a) = σ2 (a) + op (1) (C8)
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and maxi=1,...,n ‖fn(Zi)(a)‖ = Op(1), where Z(a) =
∑n

i=1 Zi(a)/n, σ2(a) =∑n
i=1 Zi(a)ZT

i (a)/n, and recall σ2(a) = E
{
K(a, b)X (a)XT (b)

}
is defined

in Section 2.2. To show fn(Z)(a) = Op(1/
√

n), we decompose
√

nfn(Z)(a)
as

fn(En) (a) − 1
n

n∑

i=1

fn (Xi)
∑

��=j

fn (Xi�)
√

n
{

fn

(
β̂�

)
− fn (β�)

}
(a) . (C9)

The first term in Eq. C9 has been shown to be Op(1) in Appendix A.1. The

second term in Eq. C9 is Op(1) as well, because
√

n
{

fn(β̂�) − fn(β�)
}

(a) =
Op(1) by the first part of Theorem 1, and

∑n
i=1 fn(XiXi�)/n = O(1) a.s. by

Eq. A5. Therefore, we have the desired
√

nfn(Z)(a) = Op(1). To show Eq.
C8, note that by Eq. C9 and the above Op(1) result for its second term,

fn

(
σ2

)
(a) =

1

n

n∑
i=1

{
fn (Xiεi) (a) + Op

(
1√
n

)} {
fn

(
XT

i εi

)
(a) + Op

(
1√
n

)}
.

This impiles fn(σ2)(a) = fn(σ2)(a) + op(1). It remains to show that
fn(σ2)(a) = σ2(a) + o(1), which is true by a similar reasoning in the last
paragraph of Supplement Section 4 in Chang and McKeague (2022b) and
the condition that σ2(·) has at most finitely many jump discontinuities. To
show maxi=1,...,n ‖fn(Zi)(a)‖ = O(1) a.s., note that

sup
a∈[α1,α2]\Iδ

max
i=1,...,n

‖fn (Zi) (a)‖

≤ sup
a∈[α1,α2]\Iδ

max
i=1,...,n

√√
√√
√

⎧
⎨

⎩

p∑

j=1

fn (Xijεi) (a) + Op

(
1√
n

)
⎫
⎬

⎭

2

≤ sup
a∈[α1,α2]\Iδ

max
i=1,...,n

√√√
√

p∑

j=1

{fn (Xijεi)}2 (a) + Op

(
1√
n

)

≤
√√√
√

p∑

j=1

{

sup
a∈[α1,α2]\Iδ

max
i=1,...,n

|fn (Xijεi)| (a)

}2

+ Op

(
1√
n

)
,

where the first inequality is due to Eq. C9 and the aforementioned
Op(1) result for its second term. In the last line of the above display,
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maxi=1,...,n |fn (Xijεi)| (a) = O(1) a.s. for each j = 1, . . . , p because the sam-
ple paths of Xj(a) and ε(a) are bounded by some constant. Therefore, we
have the desired result maxi=1,...,n ‖fn(Zi)(a)‖ = Op(1).

Following a similar argument in the third paragraph of page 11 in
Chang and McKeague (2022b), based on the asymptotic order fn(λ)(a) =
Op(1/

√
n), we apply Taylor’s theorem and get

− 2 log fn (R(βj)) (a) = 2nfn(λT Z) (a) − nfn

(
λT σ2λ

)
(a) + op (1) . (C10)

Similarly, we expand
∑n

i=1 fn (pi) (a)fn (Zi) (a) around 0 as a function of
fn(λT Zi)(a) and get

fn (λ) (a) = fn

(
σ−2Z

)
(a) + op

(
n−1/2

)
(C11)

and
fn

(
λT Z

)
(a) = fn

(
λT σ2λ

)
(a) + op

(
n−1

)
. (C12)

Substituting Eqs. C12 into C10 gives −2 log fn (R(βj)) (a)=nfn

(
λT Z

)
(a)+

op(1). This and Eq. C11 imply

− 2 log fn (R(βj)) (a) = nfn

(
Z

T
σ−2Z

)
(a) + op (1) . (C13)

Since the asymptotic behavior of fn

(
σ2

)
has already been characterized in

Eq. C8, it remains to obtain the weak limit of the process
√

nfn

(
Z
)
(a). To

this end, we have

√
nfn

(
Z
)
(a) = fn(En) (a)

− 1
n

n∑

i=1

fn

(
XiX

T
i(−j)

)
(a)

√
n
{

fn(β̂) − fn(β)
}

(−j)
(a) = fn(En) (a)

−
{

E
(
XXT

(−j)

)
(a) + op(1)

}[{
E

(
XXT

)}−1

(−j)
(a) + op(1)

]
fn(En) (a)

=fn(En) (a) − E
(
XXT

(−j)

)
(a)

{
E

(
XXT

)}−1

(−j)
(a) fn(En) (a) + op (1)

=g (fn(En)) (a) + op (1) , (C14)

where recall from Section 2.2 that we use v(−j)(a) to denote the vec-
tor/matrix of processes indexed by a after removing the j-th element/row of
some vector/matrix of processes v(a), the second equality is due to Eq. A5,
the continuous mapping theorem, infa∈[α1,α2] det{E(XXT )}(a) > 0, and the
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fact that the sample paths of Xj(a) is bounded by some constant τ , and the
third equality is due to fn(En)(a) = Op(1) by Appendix A.1, and recall from
Section 2.2 that

g (e) (a) = e (a) − E
(
XXT

(−j)

)
(a)

{
E

(
XXT

)}−1

(−j)
(a)e (a)

for any e ∈ (�∞([α1, α2] \ Iδ))p. It can be shown that g is continuous, by
infa∈[α1,α2] det{E(XXT )}(a) > 0 and the fact that the sample paths of
Xj(a) is bounded by some constant τ . Therefore, by the continuous mapping

theorem, g(fn(En)) d−→g(E) in (�∞([α1, α2] \ Iδ))p as n → ∞. This and Eq.
C14 imply √

nfn

(
Z
)
(a) d−→g (E)

in (�∞([α1, α2] \ Iδ))p as n → ∞. This, Eqs. C13, and C8 then imply

−2 log fn (R(βj)) (a) d−→g (E)T (a)σ−2 (a) g (E) (a)

in �∞([α1, α2] \ Iδ) as n → ∞.

Appendix D Proof of Corollary 2

Since ĝ (E∗
n) (a) can be rewritten as

{
n∑

i=1

(
XiX

T
i

)
/n

}

(a)U∗
n (a) −

{
n∑

i=1

(
XiX

T
i,(−j)

)
/n

}

(a) U∗
n,(−j) (a) ,

most of the components in Ψ̂∗(a) = ĝ(E∗
n)T σ̂−2(a)ĝ(E∗

n) have been stud-
ied in the previous Appendix sections. Thus, to study bootstrap consis-
tency of fn(Ψ̂∗)(a), it suffices to show that fn(vec(σ̂2 − σ2)) = op(1). This,
the uniform convergence of fn(σ2)(a) to σ2(a) in the second paragraph of
Appendix C, Eq. A5, the bootstrap consistency of fn(U∗

n)(a) in Appendix
B, and a routine extension of the proof for the conditional Slutsky’s lemma
in Cheng (2015) to the case of random elements of a metric space, imply
that (fn(U∗

n), fn(vec(σ̂2)), fn
(∑n

i=1 vec
(
XiX

T
i

)
/n

)
)T is bootstrap consis-

tent for (U , vec(σ2), vec
{
E

(
XXT

)}
)T in {�∞([α1, α2] \ Iδ)}p(1+2p). The

desired result follows by the continuous mapping theorem for the bootstrap
(see, e.g., Kosorok 2008b, Theorem 10.8).

The desired fn(vec(σ̂2−σ2)) = op(1) is true due to the weak consistency of
σ̂2 for σ2 in �∞([α1, α2]) and the fact that supa∈[α1,α2]

∥∥fn(vec(σ̂2 − σ2))(a)
∥∥
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≤ supa∈[α1,α2]

∥
∥vec(σ̂2 − σ2) (a)‖. The consistency of σ̂2 for σ2 can be

obtained as follows. We can decompose σ̂2(a) as

1
n

n∑

i=1

{
(Xiεi) (Xiεi)

T
}

(a) +
1
n

n∑

i=1

{(
XiX

T
i

)
(a)

(
ε̂2i − ε2i

)}
. (D15)

The first term can be shown to be consistent for σ2(a) in �∞([α1, α2]) by
Theorem S.1 of Chang and McKeague (2022b) and Lemma 9.28 of Kosorok
(2008b). Each element of the second term of Eq. D15 can be shown to be
op(1) as follows, so that the desired consistency of σ̂2 for σ2 can be obtained
by the Slutsky’s lemma. We begin by noting that

ε̂2i − ε2i = 2YiX
T
i (β − β̂) + β̂XiX

T
i (β̂ − β) + (β̂ − β)XiX

T
i β. (D16)

We can show βj(a) is bounded by some finite constant because it has
bounded variation over [α1, α2], which, together with the uniform bounded-
ness of Xj(a) and ε(a), imply the uniform boundedness of Y . This and the
definition of β̂ in turn imply the uniform boundedness of β̂. These bound-
edness results, Eq. D16, and

∣∣
∣β̂ − β

∣∣
∣ = op(1) (by a similar reasoning as

in the third paragraph of Appendix B) imply maxi=1,...,n

∣
∣ε̂2i − ε2i

∣
∣ = op(1).

Therefore, each element of the second term of Eq. D15 can be bounded by
τ2 maxi=1,...,n

∣
∣ε̂2i − ε2i

∣
∣ = op(1).
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