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Abstract— Hand gesture recognition has been playing an
important role in robotic applications, which allows robots
to communicate with humans in an effective way. However,
it typically desires to process high-dimensional data, such as
images or sensor measurements. To address the computational
challenges due to the data growth, it is desirable to select most
relevant features during recognition by reducing the redun-
dancy of the data. In this paper, we propose a novel feature
selection approach based on the separable nonnegative matrix
factorization (NMF) framework for hand gesture recognition.
In particular, we adopt a nonconvex regularization term, i.e.,
the ratio of matrix nuclear norm and Frobenius norm. The
proposed method reduces the data dimension by utilizing the
data low-rankness in an adaptive way. To address the noncon-
vexity of the proposed model, we reformulate it by introducing
an auxiliary variable and then apply the alternating direction
method of multipliers (ADMM). Furthermore, a variety of
numerical experiments on binary and grayscale hand gesture
images demonstrate the efficiency of the proposed feature
selection approach in improving the quality of factorization
and its potential impact on robotic applications.

Index Terms—feature, hand gesture recognition, low-rank,
nonnegative matrix factorization, robot

I. INTRODUCTION

Nonverbal communication through gestures, motions, fa-
cial expressions, etc., plays an important role in human-
human interaction. It is also true for human-robot interaction,
particularly in noisy environments where verbal communica-
tion is not allowable. In this work, we focus on human hand
gesture recognition, which will enable robots to understand
human intentions accurately through their hand gestures and
take the right actions by following the human’s instructions.

There are two major types of hand gesture recognition
systems based on glove sensors or images/videos. The glove-
based recognition system involve wearing a glove or using
some form of apparatus that a hand interacts with in order to
capture various data, such as motion and pressure plates [1],
[2]. The other is visual-based system, either through images
or videos are captured via a camera and then interpreted.
Although the glove based or tactile hand gesture recognition
has a good performance, the equipment can be expensive and
is not as convenient or handy as a camera. In this paper, we
focus on vision-based recognition systems.
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The traditional vision-based gesture recognition system
usually directly process images or image-based features
learned by some feature descriptors such as Histogram of
Oriented Gradients (HOG), Local Binary Patterns (LBP)
and Scale-Invariant Feature Transform (SIFT). However,
although a dataset with high dimensional features has nu-
merous attributes, it is possible that only a few features
are directly relevant to the classification and recognition
tasks. Moreover, the growth in data dimensionality poses
challenges to classification performance due to the presence
of redundant or irrelevant features. Lastly, memory usage and
training time are adversely affected when dealing with high-
dimensional datasets. Therefore, it is crucial to reduce the
feature dimensionality while maintaining the desired recog-
nition accuracy. Recently, many dimensionality reduction
methods have been developed to preprocess the input data,
resulting in faster processing times without compromising
recognition accuracy. Refer to [3], [4] for literature survey
of dimension reduction techniques, [5] for a comprehensive
review of dimensionality reduction techniques for feature
selection and extraction, and [6] for a more recent review
on hand gesture recognition in robotic applications.

Nonnegative Matrix Factorization (NMF) has been serving
as one of the most popular and efficient dimensionality
reduction methods because it reduces the dimensionality of
the original data by factorizing the data matrix into two
lower-dimensional matrices. These matrices typically have
fewer columns than the original data matrix, effectively
reducing the dimensionality of the data. NMF is particularly
useful for feature extraction and has been widely used in
applications such as image and text processing, where the
data of interest can be represented as a matrix. In particular,
when the factor matrices are separable, NMF becomes a
special case known as separable NMF. In separable NMF,
the columns of the factor matrices are both nonnegative and
sparse, which means they consist mostly of zeros with a few
non-zero elements. Recently, many fast algorithms have been
developed for solving the separable NMF problem, including
Successive Projection Algorithm (SPA) [7], FGNSR [8], and
Frank-Wolfe based algorithm [9].

In this paper, we propose a novel feature selection ap-
proach based on the separable NMF framework for selecting
the most relevant features from a collection of hand gesture
images. In particular, we consider a low-rankness promoted
regularization technique, i.e., the ratio of matrix nuclear norm
and Frobenius norm. By applying the difference of convex
function algorithm (DCA), we derive an efficient algorithm
with convergence guarantee. As long as the learned features
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with reduced size are available, a data classifier, such as
K-nearest neighbors (KNN) and support vector machines
(SVM), can be further applied to classify the images on
the reduced feature space. We have conducted a variety of
numerical experiments on the binary and gray-scale hand
gesture images, which have shown the potential of the
proposed approach in realistic robotic applications.

The rest of the paper is organized as follows. Section II
describes the proposed gesture recognition method in detail
with complexity analysis. Various numerical experiments on
binary and grayscale hand gesture images are shown in
Section III. Finally, the conclusion and some future works
are summarized in Section IV.

II. PROPOSED METHOD

In this section, we describe our proposed gesture recog-
nition approach in details, which consists of two stages. At
the first stage, we propose a novel algorithm for selecting
the relevant features based on the ratio regularization of the
matrix nuclear norm and Frobenius norm. Then at the second
stage, classification and recognition tasks are performed on
the reduced feature space.

Throughout the paper, we use lowercase letters to denote
scalars, e.g., a € R, boldfaced letters to represent vectors
x € R™, capital letters to represent matrices X € R™*",
and A = {x e R"|0 <z; <1,Y " x; =1} to represent
the unit simplex. We say a matrix X € A if x; € A where
x; is the i-th column of the matrix X. We adopt the Matlab
notation for matrix indexing. For example, X (7,:) is the -
th row of the matrix X and X (:, j) is the j-th column of
the matrix X. The nuclear norm of a matrix X, denoted by
|| X+, is defined as the sum of all singular values of X.
The Frobenius norm of a matrix X, denoted by || X||F, is
defined as the square root of all the squares of the entries in
X. The projection of a matrix X onto the set A is denoted
as II5 (X). Let R"*" be the set of all nonnegative m-by-n
matrices.

A. Feature Reduction

Separable NMF aims to decompose a feature matrix into
a product of two nonnegative matrix factors while enforcing
the separability constraint on the factors. In particular, given
M e R7T™™ where each row represents a data point, we
assume that there exists a subset K C {1,2,...,n} of r
column indices and H € R*" such that

M~ M(:,K)H.

This is called the separability assumption [10], which has
been widely adopted in many separable NMF algorithms
[8], [9]. Under the separability assumption, computing the
nonnegative matrix factors is reduced to finding the column
index subset C. Once /C is identified, H can be computed
via alternating least squares optimization [11]. In addition,
the obtained index set K indicates how to select features for
further processing.

To find K, we can first rewrite M (:, C)H as M X where
X € R}*™ is obtained by padding H with zero rows. Then

the problem of finding K turns into finding X and then
selecting rows of X based on the row-sparsity. For example,
a constrained row-sparsity minimization problem has been
proposed for seeking X [12], [13]

|M - MX||p<e 17X =17,
(1

where || X||;ow,0 counts the number of nonzero rows of X
and ¢ controls the error between M and its approximation
MX. The constraint that the columns of X sum to one
is imposed to guarantee the solution uniqueness. Due to
the NP-hardness, convex relaxation techniques are usually
applied to (1) which leads to the separable NMF algorithms
based on the convex relaxed models [8] [9]. Motivated by
the recent success of a ratio norm, i.e., ¢1/¢> in sparse
signal recovery [14] and its low-rank extension [15], we
adopt a non-convex low-rankness-promoting regularizer. In
particular, we consider the following model to estimate X:

min

I X lrow,0 st
XeRryp ™

X 1 2
A + =||M - MX st. XeA, (2

XeRy ™
where A is the unit simplex, i.e., X € A if and only if
17X = 17 and each entry of X is nonnegative. By following
the procedure in [14], we split the ratio as the difference of
two convex functions and then consider the difference

min_g(X) — (X, Vxh(X®)
XeRy ™

where g(X) = M| X|. + 3[|MX — M|% and h(X) =
a||X||F. By applying the difference of convex function
algorithm (DCA) and the fact that A C R}*", we obtain
the updating scheme at the k-th iteration

) 1
Xpy1 = argmin \| X ||, + || MX — M||%
XeA 2

2
ap  Xg

B 11Xkl F

e

F
Here the coefficient o4 is updated via

Xkl
Qk4+1 = v

3)

[ Xks1llp

To solve the X-subproblem, we define the augmented La-
grangian function

1
Ly(X, V5 2) = AV« + 5 |MX = M||%

5H o X |]P
+olX - X — =
2 "B 1 Xlle

LI X—V+ZFHAW).
4)

F

By applying the alternating direction method of multipliers
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(ADMM), we have the following updates:
. 1 . A
X9t = argmin | MX — M||% + BHX -Vi+Zi|%
Xea 2 2

LS

B Xellr "

VIt = argmin AV, + 2| X9 — v 4+ 27|
vea 2

+§||X_Xk_

Zitl — 7i +X-j+1 _yitl

®)
Here the X -update is obtained by solving the critical equa-
tion, i.e., setting the gradient with respect to X as zero and
then solving for X. We have

X9 = (MM + (B+ p)I) " (MTM + BX;

o 6
e (VY Zﬂ)) —ow, ¥
F

Since @ = MTM + (B + p)I is symmetric and positive
definite, we can apply the Cholesky factorization to the
matrix () and get the upper triangular matrix factor R such
that Q = R'R. Then we can use forward and backward
substitutions to solve the linear system R'RX = W for
X, which can reduce the computational cost from O(n?)
to O(n?). For the V-update, we can use the singular value
thresholding (SVT) operator [16] and get

VIt = TIA (Dy ), (X7 + 279)) (7

Here the SVT operator with the parameter \/p is given by
Dy)p = USVT where 3 = diag({(o; — %)+}) provided
that o;’s are the singular values of X7*! 4 ZJ and the
thresholding operator is defined as (t); = max{0,t}.
We summarize the entire algorithm in Algorithm 1, which
includes the post-processing step for selecting the column
indices. For the post processing, one can either select K
to be the index set of maximum 7 diagonal entries of the
resulting matrix X, or the row index set with the maximum
fo-norms of X. For the initialization of «( and X, there
are different ways. For example, one can get an initial X
using a fast algorithm such as FGNSR [8]. Then once X is
obtained, we set ag = || Xo||«/|| X || 7. Note that we terminate
the inner loop if the relative error between two consecutive
inner iterates is smaller than 7, and terminate the outer loop
if the relative error between the two consecutive outer iterates
is smaller than e.

B. Computational Complexity Analysis

We discuss the computational cost of Algorithm (1). For
the X-update (6), we can pre-compute the matrix ) only
once which has computational complexity O(n?). Then the
computational complexity of finding the Cholesky factor-
ization of Q is O(n3). Once the upper triangular matrix
R is available, updating of X via (6) involves O(n?)
complexity at each inner iteration. Hence the entire X-
update is of complexity O(n3). The V-update involves the
SVT operator. It has been shown that SVT of a m x n
matrix has computational complexity O(mn? + n3) [17],
thus our n x n matrix will have complexity O(2n3). Next the

Algorithm 1 Ratio Norm Minimization for Separable NMF
(RN-SNMF)

Input: M € R7T™", number 7 of columns to extract, pa-
rameters p, 5, A, maximum number of iterations K/J for
DCA/ADMM, and error tolerance /1 for DCA/ADMM.

Output: X € R}*", column indices K.

10 X X(],Ck “— Qp
2: fork=1: K do
3: X +— X1

> Initialize

> Keep previous iterates in memory

4: Qp <— Qg1

5: for j=1:J do > ADMM Updates
6: Update X7 via (6)

7: Update V71 via (7)

8: Update 291! = 77 X7+l _ yitl

o: if | X7 — X9 /|| X7||F < n then

10: break

11: end if

12: end for

13: Xk+1 = XJ > Update Xk+1
14: Qpy1 = \‘||))((:Ll\‘\l; > Update «
15: e= W > Relative Error
16: if e < ¢ then > Stopping criterion
17: break

18: end if

19: end for
20: X = X,

21: IC = post-processing(X,r) > Post-processing to get K

projection of an n-dimensional vector onto the unit simplex
[18] can be computed in O(nlogn). Since we are projecting
an n X n matrix onto the unit simplex it will be computed
with complexity O(n?logn). Thus the total computational
complexity of our algorithm is O(3n® + n?logn).

III. NUMERICAL EXPERIMENTS

In this section, we will test the proposed Algorithm (1)
on binary and grayscale data sets of hand gesture images.
To quantify the performance, we adopt classification accu-
racy, which is defined as 1 — loss where loss is the true
misclassification cost function used for our classifiers. There
are two types of features that we use: (1) histograms of
oriented gradients (HOG) feature vector where we get the
HOG feature vector for each image and each row of our
data matrix is the HOG feature vector for each image, and
(2) local binary pattern (LBP) feature vectors for each image
so that each row of our data matrix corresponds to the LBP
feature vector of that image. The HOG and LBP extractions
are implemented in Matlab as well as all the classifiers. The
cell size for both HOG and LBP are set as 8. The parameters
for Algorithm (1) are A = 10,8 = 100,p = 100 in the
binary test and optimal \ varies among {1,107%,...,107%}
in the grayscale test. The tolerance for the stopping criteria
are selected as n = ¢ = 10~%, the maximum number of
outer iterations K = 500 and the maximum number of inner
iterations J = 5. We test our algorithm against other related
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separable NMF algorithms, including successive projection
algorithm (SPA) [11], FGNSR [8] and Frank-Wolfe (FW) [9].
All the numerical experiments were run in Matlab R2023b on
a desktop computer with Intel 12th Gen Intel(R) Core(TM)
i5-12500T CPU RAM 16GB with Windows 11.

A. Binary Image Test

For the binary image data downloaded from [19], there
are three hand gestures in the database: fist, open-hand,
and two finger which have 2003, 2010, and 2005 images,
respectively. Each binary image is of size 150 x 150; see
Fig. 1 for sampled images. We compute the HOG on the
entire data set of 6000 images, and we select a subset of
the binary images from each gesture (200 images each),
and convert them into a matrix to obtain a matrix of size
600 x 10404. For each image, we extract the HOG features
using Matlab command extractHOGFeatures and then
obtain matrices of size 6000 x 10404 and 600 x 10404. We
then remove zero columns from the obtained data matrices
and then normalize the columns such that the sum of each
column is one, which ensures that the columns of the input
matrix lie in the unit simplex A. Thus, we end up with
matrices of size 6000 x 10404 for the binary HOG data,
and 600 x 10404, for the binary subset HOG data.

Next we test all the comparing methods with varying
factorization ranks, i.e., r being 5%, 10%, 20%, 30%, 40%,
and 50% of the columns of a data matrix. For the post-
processing step, we select the r largest diagonal entries of
X. After the column index set K is obtained, we perform
classification on the reduced feature matrix with a specified
factorization rank. Given the m x r reduced image-feature
matrix, we split the data, holding 80% of the images as
training data, and the other 20% of the images as testing
data using Matlab command cvpartition. We then train
a SVM model and a KNN model for classification of the
binary images on the training reduced image-feature matrix
in Matlab using fitcecoc and fitcknn, respectively. We
run 50 trials for each r value, and average the accuracies
given from each trial. The results for accuracy for the whole
data set is given in Fig. 2 with the runtimes of the algorithms
given in Table 1. For the subset data, the HOG accuracies
are given in Fig. 3 and their runtimes are given in Table
II. One can see that the runtime of SPA depends on the
matrix size while the proposed algorithm is scalable and quite
stable for various matrix sizes. We see that the accuracies the
same as SPA, and outperform FGNSR and FW for larger r
values. However, the runtime for RN-SNMF is more stable
than SPA, as one can see in Table I and II the times for
SPA increase dramatically as the matrix size increases, which
indicates that RN-SNMF is more scalable than SPA.

In addition to HOG features, we conduct numerical experi-
ments using the LBP features that are extracted from images.
For each image, we obtain the LBP feature matrices of size
6000 x 19116 and 600 x 19116. Similar to the HOG feature
case, we remove zero columns in the LBP feature matrix and
then normalize each column so that they sum to one, ensuring
that all the columns of the normalized feature matrix lie in

[ AN

(a) Fist (b) Open-hand (c) Two fingers

Fig. 1: Sample images in the binary hand gesture data.
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Fig. 2: Classification Accuracies for Binary Data Using HOG
Features

r SPA FGNSR FW RN-SNMF
521 39.07 616.92 1.07E+04 410.91
1041 129.98 897.24 1.05E+04 510.42
2081 397.07 2.30E+03 | 1.11E+04 472.88
3122 800.69 3.92E+03 | 1.10E+04 481.41
4162 | 1.33E+03 | 6.71E+03 | 1.12E+04 510.60
5202 | 1.85E+03 | 9.64E+03 | 1.15E+04 396.87

TABLE I: Runtime (in seconds) for Binary HOG Full Data
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Fig. 3: Classification Accuracies for Binary Subset Data
Using HOG Features

r SPA | FGNSR FW RN-SNMF
520 1.50 407 3.53E+03 438.24
1040 | 1.88 405.75 3.56E+03 336.05
2081 | 4.00 | 405.69 3.54E+03 369.86
3121 | 6.35 392.99 3.52E+03 371.73
4162 | 8.09 385.72 3.57E+03 369.74
5202 | 9.41 393.31 3.51E+03 491.12

TABLE II: Runtime (in seconds) for Binary HOG Subset
Data

the unit simplex A. Thus we end up with matrices of size
6000 x 18955, and 600 x 18088 for the respective full and
subset LBP features corresponding to the binary data.

Next we test all the algorithms with varying factorization
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ranks, i.e., v being 5%, 10%, 20%, 30%, 40%, and 50% of
the columns of a data matrix. For the post-processing step,
we select the r largest diagonal entries of X. By the same
procedure on the HOG features, We obtain classification
accuracies based on the LBP features. The LBP accuracies
are given in Fig. 4 and their runtimes are listed in Table
III. For the subset data, LBP accuracies are given in Fig. 5
and their runtimes (in seconds) are given in Table IV. Fig. 5
shows that RN-SNMF preforms as well as the other com-
pared algorithms in terms of SVM classification accuracy.
When KNN is used as a classifier it outperforms FW and
FGNSR for smaller r values. The runtime for RN-SNMF
is comparable to FGNSR and much faster than FW, and
is insensitive to the matrix size unlike SPA whose runtime
increases significantly as the matrix size increases.
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Fig. 4: Classification Accuracies for Binary Data Using LBP
Features

r SPA FGNSR FW RN-SNMF
948 129.73 2.04E+03 | 3.71E+04 2.06E+03
1896 324.60 3.32E+03 | 3.61E+04 1.63E+03
3791 | 1.03E+03 | 1.00E+04 | 3.57E+04 1.91E+03
5687 | 2.02E+03 | 2.72E+04 | 3.58E+04 2.15E+03
7582 | 1.33E+03 | 2.95E+04 | 3.38E+04 1.75E+03
9478 | 3.23E+03 | 3.07E+04 | 3.48E+04 1.96E+03

TABLE III: Runtime

(in seconds) for Binary LBP Data
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Fig. 5: Classification Accuracies for Binary Subset Data
Using LBP Features

B. Grayscale Image Test

For this experiment, we use the HGM-4 multi-cameras
dataset [20]'. In particular, we choose five classes of im-
ages representing hand gestures for the letters A, B, C, H,
and Y, as these gestures are most distinguishable for fair
comparisons; see one example image for each gesture in
Fig. 6. Each class of gestures have 40 images, each with
size 160 x 90. In addition, we expand the data set by image
rotation. Specifically, for each image, we rotate the images
by a degree from {—2°,—1°,1°,2°} and then extract the
HOG features from all the images including rotated ones.
Thus we can generate a feature matrix of size 1000 x 6840.
We remove zero columns and normalize each column so they
lie in A as done in the previous section, which leads to a
feature matrix of size 1000 x 6840. For the post-processing
step that selects the index set K, we select the row indices
corresponding to the r largest /o norms of the rows of X. We
compute the classification accuracy for each algorithm with
50 trials. The comparison of average accuracy by using the
SVM classifier for each method is illustrated in Fig. 7 and
the runtime for each algorithm is given in Table V, which
shows our method can achieve an optimal balance between
classification accuracy and runtime.

r SPA | FGNSR FW RN-SNMF

r SPA FGNSR FW RN-SNMF 342 | 0.29 | 137.386 | 831.01 409.89
905 2.77 1.60E+03 | 1.13E+04 1.79E+03 684 | 0.50 144.90 | 816.90 495.50
1809 5.41 1.34E+03 | 1.15E+04 1.71E+03 1368 | 0.55 157.29 865.85 491.78
3618 9.88 1.22E+03 | 1.14E+04 1.64E+03 2052 | 1.74 127.96 | 840.62 405.86
5427 13.71 1.26E+03 | 1.17E+04 1.72E+03 2736 | 1.69 135.19 | 915.68 413.31
7236 | 2.13E+01 | 1.48E+03 | 1.18E+04 1.47E+03 3420 | 1.81 128.87 865.63 483.89
9044 | 2.70E+01 | 1.66E+03 | 1.19E+04 1.88E+03

TABLE IV: Runtime (in seconds) for Binary LBP Subset
Data

TABLE V: Runtime (in seconds) for Gray-Scale HOG

IThe data set is available at https://data.mendeley.com/
datasets/jzy8zngkbg/4
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Fig. 6: Gray-Scale hand gestures

(a) A (b) B
E g
0095}
> o8
o] 0.9} g
(>)~ h
©0.85+ ,”
8 ll
<<E) 0.8 ) —>—SPA
. —4—FGNSR
= 0.759 s
o - © RN-SNMF
Q 077 1
o L L L L L
500 1000 1500 2000 2500

r value

Fig. 7: Classification Accuracies for Gray Scale Data Using
HOG Features

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate feature dimension reduction
for hand gesture recognition. We propose a novel feature
selection method within the separable NMF framework,
utilizing a low-rankness promoted regularizer in the form
of a ratio of matrix nuclear norm and Frobenius norm.
To solve the resulting minimization problem, we employ
DCA and ADMM, which allow for closed-form solutions
to each subproblem. Our numerical experiments on binary
and grayscale gesture images, using various feature types,
demonstrate the effectiveness of our proposed method in
accurately recognizing hand gestures.

In the future, we plan to extend this framework to dy-
namic gesture recognition and apply it to complex RGB or
RGBD data sets. In addition, to address the computational
expense of finding the SVD of large matrices, we could use
randomized SVD to speed up feature selection in real-time
recognition for human-robot interaction.
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