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Abstract— Hand gesture recognition has been playing an
important role in robotic applications, which allows robots
to communicate with humans in an effective way. However,
it typically desires to process high-dimensional data, such as
images or sensor measurements. To address the computational
challenges due to the data growth, it is desirable to select most
relevant features during recognition by reducing the redun-
dancy of the data. In this paper, we propose a novel feature
selection approach based on the separable nonnegative matrix
factorization (NMF) framework for hand gesture recognition.
In particular, we adopt a nonconvex regularization term, i.e.,
the ratio of matrix nuclear norm and Frobenius norm. The
proposed method reduces the data dimension by utilizing the
data low-rankness in an adaptive way. To address the noncon-
vexity of the proposed model, we reformulate it by introducing
an auxiliary variable and then apply the alternating direction
method of multipliers (ADMM). Furthermore, a variety of
numerical experiments on binary and grayscale hand gesture
images demonstrate the efficiency of the proposed feature
selection approach in improving the quality of factorization
and its potential impact on robotic applications.

Index Terms— feature, hand gesture recognition, low-rank,
nonnegative matrix factorization, robot

I. INTRODUCTION

Nonverbal communication through gestures, motions, fa-

cial expressions, etc., plays an important role in human-

human interaction. It is also true for human-robot interaction,

particularly in noisy environments where verbal communica-

tion is not allowable. In this work, we focus on human hand

gesture recognition, which will enable robots to understand

human intentions accurately through their hand gestures and

take the right actions by following the human’s instructions.

There are two major types of hand gesture recognition

systems based on glove sensors or images/videos. The glove-

based recognition system involve wearing a glove or using

some form of apparatus that a hand interacts with in order to

capture various data, such as motion and pressure plates [1],

[2]. The other is visual-based system, either through images

or videos are captured via a camera and then interpreted.

Although the glove based or tactile hand gesture recognition

has a good performance, the equipment can be expensive and

is not as convenient or handy as a camera. In this paper, we

focus on vision-based recognition systems.
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The traditional vision-based gesture recognition system

usually directly process images or image-based features

learned by some feature descriptors such as Histogram of

Oriented Gradients (HOG), Local Binary Patterns (LBP)

and Scale-Invariant Feature Transform (SIFT). However,

although a dataset with high dimensional features has nu-

merous attributes, it is possible that only a few features

are directly relevant to the classification and recognition

tasks. Moreover, the growth in data dimensionality poses

challenges to classification performance due to the presence

of redundant or irrelevant features. Lastly, memory usage and

training time are adversely affected when dealing with high-

dimensional datasets. Therefore, it is crucial to reduce the

feature dimensionality while maintaining the desired recog-

nition accuracy. Recently, many dimensionality reduction

methods have been developed to preprocess the input data,

resulting in faster processing times without compromising

recognition accuracy. Refer to [3], [4] for literature survey

of dimension reduction techniques, [5] for a comprehensive

review of dimensionality reduction techniques for feature

selection and extraction, and [6] for a more recent review

on hand gesture recognition in robotic applications.

Nonnegative Matrix Factorization (NMF) has been serving

as one of the most popular and efficient dimensionality

reduction methods because it reduces the dimensionality of

the original data by factorizing the data matrix into two

lower-dimensional matrices. These matrices typically have

fewer columns than the original data matrix, effectively

reducing the dimensionality of the data. NMF is particularly

useful for feature extraction and has been widely used in

applications such as image and text processing, where the

data of interest can be represented as a matrix. In particular,

when the factor matrices are separable, NMF becomes a

special case known as separable NMF. In separable NMF,

the columns of the factor matrices are both nonnegative and

sparse, which means they consist mostly of zeros with a few

non-zero elements. Recently, many fast algorithms have been

developed for solving the separable NMF problem, including

Successive Projection Algorithm (SPA) [7], FGNSR [8], and

Frank-Wolfe based algorithm [9].

In this paper, we propose a novel feature selection ap-

proach based on the separable NMF framework for selecting

the most relevant features from a collection of hand gesture

images. In particular, we consider a low-rankness promoted

regularization technique, i.e., the ratio of matrix nuclear norm

and Frobenius norm. By applying the difference of convex

function algorithm (DCA), we derive an efficient algorithm

with convergence guarantee. As long as the learned features
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with reduced size are available, a data classifier, such as

K-nearest neighbors (KNN) and support vector machines

(SVM), can be further applied to classify the images on

the reduced feature space. We have conducted a variety of

numerical experiments on the binary and gray-scale hand

gesture images, which have shown the potential of the

proposed approach in realistic robotic applications.

The rest of the paper is organized as follows. Section II

describes the proposed gesture recognition method in detail

with complexity analysis. Various numerical experiments on

binary and grayscale hand gesture images are shown in

Section III. Finally, the conclusion and some future works

are summarized in Section IV.

II. PROPOSED METHOD

In this section, we describe our proposed gesture recog-

nition approach in details, which consists of two stages. At

the first stage, we propose a novel algorithm for selecting

the relevant features based on the ratio regularization of the

matrix nuclear norm and Frobenius norm. Then at the second

stage, classification and recognition tasks are performed on

the reduced feature space.

Throughout the paper, we use lowercase letters to denote

scalars, e.g., a ∈ R, boldfaced letters to represent vectors

x ∈ R
n, capital letters to represent matrices X ∈ R

m×n,

and ∆ = {x ∈ R
n | 0 f xi f 1,

∑n
i=1 xi = 1} to represent

the unit simplex. We say a matrix X ∈ ∆ if xi ∈ ∆ where

xi is the i-th column of the matrix X . We adopt the Matlab

notation for matrix indexing. For example, X(i, :) is the i-
th row of the matrix X and X(:, j) is the j-th column of

the matrix X . The nuclear norm of a matrix X , denoted by

∥X∥∗, is defined as the sum of all singular values of X .

The Frobenius norm of a matrix X , denoted by ∥X∥F , is

defined as the square root of all the squares of the entries in

X . The projection of a matrix X onto the set Λ is denoted

as ΠΛ(X). Let Rm×n
+ be the set of all nonnegative m-by-n

matrices.

A. Feature Reduction

Separable NMF aims to decompose a feature matrix into

a product of two nonnegative matrix factors while enforcing

the separability constraint on the factors. In particular, given

M ∈ R
m×n
+ where each row represents a data point, we

assume that there exists a subset K ¢ {1, 2, . . . , n} of r
column indices and H ∈ R

r×n
+ such that

M ≈M(:,K)H.

This is called the separability assumption [10], which has

been widely adopted in many separable NMF algorithms

[8], [9]. Under the separability assumption, computing the

nonnegative matrix factors is reduced to finding the column

index subset K. Once K is identified, H can be computed

via alternating least squares optimization [11]. In addition,

the obtained index set K indicates how to select features for

further processing.

To find K, we can first rewrite M(:,K)H as MX where

X ∈ R
n×n
+ is obtained by padding H with zero rows. Then

the problem of finding K turns into finding X and then

selecting rows of X based on the row-sparsity. For example,

a constrained row-sparsity minimization problem has been

proposed for seeking X [12], [13]

min
X∈R

n×n

+

∥X∥row,0 s.t. ∥M −MX∥F f ε, 1TX = 1
T ,

(1)

where ∥X∥row,0 counts the number of nonzero rows of X
and ε controls the error between M and its approximation

MX . The constraint that the columns of X sum to one

is imposed to guarantee the solution uniqueness. Due to

the NP-hardness, convex relaxation techniques are usually

applied to (1) which leads to the separable NMF algorithms

based on the convex relaxed models [8] [9]. Motivated by

the recent success of a ratio norm, i.e., ℓ1/ℓ2 in sparse

signal recovery [14] and its low-rank extension [15], we

adopt a non-convex low-rankness-promoting regularizer. In

particular, we consider the following model to estimate X:

min
X∈R

n×n

+

¼
∥X∥∗
∥X∥F

+
1

2
∥M −MX∥2F s.t. X ∈ ∆, (2)

where ∆ is the unit simplex, i.e., X ∈ ∆ if and only if

1
TX = 1

T and each entry of X is nonnegative. By following

the procedure in [14], we split the ratio as the difference of

two convex functions and then consider the difference

min
X∈R

n×n

+

g(X)− ïX,∇Xh(X(k)ð

where g(X) = ¼∥X∥∗ + 1
2∥MX − M∥2F and h(X) =

³∥X∥F . By applying the difference of convex function

algorithm (DCA) and the fact that ∆ ¦ R
n×n
+ , we obtain

the updating scheme at the k-th iteration

Xk+1 = argmin
X∈∆

¼∥X∥∗ +
1

2
∥MX −M∥2F

+
´

2

∥

∥

∥

∥

X −Xk −
³k

´

Xk

∥Xk∥F

∥

∥

∥

∥

2

F

.

Here the coefficient ³k+1 is updated via

³k+1 =
∥Xk+1∥∗
∥Xk+1∥F

. (3)

To solve the X-subproblem, we define the augmented La-

grangian function

Lρ(X,V ;Z) = ¼∥V ∥∗ +
1

2
∥MX −M∥2F

+
´

2

∥

∥

∥

∥

X −Xk −
³k

´

Xk

∥Xk∥F

∥

∥

∥

∥

2

F

+
Ä

2
∥X−V+Z∥2F+IΛ(V ).

(4)

By applying the alternating direction method of multipliers
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(ADMM), we have the following updates:






































Xj+1 = argmin
X∈∆

1

2
∥MX −M∥2F +

Ä

2
∥X − V j + Zj∥2F

+
´

2
∥X −Xk −

³k

´

Xk

∥Xk∥F
∥2F

V j+1 = argmin
V ∈∆

¼∥V ∥∗ +
Ä

2
∥Xj+1 − V + Zj∥2F

Zj+1 = Zj +Xj+1 − V j+1

(5)

Here the X-update is obtained by solving the critical equa-

tion, i.e., setting the gradient with respect to X as zero and

then solving for X . We have

Xj+1 =
(

MTM + (´ + Ä)I
)−1 (

MTM + ´Xk

+³k
Xk

∥Xk∥F
+ Ä(V j − Zj)

)

:= Q−1W.
(6)

Since Q = MTM + (´ + Ä)I is symmetric and positive

definite, we can apply the Cholesky factorization to the

matrix Q and get the upper triangular matrix factor R such

that Q = R′R. Then we can use forward and backward

substitutions to solve the linear system R′RX = W for

X , which can reduce the computational cost from O(n3)
to O(n2). For the V -update, we can use the singular value

thresholding (SVT) operator [16] and get

V j+1 = Π∆

(

Dλ/ρ(X
j+1 + Zj)

)

, (7)

Here the SVT operator with the parameter ¼/Ä is given by

Dλ/ρ = U Σ̂V T where Σ̂ = diag({(Ãi −
λ
ρ )+}) provided

that Ãi’s are the singular values of Xj+1 + Zj and the

thresholding operator is defined as (t)+ = max{0, t}.
We summarize the entire algorithm in Algorithm 1, which

includes the post-processing step for selecting the column

indices. For the post processing, one can either select K
to be the index set of maximum r diagonal entries of the

resulting matrix X , or the row index set with the maximum

ℓ2-norms of X . For the initialization of ³0 and X0, there

are different ways. For example, one can get an initial X0

using a fast algorithm such as FGNSR [8]. Then once X0 is

obtained, we set ³0 = ∥X0∥∗/∥X∥F . Note that we terminate

the inner loop if the relative error between two consecutive

inner iterates is smaller than ¸, and terminate the outer loop

if the relative error between the two consecutive outer iterates

is smaller than ε.

B. Computational Complexity Analysis

We discuss the computational cost of Algorithm (1). For

the X-update (6), we can pre-compute the matrix Q only

once which has computational complexity O(n3). Then the

computational complexity of finding the Cholesky factor-

ization of Q is O(n3). Once the upper triangular matrix

R is available, updating of X via (6) involves O(n2)
complexity at each inner iteration. Hence the entire X-

update is of complexity O(n3). The V -update involves the

SVT operator. It has been shown that SVT of a m × n
matrix has computational complexity O(mn2 + n3) [17],

thus our n×n matrix will have complexity O(2n3). Next the

Algorithm 1 Ratio Norm Minimization for Separable NMF

(RN-SNMF)

Input: M ∈ R
m×n
+ , number r of columns to extract, pa-

rameters Ä, ´, ¼, maximum number of iterations K/J for

DCA/ADMM, and error tolerance ε/¸ for DCA/ADMM.

Output: X ∈ R
n×n
+ , column indices K.

1: X ← X0, ³← ³0 ▷ Initialize

2: for k = 1 : K do

3: Xk ← Xk−1 ▷ Keep previous iterates in memory

4: ³k ← ³k−1

5: for j = 1 : J do ▷ ADMM Updates

6: Update Xj+1 via (6)

7: Update V j+1 via (7)

8: Update Zj+1 = Zj +Xj+1 − V j+1

9: if ∥Xj −Xj+1∥F /∥X
j∥F < ¸ then

10: break

11: end if

12: end for

13: Xk+1 = Xj ▷ Update Xk+1

14: ³k+1 = ∥Xk+1∥∗

∥Xk+1∥F

▷ Update ³

15: e = ∥Xk−Xk+1∥F

∥Xk∥F

▷ Relative Error

16: if e f ε then ▷ Stopping criterion

17: break

18: end if

19: end for

20: X = Xk

21: K = post-processing(X, r) ▷ Post-processing to get K

projection of an n-dimensional vector onto the unit simplex

[18] can be computed in O(n log n). Since we are projecting

an n × n matrix onto the unit simplex it will be computed

with complexity O(n2 log n). Thus the total computational

complexity of our algorithm is O(3n3 + n2 log n).

III. NUMERICAL EXPERIMENTS

In this section, we will test the proposed Algorithm (1)

on binary and grayscale data sets of hand gesture images.

To quantify the performance, we adopt classification accu-

racy, which is defined as 1 − loss where loss is the true

misclassification cost function used for our classifiers. There

are two types of features that we use: (1) histograms of

oriented gradients (HOG) feature vector where we get the

HOG feature vector for each image and each row of our

data matrix is the HOG feature vector for each image, and

(2) local binary pattern (LBP) feature vectors for each image

so that each row of our data matrix corresponds to the LBP

feature vector of that image. The HOG and LBP extractions

are implemented in Matlab as well as all the classifiers. The

cell size for both HOG and LBP are set as 8. The parameters

for Algorithm (1) are ¼ = 10, ´ = 100, Ä = 100 in the

binary test and optimal ¼ varies among {1, 10−1, . . . , 10−4}
in the grayscale test. The tolerance for the stopping criteria

are selected as ¸ = ε = 10−4, the maximum number of

outer iterations K = 500 and the maximum number of inner

iterations J = 5. We test our algorithm against other related
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separable NMF algorithms, including successive projection

algorithm (SPA) [11], FGNSR [8] and Frank-Wolfe (FW) [9].

All the numerical experiments were run in Matlab R2023b on

a desktop computer with Intel 12th Gen Intel(R) Core(TM)

i5-12500T CPU RAM 16GB with Windows 11.

A. Binary Image Test

For the binary image data downloaded from [19], there

are three hand gestures in the database: fist, open-hand,

and two finger which have 2003, 2010, and 2005 images,

respectively. Each binary image is of size 150 × 150; see

Fig. 1 for sampled images. We compute the HOG on the

entire data set of 6000 images, and we select a subset of

the binary images from each gesture (200 images each),

and convert them into a matrix to obtain a matrix of size

600× 10404. For each image, we extract the HOG features

using Matlab command extractHOGFeatures and then

obtain matrices of size 6000× 10404 and 600× 10404. We

then remove zero columns from the obtained data matrices

and then normalize the columns such that the sum of each

column is one, which ensures that the columns of the input

matrix lie in the unit simplex ∆. Thus, we end up with

matrices of size 6000 × 10404 for the binary HOG data,

and 600× 10404, for the binary subset HOG data.

Next we test all the comparing methods with varying

factorization ranks, i.e., r being 5%, 10%, 20%, 30%, 40%,

and 50% of the columns of a data matrix. For the post-

processing step, we select the r largest diagonal entries of

X . After the column index set K is obtained, we perform

classification on the reduced feature matrix with a specified

factorization rank. Given the m × r reduced image-feature

matrix, we split the data, holding 80% of the images as

training data, and the other 20% of the images as testing

data using Matlab command cvpartition. We then train

a SVM model and a KNN model for classification of the

binary images on the training reduced image-feature matrix

in Matlab using fitcecoc and fitcknn, respectively. We

run 50 trials for each r value, and average the accuracies

given from each trial. The results for accuracy for the whole

data set is given in Fig. 2 with the runtimes of the algorithms

given in Table I. For the subset data, the HOG accuracies

are given in Fig. 3 and their runtimes are given in Table

II. One can see that the runtime of SPA depends on the

matrix size while the proposed algorithm is scalable and quite

stable for various matrix sizes. We see that the accuracies the

same as SPA, and outperform FGNSR and FW for larger r
values. However, the runtime for RN-SNMF is more stable

than SPA, as one can see in Table I and II the times for

SPA increase dramatically as the matrix size increases, which

indicates that RN-SNMF is more scalable than SPA.

In addition to HOG features, we conduct numerical experi-

ments using the LBP features that are extracted from images.

For each image, we obtain the LBP feature matrices of size

6000× 19116 and 600× 19116. Similar to the HOG feature

case, we remove zero columns in the LBP feature matrix and

then normalize each column so that they sum to one, ensuring

that all the columns of the normalized feature matrix lie in

(a) Fist (b) Open-hand (c) Two fingers

Fig. 1: Sample images in the binary hand gesture data.

Fig. 2: Classification Accuracies for Binary Data Using HOG

Features

r SPA FGNSR FW RN-SNMF

521 39.07 616.92 1.07E+04 410.91

1041 129.98 897.24 1.05E+04 510.42

2081 397.07 2.30E+03 1.11E+04 472.88

3122 800.69 3.92E+03 1.10E+04 481.41

4162 1.33E+03 6.71E+03 1.12E+04 510.60

5202 1.85E+03 9.64E+03 1.15E+04 396.87

TABLE I: Runtime (in seconds) for Binary HOG Full Data

Fig. 3: Classification Accuracies for Binary Subset Data

Using HOG Features

r SPA FGNSR FW RN-SNMF

520 1.50 407 3.53E+03 438.24

1040 1.88 405.75 3.56E+03 336.05

2081 4.00 405.69 3.54E+03 369.86

3121 6.35 392.99 3.52E+03 377.73

4162 8.09 385.72 3.57E+03 369.74

5202 9.41 393.31 3.51E+03 491.12

TABLE II: Runtime (in seconds) for Binary HOG Subset

Data

the unit simplex ∆. Thus we end up with matrices of size

6000 × 18955, and 600 × 18088 for the respective full and

subset LBP features corresponding to the binary data.

Next we test all the algorithms with varying factorization
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ranks, i.e., r being 5%, 10%, 20%, 30%, 40%, and 50% of

the columns of a data matrix. For the post-processing step,

we select the r largest diagonal entries of X . By the same

procedure on the HOG features, We obtain classification

accuracies based on the LBP features. The LBP accuracies

are given in Fig. 4 and their runtimes are listed in Table

III. For the subset data, LBP accuracies are given in Fig. 5

and their runtimes (in seconds) are given in Table IV. Fig. 5

shows that RN-SNMF preforms as well as the other com-

pared algorithms in terms of SVM classification accuracy.

When KNN is used as a classifier it outperforms FW and

FGNSR for smaller r values. The runtime for RN-SNMF

is comparable to FGNSR and much faster than FW, and

is insensitive to the matrix size unlike SPA whose runtime

increases significantly as the matrix size increases.

Fig. 4: Classification Accuracies for Binary Data Using LBP

Features

r SPA FGNSR FW RN-SNMF

948 129.73 2.04E+03 3.71E+04 2.06E+03

1896 324.60 3.32E+03 3.61E+04 1.63E+03

3791 1.03E+03 1.00E+04 3.57E+04 1.91E+03

5687 2.02E+03 2.72E+04 3.58E+04 2.15E+03

7582 1.33E+03 2.95E+04 3.38E+04 1.75E+03

9478 3.23E+03 3.07E+04 3.48E+04 1.96E+03

TABLE III: Runtime (in seconds) for Binary LBP Data

r SPA FGNSR FW RN-SNMF

905 2.77 1.60E+03 1.13E+04 1.79E+03

1809 5.41 1.34E+03 1.15E+04 1.71E+03

3618 9.88 1.22E+03 1.14E+04 1.64E+03

5427 13.71 1.26E+03 1.17E+04 1.72E+03

7236 2.13E+01 1.48E+03 1.18E+04 1.47E+03

9044 2.70E+01 1.66E+03 1.19E+04 1.88E+03

TABLE IV: Runtime (in seconds) for Binary LBP Subset

Data

Fig. 5: Classification Accuracies for Binary Subset Data

Using LBP Features

B. Grayscale Image Test

For this experiment, we use the HGM-4 multi-cameras

dataset [20]1. In particular, we choose five classes of im-

ages representing hand gestures for the letters A, B, C, H,

and Y, as these gestures are most distinguishable for fair

comparisons; see one example image for each gesture in

Fig. 6. Each class of gestures have 40 images, each with

size 160× 90. In addition, we expand the data set by image

rotation. Specifically, for each image, we rotate the images

by a degree from {−2◦,−1◦, 1◦, 2◦} and then extract the

HOG features from all the images including rotated ones.

Thus we can generate a feature matrix of size 1000× 6840.

We remove zero columns and normalize each column so they

lie in ∆ as done in the previous section, which leads to a

feature matrix of size 1000× 6840. For the post-processing

step that selects the index set K, we select the row indices

corresponding to the r largest ℓ2 norms of the rows of X . We

compute the classification accuracy for each algorithm with

50 trials. The comparison of average accuracy by using the

SVM classifier for each method is illustrated in Fig. 7 and

the runtime for each algorithm is given in Table V, which

shows our method can achieve an optimal balance between

classification accuracy and runtime.

r SPA FGNSR FW RN-SNMF

342 0.29 137.386 831.01 409.89

684 0.50 144.90 816.90 495.50

1368 0.55 157.29 865.85 491.78

2052 1.74 127.96 840.62 405.86

2736 1.69 135.19 915.68 413.31

3420 1.81 128.87 865.63 488.89

TABLE V: Runtime (in seconds) for Gray-Scale HOG

1The data set is available at https://data.mendeley.com/

datasets/jzy8zngkbg/4
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(a) A (b) B (c) C (d) H (e) Y

Fig. 6: Gray-Scale hand gestures
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Fig. 7: Classification Accuracies for Gray Scale Data Using

HOG Features

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate feature dimension reduction

for hand gesture recognition. We propose a novel feature

selection method within the separable NMF framework,

utilizing a low-rankness promoted regularizer in the form

of a ratio of matrix nuclear norm and Frobenius norm.

To solve the resulting minimization problem, we employ

DCA and ADMM, which allow for closed-form solutions

to each subproblem. Our numerical experiments on binary

and grayscale gesture images, using various feature types,

demonstrate the effectiveness of our proposed method in

accurately recognizing hand gestures.

In the future, we plan to extend this framework to dy-

namic gesture recognition and apply it to complex RGB or

RGBD data sets. In addition, to address the computational

expense of finding the SVD of large matrices, we could use

randomized SVD to speed up feature selection in real-time

recognition for human-robot interaction.
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